
https://doi.org/10.31449/inf.v43i3.2944 Informatica 43 (2019) 355–361 355

A Novel Agent Based Load Balancing Model for Maximizing

Resource Utilization in Grid Computing

Ali Wided and Kazar Okba

Department of Computer Science, Mohamed Khider University, Biskra, Algeria

E-mail: aliwided1984@gmail.com

Keywords: grid computing, load balancing, multi agent system, performance metrics, agent based load balancing

Received: July 15, 2019

Grid is the collection of geographically distributed computing resources. For effective management of

these resources, the manager must maximize its utilization, which can be achieved by efficient load

balancing algorithm, The objective of load balancing algorithms is to assign the load on resources to

optimize resource use while reducing total jobs execution time. The proposed agent based load

balancing model aims to take advantage of the agent characteristics to generate an autonomous system.

It also addresses similar systems drawbacks such as instability, scalability or adaptability. The

performance of the proposed algorithms were tested in Alea 2 simulator by using different parameters

such as response time, resources utilization and overall queue time. The performance evaluation

suggests that the proposed algorithm can enhance the overall performance of grid computing.

Povzetek: Predstavljena in s simulatorjem analizirana je agentna metoda razporejanja obremenitev v

omrežju.

1 Introduction
Due to the emergence of grid computing on the

Internet, a hybrid load balancing algorithm, which takes

into account various factors such as grid architecture,

computer heterogeneity, communication delays,

network bandwidth, resource availability,

unpredictability and job characteristics, is now required.

For grids, scalability and adaptability are two major

issues. As for the centralized resource scheduling

problem, the limitation of scalability and computational

performance is inevitable. Moreover, due to resource

heterogeneity, resource variations, application diversity

and grid environments are dynamic. Therefore, adaptive

and robust scheduling techniques are preferred [1][2].

Multi-agent systems offer promising features for

resource managers. The reactivity, proactivity,

scalability, cooperation, robustness, flexibility and

autonomy that characterize agents can help in the

complex task of managing resources in dynamic and

changing environments.

This paper presents a new Agent Based Load

Balancing Algorithm, called ABLBA. A hierarchical

architecture with coordination is designed to ensure

scalability and efficiency. In addition, a multi-agent

approach is applied to improve the adaptability. The

proposed algorithm aims to reduce the average response

time, as much as possible, of jobs submitted to the Grid,

and to maximize throughput and resource utilization.

2 Related works
Authors in [3] proposed a multi-agent load balancing

model by analyzing the load of compute nodes and the

subsequent migration of virtual machines from

overloaded nodes to underloaded nodes. The proposed

system involves multiple nodes that interact to

implement MapReduce jobs. The multi-agent system

consists of a group of agents: node sensor agent,

simulation model sensor agent, analysis agent,

migration agent and distribution agent. Analysis and

distribution agents are defined as reasoning agents.

In [4], a decentralized computing algorithm was

proposed to assign and schedule jobs on a distributed

grid. Using the properties of multi-agent systems, the

proposed distributed resource allocation protocol

(dRAP) is described as follows:

An agent in the system is simply a node. Each

agent has a vector including the number of CPUs in its

cluster and the residual time to complete the execution

of its current process. Each agent is assured to be in

exactly 1 out of 4 cases during the simulation.

A main feature of this algorithm is that nodes ask

their neighbors to form clusters. This reduces waiting

time and communication costs. One optimization to

consider would be to delay the disconnection of the

cluster in state 4, which would guide learning or

memory in the system where the planner would be able

to remember the requirements of the past process. The

problem with this algorithm is its decentralized nature,

it is neither a centralized control nor a precise

synchronization on nodes (agents).

The study in [5] presented the development of an

agent-based model for managing network resources

with defined operations so that the user can perform

jobs efficiently and effectively and thus significantly

improve management by a gLite Grid middleware. The

proposed solution provides a platform based on a

collection of agents in a virtual organization. The key

mailto:aliwided1984@gmail.com

356 Informatica 43 (2019) 355–361 A. Wided et al.

aspects of this proposal architecture are: resource

tracking, load balancing and agent hierarchy.

In [6] the authors proposed a new load balancing

structure based on the moving agent and a technique for

optimizing ant colonies. In the proposed structure, a

dispatcher agent is involved in distributing the tasks

received to the worker agents according to the right

decisions to minimize the overall execution time

(makespan). The proposed framework is constructed

using three layers which are the producer of user tasks,

the scheduling load balancing layer and the workers'

layer. This study should be complemented by

comparing their results with other methods, minimizing

task movements and resulting in additional costs in the

migration process.

Authors in [7] presented the design and

implementation of a priority scheduling and fuzzy load

balancing model in a computing grid. In this grid

template, the user sends his jobs to the grid agent, after

the grid scheduler uses the priority-based scheduling

algorithm to schedule jobs from the grid agent to the

available resource. Load balancing is done using the

fuzzy logic technique Propose, in which a set of fuzzy

rules are produced using the resource and the work

parameter. As fuzzy control rules are collected using

linguistic variables, perceptual knowledge and

inspection are easily integrated into the control

mechanism.

3 Proposed agent based load

balancing model
A grid computing was modelled as a set of clusters.

Each cluster was composed of nodes and belonged to a

LAN local domain (Local Area Network). Every cluster

was connected to the WAN global network (World

Area Network) by a Switch [8].

The proposed Agent Based load balancing model

was based on mapping the Grid architecture into a tree

structure. This tree was built by aggreGAtion as

follows: first, for each cluster, a two level subtree was

created. The leaves of this sub-tree correspond to the

cluster nodes, and its root, called cluster manager,

represents a virtual node associated with the cluster.

Secondly, sub-trees corresponding to all clusters were

collected to generate a three level sub-tree whose root is

a virtual node designated as a Grid manager. The

concluding tree is referred to as C/N, where C is the

number of clusters that constitute the Grid and N the

number of worker nodes [8].

This study aims to develop a hierarchical load

balancing model based on a multi-agent system. There

are two key challenges for Grid computing:

heterogeneity and scalability. The authors propose a

three-layer architecture to address the scalability issue.

Connecting or disconnecting resources (worker nodes

or clusters) correspond to simple operations in a tree

(adding or removing leaves or sub-trees). The proposed

agent based load balancing model aims to take

advantage of the agent’s characteristics to create an

autonomous system. It also addresses similar

disadvantages such as instability, scalability,

adaptability, etc., and other specific issues related to

grid computing.

3.1 Model characteristic

The proposed model is characterized as hierarchical;

this characteristic facilitates the circulation of

information through the tree and defines the flow of

messages in the proposed strategy.

Three types of load information movements can be

identified:

• Ascending movement: this movement relates to the

load information movement, to get current load

state. from Level 2 (node Agents) towards Level 1

(Cluster Agents). or from Level 1(Cluster Agents)

towards Level 0 (grid Agents). With this

movement, the cluster manager can have a global

view of the cluster load or the grid manager can

have a glob view of the grid load.

• Horizontal movement: it concerns the useful

parameters for the execution of load balancing

operations. This movement relates to task

assignment intra-cluster in Level 2.

• Descending movement: this movement allows to

take decisions for task assignment or jobs

migration, the decisions taken by cluster Agents at

levels 1 to the Migration Agents at same level. And

from Migration Agents at level 1 to Node Agents at

level 2, also from Grid Agent at level 0 to Cluster

Agents in level 1.

The proposed model:

• supports the scalability and heterogeneity of grids:

insertion or elimination entities (processing

elements, nodes or clusters) are very simple

operations in the proposed model (insertion or

elimination nodes, subtrees);

• is totally independent of any physical structure of a

grid: the conversion of a grid into a tree is a unique

conversion. Each grid corresponds to one and only

one tree;

• is based on the exchange of information between

Nodes and clusters through their respective agents.

Level 0: At this level, Grid Agent is located, the Grid

users send their jobs to the Grid Agent, for which it is

responsible:

• receiving jobs from Grid users

• sending jobs for Node Agents

• all Cluster Agents are started by Grid Agent

• initiating a global load balancing process

Level 1: At this level, Cluster Agent is associated with a

physical grid cluster; this Agent is responsible for:

• the maintenance of the load information relating to

each of its Node Agents.

• estimating the load of the associated cluster and

sending this information to Grid Agent.

• the decision to start local load balancing

• sending load balancing decisions to Migration

Agent

A Novel Agent Based Load Balancing Model for... Informatica 43 (2019) 355–361 357

• Migration Agent is started by its associated cluster

Agent

• all Node Agents are started by their corresponding

Cluster Agent

Migration Agent is also present at this level, whose role

is to:

• start the migration process

• send the migration decisions to the Node Agents.

• wait for an acknowledgement from receiver node

and ensure that the migrated jobs are received and

successfully resumed at the destination node

Level 2: At this level, Node Agent is present; it is

necessary to have one Node Agent on each node; every

Node Agent at this level is responsible for:

• maintaining its load information

• sending this information to its associated

• Cluster Agent

• working in cooperation with the Migration

• Agent to execute the migration process

• collect information about the jobs (number of jobs

queued at node, arrival time, waiting time,

submission time, start time, processing time and

finish time of each job on the local node)

• remove the terminated, leaving or migrated jobs

from queue of jobs

• calculate the total load of node

• receive jobs sent by Grid Agent

3.2 Proposed algorithms

According to the proposed model, two levels of load

balancing are considered: Intra-cluster Agent based

load balancing algorithm and Inter-Clusters Agent

based load balancing algorithm.

There are certain specific events that change the

load configuration in Grid computing and can be

classified as follows:

• Any new job is arrived

• Accomplishment of execution of any job

• Any new node is arrived

• Any existing node is removed

• Failure of Machine at any node

• The node become overloaded

When any of these events happen, the local load

value is changed. Table 1 summarizes the notations

used in the proposed algorithms.

Parameter Description

N Node

LoadN Load of Node

Qlength Queue length

CPU-U CPU utilization of Node

Mem Memory utilization of

node

THH The higher threshold

THL The lower threshold

OLD-list Overloaded List

ULD-list

BLD-list

Loadavg

NBRN

C

Underloaded List

Balanced List

Average Load

Number of Nodes of cluster

Cluster

Table 1: Notations used in the proposed algorithms.

3.2.1 Intra-cluster agent based load

balancing algorithm

Depending on its current load, each Cluster Agent

decides to start a Job Migration operation. In this case,

the Cluster Agent tries, in priority, to balance its load

among its nodes.

Load estimation

The node load at a given time was simply described by

the CPU queue length. It indicates the number of

processes awaiting execution. The proposed algorithm

considers CPU-U (CPU Utilization), Q length (Queue

length) and Mem (memory utilization) as load

information parameters to measure the load of a node.

These parameters are calculated as follows:

Load (CPU-U)= (U1+U2+……+UT)/T, where:

U1+U2+……+UT is the value of CPU-U in a previous

one second interval.

Load (Qlength) = (Q1+Q2+…...+QT)/T, where:

Q1,Q2,……...,QT is the value of Qlength in a

previous one second interval.

Figure 1: Agent based load balancing model in grid.

358 Informatica 43 (2019) 355–361 A. Wided et al.

Load(Mem)=(M1+M2+……...+MT)/T Where:

M1,M2,……...,MT is the value of Mem in a previous

one second interval. T is the number of time intervals.

The averaged information of CPU-U, Qlength and

Mem are the load parameters used to describe the node

load.

Algorithm 1. An algorithm for Node Agent

1: T←5 seconds

2: Waiting for jobs;

3: Create jobs queue for related node;

4: In each one second of T intervals do

5: Calculate (CPU-U);

6: Calculate (Qlength);

7: Calculate (Mem);

8: End do

9: Load (CPU-U) = (U0+U1+…..UT)/T;

10: Load (Qlength) = (Q0+Q1+…..QT)/T;

11: Load (Mem) = (M0+M1+…..MT)/T;

12: Send load information for related Cluster Agent

13: Wait for load change // happening of any of

defined events

14: If (events_happens ()=1 or events_happens ()=4)

then // Termination or migration of job

15: Remove terminated or migrated job from the

waiting queue

16: Subtract their load value from the total local load

of node.

17: Send new load to its Cluster Agent associated;

18: End if

19: If (events_happens ()=2 or events_happens ()=3)

then // new or incoming job

20: Add the newly created or incoming job for the

waiting queue

21: Add their load value for the total local load of

node

22: Send new load to its Cluster Agent associated;

23: End if

Function events_happens ()

output Type: integer

1: If (Job.state=Termination) then events_happens ()

 =1; End If

2: If (Job.state=Start) then events_happens () =2;

 End If

3:If (Job.state=Incoming Migrating) then

 events_happens ()=3; End If

4: If (Job.state = migrated) then events_happens

 ()=4; End If

5:If (Arrival of any new resource) then

 events_happens ()=5; End If

6: If (Cluster.state=saturated)then events_happens

 ()=8; End If

7:If (Cluster.state=unbalanced) then events_happens

 ()=9; End If

Location policy

In the next step, the nodes must be classified according

to their load. Three states were used for classification:

overloaded, underloaded and balanced. First, Cluster

Agent must calculate two threshold values, which are

calculated as follows:

• cluster Agent calculates load average of each

parameter (CPU-U and Qlength) over all related

nodes.

• Loadavg(Qlength)=(load1+load2+….loadNBRN)/NBR

N, where Loadavg(Qlength) is the average load of

Qlength over all related nodes.

• load1,load2,….loadn are the current Qlength of

each node calculated by Node Agent.

• Loadavg (CPU-U) =(load1+load2+….loadNBRN)/

NBRN, where Loadavg (CPU-U) is the average load

of CPU-U over all related nodes.

• load1,load2,….loadNBRN are the current load of

CPU-U of each node calculated by Node Agent.

Calculation of threshold values

The higher and lower threshold values of Qlength and

CPU-U of parameters are calculated by multiplying the

average load of (Qlength or CPU-U) and a constant

value.

• THH(Qlength) =H*Loadavg(Qlength)

• THL(Qlength) =L* Loadavg(Qlength)

• THH(CPU-U) =H*Loadavg(CPU-U)

• THL(CPU-U) =L* Loadavg(CPU-U)

where, THH is the high threshold and THL is the low

threshold. H and L are constants. The next step is to

divide the nodes for balanced, overloaded and

underloaded nodes using the threshold values as

follows:

• Overloaded: the node will be added for overloaded

list if queue length is high, or CPU utilization is

high, or memory usage is greater than 85%, then

the node is classified as overloaded node.

• Underloaded: the node will be added for

underloaded list if queue length is low, or CPU

utilization is low.

• Balanced: the node is not into the overloaded list or

the underloaded list. The node is in a balanced load

state. They are considered to be more loaded than

the low state and less loaded than the high state.

Algorithm 2. An algorithm for Cluster Agent

1: Startup its related Node Agent

2: Startup its related Migration Agent

3: Receive load information(LoadN(Qlength),

LoadN(CPU-U)) from its related nodes.

4: Calculate and send its load information for

Grid Agent.

5: somme ←0; somme1←0;

6: For every Node N of cluster C do

7: Somme← Somme+ LoadN(Qlength);

8: Somme1← Somme1+ LoadN(CPU-U);

9: End For

10: Loadavg(Qlength)= somme1/NBR-N;

11: Loadavg(CPU-U)= somme/NBR-N;

12: THH(Qlength)= Loadavg(Qlength)*H;

13: THL(Qlength)= Loadavg(Qlength)*L;

14: THH(CPU-U)= Loadavg(CPU-U)*H;

15: THL(CPU-U)= Loadavg(CPU-U)*L;

16: Partition Nodes into overloaded list OLD-

A Novel Agent Based Load Balancing Model for... Informatica 43 (2019) 355–361 359

list, underloaded list ULD-list and

balanced list BLD-list

17: OLD-list←∅; ULD-list←∅; BLD-list←∅;

18: For every Node N of cluster C do

19: If ((LoadN(Qlength)>THH(Qlength)) or

(LoadN(CPU-U)>THH(CPU-U))or

(Load(Mem)>85%)) then

20: OLD-list ←OLD-list ∪ N;

21: End If

22: Else If ((LoadN(Qlength))<

THL(Qlength))or(LoadN(CPU-

U)<THL(CPU-U))) then

23: ULD-list← ULD-list ∪ N;

24: Else BLD-list← BLD-list ∪ N;

25: End If

26: End For

27: Sort OLD_list by descending order relative

to their LoadN(Qlength).

28: Sort ULD_list by ascending order relative

to Their LoadN(Qlength).

29: If (events_happens ()=7) then //cluster is

unbalanced

30: While (OLD-list ≠ ∅.AND. ULD-list ≠ ∅) do

31: For i = 1 To ULD-list. Size() do

32: send the decision of migration for

AgentMigration (with address of first

sender node of OLD List and its receiver

node of ULD-list);

33: If an Acknowledgment received from

Migration Agent

34: Update the current LoadN of receiver and

sender nodes

35: Update OLD-list, ULD-list and BLD-list;

36: Sort OLD-list by descending order of their

LoadN(Qlength).;

37: End For

Job Migration Decision

After classifying the nodes, in the next step Cluster

Agent decide to transfer jobs from overloaded to

underloaded nodes. It sends this decision for Migration

Agent.

Algorithm 3. An algorithm for AgentMigration

1: Receive decision of migration from its related

Cluster Agent.

2: Sending the migration decisions to the Node

Agents of sender and receiver node.

3: Wait for an Acknowledgment from Node agent of

receiver node.

4: Send an Acknowledgment for its related Cluster

Agent

3.2.2 Inter-cluster agent based load balancing

algorithm

This algorithm applies a global load balancing among

all clusters of the Grid. The Inter-cluster load balancing

at this level is made if Cluster Agent fails to balance its

load among its associated nodes. In this case the cluster

agent transfers jobs to under loaded clusters based on

the Decision taken by Grid Agent. the following

algorithms are proposed:

Algorithm 4. An algorithm for Grid Agent

1: Startup all Cluster Agents

2: Receive jobs from grid user

3: Send jobs for Node Agents

4: If (events_happens ()=6) then //one of cluster is

saturated

5: Create underloaded_clusters_table;

6: Sort clusters Cr of underloaded _clusters_table by

Ascending order of their Load

7: While (underloaded _clusters_table ≠ Φ) Do

8: Sort the clusters Cr of underloaded _clusters_table

by ascending order of inter clusters(Ci-Cr) WAN

bandwidth sizes.

9: Sort nodes of saturated cluster by descending

order of their load

10: Sort Jobs of first node of saturated cluster by

FCFS algorithm and communication cost

11: Migrate the selected job from the first node of

saturated cluster to jth cluster of

underloaded_clusters_table

12: Update load of sender and reciever cluster

13: Update ULD_clusters_table.

The last algorithm is implemented in Grid Agent

which determines the way a receiver cluster is selected

for a job migrated from overloaded cluster. Grid Agent

calculates the minimum communication cost of sending

jobs from saturated cluster to receiver underloaded

cluster based on the information collected in the last

exchange interval. Grid Agent selects the cluster that

gives minimum overall cost.

3.3 Agents interactions

The proposed agent based load balancing algorithm is

intended to take advantage of the agent characteristic to

create a self-adaptive and self-sustaining load balancing

system. It consists of five types of agents, in unbalanced

situations, and if the Cluster Agent finds that there is a

load imbalance between the nodes under its control, it

uses the gathering event information policy to receive

the load information from each Node Agent. On the

basis of this information and the estimated equilibrium

threshold, it analyses the current load of the cluster.

Depending on the result of this analysis, it decides

whether to start a local balancing in case of an

unbalanced state, or simply inform Grid Agent of its

current load. Node Agent sends the updated local load

value to Cluster Agent, which updates its load

information. The local node load is calculated by the

Node agent residing at each calculation node. Node

Agent creates the task queue at the local node and

updates it if necessary, and sends it for Cluster Agent

based on the defined events. Migration Agent is

responsible for migrating jobs to the selected

underloaded node.

360 Informatica 43 (2019) 355–361 A. Wided et al.

There is a Migration Agent in each cluster, who

expects an acknowledgement of receipt from the

receiving node once it receives the migrated job. The

Migration Agent ensures that the work is successfully

received and resumed or started at the destination node.

The last agent is Grid Agent, it is the role of the

distribution of work between clusters, all Cluster

Agents are started by this type of agent and it decides

whether to start a global load balancing in case of a

saturated state.

4 Experimental results

4.1 Experimental environment

An experimental environment using Alea 2 as a grid

simulator and JADE (Java Agent DEvelopment

Framework) for agent implementation was set up to

evaluate the effectiveness of the proposed algorithms.

In the proposed infrastructure, management agents can

communicate in a Grid environment using the Jade

agent platform. In addition to Alea 2, a class library was

developed that simulates the activities of an agent

platform. This library, called ABLB (Agent based load

balancing), includes the classes: Grid Agent Cluster

Agent, Migration Agent and Node Agent.

4.2 Workload

The complex data set was modelled from the national

Grid of the Czech Republic's MetaCentrum, which

allowed to carry out very realistic simulations. It also

provides information on machine failures and specific

work requirements and this information influences the -

quality of solu tions generated by scheduling

algorithms. The job description includes (job ID, user,

queue, number processors used, etc.).

The cluster description also includes detailed

information such as RAM size, CPU speed, CPU

architecture , operating system and list of supported

properties (allowed queue(s), cluster location, network

interface, etc.). In addition, the information machines

were under maintenance (failure/restart). Finally, the

list of queues containing their time limits and priorities

is provided. More details on the trace file used can be

found at [9].

4.3 Performance evaluation

The important performance factors in estimating the

proposed algorithm is maximizing resource utilization.

the use of resources was the main focus (%). The

number of clusters was assumed to be 14, and each

cluster was considered to be composed of different

numbers of resources. The number of jobs was 3000.

Figure 3 shows the use of the cluster with and without

the proposed algorithm. It can be noticed that the agent

based load balancing algorithm is more effective in

maximizing resource utilization.

Figure 2: UML Sequence Diagram describes agent

interactions in intra cluster load balancing process.

The proposed algorithm allows job to be scattered

over the most available resources when there was no

appropriate resource, unlike other traditional algorithms

that try to select the best resource that resembles the

work requirements; otherwise, the job will remain in the

global queue, indicating an underutilization of those

resources.

A Novel Agent Based Load Balancing Model for... Informatica 43 (2019) 355–361 361

Figure 3: Comparison of cluster utilization (%) with

and without Agent Based Load Balancing using 14

clusters.

5 Conclusion
The algorithms proposed under the Alea 2 simulator

written in Java were developed to test and estimate the

performance of the load balancing model based on the

proposed agents. Experimental results showed that the

proposed model allows a better balance of load and the

correct use of resources. There are several approaches

to improve resource utilization and reduce response

time through coordination and cooperation among

agents.

Therefore, the proposed model supports

heterogeneity, scalability and dynamics of grids. In

addition, a multi-agent architecture for grid load

balancing was suggested, as well as a job migration

technique to reduce the difference between overloaded

and underloaded nodes. Finally, to estimate node load,

the combination of CPU usage, memory usage and

queue length was applied.

However, the problems of the model implemented

included the reliability problem; there is no certainty

that migrating work will resume in the reception node.

The sender node does not keep a copy of the job until it

is left at its new receiver node. Other solutions must be

found to offer more reliability for migrating jobs.

Moreover, the time required to complete a migration

process is not explicitly calculated.

Hence, this study considered the comparison of the

proposed algorithm with other agent-based load

balancing algorithms, the cost of negotiation between

agents, the use of a moving agent for load balancing,

and the improvement and use of the proposed model in

real grid environments.

6 References
[1] Brugnoli, M., Heymann, E., Senar, M.A., et al.

"Grid scheduling based on collaborative random

early detection strategies". 18th Euromicro Conf.

Parallel,Distributed and Network-based

Processing, Pisa, Italy, pp. 35–42 ,February 2010.

https://doi.org/10.1109/PDP.2010.57

[2] Wu, J., Xu, X., Zhang, P.C., et al. "A novel multi-

agent reinforcement learning approach for job

scheduling in grid computing", Future Gener.

Comput. Syst., 27, (5), pp. 430–439,2011.

https://doi.org/10.1016/j.future.2010.10.009

[3] M.N. Satymbekov, I.T. Pak, L. Naizabayeva, and

Ch.A. Nurzhanov. "Multi-agent grid system

Agent-GRID with dynamic load balancing of

cluster nodes", Open Engineering 7(1):485-490,

December 2017.

[4] Soumya Banerjee and Joshua P. Hecker."Multi-

Agent System Approach to Load-Balancing and

Resource Allocation for Distributed Computing",

First Complex Systems Digital Campus World E-

Conference ,2015.

[5] Rina Suros, Juan Francisco Serrano.

"Communication complexity in high-speed

distributed computer network in an agent based

architecture for grids service Ray Tracing View

project", International Journal of Advanced

Computer Research, Vol 8(35) ISSN (Print):

2249-7277, 22-February-2018.

https://doi.org/10.19101/IJACR.2018.836002

[6] Hajoui Younes et al., "New load balancing

Framework based on mobile AGENT and ant-

colony optimization technique", Conference

Intelligent Systems and Computer Vision (ISCV),

At Fès,2017.

https://doi.org/10.1109/ISACV.2017.8054961

[7] Rathore, N. "Efficient Agent Based Priority

Scheduling and Load Balancing Using Fuzzy

Logic in Grid Computing" , i-manager’s Journal

on Computer Science, 3(3), 11-22. 2015.

https://doi.org/10.26634/jcom.3.3.3661

[8] B. Yagoubi, and M. Meddeber." Distributed Load

Balancing Model for Grid Computing" , Revue

ARIMA,Vol. 12,pp. 43-60,2010.

http://www.cs.huji.ac.il/labs/parallel/workload/l

_metacentrum/

https://doi.org/10.1109/PDP.2010.57
https://doi.org/10.1016/j.future.2010.10.009
https://doi.org/10.19101/IJACR.2018.836002
https://doi.org/10.1109/ISACV.2017.8054961
https://doi.org/10.26634/jcom.3.3.3661
http://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum/
http://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum/

362 Informatica 43 (2019) 355–361 A. Wided et al.

