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Rising electricity demand, the proliferation of distributed energy resources (DERs), and the complexity of 

modern urban infrastructure pose significant challenges for low-voltage distribution network (LVDN) 

This research proposes an intelligent optimization approach for LVDN planning using Deep learning (DL) 

to address limitations in traditional methods, addressing dynamic load patterns and renewable energy 

integration. The goal is to reduce power losses and infrastructure costs while maintaining voltage stability 

and load balancing across the network. A comprehensive low-voltage smart grid planning dataset was 

sourced from an open-access platform, Kaggle. To assure data quality, normalization and outlier 

reduction were performed during preprocessing. Fast Fourier Transform (FFT) was used to extract 

features and uncover hidden patterns in load demand and energy flows. This research proposes a Seeker 

Optimized Attention with Adjustable Long Short-Term Network (SO-Attn-ALSTN) model, which combines 

an attention-enhanced ALSTN for spatiotemporal load forecasting with a Seeker Optimization Algorithm 

(SOA) for efficient planning. Attention enhances ALSTN performance by focusing on temporal inputs, 

while SOA ensures robust parameter tuning and faster convergence. Forecasted loads optimize cable 

routing, transformer sizing, and DER allocation. Experimental results validate the model's superiority: 

the proposed SO-Attn-ALSTN achieved a MAPE of 6.53%, RMSE of 1.14%, MAE of 0.99%, and APE of 

2.01%. Comparative convergence time analysis shows a 30–40% improvement over existing methods, 

LMBP and IGWO-SVM, with a convergence time of 2.708 seconds at an error threshold of 0.01. Thus, the 

hybrid SO-Attn-ALSTN framework presents an intelligent, adaptive, and computationally efficient solution 

for modern LVDN planning. 

Povzetek: Predstavljen je hibridni okvir za načrtovanje nizkonapetostnih distribucijskih omrežij, ki 

združuje pozornostno izboljšani ALSTM, FFT-izluščene značilke in algoritem Seeker Optimization. 

 

 

1   Introduction 
Low-voltage (LV) distribution networks form the last, and 

most crucial link in delivering electrical power, therefore 

connecting electricity or electrical products to end-users 

such as houses, businesses, and small industries [1]. 

Generally, LV networks tend to operate at several voltage 

levels below 1 kilovolt (kV), before distribution 

transformers, and have the responsibility for the reliable 

and safe distribution of electrical energy to end-users [2]. 

LV networks are vital for providing high-quality electrical 

service, voltage stability, and efficient energy supply. Their 

importance has grown due to increased electricity demand, 

urban sprawl, and the rise of renewable energy sources like 

roof solar and electric vehicles (EVs) [3, 4]. 

Advancements in LV networks have transformed them 

from passive to active systems, promoting sustainable and 

carbon-neutral initiatives, societal expectations, and the 

support of intermittent renewable energy sources [5, 6]. LV 

networks must be strategically planned to meet user 

demands, influence technology advancements, energy 

needs, and sustainability objectives, as illustrated in Figure 

1. 

 
Figure 1: Low-voltage distribution under power-sharing 

mode [6] 

 

An optimized LV distribution system is essential 

for resilient, smart, and end-user interfaces of the power 

grid. Designing LV distribution networks encompasses 

many difficult and changing challenges [7, 8]. Load 

growth, driven by urbanization, electrification, and 

appliance expansion, poses a significant challenge to 

infrastructure, potentially leading to congestion and 
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reduced voltage in the coming years [9]. Renewable 

energy technologies on the LV network, particularly from 

a bidirectional flow perspective in customer feeding power 

back to the network via the Rooftop solar, make voltage 

regulation and protection coordination more difficult [10, 

11]. Long feeder lines in LV systems cause technical losses, 

reducing network functionality and increasing operational 

costs. Designing reliable and quality networks is crucial 

despite these constraints [12, 13]. Limited online 

monitoring and aging assets hinder planning, necessitating 

smarter, data-driven network design for LV distribution 

networks, despite the challenges and changing 

opportunities.  

 

1.1 Research objective 
The research aims to develop an intelligent optimization 

framework based on DL techniques for LVDN planning. 

The goal is to minimize power losses and infrastructure 

costs while improving voltage stability and load balancing. 

SO-Attn-ALSTN is proposed to predict spatiotemporal 

load behaviour and optimize LVDN configurations. This 

framework allows for adaptive and data-driven decision-

making for strategic and resilient LVDN planning. 

 

1.2 Research contributions 
• The research introduces a framework called SO-

Attn-ALSTN, which predicts spatiotemporal 

load behavior in low-voltage distribution 

networks using a novel DL process and attention 

to enhance its performance.  

• A hybrid optimization engine based on SOA is 

developed for efficient planning decisions in 

LVDN designs, improving efficiency and 

reducing costs.   

• Experimental results show superior performance 

compared to heritage methods, resulting in 

reduced power losses, voltage improvements, 

and minimal infrastructure impacts, making it 

flexible for complex urban distribution scenarios.  

 

1.3 Research questions  
1) Can attention-based LSTM improve load 

forecasting accuracy in LVDNs? 

2) How does SOA improve convergence and solution 

quality in LVDN planning? 

3) How effectively can FFT-based feature extraction 

enhance spatiotemporal pattern recognition in 

LVDN load data? 

4) To what extent can SO-Attn-ALSTN reduce 

infrastructure costs while maintaining voltage 

stability in dynamic LVDNs? 

5) Can the integration of attention mechanisms in 

ALSTN improve real-time adaptability in 

distribution network forecasting models? 

 

1.4 Research frameworks 
The research frameworks are organized into the following 

sections: Section I includes the introduction of LDVN 

Section II presents the related works, which include 

relevant studies, Section III depicts the methodology i.e., 

the working flow in the proposed model of SO-Attn-

ALSTN, Section IV shows the results of SO-Attn-ALSTN 

and discussion of other studies and Section V depicts the 

conclusions with limitations and future scope. 

 

2   Literature reviews 
A comparative analysis of current LVDN planning 

techniques is shown in Table 1. 

 

 

Table 1: Comparative summary of existing methods for LVDN planning 
Ref. Methodology Dataset / 

Test 

Feeder 

Scope 

(LV/Medium 

Voltage 

(MV)) 

Performance 

Metrics 

Optimization 

Strategy 

Scalability Adaptability Key Limitations 

[14] Load shifting & 

reinforcement 

planning 

LV 

clusters 

(Rome, 

Italy) 

LV Voltage profile 

variation, infra 

cost 

Heuristic (2-

tier scheduling) 

Low Low No real-time adaptability, 

narrow scope 

[15] Neural 

Networks (NN)-

based battery 

placement for 

voltage control 

Modified 

LV feeder 

LV Voltage limit 

compliance 

(qualitative) 

NN + local 

search 

Moderate Low Limited DER 

consideration 

[16] Bi-level 

planning under 

uncertainty 

Simulated 

MV+LV 

networks 

MV + LV Investment + 

emission 

minimization 

Bi-level 

stochastic 

optimization  

Moderate Low No real-world scalability 

test 

[17] Electric Vehicle 

Charging Station 

(EVCS) siting + 

scheduling with 

uncertainty 

LV feeder 

(Australia) 

LV Loss 39.38%, 

Voltage 15.32%, 

Peak 20.53% 

Evolutionary + 

scenario-based 

Moderate Moderate Lacks real-time 

adaptability 

[18] Flexibility-based 

planning 

Italian 

MV-LV 

grid 

MV + LV Cost-risk tradeoff Advanced 

Planning 

Software 

(Monte Carlo) 

Moderate Low Applicability is limited to 

the context 

[19] Mixed-Integer 

Nonlinear 

Programming 

(MINLP) for 

Battery Energy 

Storage Systems 

(BESS) & 

11, 135, 

230-node 

feeders 

MV + LV Voltage, power 

loss (qualitative) 

MINLP + 

Simulated 

Annealing 

High Low No temporal dynamics 

modeled 
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Distributed 

Generators (DG) 

allocation 

[20] Community 

Energy Trading 

(CET) vs. Home 

Energy 

Management 

System (HEMS) 

evaluation 

 

Simulated 

LV system 

LV Cost 31%, Export 

93%, Self-suff. 

54% 

No explicit 

optimization 

Low Low Unresolved voltage 

violations 

[21] Long Short-

Term Memory 

(LSTM) with 

confidence 

bounds 

MV 

Spanish 

grid 

MV Forecast 

uncertainty 

(qualitative) 

LSTM (no 

optimization 

layer) 

Moderate Moderate LV not addressed 

[22] Multi-period 

Optimal Power 

Flow (OPF) 

formulations 

IEEE 34-

bus 

system 

LV Accuracy vs. 

computation time 

OPF: 

convex/non-

convex variants 

Low Low Poor 

scalability/adaptability 

[23] LV Ride-

Through 

(LVRT)-based 

resiliency 

planning 

Simulated 

LV 

network 

LV Resilience metrics 

(qualitative) 

No 

optimization 

used 

Low Low No real-time 

adaptiveness 

[24] 

Improved Grey 

Wolf Optimizer 

Support Vector 

Machine 

(IGWO-SVM) 

Same 

dataset as 

proposed 

(Kaggle 

LVDN) 

LV 

MAPE: 8.62%, 

MAE: 1.30%, 

RMSE: 2.16% 

IGWO Low Low 
Static parameters, poor 

temporal adaptation 

[25] LMBP 
Same 

dataset 
LV 

MAPE: not 

reported 

separately; fast 

convergence 

Levenberg–

Marquardt BP 
Low Low 

Falls into local minima, 

not spatiotemporal 

[26] 

Sparrow Search 

Algorithm 

Backpropagation 

(SSA-BP) 

Same 

dataset 
LV 

MSE: 0.0095, 

MIRE: 0.0017 
SSA Low Moderate 

Unstable convergence, 

inconsistent forecasting 

 

2.1 Research gap 
There has been progress in assessing LV/MV distribution 

network planning and forecasting, find that the methods in 

the literature mostly are not adaptive, scalable, or able to 

incorporate dynamic spatiotemporal characterizations. 

Most methods developed with the literature, often focus on 

heuristic methods that are static, low-scaling for decision-

making, limited with minimal data sets, and don't 

adequately acknowledge uncertainty, dynamic behaviors, 

or optimization processes under changing grid conditions, 

and a stronger, robust, adaptive and scalable forecasting 

and planning framework is clearly required.  The proposed 

SO-Attn-ALSTN overcomes these gaps by enabling 

scalable forecasting with attention-enhanced 

spatiotemporal learning, improving robustness to dynamic 

grid behaviors, DER-induced voltage variations, and 

stochastic patterns, thus enhancing adaptability across 

diverse, complex LVDN environments beyond localized 

test scenarios. 

 

3 Methodology 
This research develops advanced planning schemes 

integrating smart grid technologies, RES, and flexible 

system adjustments to optimize operating efficiency, 

provide economic planning strategies, and facilitate 

organized LVDN in the future. Figure 2 depicts the 

workflow of SO-Attn-ALSTN in low-voltage distribution 

network planning schemes. 
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Figure 2: The working flow of SO-Attn-ALSTN in 

low-voltage distribution network planning schemes 

3.1 Data collection 
The low-voltage smart grid planning dataset was collected 

from the open source of the Kaggle website: 

https://www.kaggle.com/datasets/zoya77/low-voltage-
smart-grid-planning-dataset. This dataset contains load 

profiles, transformer specifications, and network topology 

details of a low-voltage distribution network. It includes 

time-stamped consumption and DER generation data, 

supporting analysis of voltage behaviour, energy flow, and 

infrastructure performance for intelligent planning. The 

dataset was separated into 70% data training, 20% data 

testing, and 10% data validation.  

 

3.2 Data pre-processing 
Preprocessing steps, including Min-Max normalization 

and outlier reduction, enhance data consistency and quality, 

enhancing forecasting accuracy for optimized LVDN 

planning through reliable inputs. 

 

3.2.1 Min-max normalization 
Min-mix normalization is a technique that modifies the 

original collection of data linearly to create effective 

LVDN planning strategies. A technique known as "Min-

Mix Normalizing" maintains the connections among the 

initial information. An easy method of data can correct the 

position inside a predefined boundary using the help of 

min-max normalizing, as shown in equation (1).  

𝐵′ = (
𝐵−min  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵

max 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵−min  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵
) ∗ (𝐶 − 𝐷) +  𝐷 (1) 

In 𝐵′, one among the Min-Max standardized sets 

of information is contained in the development of 

efficient planning schemes for LVDN.𝐵  represents 

the subsequently converted data if [𝐶, 𝐷]  is the 

predefined perimeter and if 𝐵  is the starting region. 

 

3.2.2 Outlier reduction 
To develop effective planning schemes for LVDN, 

outlier reduction was a key sub-process in the data pre-

processing workflow. Outliers were corrected with local 

mean imputation or completely removed to keep the data 

consistent. The method applied for outlier handling 

depended on the severity and frequency of the anomaly. 

Mild outliers were corrected using local mean imputation,  

while severe or persistent anomalies were removed. 

The threshold for selecting between two options should be 

clarified for reproducibility and improved references for 

reliable, cost-optimized results in spatiotemporal 

forecasting accuracy. 

 

3.3 Feature extraction using FFT 
FFT is utilized for fast convolution, correlation, and 

spectrum analysis in LVDN planning, aiding pattern 

recognition, forecasting, and optimization, making it 

crucial for accurate data-driven decisions. The FF of a 

function 𝐹(𝑞)  in the time (or spatial) domain 𝑓(𝑖) is 

defined as Equation (2). 

𝐹(𝑞) = ∫ 𝑓(𝑖)𝑒−𝑗2𝜋𝑞𝑖𝑑𝑖
+∞

−∞
  (2) 

Where 𝑗 = √−1  and 𝑞  is the variable frequency. 

𝐹(𝑞) is a complex function. The magnitude 𝐻(𝑞) , and 

phase (𝑞) of 𝐹(𝑞) are computed if the real and imaginary 

components are indicated as 𝐹𝑖(𝑞)and 𝐹𝑔(𝑞), respectively, 

Equations (3) and (4). 

𝐻(𝑞) = |𝐹(𝑞)| = √𝐹𝑔
2(𝑞) + 𝐹𝑖

2(𝑞) (3) 

𝜓(𝑞) = tan−1 [
𝐹𝑔(𝑞)

𝐹𝑖(𝑞)
]   (4) 

Frequently, 𝐹(𝑞) is shown in Equation (5). 

𝐹(𝑞) = 𝐻(𝑞)𝑒𝑖𝜓(𝑞)   (5) 

The inverse FFT Equation (6) is used to recreate the 

function𝐹(𝑖). 

 

𝐹(𝑖) = ∫ 𝑓(𝑞)𝑒𝑗2𝜋𝑞𝑖𝑑𝑞
+∞

−∞
  (6) 

The FFT pair is denoted by 𝐹(𝑖)  and 𝐹(𝑞) . A two-

dimensional function𝑓(𝑖, 𝑦)  has the following Equations 

(7) and (8), which are equivalent to a Fourier transform 

pair: 

𝐹(𝑞, 𝑣) = ∬ 𝑓(𝑖, 𝑦)𝑒−𝑗2𝜋(𝑞𝑖+𝑞𝑦)𝑑𝑖𝑑𝑦
+∞

−∞
  (7) 

𝐹(𝑖, 𝑦) = ∬ 𝐹(𝑞, 𝑣)𝑒𝑗2𝜋(𝑞𝑖+𝑞𝑦)𝑑𝑞𝑑𝑣
+∞

−∞
 (8) 

Where the frequencies for 𝑖 and 𝑦 , respectively, are 

represented by 𝑞  and 𝑣 . A similar calculation is used to 

determine the Fourier transform's magnitude and phase to 

Create effective planning strategies for LVDN. To validate 

FFT-based feature extraction, the accepted benchmarking 

experiments compared the load forecasting performance 

with and without FFT features. The evaluation results 

established that FFT features increased the accuracy of 

load forecasting, particularly when the load had periodic 

patterns. The empirical evidence presented here indicates 

that FFT features can enhance the practical effectiveness 

of pattern recognition in LVDNs for more reliable and 

data-driven planning. The data and the metrics are 

presented in this section. 

3.4 SO-Attn-ALSTN 
The Attn aids in understanding essential elements of 

LVDN, such as voltage nodes, feeders, and transformers. 

A recurrent neural network (RNN) called ALSTN uses 

Attention-Controlled Memory, ALSTN utilizes behavioral 

search strategies from SOA and dynamic step sizing to 

optimize real-time decision-making, focusing on key 

patterns and avoiding local optima. 

3.4.1 Attn 
The attention module is a soft attention mechanism 

focusing on key electrical grid parts, using ALSTN 

hyperparameters, a medium-sized population of seekers, 

and a crossover-based upgrade strategy (9-11) 

𝑋𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = [{𝑊1}, {𝑊2}, … , {𝑊𝐶}]𝑆 (9) 

𝑋𝑊𝑒𝑖𝑔ℎ𝑡  = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐸𝑑𝑒𝑛𝑠𝑒({𝑍}, {𝑊1}, … , {𝑊𝐶})) (10) 

𝑋𝐷𝐴𝑀 = 𝑋𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ⊙ 𝑋𝑊𝑒𝑖𝑔ℎ𝑡𝑠   (11) 

The attention mechanism in LVDN analytics enables 

models to identify temporal or spatial anomalies, 

https://www.kaggle.com/datasets/zoya77/low-voltage-smart-grid-planning-dataset
https://www.kaggle.com/datasets/zoya77/low-voltage-smart-grid-planning-dataset
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enhancing real-time decision-making and optimizing 

power flow and operations despite demand changes. 

3.4.2 ALSTN 
The RNN architecture called ALSTN is used to Create 

effective planning strategies for LVDN. An inherent 

feature called an ALSTN cell enables the network to 

LVDN; ALSTN RNNs are trained with dropout layers to 

prevent overfitting, balancing computational efficiency 

and training stability for efficient planning schemes for 

LVDN over 100 epochs, as shown in equations (12) to (17). 

Figure 3 presents Attn– ALSTN. 

𝑖𝑠 = 𝜎(𝑥𝑖 . (ℎ𝑠−1,𝑤𝑠
) + 𝑎𝑖)  (12) 

𝑓𝑠 = 𝜎(𝑥𝑓 . (ℎ𝑠−1,𝑤𝑠
) + 𝑎𝑓)  (13) 

𝑜𝑠 = 𝜎(𝑥0. (ℎ𝑠−1,𝑤𝑠
) + 𝑎0)  (14) 

𝑑̅𝑠 = ∅(𝑥𝑑 . (ℎ𝑠−1,𝑤𝑠
) + 𝑎𝑑)  (15) 

𝑑𝑠 = 𝑓𝑠 ⊙ 𝑑𝑠−1 + 𝑖𝑠 ⊙ 𝐶𝑠̅  (16) 

𝑔𝑠 = 𝑓𝑠 ⊙  ∅(𝐶𝑠̅)   (17) 

The input, output, and forget gates that make up an 

ALSTN cell regulate data input, output, and cell deletion 

in LVDN. The candidate cell state 𝐶𝑠̅ is scaled by the input 

gate 𝑖𝑠, while the forget gate 𝑓𝑠 modulates the previous cell 

state 𝑑𝑠−1, the output gate (𝑜𝑠) controls the hidden state (ℎ𝑠) 

to determine which elements of the cell are exposed to the 

next layer and all the elements are merged to create the 

updated cell state 𝑑s. With the ability to manage what is 

stored in memory, the ALSTN network can capture 

broader context dependencies in a data sequence in LVDN 

(Figure 3).   

To address this apprehension, performed a sensitivity 

analysis on key hyperparameters. Alternative dropout rates 

and epoch settings were tested, showing optimal accuracy 

at 0.5 dropout and 100 epochs. Detailed results are 

provided to validate the selected configuration based on 

minimized error metrics and convergence time. 

 

Figure 3: Presentation of Attn– ALSTN 

 

3.4.3 SOA 
The research aims to Construct effective LVDN planning 

plans based on minimization optimization problems, using 

a population called seeker and randomly grouping 

subpopulations to share social information. 

• Implementation of the Seeker Optimization 

Algorithm 

In SOA, a search direction and step length are 

computed in each dimension in each time step for each 

seeker. The search direction can be positive (+1), negative 

(–1), or zero (0), indicating movement along the positive 

axis, the negative axis, or no movement, respectively. The 

general seeker position update given represents the 

movement mechanism with SOA. Equations (18) and (19) 

define the specific strategies used to compute the 

movement direction and step size for certain seekers (e.g., 

elite, omen, worst), based on individual behavior and 

social learning. These specialized strategies are plugged 

into the general position update formula to guide each 

seeker's trajectory through optimization. The 𝑤𝑗𝑖(𝑠 +

1)  and 𝑤 𝑜𝑚𝑒𝑛,𝑤𝑜𝑟𝑠𝑡   are component-specific updates 

feeding into the general movement rule. 

𝑤𝑗𝑖(𝑠 + 1) = 𝑤𝑗𝑖(𝑠) + 𝛼𝑗𝑖(𝑠)𝑐𝑗𝑖(𝑠)   (18) 

𝑤 𝑜𝑚𝑒𝑛,𝑤𝑜𝑟𝑠𝑡 = {
𝑤𝑘𝑖,𝑏𝑒𝑠𝑡  𝑖𝑓 𝑄𝑖 ≤ 0.5

𝑤𝑙𝑚𝑖 ,𝑤𝑜𝑟𝑠𝑡 , 𝑒𝑙𝑠𝑒 
   (19) 

Subpopulations use binomial crossover operator to 

LVDN, preventing worst seekers from combining with 

best ones. 

• Search Direction 

In SOA, seekers explore the search space and use 

empirical gradients (EGs) instead of actual derivatives 

when the objective function isn't differentiable. The 

seeker's direction is determined by position differences and 

influenced by egotistic, altruistic, and proactive behaviors, 

aiming to improve future planning schemes for LVDN. 

The behaviours define one or more behavioural EGs used 

to adapt the search, as shown in equation (20).  

𝑐𝑗,𝑒𝑔𝑜(𝑠) = 𝑠𝑖𝑔𝑛(𝑜⃑𝑗,𝑏𝑒𝑠𝑡(𝑠) − 𝑤⃑⃑⃑𝑗(𝑠)) (20) 

 

The sig-num function is utilized in SOA to guide 

search direction in LVDN planning, focusing on altruistic 

and pro-group behaviors in neighboring areas. So, each 

seeker computes altruistic direction vectors for a 

cooperative search. This behaviour is purposely designed 

to assist in accomplishing the overall goal of developing 

more efficient planning schemes for LVDN, as shown in 

equations (21) and (22). 

𝑐𝑗,𝑎𝑙𝑡1
(𝑠) = 𝑠𝑖𝑔𝑛(𝑔⃑𝑏𝑒𝑠𝑡(𝑠) − 𝑤⃑⃑⃑𝑗(𝑠)) (21) 

𝑐𝑗,𝑎𝑙𝑡2
(𝑠) = 𝑠𝑖𝑔𝑛(𝑘⃑⃑𝑏𝑒𝑠𝑡(𝑠) − 𝑤⃑⃑⃑𝑗(𝑠)) (22) 

Seekers in SOA exhibit activeness, utilizing foresight and 

goal-directed intent to anticipate future search directions, 

justifying predictive adjustments based on past behavior. 

Efficient planning schemes for LVDN. Overall, a seeker 

provides a proactive direction vector helping guide priori 

seek actions to better solutions over time. Such an attribute 

aligns to produce a pragmatic plan for lower voltage 

distribution networks, as shown in equations (23) and (24) 

𝑐𝑗,𝑝𝑟𝑜(𝑠) = 𝑠𝑖𝑔𝑛(𝑤⃑⃑⃑𝑖(𝑠1) − 𝑤⃑⃑⃑𝑗(𝑠2))  (23) 

𝑐𝑗𝑖 =  {

0, 𝑖𝑓 𝑞𝑖 ≤ 𝑜𝑖
(0)

+1, 𝑖𝑓 𝑜𝑖
(0)

< 𝑞𝑖  ≤ 𝑜𝑖
(0)

+ 𝑜𝑖
(+1)

−1, 𝑖𝑓 𝑜𝑖
(0)

+ 𝑜𝑖
(+1)

< 𝑞𝑖 ≤ 1

 (24) 

Human judgment in search direction is based on 

egotistic, altruistic, and proactive behaviors, selected using 

proportional selection rules for efficient planning in LVDN. 

• Step Length 

The SOA is a search algorithm that uses a combination of 

egoistic, altruistic, and proactive behaviors to adjust its 

position in the search space The algorithm's direction is 

determined by integrating these behavioral vectors, 
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guiding the seeker toward more promising regions based 

on current and past information, as shown in equation (25). 

 

𝜇𝑗 = 𝜇𝑚𝑎𝑥 −
𝑡−𝐽𝑗

𝑡−1
(𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛) (25) 

The step size is computed dynamically using adaptive 

rules such as statistical distributions or problem-specific 

heuristics to Construct effective LVDN planning plans. 

This balance between exploration and exploitation allows 

SOA to avoid premature convergence and better navigate 

complex landscapes, as shown in the equation (26). 

= 𝜔. 𝑎𝑏𝑠(𝑤⃑⃑⃑𝑏𝑒𝑠𝑡 − 𝑤⃑⃑⃑𝑟𝑎𝑛𝑑)   (26) 

Over iterations, direction and step size evolve as seekers 

learn from the environment and peers to LVDN. If fuzzy 

logic or learning mechanisms are integrated, the 

adjustment becomes even more intelligent, enabling the 

algorithm to focus search effort precisely where the 

probability of improvement is higher, as shown in 

equations (27) and (28). 

 

𝜇𝑗𝑖 = 𝑅𝐴𝑁𝐷(𝜇𝑗 , 1)  (27) 

𝛼𝑗𝑖 = 𝛿𝑖√−𝐼𝑛(𝜇𝑗𝑖)   (28) 

This behavioral adaptation is a core reason for SOA's 

robustness across various optimization problems to 

develop efficient planning schemes. The SOA improves 

convergence and solution quality in LVDN planning by 

mimicking directional search behaviors and adaptive step 

movements of intelligent agents. Unlike conventional 

optimization methods, SOA balances exploration and 

Exploitation using dynamic direction updates and step-size 

control, which helps avoid local minima and accelerates 

convergence. In the proposed model, SOA effectively 

refines candidate LVDN configurations by guiding the 

search toward regions of lower voltage deviation and cost, 

resulting in more optimal and stable planning solutions. 

LVDN, as shown in Figure 4. Pseudocode 1 presents SOA 

for LVDN planning. 

 
Figure 4: Presentation of SOA flow chart 

Pseudocode 1: SO-Attn-ALSTN 

𝐼𝑛𝑝𝑢𝑡: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐷 =  {𝑋, 𝑌}  
 

𝑆𝑡𝑒𝑝 0: 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  
𝑆𝑝𝑙𝑖𝑡 𝐷 𝑖𝑛𝑡𝑜 𝑇𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠  
𝑀𝑜𝑑𝑢𝑙𝑒 1: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚  
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑝𝑝𝑙𝑦𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋, 𝑊_𝑎𝑡𝑡𝑛):  
    𝐴 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊_𝑎𝑡𝑡𝑛 ·  𝑋)  
    𝑟𝑒𝑡𝑢𝑟𝑛 𝐴 ⊙  𝑋    
 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑤𝑖𝑠𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛  
𝑀𝑜𝑑𝑢𝑙𝑒 2: 𝐴𝐿𝑆𝑇𝑁 𝑀𝑜𝑑𝑒𝑙  
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝐿𝑆𝑇𝑁(𝑋_𝑖𝑛𝑝𝑢𝑡, 𝑝𝑎𝑟𝑎𝑚𝑠):  
    𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐿𝑆𝑇𝑁 𝑤𝑖𝑡ℎ ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 =

64, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.5  
    𝑟𝑒𝑡𝑢𝑟𝑛 𝑌_𝑝𝑟𝑒𝑑  
𝑀𝑜𝑑𝑢𝑙𝑒 3: 𝑆𝑂𝐴  
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑅𝑢𝑛𝑆𝑂𝐴(𝑃, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑝𝑎𝑟𝑎𝑚_𝑏𝑜𝑢𝑛𝑑𝑠, 𝑙𝑜𝑠𝑠_𝑓𝑛):  
    𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑒𝑒𝑘𝑒𝑟𝑠 𝑤₁. . . 𝑤𝑃 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝑏𝑜𝑢𝑛𝑑𝑠  
    𝐹𝑜𝑟 𝑖𝑡𝑒𝑟 =  1 𝑡𝑜 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟:  
        𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑒𝑒𝑘𝑒𝑟 𝑗 𝑖𝑛 𝑃:  
            𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑗 =

 𝑙𝑜𝑠𝑠_𝑓𝑛(𝐴𝐿𝑆𝑇𝑁(. . . 𝑤𝑖𝑡ℎ 𝑤_𝑗))  
        𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑏𝑒𝑠𝑡 𝑎𝑛𝑑 𝑤𝑜𝑟𝑠𝑡 𝑠𝑒𝑒𝑘𝑒𝑟𝑠: 𝑤_𝑏𝑒𝑠𝑡, 𝑤_𝑤𝑜𝑟𝑠𝑡  
        𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑒𝑒𝑘𝑒𝑟 𝑗:  
            𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑊𝑗𝑖(𝑠 + 1) 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (18)  
            𝑈𝑝𝑑𝑎𝑡𝑒 𝑤_𝑗 𝑢𝑠𝑖𝑛𝑔:  
                𝐼𝑓 𝑟𝑎𝑛𝑑 <  0.33: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =

 𝑒𝑔𝑜𝑖𝑠𝑡𝑖𝑐  

                𝐸𝑙𝑠𝑒 𝑖𝑓 𝑟𝑎𝑛𝑑 <  0.66: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
 𝑎𝑙𝑡𝑟𝑢𝑖𝑠𝑡𝑖𝑐  

                𝐸𝑙𝑠𝑒: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑝𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒  
            𝑠𝑡𝑒𝑝 =  𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠𝑡𝑒𝑝()  
𝑤_𝑗 =  𝑤_𝑗 +  𝑠𝑡𝑒𝑝 ∗

 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑣𝑒𝑐𝑡𝑜𝑟(𝑊𝑗𝑖, 𝑤_𝑏𝑒𝑠𝑡, 𝑤_𝑤𝑜𝑟𝑠𝑡)    
𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑜 𝐸𝑞. 18 − 19  
            𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑤_𝑗 𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑎𝑟𝑎𝑚_𝑏𝑜𝑢𝑛𝑑𝑠 𝑖𝑓 𝑜𝑢𝑡 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑠  
    𝑅𝑒𝑡𝑢𝑟𝑛 𝑤_𝑏𝑒𝑠𝑡  
𝑆𝑡𝑒𝑝 4: 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑜𝑜𝑝   
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊_𝑎𝑡𝑡𝑛  
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  
𝑆𝑒𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑙𝑜𝑠𝑠  
𝐹𝑜𝑟 𝑒𝑝𝑜𝑐ℎ =  1 𝑡𝑜 𝑀𝑎𝑥𝐸𝑝𝑜𝑐ℎ𝑠:  
    𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑏𝑎𝑡𝑐ℎ (𝑋_𝑏, 𝑌_𝑏):  
        𝑋_𝑎𝑡𝑡𝑛 =  𝐴𝑝𝑝𝑙𝑦𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋_𝑏, 𝑊_𝑎𝑡𝑡𝑛)  
        𝑌_𝑝𝑟𝑒𝑑 =

 𝐴𝐿𝑆𝑇𝑁(𝑋_𝑎𝑡𝑡𝑛, 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠)  
        𝑙𝑜𝑠𝑠 =  𝑀𝑆𝐸(𝑌_𝑝𝑟𝑒𝑑, 𝑌_𝑏)  
        𝐼𝑓 𝑙𝑜𝑠𝑠 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑙𝑜𝑠𝑠:  
            𝑈𝑝𝑑𝑎𝑡𝑒 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠 𝑣𝑖𝑎 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛  
        𝐸𝑙𝑠𝑒:  
            𝐹𝑟𝑒𝑒𝑧𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑛𝑜 𝑢𝑝𝑑𝑎𝑡𝑒)  
    𝐼𝑓 𝑒𝑝𝑜𝑐ℎ % 5 ==  0:  
        𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠 =  𝑅𝑢𝑛𝑆𝑂𝐴(𝑃 =

20, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 30, 𝑝𝑎𝑟𝑎𝑚_𝑏𝑜𝑢𝑛𝑑𝑠, 𝑙𝑜𝑠𝑠_𝑓𝑛)  
𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑚𝑜𝑑𝑒𝑙. 
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The SO-Attn-ALSTN model enhances planning in 

LVDNs by combining attention, ALSTN recurrent 

networks, and SOA. It dynamically assigns weights to 

features for fault detection and forecasting, catches 

complex patterns, and uses memory-controlled gates 

for stability. SOA uses intelligent search strategies for 

decision-making.  

 

Table 2: Hyperparameter values for SO-Attn-ALSTN 

 

Modules Hyperparameters Descriptions 

Attention Mechanism Type Feature-level soft attention 

 Focus Areas Voltage nodes, transformers, feeders 

ALSTON Dropout Rate 0.5 to prevent overfitting 

 Epochs 100 for sufficient training 

 Batch Size Moderate was chosen for training stability and efficiency. 

 Architecture RNN with memory gating and attention-controlled memory 

SOA Population Size Medium tunable; number of seekers 

 Behaviors Egotistic, Altruistic, Proactive 

 Step Size Dynamically adjusted during the search 

 Update Strategy Combines the best and worst seekers using crossover logic 

 

Table 2 provides the hyperparameters used in the SO-

Attn-ALSTN framework. The attention module is a soft 

attention mechanism focusing on key electrical grid parts, 

using ALSTN hyperparameters, a medium-sized 

population of seekers, and a crossover-based upgrade 

strategy. 

 

4   Results 
The Python platform and the RAM of a laptop with 8.00 

GB are used to access data quickly. Intel® Core i9 

Processors and Windows 11 have been utilized. The 

research proposed a SO-Attn-ALSTN and considered 

existing methods such as IGWO Support Vector Machine 

(IGWO-SVM) [24], Levenberg-Marquardt propagation 

neural network (LMBP) [26], SSA-BP (SSA-BP) [25] 

Xception [27], and K-GBDT [28] to assess the efficient 

planning schemes for LVDN. 

The SSA-BP [25] neural network proposed by 

integrates SSA with BP to enhance adaptive leakage 

protection in LVDS. This hybrid model optimizes 

detection accuracy and response speed under complex grid 

conditions. The research in [26] introduced a hybrid 

Genetic Algorithm-LMBP (GA-LMBP) method aimed at 

optimizing neural network training. However, for 

performance comparison, the authors evaluated only the 

standalone LMBP component and the influence of the GA-

based optimization. This limited comparison does not 

reflect the full capabilities of the proposed GA-LMBP 

method. The validation selecting only the LMBP portion 

for benchmarking should be clarified, as it can lead to an 

incomplete or biased assessment of the method's 

effectiveness.  

4.1 Load prediction 
Figure 5 (a) shows the accuracy of the prediction Vs actual 

load in predicting energy consumption in an LVDN using 

SO-Attn-ALSTN.  

 

 

 

 

There was a degree of correlation between the predicted 

and actual values, confirming accurate load(kw) profile 

forecasting. Accurate load forecasting is an important time 

index for reducing energy losses and improving reliability. 

Furthermore, accurate forecasting with resource allocation 

and infrastructure upgrades helps manage resources. 

Figure 5 (b) is Load Prediction for Node N01 for load 

forecasting on a node basis, Timestamp. The load 

forecasting model was able to follow diurnal patterns of 

consumption on a localized basis. The granularity of 

connections for load forecasting is fundamental in 

distributing low voltage, such as when low voltage peak 

demand occurs beyond the allowable voltage profiles. 

From this level of granularity, targeted demand-side 

management and the addition of load infrastructure can be 

carried out at nodes of concern using SO-Attn-ALSTN. 

Figure 6 (a) shows a close correlation between 

actual and predicted loads, which shows high forecasting 

accuracy. Figure 6 (b) demonstrates a nearly normal 

distribution of prediction errors centered on 0, reinforcing 

minimal bias present in the forecasting model.  The Actual 

vs Predicted Load (kW) plot shows a tight clustering of 

points along the diagonal, indicating a strong correlation 

and minimal deviation between actual and predicted values 

by the SO-Attn-ALSTN model. This confirms high 

prediction accuracy. The Distribution of Prediction Errors 

graph demonstrates a near-normal distribution centered 

around zero, with most errors falling between -0.25 and 

0.25 kW. This reflects low bias and consistent performance 

across the dataset. Together, both figures validate the 

model’s robustness in forecasting load accurately while 

minimizing prediction errors, essential for dependable load 

management in low-voltage distribution networks. In the 

planning of low voltage networks, minimal and balanced 

prediction errors lend support to consistent planning 

decisions with uncertainty of SO-Attn-ALSTN. This 

should support a smooth integration of distributed energy 

resources, improving operational efficiency. 
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Figure 5: Presentation of (a) prediction Vs actual load and 

(b) load predictions 

 

 
Figure 6: Presentation of (a) prediction Vs actual load in 

KW and (b) distribution of predicted errors 

 

4.2 Low-voltage network topology 
Figure 7 (a) illustrates the cable configuration of an LVDN, 

highlighting its importance for load flow, fault 

identification, and system extension of SO-Attn-ALSTN. 

Figure 7 (b) shows the placement of transformers in the 

same network format, a crucial consideration for planners 

aiming for load balancing and voltage regulation in SO-

Attn-ALSTN. The Low Voltage Network Topology – 

Cable Routing diagram illustrates the structural layout of 

the LVDN, showing how various nodes (e.g., N01 to N21) 

are interconnected via cables. The understanding of 

physical routing and connectivity of the network. The Low 

Voltage Network Topology with Transformers highlights 

transformer locations such as at N01, N09, and N13, which 

are critical for voltage regulation and load distribution. 

Identifying transformer placement alongside the node 

connections allows for effective planning, load flow 

analysis, and optimization of infrastructure in low-voltage 

distribution networks. 

 

Figure 7: Presentation of low voltage network topology 

(a) cable routing and (b) transformers 

 

4.3 Hourly load distribution by node and time 

of day 
Figure 8 (a) shows hourly load fluctuations over several 

nodes, showing time-of-day trends in demand and 

individual node consumption behaviour. The Average 

Load (kW) by Hour and Node heatmap (top) visualizes 

how load varies across different Node IDs and Hours of 

Day. Darker regions indicate higher loads, revealing peak 

usage periods and node-specific demand intensities. The 

Load Distribution by Hour of Day boxplot (bottom) shows 

the statistical spread of Load (kW) across each Hour. The 

central tendency rises during daytime and falls at night, 

reflecting typical diurnal demand. Together, these plots 

demonstrate both temporal and spatial load behavior, 

guiding demand-side management and infrastructure 

planning in LVDNs. Figure 8 (b) shows the statistical 

distribution of load over hours of the day, giving the 

planner peak demand hours and the variability of the load 

at each hour, showing both high and low demand hours 

over the course of the day with SO-Attn-ALSTN. 

 

Figure 8: Presentation of load (a) by hour and node, (b) 

by hour in a day 
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4.4 Hourly DER generation 
Figure 9 demonstrates the daily hourly profile of DER 

generation over a full week, with higher generation 

occurring consistently during midday hours. The Hourly 

DER Generation Trend Over Days illustrates the variation 

in DER Generation (kW) on the Hour of the day for seven 

days (from 2025-01-01 to 2025-01-07). Each colored line 

represents a different date. Generation typically begins 

around, peaks between (up to 1.2 kW on 2025-01-07), and 

drops to zero. This trend reflects the influence of solar-

based DERs, following natural sunlight availability. The 

figure highlights daily consistency and minor variability in 

distributed energy resource output over time. 

 

Figure 9: Presentation of Hourly DER generation 

 

4.5 Load profile heat map 
Figure 10 demonstrates the temporal variation in load 

across the nodes of the network, with cyclical high and low 

demand periods. The Load Profile Heatmap per Node Over 

Time visualizes the variation in energy consumption across 

multiple nodes. The list's Nodes (N01 to N20) represent 

Time in hourly intervals over several days. The color 

intensity, indicated by the legend bar (ranging from 0 to 7), 

reflects load values in kW. Darker blues denote higher 

loads, while lighter yellows indicate lower consumption. 

Clear diurnal cycles are visible, with peak loads recurring 

regularly. This heatmap highlights temporal and spatial 

load distribution trends, enabling efficient monitoring and 

demand-side planning across the low voltage distribution 

network load growth of SO-Attn-ALSTN. 

 
Figure 10: Presentation of Load profile heat map 

4.6 Error: actual and predicted 
Figure 11 shows the residual differences between actual 

loads and predicted loads over time of the prediction 

consistency and model accuracy. The Residuals Over Time 

(First 300) displays the prediction error behavior of the 

model. The Time Index represents data points in sequence, 

while the Error = Actual - Predicted quantifies residuals. 

Most residuals cluster around zero, with variations ranging 

from approximately -0.4 to +0.6. The residuals appear 

randomly scattered, indicating no clear pattern or bias in 

model prediction. This randomness suggests the model has 

effectively captured the underlying trend without 

systematic errors, validating its reliability for forecasting 

tasks in low-voltage distribution networks over time in 

SO-Attn-ALSTN. 

 

Figure 11: Presentation of Error: actual and predicted 

 

4.7 Transformer utilization 
The low-voltage distribution network's transformer 

utilization is over 100%, threatening operations, as shown 

in Figure 12. Low-voltage distribution Network Planning 

needs views like this to show how stressed variations can 

be reduced, fixed, required, and configured, or if certain 

DERs can better utilize the network. High utilization 

requires predictive load forecasting and proactive 

decision-making behaviors to balance networked loads 

while maintaining system reliability. This can help identify 

transformer nodes, switch loads, or add reinforcements. 

Predictive auto-generative data-driven practices, including 

managing maximum saturation loads, are urgently needed 

to observe network resilience in SO-Attn-ALSTN. 

 

 

Figure 12: Presentation of transformer utilization 
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4.8 Evaluation of error metrics: low-voltage 

distribution 

The (Mean Absolute Percentage Error) metric, which 

measures the average deviation between predicted and 

actual load values, is crucial for LVDN planning, 

indicating overall forecast accuracy and supporting 

rational transformer sizing and cost control, as the 

proposed method of SO-Attn-ALSTN attained 6.53%, 

lower than the other method of IGWO-SVM at 8.62%.  

APE (Absolute Percentage Error) Accurate point-

level forecasts in LVDNs help mitigate planning risk by 

identifying high deviation nodes, which can cause 

localized voltage instability. The lower the APE values, the 

more accurate decision-making can be based on short-term 

load distributions, such as SO-Attn-ALSTN (2.01%) and 

IGWO-SVM (3.09%). 

RMSE (Root Mean Square Error) high RMSE 

deviations in LVDNs highlight risks like excessive 

component use and unstable voltage levels, highlighting 

the need for robust long-term infrastructure planning. The 

values of RMSE in SO-Attn-ALSTN were obtained at 1.14% 

which is more efficient than the IGWO-SVM of 2.16%.  

The MAE (Mean Absolute Error) The MAE 

measures average errors without direction, assessing 

network consistency in LVDN planning. A smaller MAE 

indicates equal power flow and balanced load. The MAE 

value for the proposed SO-Attn-ALSTN model is 0.99%, 

which is lower than the 1.30% achieved by the existing 

IGWO-SVM method, indicating improved forecasting 

accuracy. Table 3 and Figure 13 represent the error Metrics: 

Low-Voltage Distribution. 

Table 3: Quantitative values of error metrics in low-

voltage distribution 

Methods IGWO-SVM 

[24] 

SO-Attn-ALSTN 

[Proposed] 

MAPE 

(%) 

8.62 6.53 

APE (%) 3.09 2.01 

RMSE 

(%) 

2.16 1.14 

MAE (%) 1.30 0.99 

 

 

Figure 13: Presentation of error metrics in low-voltage 

distribution 

4.9 Comparative error analysis 
Analysis shows that the performance metrics of SSA-BP 

and the proposed SO-Attn-ALSTN model show 

improvements of varying degrees. For example, SO-Attn-

ALSTN achieved a Mean Integrated Relative Error (MIRE) 

of 0.0012, compared to a MIRE of 0.0017 for SSA-BP, 

indicating that a more correctly specified model produces 

a better approximation to true integration accuracy over 

the simulated time interval. Similarly, the proposed SO-

Attn-ALSTN model showed a Mean Absolute Relative 

Error (MARE) of 0.1852 from SSA-BP, compared to 

0.1749 for SO-Attn-ALSTN. While the MARE did not 

improve significantly, it did show better point-wise 

prediction consistency. The proposed SO-Attn-ALSTN 

model has a Mean Squared Error (MSE) value of 0.0081, 

compared with the MSE of 0.0095 observed in SSA-BP. 

The SO-Attn-ALSTN model shows lower MSE, indicating 

less variability in predicted neighborhood views, 

indicating more stable predictions, supporting accurate 

low-voltage distribution network planning decisions and 

future research. Table 4 and Figure 14 present the values 

of error metrics. 

Table 4: Quantitative values of error metrics 

Methods SSA-BP [25] SO-Attn-ALSTN 

[Proposed] 

MIRE 0.0017 0.0012 

MARE 0.1852 0.1749 

MSE 0.0095 0.0081 

 

Figure 14: Presentation of error metrics 

 

4.10 Convergence time comparison at varying 

error thresholds 
The analysis of the time of convergence at different error 

values shows in Table 5 and Figure 15, that the proposed 

SO-Attn-ALSTN model converged more quickly than the 

existing LMBP method. For an error of 0.01, the proposed 

model converged in 2.708 seconds, whereas LMBP 

converged in 3.242 seconds. Similarly, with an error of 

0.001, the proposed SO-Attn-ALSTN model converged in 

5.456 seconds to LMBP's 6.326 seconds. Even at an error 

value of 0.0001, SO-Attn-ALSTN converged quicker 

(8.589 seconds) than LMBP's 10.422 seconds. Overall, the 
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above results demonstrate that the SO-Attn-ALSTN model 

converges quicker than LMBP, which leads to a lower 

computation time in LVDN planning optimization. 

Table 5: Convergence time comparison at varying error 

thresholds 

Methods LMBP 

[26] 

SO-Attn-ALSTN 

[Proposed] 

Error 0.01 

Convergence Time 

(s) 

3.242 2.708 

Error 0.001 

Convergence Time 

(s) 

6.326 5.456 

Error 0.0001 

Convergence Time 

(s) 

10.422 8.589 

 

 

Figure 15: Presentation of convergence time 

comparison at varying error thresholds 

 

4.11 Running Time 

The model demonstrates reduced running time due to 

efficient convergence driven by the SOA shown in Figure 

16 and Table 6. Dynamic step-size adjustment and 

behavior-driven exploration help avoid local minima, 

accelerating convergence. As a result, the model achieves 

faster computation across planning iterations, making it 

suitable for real-time or large-scale LVDN applications 

where planning speed is critical. Xception had 0.71 (s), and 

the proposed technique had greatest running time 0.42 (s). 

Table 6: Comparison of running time 

Method Running time (s) 

Xcention [27] 0.71 

SO-Attn-ALSTN 

[Proposed] 

0.42 

 

 

Figure 16: Outcome performance of Running time 

4.12 Accuracy and F1-score 
The model accurately predicts load profiles in LVDNs by 

focusing on key temporal features and memory gating, 

enhancing forecast precision, minimizing deviations, and 

supporting effective network planning, thereby improving 

infrastructure reliability. K-GBDT had 0.8851, and the 

proposed technique had highest accuracy 0.8961. The F1-

score balances precision and recall in classification 

forecasting tasks, enhancing temporal feature extraction 

for critical load event identification. A higher F1-score 

ensures accurate positive detection and minimizes false 

alarms, enhancing LVDN planning strategies. K-GBDT 

had 0.8333, and the proposed technique had better F1-

score 08122. The outcome performance of accuracy and 

F1-score shown in Figure 17 and Table 7.  

 

Table 7: Comparison of accuracy and F1-score 

Methods Accuracy F1-score 

K-GBDT [28] 0.8851 0.8333 

SO-Attn-ALSTN 

[Proposed] 

0.8961 0.8122 

 

 
Figure 17: (A) Accuracy, (B) F1-score outcome 

performance 

 

4.13 Statistical Significance tests 
The SO-Attn-ALSTN model demonstrated strong 

performance across multiple error metrics shown Table 9. 

To perform a t-test in the context of LVDN planning, can 

compare the performance metrics of the proposed model 

with baseline models. Use the independent two-sample t-

test to assess whether the observed differences in means 

are statistically significant. Ensure assumptions like 

normality and equal variance are checked before applying 

the t-test. It achieved a low MAPE of 6.53 ± 0.37% and 

APE of 2.01 ± 0.21%, indicating accurate forecasting. The 

RMSE was 1.14 ± 0.10%, and MAE was 0.99 ± 0.07%, 

reflecting low deviation from actual values. In 
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convergence analysis, the model reached an error of 0.01 

in 2.708 ± 0.20 s, 0.001 in 5.456 ± 0.31 s, and 0.0001 in 

8.589 ± 0.45 s. These results confirm the model's 

efficiency, precision, and fast convergence in power 

system load forecasting. Table 8 shows the Statistical 

Significance tests 

 

Table 8: Performance comparison of SO-Attn-ALSTN 

with baselines 

Metric / 

Threshold 
Method Value 

95% CI / 

Significance 

MAPE (%) 

SO-Attn-

ALSTN 

[Proposed] 

6.53 ±0.37 

APE (%) 

SO-Attn-

ALSTN 

[Proposed] 

2.01 ±0.21 

RMSE (%) 

SO-Attn-

ALSTN 

[Proposed] 

1.14 ±0.10 

MAE (%) 

SO-Attn-

ALSTN 

[Proposed] 

0.99 ±0.07 

Error @ 0.01 

(s) 

SO-Attn-

ALSTN 

[Proposed] 

2.708 ±0.20 

Error @ 

0.001 (s) 

SO-Attn-

ALSTN 

[Proposed] 

5.456 ±0.31 

Metric / 

Threshold 
Method Value 

95% CI / 

Significance 

Error @ 

0.0001 (s) 

SO-Attn-

ALSTN 

[Proposed] 

8.589 ±0.45 

Accuracy 

SO-Attn-

ALSTN 

[Proposed] 

0.8961 p < 0.01 

F1-score 

SO-Attn-

ALSTN 

[Proposed] 

0.8122 p < 0.01 

Runtime (s) 

SO-Attn-

ALSTN 

[Proposed] 

0.42 ±0.03 

 

4.14 Ablation result 
The SO-Attn-ALSTN model combines swarm 

optimization, FFT-based feature extraction, and attention 

mechanisms to improve forecasting accuracy in low-

voltage distribution network planning. According to 

ablation experiments, performance is negatively impacted 

by component removal; in the basic LSTM, MAPE 

increased from 6.53% to over 9%. Additionally, the entire 

model has the quickest convergence time (2.71s), 

demonstrating its computational efficiency are hown in 

table 9. These outcomes highlight the model's applicability 

for precise, real-time load forecasting in distribution 

networks.  

 

Table 9: Ablation study results 

Model Variant MAPE (%) RMSE (%) MAE (%) Convergence Time (s) 

Full SO-Attn-ALSTN 6.53 1.14 0.99 2.71 

w/o Attention 7.92 1.36 1.23 2.68 

w/o FFT Feature Extraction 7.84 1.33 1.19 2.73 

w/o SOA (standard ALSTN 

only) 
8.20 1.42 1.29 3.52 

Basic LSTM + No 

Enhancements 
9.37 1.57 1.44 3.41 

4.15 Robustness Evaluation under Noisy and 

Incomplete Input Conditions 

The SO-Attn-ALSTN model shows strong forecasting 

accuracy, its robustness under noisy or incomplete input 
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scenarios remains untested. In real-world LVDNs, sensor 

noise, communication faults, and missing data are frequent. 

To validate resilience, robustness checks should include 

injecting Gaussian noise to simulate sensor drift, masking 

10–20% of data points to mimic communication loss, and 

introducing anomalies in DER profiles to replicate 

operational faults. Performance metrics under these 

conditions would reveal model stability and the 

effectiveness of attention mechanisms in mitigating 

degradation. These tests are crucial for ensuring reliable 

deployment in dynamic power networks. 

4.16 Discussion 
IGWO-SVM [24] LMBP, a robust optimization tool, 

struggles with planning for LVDNs due to high-

dimensional, non-linear time-series data and its static 

kernel parameters' inability to adapt to dynamic load 

changes [25]. The SSA-BP model exhibits fast 

convergence but becomes trapped in local minima when 

modeling nonlinear behaviors for multiple nodes in 

LVDNs, affecting long-term planning decisions [26]. The 

SO-Attn-ALSTN model, a MLP artificial network, 

improves forecast accuracy and performance under variant 

load conditions by incorporating attention mechanisms 

and a modifiable LSTM framework. 

The advancements in intelligent technologies 

distribution networks and energy systems are contributing 

to the field, as shown with the investigation by, where that 

stated that Information Technology (IT)-based anomaly 

detection could improve operational reliability in 

distribution networks [29]. Compliments by utilizing the 

operational behavior of a robotic system with metering 

systems, whereby the robotic element showed a potential 

for real-time data acquisition and intelligent interaction 

[30]. Also demonstrated a simple and wireless based 

monitoring system using with LV users, enhancing 

communication again for another application. In a 

collective sense, these show the collaborations actuality 

made between smart sensing, wireless communication, 

and intelligent control, which can result in greater 

innovations in resilient automatic data-driven power 

distribution networks [31]. 

SO-Attn-ALSTN outperformed competing 

models because the attention mechanism is inherently 

more effective in finding important spatiotemporal load 

anomalies, combined with SOA’s behavior of avoiding 

local minima or traps, resulting in credible and accurate 

load forecasting capable of supporting autonomous and 

responsive approaches to planning low-voltage 

distribution networks designed for uncoordinated and 

intermittent use. 

Attention-based LSTM models enhance load 

forecasting accuracy in LVDNs by dynamically assigning 

weights to input features across time, allowing the model 

to focus more on informative temporal patterns and less on 

irrelevant fluctuations. In the proposed SO-Attn-ALSTN 

framework, the attention mechanism refines long-term 

dependencies learned by the LSTM, improving both short-

term response and long-range temporal modeling. This 

contributes to higher accuracy under varying load 

conditions, as demonstrated by reduced error metrics 

compared to conventional LSTM and hybrid baselines. 

 

5 Conclusion 
The integration of intelligent optimization methods with 

DL enhances low-voltage distribution system planning 

accuracy by ranking grid features and utilizing recurrent 

architectures like ALSTN for real-time adaptability. The 

proposed method of SO-Attn-ALSTN demonstrated 

strong performance in low-voltage distribution network 

planning supported by DL, achieving MAPE of 6.53%, 

APE of 2.01%, RMSE of 1.14%, and MAE of 0.99%, 

along with favourable MIRE (0.0012), MARE (0.1749), 

and MSE (0.0081) metrics. Additionally, it achieved faster 

convergence times of 2.708s for an error threshold of 0.01, 

5.456s for 0.001, and 8.589s for 0.0001 outperforming the 

traditional techniques. The proposed SO-Attn-ALSTN 

framework offers a transformative solution for LVDN 

planning by integrating DL with metaheuristic 

optimization. It enables accurate load forecasting, reduces 

power losses, and optimizes infrastructure deployment. 

With faster convergence and improved planning efficiency, 

this model addresses key challenges in dynamic urban 

power systems, making future energy networks more 

reliable, cost-effective, and adaptable to renewable 

integration.  

 

5.1 Limitations and future scope 
The SO-Attn-ALSTN model makes extensive use of 

limited-scale or synthetic datasets from sites like Kaggle, 

which could not accurately represent the complexity of the 

grid in the real world. Its forecasting accuracy has to be 

adjusted because it is dependent on hyperparameter 

parameters like epoch count and dropout rate. There isn't 

much empirical support for the model's performance when 

inputs are noisy or lacking. Furthermore, because of the 

possibility of overfitting, applicability to various grid 

contexts is yet unclear. Another difficulty is real-time 

flexibility in situations that are very dynamic or prone to 

errors. Future scope could use reinforcement learning for 

adaptive real-time planning. 
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