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Rising electricity demand, the proliferation of distributed energy resources (DERs), and the complexity of
modern urban infrastructure pose significant challenges for low-voltage distribution network (LVDN)

This research proposes an intelligent optimization approach for LVDN planning using Deep learning (DL)

to address limitations in traditional methods, addressing dynamic load patterns and renewable energy
integration. The goal is to reduce power losses and infrastructure costs while maintaining voltage stability
and load balancing across the network. A comprehensive low-voltage smart grid planning dataset was
sourced from an open-access platform, Kaggle. To assure data quality, normalization and outlier
reduction were performed during preprocessing. Fast Fourier Transform (FFT) was used to extract
features and uncover hidden patterns in load demand and energy flows. This research proposes a Seeker
Optimized Attention with Adjustable Long Short-Term Network (SO-Attn-ALSTN) model, which combines
an attention-enhanced ALSTN for spatiotemporal load forecasting with a Seeker Optimization Algorithm

(SOA) for efficient planning. Attention enhances ALSTN performance by focusing on temporal inputs,

while SOA ensures robust parameter tuning and faster convergence. Forecasted loads optimize cable
routing, transformer sizing, and DER allocation. Experimental results validate the model's superiority:

the proposed SO-Attn-ALSTN achieved a MAPE of 6.53%, RMSE of 1.14%, MAE of 0.99%, and APE of
2.01%. Comparative convergence time analysis shows a 30—40% improvement over existing methods,

LMBP and IGWO-SVM, with a convergence time of 2.708 seconds at an error threshold of 0.01. Thus, the
hybrid SO-Attn-ALSTN framework presents an intelligent, adaptive, and computationally efficient solution
for modern LVDN planning.

Povzetek: Predstavijen je hibridni okvir za nacrtovanje nizkonapetostnih distribucijskih omrezij, ki
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zdruzuje pozornostno izboljsani ALSTM, FFT-izlus¢ene znacilke in algoritem Seeker Optimization.

1 Introduction

Low-voltage (LV) distribution networks form the last, and
most crucial link in delivering electrical power, therefore
connecting electricity or electrical products to end-users
such as houses, businesses, and small industries [1].
Generally, LV networks tend to operate at several voltage
levels below 1 kilovolt (kV), before distribution
transformers, and have the responsibility for the reliable
and safe distribution of electrical energy to end-users [2].
LV networks are vital for providing high-quality electrical
service, voltage stability, and efficient energy supply. Their
importance has grown due to increased electricity demand,
urban sprawl, and the rise of renewable energy sources like
roof solar and electric vehicles (EVs) [3, 4].
Advancements in LV networks have transformed them
from passive to active systems, promoting sustainable and
carbon-neutral initiatives, societal expectations, and the
support of intermittent renewable energy sources [5, 6]. LV
networks must be strategically planned to meet user
demands, influence technology advancements, energy
needs, and sustainability objectives, as illustrated in Figure
L.
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Figure 1: Low-voltage distribution under power-sharing
mode [6]

An optimized LV distribution system is essential
for resilient, smart, and end-user interfaces of the power
grid. Designing LV distribution networks encompasses
many difficult and changing challenges [7, 8]. Load
growth, driven by urbanization, -electrification, and
appliance expansion, poses a significant challenge to
infrastructure, potentially leading to congestion and
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reduced voltage in the coming years [9]. Renewable
energy technologies on the LV network, particularly from
a bidirectional flow perspective in customer feeding power
back to the network via the Rooftop solar, make voltage
regulation and protection coordination more difficult [10,
11]. Long feeder lines in LV systems cause technical losses,
reducing network functionality and increasing operational
costs. Designing reliable and quality networks is crucial
despite these constraints [12, 13]. Limited online
monitoring and aging assets hinder planning, necessitating
smarter, data-driven network design for LV distribution
networks, despite the challenges and changing
opportunities.

1.1 Research objective

The research aims to develop an intelligent optimization
framework based on DL techniques for LVDN planning.
The goal is to minimize power losses and infrastructure
costs while improving voltage stability and load balancing.
SO-Attn-ALSTN is proposed to predict spatiotemporal
load behaviour and optimize LVDN configurations. This
framework allows for adaptive and data-driven decision-
making for strategic and resilient LVDN planning.

1.2 Research contributions

e  The research introduces a framework called SO-
Attn-ALSTN, which predicts spatiotemporal
load behavior in low-voltage distribution
networks using a novel DL process and attention
to enhance its performance.

e A hybrid optimization engine based on SOA is
developed for efficient planning decisions in
LVDN designs, improving efficiency and
reducing costs.
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e Experimental results show superior performance
compared to heritage methods, resulting in
reduced power losses, voltage improvements,
and minimal infrastructure impacts, making it
flexible for complex urban distribution scenarios.

1.3 Research questions

1) Can attention-based LSTM
forecasting accuracy in LVDNs?

2) How does SOA improve convergence and solution
quality in LVDN planning?

3) How effectively can FFT-based feature extraction
enhance spatiotemporal pattern recognition in
LVDN load data?

4) To what extent can SO-Attn-ALSTN reduce
infrastructure costs while maintaining voltage
stability in dynamic LVDNs?

5) Can the integration of attention mechanisms in
ALSTN improve real-time adaptability in
distribution network forecasting models?

improve load

1.4 Research frameworks

The research frameworks are organized into the following
sections: Section I includes the introduction of LDVN
Section II presents the related works, which include
relevant studies, Section III depicts the methodology i.e.,
the working flow in the proposed model of SO-Attn-
ALSTN, Section IV shows the results of SO-Attn-ALSTN
and discussion of other studies and Section V depicts the
conclusions with limitations and future scope.

2 Literature reviews
A comparative analysis of current LVDN planning
techniques is shown in Table 1.

Table 1: Comparative summary of existing methods for LVDN planning

Ref. Methodology Dataset / Scope Performance Optimization Scalability Adaptability Key Limitations
Test (LV/Medium Metrics Strategy
Feeder Voltage
MV))
[14] Load shifting & LV LV Voltage profile Heuristic (2- Low Low No real-time adaptability,
reinforcement clusters variation, infra tier scheduling) narrow scope
planning (Rome, cost
Italy)
[15] Neural Modified LV Voltage limit NN + local Moderate Low Limited DER
Networks (NN)- LV feeder compliance search consideration
based battery (qualitative)
placement for
voltage control
[16] Bi-level Simulated MV + LV Investment + Bi-level Moderate Low No real-world scalability
planning under MV+LV emission stochastic test
uncertainty networks minimization optimization
[17] Electric Vehicle LV feeder LV Loss 39.38%, Evolutionary + Moderate Moderate Lacks real-time
Charging Station  (Australia) Voltage 15.32%, scenario-based adaptability
(EVCS) siting + Peak 20.53%
scheduling with
uncertainty
[18]  Flexibility-based Italian MV + LV Cost-risk tradeoff Advanced Moderate Low Applicability is limited to
planning MV-LV Planning the context
grid Software
(Monte Carlo)
[19] Mixed-Integer 11, 135, MV + LV Voltage, power MINLP + High Low No temporal dynamics
Nonlinear 230-node loss (qualitative) Simulated modeled
Programming feeders Annealing
(MINLP) for
Battery Energy

Storage Systems
(BESS) &
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Distributed
Generators (DG)
allocation
[20] Community Simulated LV Cost 31%, Export
Energy Trading LV system 93%, Self-suff.
(CET) vs. Home 54%
Energy
Management
System (HEMS)
evaluation
[21] Long Short- MV MV Forecast
Term Memory Spanish uncertainty
(LSTM) with grid (qualitative)
confidence
bounds
[22] Multi-period 1EEE 34- LV Accuracy vs.
Optimal Power bus computation time
Flow (OPF) system
formulations
[23] LV Ride- Simulated LV Resilience metrics
Through LV (qualitative)
(LVRT)-based network
resiliency
planning
Improved Grey Same
Wolf Optimizer dataset as MAPE: 8.62%,
[24] Support Vector proposed LV MAE: 1.30%,
Machine (Kaggle RMSE: 2.16%
(IGWO-SVM) LVDN)
MAPE: not
Same reported
25] LMBP dataset Lv separately; fast
convergence
Sparrow Search
[26] Algorithm Same LV MSE: 0.0095,
Backpropagation dataset MIRE: 0.0017

(SSA-BP)

No explicit
optimization

LSTM (no
optimization
layer)

OPF:
convex/non-
convex variants

No
optimization
used

IGWO

Levenberg—
Marquardt BP

SSA

Moderate

Low

Low

Low

Low

Low

Low Unresolved voltage
violations
Moderate LV not addressed
Low Poor

scalability/adaptability

Low No real-time
adaptiveness

Static parameters, poor

Low temporal adaptation
Falls into local minima,
Low .
not spatiotemporal
Moderate Unstable convergence,

inconsistent forecasting

2.1 Research gap

There has been progress in assessing LV/MV distribution
network planning and forecasting, find that the methods in
the literature mostly are not adaptive, scalable, or able to
incorporate dynamic spatiotemporal characterizations.
Most methods developed with the literature, often focus on
heuristic methods that are static, low-scaling for decision-
making, limited with minimal data sets, and don't
adequately acknowledge uncertainty, dynamic behaviors,
or optimization processes under changing grid conditions,
and a stronger, robust, adaptive and scalable forecasting
and planning framework is clearly required. The proposed
SO-Attn-ALSTN overcomes these gaps by enabling
scalable forecasting with attention-enhanced
spatiotemporal learning, improving robustness to dynamic
grid behaviors, DER-induced voltage variations, and
stochastic patterns, thus enhancing adaptability across
diverse, complex LVDN environments beyond localized
test scenarios.

3 Methodology

This research develops advanced planning schemes
integrating smart grid technologies, RES, and flexible
system adjustments to optimize operating efficiency,
provide economic planning strategies, and facilitate
organized LVDN in the future. Figure 2 depicts the
workflow of SO-Attn-ALSTN in low-voltage distribution
network planning schemes.
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Figure 2: The working flow of SO-Attn-ALSTN in

low-voltage distribution network planning schemes
3.1 Data collection
The low-voltage smart grid planning dataset was collected
from the open source of the Kaggle website:
https://www.kaggle.com/datasets/zoya77/low-voltage-
smart-grid-planning-dataset. This dataset contains load
profiles, transformer specifications, and network topology
details of a low-voltage distribution network. It includes
time-stamped consumption and DER generation data,
supporting analysis of voltage behaviour, energy flow, and
infrastructure performance for intelligent planning. The
dataset was separated into 70% data training, 20% data
testing, and 10% data validation.

3.2 Data pre-processing

Preprocessing steps, including Min-Max normalization
and outlier reduction, enhance data consistency and quality,
enhancing forecasting accuracy for optimized LVDN
planning through reliable inputs.

3.2.1 Min-max normalization

Min-mix normalization is a technique that modifies the
original collection of data linearly to create effective
LVDN planning strategies. A technique known as "Min-
Mix Normalizing" maintains the connections among the
initial information. An easy method of data can correct the
position inside a predefined boundary using the help of
min-max normalizing, as shown in equation (1).

B’ = (maxvafuen:)l;;frl:iiofafue of B) * (C - D) +D (1)

In B’, one among the Min-Max standardized sets
of information is contained in the development of
efficient planning schemes for LVDN.B represents
the subsequently converted data if [C,D] is the
predefined perimeter and if B is the starting region.

3.2.2 Qutlier reduction

To develop effective planning schemes for LVDN,
outlier reduction was a key sub-process in the data pre-
processing workflow. Outliers were corrected with local
mean imputation or completely removed to keep the data
consistent. The method applied for outlier handling
depended on the severity and frequency of the anomaly.
Mild outliers were corrected using local mean imputation,

while severe or persistent anomalies were removed.
The threshold for selecting between two options should be
clarified for reproducibility and improved references for
reliable, cost-optimized results in spatiotemporal
forecasting accuracy.

3.3 Feature extraction using FFT

FFT is utilized for fast convolution, correlation, and
spectrum analysis in LVDN planning, aiding pattern
recognition, forecasting, and optimization, making it
crucial for accurate data-driven decisions. The FF of a
function F(q) in the time (or spatial) domain f(i) is
defined as Equation (2).
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F(q) = [ f (e /2™ di @)

Where j =+/—1 and q is the variable frequency.
F(q)is a complex function. The magnitude H(q), and
phase (q) of F(q) are computed if the real and imaginary
components are indicated as Fi(q)and Fg(q), respectively,
Equations (3) and (4).

H@=IF(@l =V @+F(@ )

¥(g) = tan? [ )
Frequently, F(q) is shown in Equation (5).

F(q) = H(q)e"@ (5)

The inverse FFT Equation (6) is used to recreate the
functionF (i).

F() = |77 f(@)e/™dq (6)
The FFT pair is denoted by F(i) and F(q). A two-
dimensional functionf (i, y) has the following Equations
(7) and (8), which are equivalent to a Fourier transform
pair:
Flgv) = [ fly)e 2@ didy  (7)

F(i,y) = ffj;o F(q,v)el?2™@i+a) dgdu (8)
Where the frequencies for i and y, respectively, are
represented by g and v. A similar calculation is used to
determine the Fourier transform's magnitude and phase to
Create effective planning strategies for LVDN. To validate
FFT-based feature extraction, the accepted benchmarking
experiments compared the load forecasting performance
with and without FFT features. The evaluation results
established that FFT features increased the accuracy of
load forecasting, particularly when the load had periodic
patterns. The empirical evidence presented here indicates
that FFT features can enhance the practical effectiveness
of pattern recognition in LVDNs for more reliable and
data-driven planning. The data and the metrics are
presented in this section.

3.4 SO-Attn-ALSTN

The Attn aids in understanding essential elements of
LVDN, such as voltage nodes, feeders, and transformers.
A recurrent neural network (RNN) called ALSTN uses
Attention-Controlled Memory, ALSTN utilizes behavioral
search strategies from SOA and dynamic step sizing to
optimize real-time decision-making, focusing on key
patterns and avoiding local optima.

3.4.1 Attn

The attention module is a soft attention mechanism
focusing on key electrical grid parts, using ALSTN
hyperparameters, a medium-sized population of seekers,
and a crossover-based upgrade strategy (9-11)

Xfeature = [{(W1}, (W2}, ..., {WC}]S ©)
XWeight = Softmax(Egense ({23}, (W1}, ..., {WDH) (10)

Xpam = Xfeature © XWeights (11)
The attention mechanism in LVDN analytics enables
models to identify temporal or spatial anomalies,
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enhancing real-time decision-making and optimizing
power flow and operations despite demand changes.

3.4.2 ALSTN

The RNN architecture called ALSTN is used to Create
effective planning strategies for LVDN. An inherent
feature called an ALSTN cell enables the network to
LVDN; ALSTN RNNs are trained with dropout layers to
prevent overfitting, balancing computational efficiency
and training stability for efficient planning schemes for
LVDN over 100 epochs, as shown in equations (12) to (17).
Figure 3 presents Attn— ALSTN.

s = J(xi- (hs—l,ws) + ai) (12)
fo = 0(xp. (hsoaw,) + a5) (13)
Os = U(xo- (hs—l,ws) + ao) (14)
Js = ®(xd- (hs—l,ws) + a_d) (15)
ds = O ds_ 1 + i, OC (16)
gs=f; O 0(Cy) a7

The input, output, and forget gates that make up an

ALSTN cell regulate data input, output, and cell deletion
in LVDN. The candidate cell state C; is scaled by the input
gate i, while the forget gate f; modulates the previous cell
state ds_, the output gate (o4) controls the hidden state (hy)
to determine which elements of the cell are exposed to the
next layer and all the elements are merged to create the
updated cell state d;. With the ability to manage what is
stored in memory, the ALSTN network can capture
broader context dependencies in a data sequence in LVDN
(Figure 3).
To address this apprehension, performed a sensitivity
analysis on key hyperparameters. Alternative dropout rates
and epoch settings were tested, showing optimal accuracy
at 0.5 dropout and 100 epochs. Detailed results are
provided to validate the selected configuration based on
minimized error metrics and convergence time.

o
fo @ - ’ tank
Hidden stafe = I ]
[WqiWe | We Wl Zy
Figure 3: Presentation of Attn— ALSTN
343 SOA

The research aims to Construct effective LVDN planning
plans based on minimization optimization problems, using
a population called seeker and randomly grouping
subpopulations to share social information.

e Implementation of the Seeker Optimization

Algorithm

In SOA, a search direction and step length are
computed in each dimension in each time step for each
seeker. The search direction can be positive (+1), negative
(=1), or zero (0), indicating movement along the positive
axis, the negative axis, or no movement, respectively. The
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general seeker position update given represents the
movement mechanism with SOA. Equations (18) and (19)
define the specific strategies used to compute the
movement direction and step size for certain seekers (e.g.,
elite, omen, worst), based on individual behavior and
social learning. These specialized strategies are plugged
into the general position update formula to guide each
seeker's trajectory through optimization. The wj;(s +
1) and Womenworse are component-specific updates
feeding into the general movement rule.

wji(s + 1) = wj(s) + a;;(s)cji (s) (18)
Wk',b t lf Q < 0.5
Women,worst :{ e ' l (19)
Wlmi,worst: else

Subpopulations use binomial crossover operator to
LVDN, preventing worst seekers from combining with
best ones.

e Search Direction

In SOA, seckers explore the search space and use
empirical gradients (EGs) instead of actual derivatives
when the objective function isn't differentiable. The
seeker's direction is determined by position differences and
influenced by egotistic, altruistic, and proactive behaviors,
aiming to improve future planning schemes for LVDN.
The behaviours define one or more behavioural EGs used
to adapt the search, as shown in equation (20).

Ej,ego (s) = Sign(aj,best(s) - wj (s)) (20)

The sig-num function is utilized in SOA to guide
search direction in LVDN planning, focusing on altruistic
and pro-group behaviors in neighboring areas. So, each
seeker computes altruistic direction vectors for a
cooperative search. This behaviour is purposely designed
to assist in accomplishing the overall goal of developing
more efficient planning schemes for LVDN, as shown in
equations (21) and (22).

Ej,altl () = sign(gpesc(s) — W](S)) (21)

Ej,altz (s) = sign(kpese(s) — W](S)) (22)

Seekers in SOA exhibit activeness, utilizing foresight and
goal-directed intent to anticipate future search directions,
justifying predictive adjustments based on past behavior.
Efficient planning schemes for LVDN. Overall, a seeker

provides a proactive direction vector helping guide priori
" seek actions to better solutions over time. Such an attribute

aligns to produce a pragmatic plan for lower voltage
distribution networks, as shown in equations (23) and (24)

Giro(s) = sign(Wy(s)) — w(s)) (23)
0,if q; < OL-(O)
Gi = {+Lif of” < q; <o +0olP  (24)

-1,if oi(o) + oi(+1) <qg; =1

Human judgment in search direction is based on
egotistic, altruistic, and proactive behaviors, selected using
proportional selection rules for efficient planning in LVDN.

e Step Length
The SOA is a search algorithm that uses a combination of
egoistic, altruistic, and proactive behaviors to adjust its
position in the search space The algorithm's direction is
determined by integrating these behavioral vectors,
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guiding the seeker toward more promising regions based
on current and past information, as shown in equation (25).

'y
Ui = Umax — TJIJ (Mmax — Hmin) (25)
The step size is computed dynamically using adaptive
rules such as statistical distributions or problem-specific
heuristics to Construct effective LVDN planning plans.
This balance between exploration and exploitation allows
SOA to avoid premature convergence and better navigate
complex landscapes, as shown in the equation (26).
= . abs(Wpest — Wrana) (26)
Over iterations, direction and step size evolve as seekers
learn from the environment and peers to LVDN. If fuzzy
logic or learning mechanisms are integrated, the
adjustment becomes even more intelligent, enabling the
algorithm to focus search effort precisely where the
probability of improvement is higher, as shown in
equations (27) and (28).

Kji = RAND (u;, 1) (27)
aj; = 6/ —In(u;;) (28)

This behavioral adaptation is a core reason for SOA's
robustness across various optimization problems to
develop efficient planning schemes. The SOA improves
convergence and solution quality in LVDN planning by
mimicking directional search behaviors and adaptive step
movements of intelligent agents. Unlike conventional
optimization methods, SOA balances exploration and
Exploitation using dynamic direction updates and step-size
Pseudocode 1: SO-Attn-ALSTN

Input: Dataset D = {X,Y}

Step 0: Preprocessing

Split D into Train and Validation sets

Module 1: Attention Mechanism

Function ApplyAttention(X, W _attn):
A = Softmax(W_attn - X)
return A O X

Element — wise multiplication

Module 2: ALSTN Model

Function ALSTN (X_input, params):
Initialize LSTN with hidden_size =

64, dropout = 0.5

returnY_pred

Module 3: SOA

Function RunSOA(P, max_iter, param_bounds, loss_fn):

J. Zhu et al.

control, which helps avoid local minima and accelerates
convergence. In the proposed model, SOA effectively
refines candidate LVDN configurations by guiding the
search toward regions of lower voltage deviation and cost,
resulting in more optimal and stable planning solutions.
LVDN, as shown in Figure 4. Pseudocode 1 presents SOA
for LVDN planning.
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Figure 4: Presentation of SOA flow chart

Else if rand < 0.66: direction =

altruistic
Else: direction = proactive
step = adaptive_step()
w_j = w_j + step *

direction_vector (Wji,w_best, w_worst)
Explicit reference to Eq.18 — 19

Project w_j within param_bounds if out of bounds

Return w_best
Step 4: Training Loop
Initialize attention weights W _attn
Initialize model parameters
Set threshold_loss
For epoch = 1to MaxEpochs:
For each batch (X_b,Y_b):
X_attn = ApplyAttention(X_b, W_attn)
Y _pred =

Initialize seekers wi...wP randomly within bounds ALSTN (X_attn,model_params)

Foriter = 1tomax_iter:
For each seeker j in P:
Compute fitness_j =
loss_fn(ALSTN(...with w_j))

Identify best and worst seekers: w_best,w_worst

For each seeker j:
Compute Wji(s + 1) using Eq. (18)
Update w_j using:
If rand < 0.33:direction =
egoistic

loss = MSE(Y_pred,Y_b)
If loss > threshold_loss:

Update model_params via backpropagation

Else:
Freeze weights (no update)
If epoch% 5 == 0:
model_params = RunSOA(P =
20, max_iter = 30,param_bounds, loss_fn)
Return the final trained model.
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The SO-Attn-ALSTN model enhances planning in
LVDNs by combining attention, ALSTN recurrent
networks, and SOA. It dynamically assigns weights to
features for fault detection and forecasting, catches
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complex patterns, and uses memory-controlled gates
for stability. SOA uses intelligent search strategies for
decision-making.

Table 2: Hyperparameter values for SO-Attn-ALSTN

Modules  Hyperparameters Descriptions
Attention Mechanism Type Feature-level soft attention
Focus Areas Voltage nodes, transformers, feeders
ALSTON Dropout Rate 0.5 to prevent overfitting
Epochs 100 for sufficient training
Batch Size Moderate was chosen for training stability and efficiency.
Architecture RNN with memory gating and attention-controlled memory
SOA Population Size ~ Medium tunable; number of seekers
Behaviors Egotistic, Altruistic, Proactive
Step Size Dynamically adjusted during the search

Update Strategy

Combines the best and worst seekers using crossover logic

Table 2 provides the hyperparameters used in the SO-
Attn-ALSTN framework. The attention module is a soft
attention mechanism focusing on key electrical grid parts,
using ALSTN hyperparameters, a medium-sized
population of seekers, and a crossover-based upgrade
strategy.

4 Results

The Python platform and the RAM of a laptop with 8.00
GB are used to access data quickly. Intel® Core 19
Processors and Windows 11 have been utilized. The
research proposed a SO-Attn-ALSTN and considered
existing methods such as IGWO Support Vector Machine
(IGWO-SVM) [24], Levenberg-Marquardt propagation
neural network (LMBP) [26], SSA-BP (SSA-BP) [25]
Xception [27], and K-GBDT [28] to assess the efficient
planning schemes for LVDN.

The SSA-BP [25] neural network proposed by
integrates SSA with BP to enhance adaptive leakage
protection in LVDS. This hybrid model optimizes
detection accuracy and response speed under complex grid
conditions. The research in [26] introduced a hybrid
Genetic Algorithm-LMBP (GA-LMBP) method aimed at
optimizing neural network training. However, for
performance comparison, the authors evaluated only the
standalone LMBP component and the influence of the GA-
based optimization. This limited comparison does not
reflect the full capabilities of the proposed GA-LMBP
method. The validation selecting only the LMBP portion
for benchmarking should be clarified, as it can lead to an
incomplete or biased assessment of the method's
effectiveness.

4.1 Load prediction

Figure 5 (a) shows the accuracy of the prediction Vs actual
load in predicting energy consumption in an LVDN using
SO-Attn-ALSTN.

There was a degree of correlation between the predicted
and actual values, confirming accurate load(kw) profile
forecasting. Accurate load forecasting is an important time
index for reducing energy losses and improving reliability.
Furthermore, accurate forecasting with resource allocation
and infrastructure upgrades helps manage resources.
Figure 5 (b) is Load Prediction for Node NO1 for load
forecasting on a node basis, Timestamp. The load
forecasting model was able to follow diurnal patterns of
consumption on a localized basis. The granularity of
connections for load forecasting is fundamental in
distributing low voltage, such as when low voltage peak
demand occurs beyond the allowable voltage profiles.
From this level of granularity, targeted demand-side
management and the addition of load infrastructure can be
carried out at nodes of concern using SO-Attn-ALSTN.

Figure 6 (a) shows a close correlation between
actual and predicted loads, which shows high forecasting
accuracy. Figure 6 (b) demonstrates a nearly normal
distribution of prediction errors centered on 0, reinforcing
minimal bias present in the forecasting model. The Actual
vs Predicted Load (kW) plot shows a tight clustering of
points along the diagonal, indicating a strong correlation
and minimal deviation between actual and predicted values
by the SO-Attn-ALSTN model. This confirms high
prediction accuracy. The Distribution of Prediction Errors
graph demonstrates a near-normal distribution centered
around zero, with most errors falling between -0.25 and
0.25 kW. This reflects low bias and consistent performance
across the dataset. Together, both figures validate the
model’s robustness in forecasting load accurately while
minimizing prediction errors, essential for dependable load
management in low-voltage distribution networks. In the
planning of low voltage networks, minimal and balanced
prediction errors lend support to consistent planning
decisions with uncertainty of SO-Attn-ALSTN. This
should support a smooth integration of distributed energy
resources, improving operational efficiency.



430 Informatica 49 (2025) 409422

Praciction s Actus! Loed

A A
\M

x.

Lowd tew)

n-. e

(»)
Laad Prediction for Node 801

Loed (kw)
.
-

(h)

Figure 5: Presentation of (a) prediction Vs actual load and
(b) load predictions
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Figure 6: Presentation of (a) prediction Vs actual load in
KW and (b) distribution of predicted errors

4.2 Low-voltage network topology

Figure 7 (a) illustrates the cable configuration of an LVDN,
highlighting its importance for load flow, fault
identification, and system extension of SO-Attn-ALSTN.
Figure 7 (b) shows the placement of transformers in the
same network format, a crucial consideration for planners
aiming for load balancing and voltage regulation in SO-
Attn-ALSTN. The Low Voltage Network Topology —
Cable Routing diagram illustrates the structural layout of
the LVDN, showing how various nodes (e.g., NO1 to N21)
are interconnected via cables. The understanding of
physical routing and connectivity of the network. The Low
Voltage Network Topology with Transformers highlights
transformer locations such as at NO1, N09, and N13, which
are critical for voltage regulation and load distribution.
Identifying transformer placement alongside the node
connections allows for effective planning, load flow
analysis, and optimization of infrastructure in low-voltage
distribution networks.
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Figure 7: Presentation of low voltage network topology
(a) cable routing and (b) transformers

4.3 Hourly load distribution by node and time
of day

Figure 8 (a) shows hourly load fluctuations over several
nodes, showing time-of-day trends in demand and
individual node consumption behaviour. The Average
Load (kW) by Hour and Node heatmap (top) visualizes
how load varies across different Node IDs and Hours of
Day. Darker regions indicate higher loads, revealing peak
usage periods and node-specific demand intensities. The
Load Distribution by Hour of Day boxplot (bottom) shows
the statistical spread of Load (kW) across each Hour. The
central tendency rises during daytime and falls at night,
reflecting typical diurnal demand. Together, these plots
demonstrate both temporal and spatial load behavior,
guiding demand-side management and infrastructure
planning in LVDNs. Figure 8 (b) shows the statistical
distribution of load over hours of the day, giving the
planner peak demand hours and the variability of the load
at each hour, showing both high and low demand hours
over the course of the day with SO-Attn-ALSTN.

Aversge Load (kW) by Hour and Node

e

()
Load Distribution by Hour of Day

o ot Duy

Load (kW)

Figure 8: Presentation of load (a) by hour and node, (b)
by hour in a day
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4.4 Hourly DER generation

Figure 9 demonstrates the daily hourly profile of DER
generation over a full week, with higher generation
occurring consistently during midday hours. The Hourly
DER Generation Trend Over Days illustrates the variation
in DER Generation (kW) on the Hour of the day for seven
days (from 2025-01-01 to 2025-01-07). Each colored line
represents a different date. Generation typically begins
around, peaks between (up to 1.2 kW on 2025-01-07), and
drops to zero. This trend reflects the influence of solar-
based DERs, following natural sunlight availability. The
figure highlights daily consistency and minor variability in
distributed energy resource output over time.
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Figure 9: Presentation of Hourly DER generation

4.5 Load profile heat map

Figure 10 demonstrates the temporal variation in load
across the nodes of the network, with cyclical high and low
demand periods. The Load Profile Heatmap per Node Over
Time visualizes the variation in energy consumption across
multiple nodes. The list's Nodes (NO1 to N20) represent
Time in hourly intervals over several days. The color
intensity, indicated by the legend bar (ranging from 0 to 7),
reflects load values in kW. Darker blues denote higher
loads, while lighter yellows indicate lower consumption.
Clear diurnal cycles are visible, with peak loads recurring
regularly. This heatmap highlights temporal and spatial
load distribution trends, enabling efficient monitoring and
demand-side planning across the low voltage distribution
network load growth of SO-Attn-ALSTN.

Time

Figure 10: Presentation of Load profile heat map
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4.6 Error: actual and predicted

Figure 11 shows the residual differences between actual
loads and predicted loads over time of the prediction
consistency and model accuracy. The Residuals Over Time
(First 300) displays the prediction error behavior of the
model. The Time Index represents data points in sequence,
while the Error = Actual - Predicted quantifies residuals.
Most residuals cluster around zero, with variations ranging
from approximately -0.4 to +0.6. The residuals appear
randomly scattered, indicating no clear pattern or bias in
model prediction. This randomness suggests the model has
effectively captured the underlying trend without
systematic errors, validating its reliability for forecasting
tasks in low-voltage distribution networks over time in
SO-Attn-ALSTN.

Residuals Over Time (First 300)

Error (Actual - Predicted)
& * & e = 2
\
e

Time Index

Figure 11: Presentation of Error: actual and predicted

4.7 Transformer utilization

The low-voltage distribution network's transformer
utilization is over 100%, threatening operations, as shown
in Figure 12. Low-voltage distribution Network Planning
needs views like this to show how stressed variations can
be reduced, fixed, required, and configured, or if certain
DERs can better utilize the network. High utilization
requires predictive load forecasting and proactive
decision-making behaviors to balance networked loads
while maintaining system reliability. This can help identify
transformer nodes, switch loads, or add reinforcements.
Predictive auto-generative data-driven practices, including
managing maximum saturation loads, are urgently needed
to observe network resilience in SO-Attn-ALSTN.

Transfarmer Utilization

e [ 155 s =
umilratian %)

Figure 12: Presentation of transformer utilization
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4.8 Evaluation of error metrics: low-voltage

distribution

The (Mean Absolute Percentage Error) metric, which
measures the average deviation between predicted and
actual load values, is crucial for LVDN planning,
indicating overall forecast accuracy and supporting
rational transformer sizing and cost control, as the
proposed method of SO-Attn-ALSTN attained 6.53%,
lower than the other method of IGWO-SVM at 8.62%.

APE (Absolute Percentage Error) Accurate point-
level forecasts in LVDNs help mitigate planning risk by
identifying high deviation nodes, which can cause
localized voltage instability. The lower the APE values, the
more accurate decision-making can be based on short-term
load distributions, such as SO-Attn-ALSTN (2.01%) and
IGWO-SVM (3.09%).

RMSE (Root Mean Square Error) high RMSE
deviations in LVDNs highlight risks like excessive
component use and unstable voltage levels, highlighting
the need for robust long-term infrastructure planning. The

values of RMSE in SO-Attn-ALSTN were obtained at 1.14%

which is more efficient than the IGWO-SVM of 2.16%.

The MAE (Mean Absolute Error) The MAE
measures average errors without direction, assessing
network consistency in LVDN planning. A smaller MAE
indicates equal power flow and balanced load. The MAE
value for the proposed SO-Attn-ALSTN model is 0.99%,
which is lower than the 1.30% achieved by the existing
IGWO-SVM method, indicating improved forecasting

accuracy. Table 3 and Figure 13 represent the error Metrics:

Low-Voltage Distribution.

Table 3: Quantitative values of error metrics in low-
voltage distribution

Methods IGWO-SVM  SO-Attn-ALSTN
[24] [Proposed]
MAPE 8.62 6.53
(%)
APE (%)  3.09 2.01
RMSE 2.16 1.14
(%)
MAE (%) 1.30 0.99
104 IGWO-SVM [24]
SO-Attn-ALSTN [Proposed|
8-
g 6
N
0 T T T T
MAFPE APE RMSE MAE
Methods

Figure 13: Presentation of error metrics in low-voltage
distribution

J. Zhu et al.

4.9 Comparative error analysis

Analysis shows that the performance metrics of SSA-BP
and the proposed SO-Attn-ALSTN model show
improvements of varying degrees. For example, SO-Attn-
ALSTN achieved a Mean Integrated Relative Error (MIRE)
of 0.0012, compared to a MIRE of 0.0017 for SSA-BP,
indicating that a more correctly specified model produces
a better approximation to true integration accuracy over
the simulated time interval. Similarly, the proposed SO-
Attn-ALSTN model showed a Mean Absolute Relative
Error (MARE) of 0.1852 from SSA-BP, compared to
0.1749 for SO-Attn-ALSTN. While the MARE did not
improve significantly, it did show better point-wise
prediction consistency. The proposed SO-Attn-ALSTN
model has a Mean Squared Error (MSE) value of 0.0081,
compared with the MSE of 0.0095 observed in SSA-BP.
The SO-Attn-ALSTN model shows lower MSE, indicating
less wvariability in predicted neighborhood views,
indicating more stable predictions, supporting accurate
low-voltage distribution network planning decisions and
future research. Table 4 and Figure 14 present the values
of error metrics.

Table 4: Quantitative values of error metrics

Methods SSA-BP[25] SO-Attn-ALSTN
[Proposed]
MIRE 0.0017 0.0012
MARE 0.1852 0.1749
MSE 0.0095 0.0081
SSA-BP[235]
SO-Attn-ALSTN [Proposed|
0.1852
0.20- 0.1749
0.154
= 010+
0.05
0.0017 0.0012 0.0005 00081
0.00 T T T
MIRE MARE MSE
Methods

Figure 14: Presentation of error metrics

4.10 Convergence time comparison at varying

error thresholds

The analysis of the time of convergence at different error
values shows in Table 5 and Figure 15, that the proposed
SO-Attn-ALSTN model converged more quickly than the
existing LMBP method. For an error of 0.01, the proposed
model converged in 2.708 seconds, whereas LMBP
converged in 3.242 seconds. Similarly, with an error of
0.001, the proposed SO-Attn-ALSTN model converged in
5.456 seconds to LMBP's 6.326 seconds. Even at an error
value of 0.0001, SO-Attn-ALSTN converged quicker
(8.589 seconds) than LMBP's 10.422 seconds. Overall, the
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above results demonstrate that the SO-Attn-ALSTN model
converges quicker than LMBP, which leads to a lower
computation time in LVDN planning optimization.

Table 5: Convergence time comparison at varying error

thresholds

Methods LMBP SO-Attn-ALSTN
[26] [Proposed]

Error 0.01 3.242 2.708
Convergence Time
(s)
Error 0.001 6.326 5.456
Convergence Time
(s)
Error 0.0001 10.422 8.589
Convergence Time
()

Error

0.0001
Convergence
Time (s)

Error 0.001
Convergence
Time (v)

Methods

Error 0.01
Convergence

Time (s) SO-Attn-ALSTN [Proposed|

LMBP [26]

...................

Figure 15: Presentation of convergence time
comparison at varying error thresholds

4.11 Running Time

The model demonstrates reduced running time due to
efficient convergence driven by the SOA shown in Figure
16 and Table 6. Dynamic step-size adjustment and
behavior-driven exploration help avoid local minima,
accelerating convergence. As a result, the model achieves
faster computation across planning iterations, making it
suitable for real-time or large-scale LVDN applications
where planning speed is critical. Xception had 0.71 (s), and
the proposed technique had greatest running time 0.42 (s).

Table 6: Comparison of running time

Method Running time (s)

Xcention [27] 0.71

SO-Attn-ALSTN
[Proposed]

0.42
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Running time (s)

Excoption(27) So-Attn-ALSTN[Proposed]

Method
Figure 16: Outcome performance of Running time

4.12 Accuracy and F1-score

The model accurately predicts load profiles in LVDNs by
focusing on key temporal features and memory gating,
enhancing forecast precision, minimizing deviations, and
supporting effective network planning, thereby improving
infrastructure reliability. K-GBDT had 0.8851, and the
proposed technique had highest accuracy 0.8961. The F1-
score balances precision and recall in classification
forecasting tasks, enhancing temporal feature extraction
for critical load event identification. A higher F1-score
ensures accurate positive detection and minimizes false
alarms, enhancing LVDN planning strategies. K-GBDT
had 0.8333, and the proposed technique had better F1-
score 08122. The outcome performance of accuracy and
F1-score shown in Figure 17 and Table 7.

Table 7: Comparison of accuracy and F1-score

Methods Accuracy Fl-score
K-GBDT [28] 0.8851 0.8333
SO-Attn-ALSTN 0.8961 0.8122
[Proposed]
g 0.6
w M(e;;oes
Figure 17: (A) Accuracy, (B) Fl-score outcome
performance

4.13 Statistical Significance tests

The SO-Attn-ALSTN model demonstrated strong
performance across multiple error metrics shown Table 9.
To perform a t-test in the context of LVDN planning, can
compare the performance metrics of the proposed model
with baseline models. Use the independent two-sample t-
test to assess whether the observed differences in means
are statistically significant. Ensure assumptions like
normality and equal variance are checked before applying
the t-test. It achieved a low MAPE of 6.53+0.37% and
APE of 2.01 £ 0.21%, indicating accurate forecasting. The
RMSE was 1.14+0.10%, and MAE was 0.99+0.07%,
reflecting low deviation from actual wvalues. In
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convergence analysis, the model reached an error of 0.01  Metric / 95%, CI /
in 2.708+0.20s, 0.001 in 5.456+0.31s, and 0.0001 in  Threshold Mi€thod Value oo nificance
8.589+0.45s. These results confirm the model's
efficiency, precision, and fast convergence in power SO-Attn-
system load forecasting. Table 8 shows the Statistical — LrTor @ ALSTN 8580 +0.45
Significance tests 0.0001 (s) [Proposed]
Table 8: Performance comparison of SO-Attn-ALSTN SO-Attn-
with baselines Accuracy  ALSTN 0.8961 p < 0.01
[Proposed]
Metric / Method Value 95% CI /
Threshold Significance SO-Attn-
F1-score ALSTN 0.8122 p <0.01
SO-Attn- [Proposed]
MAPE (%) ALSTN 6.53  +0.37
[Proposed] SO-Attn-
Runtime (s) ALSTN 0.42 =+0.03
SO-Attn- [Proposed]
APE (%) ALSTN 2.01 +0.21
[Proposed]
SO-Att 4.14 Ablation result
- n_ .
The SO-Attn-ALSTN  model combines swarm
RMSE (%) /}LSTN d 114 £0.10 optimization, FFT-based feature extraction, and attention
[Proposed] mechanisms to improve forecasting accuracy in low-
SO-Attn- voltage distribution network planning. According to
MAE (%) ALSTN 099 4007 ablation experiments, performance is negatively impacted
o [Proposed] ' ' by component removal; in the basic LSTM, MAPE
p increased from 6.53% to over 9%. Additionally, the entire
SO-Attn- model has the quickest convergence time (2.71s),
Error @ 0.01 ALSTN 2708 +020 demonstrating its computational efficiency are hown in
(s) [Proposed] ' ' table 9. These outcomes highlight the model's applicability
p for precise, real-time load forecasting in distribution
networks.
Error @ SO-Attn-
0.001 (s) ALSTN 5.456 +0.31
’ [Proposed]
Table 9: Ablation study results
Model Variant MAPE (%) RMSE (%) MAE (%) Convergence Time (s)
Full SO-Attn-ALSTN 6.53 1.14 0.99 2.71
w/o Attention 7.92 1.36 1.23 2.68
w/o FFT Feature Extraction 7.84 1.33 1.19 2.73
Zvli ‘l’y)SOA (standard ALSTN ¢ ,, 1.42 1.29 3.52
Basic  LSTM — + = No, 5, 1.57 1.44 3.41
Enhancements

4.15 Robustness Evaluation under Noisy and
Incomplete Input Conditions

The SO-Attn-ALSTN model shows strong forecasting
accuracy, its robustness under noisy or incomplete input
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scenarios remains untested. In real-world LVDNSs, sensor

noise, communication faults, and missing data are frequent.

To validate resilience, robustness checks should include
injecting Gaussian noise to simulate sensor drift, masking
10-20% of data points to mimic communication loss, and
introducing anomalies in DER profiles to replicate
operational faults. Performance metrics under these
conditions would reveal model stability and the
effectiveness of attention mechanisms in mitigating
degradation. These tests are crucial for ensuring reliable
deployment in dynamic power networks.

4.16 Discussion

IGWO-SVM [24] LMBP, a robust optimization tool,
struggles with planning for LVDNs due to high-
dimensional, non-linear time-series data and its static
kernel parameters' inability to adapt to dynamic load
changes [25]. The SSA-BP model exhibits fast
convergence but becomes trapped in local minima when
modeling nonlinear behaviors for multiple nodes in
LVDNs, affecting long-term planning decisions [26]. The
SO-Attn-ALSTN model, a MLP artificial network,
improves forecast accuracy and performance under variant
load conditions by incorporating attention mechanisms
and a modifiable LSTM framework.

The advancements in intelligent technologies
distribution networks and energy systems are contributing
to the field, as shown with the investigation by, where that
stated that Information Technology (IT)-based anomaly
detection could improve operational reliability in
distribution networks [29]. Compliments by utilizing the
operational behavior of a robotic system with metering
systems, whereby the robotic element showed a potential
for real-time data acquisition and intelligent interaction
[30]. Also demonstrated a simple and wireless based
monitoring system using with LV wusers, enhancing
communication again for another application. In a
collective sense, these show the collaborations actuality
made between smart sensing, wireless communication,
and intelligent control, which can result in greater
innovations in resilient automatic data-driven power
distribution networks [31].

SO-Attn-ALSTN  outperformed  competing
models because the attention mechanism is inherently
more effective in finding important spatiotemporal load
anomalies, combined with SOA’s behavior of avoiding
local minima or traps, resulting in credible and accurate
load forecasting capable of supporting autonomous and
responsive  approaches to planning low-voltage
distribution networks designed for uncoordinated and
intermittent use.

Attention-based LSTM models enhance load
forecasting accuracy in LVDNs by dynamically assigning
weights to input features across time, allowing the model
to focus more on informative temporal patterns and less on
irrelevant fluctuations. In the proposed SO-Attn-ALSTN
framework, the attention mechanism refines long-term
dependencies learned by the LSTM, improving both short-
term response and long-range temporal modeling. This
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contributes to higher accuracy under varying load
conditions, as demonstrated by reduced error metrics
compared to conventional LSTM and hybrid baselines.

5 Conclusion

The integration of intelligent optimization methods with
DL enhances low-voltage distribution system planning
accuracy by ranking grid features and utilizing recurrent
architectures like ALSTN for real-time adaptability. The
proposed method of SO-Attn-ALSTN demonstrated
strong performance in low-voltage distribution network
planning supported by DL, achieving MAPE of 6.53%,
APE of 2.01%, RMSE of 1.14%, and MAE of 0.99%,
along with favourable MIRE (0.0012), MARE (0.1749),
and MSE (0.0081) metrics. Additionally, it achieved faster
convergence times of 2.708s for an error threshold of 0.01,
5.456s for 0.001, and 8.589s for 0.0001 outperforming the
traditional techniques. The proposed SO-Attn-ALSTN
framework offers a transformative solution for LVDN
planning by integrating DL with metaheuristic
optimization. It enables accurate load forecasting, reduces
power losses, and optimizes infrastructure deployment.
With faster convergence and improved planning efficiency,
this model addresses key challenges in dynamic urban
power systems, making future energy networks more
reliable, cost-effective, and adaptable to renewable
integration.

5.1 Limitations and future scope

The SO-Attn-ALSTN model makes extensive use of
limited-scale or synthetic datasets from sites like Kaggle,
which could not accurately represent the complexity of the
grid in the real world. Its forecasting accuracy has to be
adjusted because it is dependent on hyperparameter
parameters like epoch count and dropout rate. There isn't
much empirical support for the model's performance when
inputs are noisy or lacking. Furthermore, because of the
possibility of overfitting, applicability to various grid
contexts is yet unclear. Another difficulty is real-time
flexibility in situations that are very dynamic or prone to
errors. Future scope could use reinforcement learning for
adaptive real-time planning.

Funding
This study was supported by Research on the
reconstruction planning technology and typical scheme of

low-voltage distribution network in old residential areas
(0306002024030201DG00001).

References

[1] Hou, C., Zhang, C., Wang, P., & Liu, S. (2024).
Renewable energy-based low-voltage distribution
network for dynamic voltage regulation. Results in
Engineering, 21, 101701.
https://doi.org/10.1016/j.rineng.2023.101701

[2] Eidiani, M., & Ghavami, A. (2022, February). New
network design for simultaneous use of electric



436 Informatica 49 (2025) 409422

vehicles, photovoltaic generators, wind farms, and
energy storage. In 2022 9th Iranian Conference on
Renewable Energy & Distributed Generation
(ICREDG) (pp. 1-5). IEEE.
https://doi.org/10.1109/ICREDG54199.2022.980453
4

[3] Xu, Z., Tang, Z., Chen, Y., Liu, Y., Gao, H., & Xu, X.
(2025). Optimal robust allocation of distributed
modular energy storage system in distribution
networks for voltage regulation. Applied Energy, 388,
125625.
https://doi.org/10.1016/j.apenergy.2025.125625

[4] Li, H., Li, B., Luo, Z., Li, H., Zhao, Y., Wang, T., &
Sun, Y. (2022). Power supply reliability enhancement
for low-voltage distribution area with power quality
improvement function. IEEE Access, 10, 130619-
130631.
https://doi.org/10.1109/ACCESS.2022.3229424

[5] Boglou, V., Karavas, C. S., Karlis, A., Arvanitis, K. G.,
& Palaiologou, 1. (2023). An optimal distributed RES
sizing strategy in hybrid low voltage networks
focused on EVs’ integration. IEEE Access, 11,
16250-16270.
https://doi.org/10.1109/ACCESS.2023.3245152

[6] Gao, ], Lu, Y., Wu, B, Zheng, T., Zhu, Y., & Zhang,
Z. (2022). Coordinated management and control
strategy in the low-voltage distribution network based
on the cloud-edge collaborative mechanism. Frontiers
in Energy Research, 10, 903768.
https://doi.org/10.3389/fenrg.2022.903768

[7] Salem, W.A.A., Gabr Ibrahim, W., Abdelsadek, A. M.,
& Nafeh, A. A. (2022). Grid-connected photovoltaic
system impression on power quality of low voltage
distribution system. Cogent Engineering, 9(1),
2044576.
https://doi.org/10.1080/23311916.2022.2044576

[8] Yuan, W., Yuan, X., Xu, L., Zhang, C., & Ma, X.
(2023). Harmonic loss analysis of low-voltage
distribution network integrated with distributed
photovoltaic. Sustainability, 15(5), 4334,
https://doi.org/10.3390/su15054334

[9] Majeed, 1. B.,, & Nwulu, N. 1. (2022). Impact of
reverse power flow on distributed transformers in a
solar-photovoltaic-integrated low-voltage network.
Energies, 15(23), 9238.
https://doi.org/10.3390/en15239238

[10] Butt, O. M., Zulgarnain, M., & Butt, T. M. (2021).
Recent advancement in smart grid technology: Future
prospects in the electrical power network. Ain Shams
Engineering Journal, 12(1), 687-695.
https://doi.org/10.1016/j.asej.2020.05.004

J. Zhu et al.

[11] Zhang, Y., Li, D., Jie, G., Qirui, R., Yu, H., Yuxiao, Z.,
& Zhang, H. (2025). A cooperative operation
optimization method for medium-and low-voltage
distribution networks considering flexible
interconnected  distribution  substation  areas.
Processes, 13(4), 1123.

[12] Unterluggauer, T., Hipolito, F., Rich, J., Marinelli, M.,
& Andersen, P. B. (2023). Impact of cost-based smart
electric vehicle charging on urban low voltage power
distribution networks. Sustainable Energy, Grids and
Networks, 35, 101085.
https://doi.org/10.1016/j.segan.2023.101085

[13]Knez, K., Herman, L., Ilkovski, M., & Blazi¢, B.
(2025). Long-term planning of low-voltage networks
using reference network models: Slovenian use case.
International Journal of Electrical Power & Energy
Systems, 168, 110707.
https://doi.org/10.1016/j.ijepes.2025.110707

[14] Gatta, F. M., Geri, A., Maccioni, M., Palazzoli, A., &
Sancioni, P. (2024). Low voltage electric distribution
network planning with demand control. Electric
Power Systems Research, 226, 109950.
https://doi.org/10.1016/j.epsr.2023.109950

[15] Alrashidi, M. (2022). Community battery storage
systems planning for voltage regulation in low voltage
distribution systems. Applied Sciences, 12(18), 9083.
https://doi.org/10.3390/app12189083

[16]Rastgou, A., & Hosseini-Hemati, S. (2022).
Simultaneous planning of the medium and low
voltage distribution networks under uncertainty: A bi-
level optimization  approach. International
Transactions on Electrical Energy Systems, 2022(1),
2267926. https://doi.org/10.1155/2022/2267926

[17] Prakash, K., Ali, M., Siddique, M. N. 1., Karmaker, A.
K., Macana, C. A., Dong, D., & Pota, H. R. (2022).
Bi-level planning and scheduling of electric vehicle
charging stations for peak shaving and congestion
management in low voltage distribution networks.
Computers and Electrical Engineering, 102, 108235.
https://doi.org/10.1016/j.compeleceng.2022.108235

[18] Celli, G., Pilo, F., Pisano, G., Ruggeri, S., & Soma, G.
G. (2022). Risk-oriented planning for flexibility-
based distribution system development. Sustainable
Energy, Grids and Networks, 30, 100594.
https://doi.org/10.1016/j.segan.2021.100594

[19] Valencia, A., Hincapie, R. A., & Gallego, R. A. (2021).
Optimal location, selection, and operation of battery
energy storage systems and renewable distributed
generation in medium—low voltage distribution
networks. Journal of Energy Storage, 34, 102158.
https://doi.org/10.1016/j.est.2020.102158



Intelligent Diagnosis Method for Transformer Measurement Error...

[20] Nour, M., Chaves-Avila, J. P., Troncia, M., Ali, A., &
Sanchez-Miralles, A. (2023). Impacts of community
energy trading on low voltage distribution networks.
IEEE Access, 11, 50412-50430.
https://doi.org/10.1109/ACCESS.2023.3278090

[21] Saldana-Gonzalez, A. E., Aragiiés-Penalba, M., &
Sumper, A. (2024). Distribution network planning
method: Integration of a recurrent neural network
model for the prediction of scenarios. Electric Power
Systems Research, 229, 110125.
https://doi.org/10.1016/j.epsr.2024.110125

[22] Nakiganda, A. M., Dehghan, S., & Aristidou, P.
(2021,). Comparison of AC optimal power flow
methods in low-voltage distribution networks. In
2021 IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe) (pp. 1-5). IEEE.
https://doi.org/10.1109/ISGTEurope52324.2021.963
9957

[23] Yadav, M., Pal, N., & Saini, D. K. (2023). Low
voltage ride-through capability for resilient electrical
distribution system integrated with renewable energy
resources.  Energy  Reports, 9,  833-858.
https://doi.org/10.1016/j.egyr.2022.12.023

[24]Liu, N., & Zhao, Y. (2024). Loss reduction
optimization strategies for medium and low-voltage
distribution  networks based on intelligent
optimization algorithms. Energy Informatics, 7(1),
132. https://doi.org/10.1186/s42162-024-00442-z

[25]Liu, Z., Yu, H., & Jin, W. (2023). Adaptive leakage
protection for low-voltage distribution systems based
on SSA-BP neural network. Applied Sciences, 13(16),
9273. https://doi.org/10.3390/app13169273

[26]Jiang, Z., Li, G., Cai, Y., Li, J., & Zhang, K. (2023).
Design of line loss rate calculation method for low-
voltage desk area based on GA-LMBP neural network
model. IEEE  Access, 11, 144394-144407.
https://doi.org/10.1109/ACCESS.2023.3343393

[27]Fan, Y., Wu, H,, Lin, J., Li, Z., Li, L., Huang, X., ... &
Zhao, J. (2024). A distributed photovoltaic short-term
power forecasting model based on lightweight Al for
edge computing in low-voltage distribution
network. IET Renewable Power Generation, 18(16),
3955-3966.

[28] Gou, J., Niu, X., Chen, X., Dong, S., & Xin, J. (2025).
Identification of Abnormal Electricity Consumption
Behavior of Low-Voltage Users in New Power
Systems Based on a Combined
Method. Energies, 18(10), 2528.
https://doi.org/10.3390/en18102528

[29] Huang, Q., Xian, H., Mei, L., Cheng, X., & Li, N.
(2025). Intelligent distribution network operation and
anomaly detection based on information technology.
Informatica, 49(9).
https://doi.org/10.31449/inf.v49i9.5584

Informatica 49 (2025) 409-422 437

[30] Zang, X. (2024). Modeling and analysis of integrated
electric energy metering information system
integrating operational behavior of interactive robots.
Informatica, 48(5).
https://doi.org/10.31449/inf.v48i5.5374

[31] Wang, X., Zhao, W., & Niu, X. (2025). Low voltage
user power internet of things monitoring system based
on LoRa wireless technology. Energy Informatics,
8(1), 12. https://doi.org/10.1186/s42162-025-00472-1


https://doi.org/10.3390/app13169273
https://doi.org/10.1109/ACCESS.2023.3343393
https://doi.org/10.31449/inf.v49i9.5584
https://doi.org/10.1186/s42162-025-00472-1

438 Informatica 49 (2025) 409422 J. Zhu et al.



