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Understanding the contextual relationships between words is essential for effective natural language pro-
cessing (NLP). Our prior work, published in SOICT 2024, introduced a dynamic word embedding ap-
proach that integrates static embeddings with dynamic representations learned from a next-word predic-
tion model and enriched by an undirected graph capturing both syntactic and positional word relation-
ships. This hybrid embedding framework—comprising ELMo-Like Dynamic, ARMA Graph Dynamic, and
ARMA+ELMo Graph Dynamic variants—demonstrated promising results on standard text classification
tasks. In this extended study, we significantly broaden the experimental evaluation to validate the gen-
eralizability and effectiveness of our approach. We incorporate a wider range of NLP tasks—including
sentiment analysis, disaster tweet classification, topic categorization, spam detection, named entity recog-
nition, and intent classification—across multiple benchmark datasets. Comparative analysis against both
static embeddings (Word2Vec, GloVe, FastText) and transformer-based models (BERT, DistilBERT) shows
that our ARMA+ELMo Graph Dynamic variant consistently delivers competitive or superior performance.
Notably, our method achieves a classification accuracy of 93.2% on the AG News topic classification task
and an F1-score of 94.2% on the CoNLL-2003 named entity recognition benchmark—results that match or
exceed those of larger pretrained models. These findings reinforce the contextual richness and practical
utility of the proposed embedding framework across diverse NLP applications.

Povzetek: NLP Studija uvaja dinamicne grafne vektorje besed, ki zdruzijo ELMo in ARMA z grafi
sintakticno-pozicijskih odnosov, kar izboljsa klasifikacijo in zaznavanje entitet ter preseze staticne pristope,

konkurencno z BERT.

1 Introduction

Natural Language Processing (NLP) has seen substantial
advancements due to the development of effective word
embedding techniques. These embeddings map discrete
tokens to continuous vector spaces, enabling machines to
process and analyze human language. Traditional embed-
ding models such as Word2Vec [1] and GloVe [2] represent
words in fixed vector spaces, independent of their vary-
ing usage across different contexts. While these static em-
beddings capture general semantic relationships, they of-
ten fall short in modeling polysemy and nuanced contex-
tual dependencies—challenges that are crucial for complex
tasks such as sentiment classification, question answering,
and named entity recognition.

Contextual embeddings such as ELMo [3] and BERT [4]
address these limitations by producing word representa-

tions that are dependent on the surrounding context. These
models typically employ deep neural architectures to cap-
ture sequential or bidirectional dependencies. However,
they often overlook the syntactic structure of sentences and
tend to model context in a linear fashion. Incorporating syn-
tactic and positional dependencies through graph structures
can provide a richer and more structured representation of
context, particularly for long-range dependencies and non-
sequential word relationships.

In our previous work [5], presented at SOICT 2024, we
proposed a novel dynamic word embedding framework that
combines static word embeddings with dynamic features
extracted from deep next-word prediction models. To en-
hance contextual representation, we introduced an undi-
rected graph-based structure that integrates both depen-
dency parsing and word order information. This hybrid rep-
resentation allowed us to generate embeddings that evolve
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based on sentence context while preserving the semantic
stability of static embeddings. Three variants of our method
were proposed: ELMo-Like Dynamic, ARMA Graph Dy-
namic, and ARMA+ELMo Graph Dynamic, each incor-
porating different mechanisms for feature extraction and
graph integration.

In this extended work, we aim to rigorously validate the
effectiveness and generalizability of our embedding frame-
work across a wide range of NLP tasks and datasets. The
experimental evaluation is expanded by:

— Applying our models to additional tasks including
topic classification and domain-specific text analysis.

— Comparing with stronger baselines such as Fast-
Text [6] and BERT [4].

Our results demonstrate that the proposed dynamic
graph-based embeddings are not only competitive with but
in many cases outperform static and contextual baselines,
particularly in classification settings that benefit from ex-
plicit modeling of word relationships.

The remainder of this paper is organized as follows. Sec-
tion 2 surveys related work on word embedding and graph-
based models. Section 3 presents the details of our pro-
posed framework. Section 4 describes the datasets, tasks,
and expanded experimental evaluations. Section 5 provides
additional analyses and insights. Finally, Section 6 con-
cludes the paper and outlines potential directions for future
research.

2 Related work

2.1 Static word embeddings

Word embeddings have been fundamental to natural lan-
guage processing (NLP), transforming discrete textual data
into continuous vector spaces. Early models, such as
Word2Vec by Mikolov et al. [1], introduced efficient algo-
rithms to generate embeddings based on contextual word
co-occurrence. Specifically, the continuous bag-of-words
(CBOW) and skip-gram models created fixed embeddings
for words, capturing semantic relationships via linear con-
text windows. However, these embeddings are static and
fail to capture context-dependent meanings [2].

To further improve embedding quality, GloVe [2] in-
corporated global statistics of word occurrences and co-
occurrences, providing richer semantic representations than
Word2Vec. Nonetheless, like Word2Vec, GloVe embed-
dings remain context-invariant, limiting their effectiveness
in tasks involving polysemy and complex semantic con-
texts.

2.2 Dynamic and contextualized word
embeddings

Contextualized word embeddings emerged to address the
shortcomings of static models. ELMo [3] proposed
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deep contextualized embeddings derived from bidirec-
tional Long Short-Term Memory networks (Bi-LSTMs).
ELMo generates embeddings dynamically, conditioned
on sentence-level context, significantly improving perfor-
mance on various NLP tasks by addressing polysemy and
capturing nuanced semantics.

Further advancements came with transformer-based
models like BERT [4]. Utilizing self-attention mechanisms,
BERT captures context from both directions simultane-
ously, achieving superior results across a broad range of
NLP tasks, including question answering, sentiment analy-
sis, and named entity recognition. Despite their impressive
results, transformer-based embeddings such as BERT pri-
marily focus on capturing linear contextual dependencies,
largely ignoring explicit syntactic and positional relation-
ships among words.

2.3 Graph-based word embeddings

Graph-based models have gained traction due to their abil-
ity to represent complex relationships explicitly. Levy
and Goldberg [7] demonstrated that dependency-based em-
beddings, leveraging syntactic structures, significantly im-
prove representation quality. Subsequently, Graph Neu-
ral Networks (GNNs) became popular for capturing syn-
tactic and semantic relations in text. Jiang et al. [8] in-
troduced Graph Learning-Convolutional Network (GLCN)),
which generalized convolutional neural networks to graph
structures and showed promise in modeling structured tex-
tual data.

Recent approaches like ARMAConv [9] further refined
GNN architectures by integrating autoregressive moving
average (ARMA) filters. This enabled efficient capture of
long-range dependencies and robust representation of noisy
relationships. These methods typically employ directed de-
pendency edges. In contrast, our previous work [5] pro-
posed an undirected graph model combining consecutive
word relationships and dependency edges, which facilitated
better bidirectional contextual understanding.

2.4 Positioning our work

In our previous research [5], we introduced dynamic graph-
based word embeddings combining static embeddings and
dynamic contextual representations learned from next-
word prediction tasks. Unlike traditional static embed-
dings or purely transformer-based methods, our approach
integrates structural graph-based context explicitly with se-
quential context provided by recurrent architectures. The
resulting embedding framework (ELMo-Like Dynamic,
ARMA Graph Dynamic, ARMA+ELMo Graph Dynamic)
was validated on standard text classification tasks.

In this extended work, we significantly enhance the em-
pirical rigor and scope of our evaluations. We broaden the
set of evaluation tasks to include sentiment analysis, dis-
aster tweet classification, topic categorization, spam detec-
tion, named entity recognition, and intent classification—
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allowing us to assess the generalizability of our method
across diverse NLP applications. We also compare our
framework against stronger baselines, including FastText
and transformer-based models such as BERT and Distil-
BERT. The results consistently validate the robustness and
versatility of our proposed embedding approach.

3 Methodology

The proposal aims to generate contextually rich dynamic
word embeddings by combining static embeddings with
context-aware representations obtained from deep neural
network (DNN) models trained on next-word prediction
tasks. To further enrich these dynamic representations, we
incorporate a graph-based structure that explicitly captures
syntactic and positional relationships between words. The
overall approach involves three primary stages: graph con-
struction from text sequences, training of a next-word pre-
diction model, and the extraction and integration of dy-
namic embeddings.

3.1 Graph representation of word sequences

We start by converting a text sequence 1" = wy, ws, . .., W;
into an undirected graph G(T') = (V, E), explicitly rep-
resenting contextual relationships among words. Specifi-
cally, the vertex set V' contains embedding vectors corre-
sponding to individual words, and the edge set E captures
syntactic and positional relationships between words:

V={ve, |i€{l,2,....t}},

E = Consec(T") U Depend(T") O

Each vertex v,, represents the embedding vector of word
w € T. The set Consec(T') consists of edges that con-
nect pairs of consecutive words in the sequence, thereby
preserving the linear positional information crucial for se-
quential contexts. Specifically, for each pair of consecutive
words (w;, w;41), an undirected edge is established, explic-
itly capturing positional relationships.

The second component, Depend(T), incorporates syn-
tactic relationships obtained from dependency parsing. To
construct these edges, we employ a dependency parser
(e.g., SpaCy), which identifies grammatical relations be-
tween words in a sentence. Each pair of words connected
by a grammatical dependency is linked by an undirected
edge, reflecting syntactic associations such as subject-
object, modifier-head, and other dependency relationships.

Unlike conventional dependency graphs, which use di-
rected edges indicating grammatical directionality, our
model utilizes undirected edges. This choice facilitates cap-
turing bidirectional syntactic relationships, ensuring that in-
formation can flow equally in both directions within the
neural network model. As a result, our graph representa-
tion provides richer contextual signals to downstream em-
bedding learning models.
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Figure 1: The ELMo-like baseline (left), ARMA (middle),
and ARMA+ELMo (right) models for next word predic-
tion.

For instance, consider the sentence: “The student read
the book.” Dependency parsing identifies relationships
such as “student” as the subject of “read” and “book” as the
object of “read”. Our undirected graph connects these pairs
symmetrically, allowing contextual features of “student”
and “book” to influence each other effectively through the
intermediate node “read”.

The combined positional and syntactic edges result in a
more comprehensive and nuanced graph representation, ef-
fectively enhancing the contextual understanding of each
word within the sequence. This richer graph structure sup-
ports our downstream embedding models in learning more
effective and contextually meaningful word embeddings.

3.2 Next-word prediction model

The next-word prediction step involves training a DNN
model to predict the subsequent word in a sequence, given
its preceding context. Initially, input words in each se-
quence are transformed into static embeddings, such as
those generated by the Word2Vec model. These embed-
dings provide stable semantic anchors which serve as input
to our prediction model. Subsequently, the neural model
leverages the previously constructed graph representation
(as detailed in the prior subsection) to further enrich the
learned contextual representations.

Formally, given a word sequence T' = wy, wo, . . ., Wy,
our model is trained to maximize the log-likelihood of
correctly predicting each word w; based on the contex-
tual information encapsulated in the graph representation
G(wy,...,w;—1). This objective is represented mathemat-
ically as:

1 t
max - ;logp(wi | Glwr, ... wiz1)) @
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To realize this, the neural network computes the probabil-
ity of the next word w; by evaluating the similarity between
the embedding vector of w; and the embeddings of words
represented in the contextual graph G. Higher similarity
indicates greater contextual relevance, thus enhancing pre-
diction accuracy. Specifically, we define this probability
through a softmax function over embedding similarities:

Sy v exp(u], )
. awi—l)) =

p(w; | G(wy, .. =
' ZkeW eXp(U];eri)

A3)

where v,,,, 1s the embedding vector of the predicted word
w;, V represents the set of vertex embeddings present in the
context graph, and W denotes the complete set of embed-
dings for all vocabulary words.

To train this next-word prediction model, we utilize the
Wikipedia Sentences dataset, which comprises a large cor-
pus of sentence-level textual data. To ensure robust and
meaningful predictions, we preprocess the dataset metic-
ulously by expanding contractions, removing punctuation
and numeric values, converting text to lowercase, and elim-
inating duplicates. We further limit the vocabulary to fre-
quent words (occurring more than ten times), ensuring com-
putational efficiency without sacrificing representational
richness. This preprocessing step results in a vocabulary
of approximately 189,000 unique words.

Each sentence in the corpus is subsequently transformed
into multiple context-target training pairs, wherein each
word within the sentence serves sequentially as a predic-
tion target, given its preceding context. Consequently, our
final dataset for model training contains around 138 million
context-target pairs, providing ample diversity and context
variations to effectively train the neural network.

Through this comprehensive training process, the result-
ing prediction model learns deep contextual relationships
between words, thus laying the groundwork for extract-
ing meaningful and contextually sensitive dynamic embed-
dings.

3.3 Dynamic embedding extraction

Following the successful training of our next-word predic-
tion models, we extract dynamic embeddings from the in-
termediate layers of these models. This step is crucial as it
enables us to capture context-dependent nuances and varia-
tions in word usage across different textual scenarios, going
beyond the limitations of purely static embeddings.

To perform dynamic embedding extraction, we identify
and isolate context-sensitive representations from the inter-
nal neural network layers. Specifically, for models employ-
ing recurrent architectures (e.g., Bi-LSTMs), we utilize the
hidden states generated by each layer. For models involv-
ing graph neural network components (e.g., ARMAConv),
we extract node-level embedding representations resulting
from the graph convolutional operations. These intermedi-
ate representations inherently encode rich contextual infor-
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Figure 2: The process of extracting word embeddings
from ELMo-like baseline (left), ARMA (middle), and
ARMA+ELMo (right)

mation due to their training objective of predicting subse-
quent words.

More explicitly, consider the following extraction proce-
dure for each model variant:

— ELMo-Like Dynamic Embedding: Dynamic em-
beddings are derived by combining outputs from mul-
tiple Bi-LSTM layers (Left figures in Fig. 1 and
2). We perform a summation of these intermediate
hidden-state outputs from each layer, subsequently
passing them through a non-linear activation function
(such as hyperbolic tangent, tanh). This aggregation
ensures the embedding captures hierarchical contex-
tual information from different abstraction levels.

— ARMA Graph Dynamic Embedding: Dynamic em-
beddings are directly obtained from the output node
representations produced by the ARMAConv graph
layer (Middle figures in Fig. 1 and 2). These node-
level embeddings explicitly capture syntactic and po-
sitional contexts encoded through the graph struc-
ture. Subsequently, these node embeddings are passed
through a tanh activation to further refine their repre-
sentational quality.

— ARMA+ELMo Graph Dynamic Embedding: For
this hybrid variant, dynamic features are created by
combining outputs from both the ARMAConv layer
and multiple Bi-LSTM layers (Right figures in Fig. 1
and 2). Specifically, we aggregate node embeddings
from the ARMAConv output with sequential embed-
dings from Bi-LSTM layers, followed by a non-linear
transformation using a tanh activation. This combined
embedding effectively integrates both sequential and



Context-Enriched Dynamic Graph Word Embeddings. ..

graph-based contextual insights, resulting in a more
comprehensive dynamic representation.

Finally, to form the complete dynamic embedding, we
concatenate these dynamically learned contextual features
with the original static embeddings (e.g., Word2Vec embed-
dings). This step creates a hybrid embedding representa-
tion that retains the foundational semantic information pro-
vided by static embeddings while enriching it with contex-
tually aware dynamics. Formally, the final embedding vec-
tor U finq for each word is defined as:

VUfinal = [Ustatic; Udynamic] (4)

where vg44tic denotes the static embedding vector (such
as those from Word2Vec), and vgynamic represents the
newly obtained dynamic embedding vector.

By adopting this hybrid embedding extraction approach,
our methodology benefits from robust semantic stability
alongside the flexibility and context-awareness necessary
for addressing a wide range of NLP tasks effectively.

3.4 Proposed variants

To comprehensively evaluate our framework, we introduce
three model variants differing primarily in their neural ar-
chitectures and integration of graph-based context:

— ELMo-Like Dynamic: Employs a two-layer Bi-
LSTM structure similar to ELMo. Dynamic embed-
dings are generated from the combined outputs of both
Bi-LSTM layers.

— ARMA Graph Dynamic: Incorporates the ARMA-
Conv layer, a GNN structure specifically designed to
handle graph-based textual data. Dynamic embed-
dings are extracted directly from the ARMAConv out-
put.

— ARMA+ELMo Graph Dynamic: Integrates AR-
MAConv with the ELMo-like Bi-LSTM architecture,
combining graph-based and sequential contexts. The
dynamic features are obtained by merging outputs
from both ARMAConv and Bi-LSTM layers.

4 Experiments and results

This section presents an expanded empirical evaluation of
our proposed dynamic graph-based embedding framework.
In addition to replicating the experiments from our previ-
ous study [5], we broaden the evaluation to include mul-
tiple new NLP tasks, additional datasets, and modern em-
bedding baselines. The goal is to rigorously examine the
effectiveness, generalizability, and practicality of our ap-
proach across a wide spectrum of language understanding
tasks.
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4.1 Experimental setup

All experiments are conducted using Python and Tensor-
Flow/Keras frameworks. For graph-based components, we
utilize the Spektral library [10]. Static embeddings are
generated using pre-trained Word2Vec and GloVe mod-
els, while contextual baselines (e.g., BERT, FastText) are
sourced from HuggingFace Transformers and Gensim. All
models are trained using the Adam optimizer with a learn-
ing rate of 0.001 and a batch size of 64.

4.1.1 Diverse NLP tasks and datasets

To comprehensively evaluate our embeddings, we consider
six different NLP tasks, each with distinct characteristics
and challenges:

— Sentiment Analysis: We employ the Emotion dataset
[11], consisting of text labeled with six emotions: joy,
sadness, anger, fear, love, and surprise.

— Disaster Tweet Detection: The dataset comprises
tweets labeled as disaster-related or not [12]. This task
assesses embedding performance on noisy, short, and
informal text.

— Topic Classification: We utilize the AG News dataset
[13], containing news articles classified into four ma-
jor categories: World, Sports, Business, and Sci-
ence/Technology.

— Spam Detection: For this binary classification task,
we use the SMS Spam Collection dataset [14], com-
posed of SMS messages labeled as spam or ham (non-
spam).

— Named Entity Recognition (NER): The CoNLL-
2003 dataset [15] is selected to test our embeddings
in a structured prediction context, where entities are
labeled as Person, Organization, Location, and Mis-
cellaneous.

— Intent Classification: We leverage the SNIPS dataset
[16], comprising user queries labeled according to
their intended actions, providing insights into the gen-
eralization of our embeddings in dialogue systems.

Each dataset is partitioned into standard training, valida-
tion, and testing sets as recommended by the original au-
thors. Table 1 summarizes key statistics of each dataset.

In subsequent subsections, we present detailed evalua-
tion results and analyses for each task and dataset, compar-
ing our approach against various baseline models.

4.1.2 Baseline comparison

To rigorously validate the effectiveness of our proposed
dynamic embeddings, we compare our approach against
multiple widely-used embedding methods. These baselines
span both static and contextual embedding paradigms:
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Table 1: Summary of NLP tasks and datasets used for expanded evaluation
Dataset Task Classes  Total Samples
Emotion [11] Sentiment Analysis 6 20,000
Disaster Tweets [12] Binary Classification 2 7,613
AG News [13] Topic Classification 4 120,000
SMS Spam [14] Spam Detection 2 5,574
CoNLL-2003 [15] Named Entity Recognition 4 22,137 sentences
SNIPS [16] Intent Classification 7 14,484
— Static Embeddings:

— Word2Vec [1]: A widely-used static embedding
model that captures semantic relationships based
on linear context windows.

— GloVe [2]: Utilizes global word co-occurrence
statistics, producing embeddings effective in
capturing global semantic relationships.

— FastText [6]: Enhances static embeddings by in-
corporating subword information, making it ro-
bust to out-of-vocabulary words and morpholog-
ically rich languages.

— Contextual Embeddings:

— BERT [4]: A transformer-based model that gen-
erates context-aware embeddings by considering
bidirectional sentence context, setting state-of-
the-art results in various NLP tasks.

— DistilBERT [17]: A lightweight and compu-
tationally efficient variant of BERT, retaining
much of its performance while being faster to
train and deploy.

Each baseline embedding is evaluated using the same
neural architecture and hyperparameter settings as our
dynamic embedding models. Performance comparisons
across different NLP tasks are presented in subsequent sub-
sections, providing comprehensive insights into the relative
strengths and limitations of our embedding approach.

4.2 Sentiment classification results

We first evaluate our embeddings on sentiment classifica-
tion using the Emotion dataset [11], containing texts labeled
with six distinct emotions: joy, sadness, anger, fear, love,
and surprise. We compare our dynamic graph embeddings
with both static (Word2Vec, GloVe, FastText) and contex-
tual (BERT, DistilBERT) baselines. Four neural classifiers
(CNN, Bi-LSTM, CNN+Bi-LSTM, ARMAConv) are em-
ployed for each embedding type.

Table 2 summarizes the classification accuracy for each
embedding and classifier combination. Our proposed dy-
namic embeddings (particularly the ARMA+ELMo Graph
Dynamic variant) consistently outperform static baselines
and demonstrate competitive performance compared to
strong contextual embeddings.

Table 2: Sentiment classification accuracy (%) for vari-
ous embedding and classifier combinations on the Emotion
dataset. Bold indicates the best performance in each col-

umn.
Embedding CNN  Bi-LSTM CNN+Bi-LSTM ARMAConv
Word2Vec [1] 80.60 92.40 91.15 90.50
GloVe [2] 80.70 92.50 89.35 89.50
FastText [6] 82.45 92.80 90.80 91.20
BERT [4] 88.30 93.20 92.45 91.80
DistilBERT [17] 87.80 92.95 92.10 91.55
ELMo-Like Dynamic (Ours) 87.75 92.45 91.70 90.55
ARMA Graph Dynamic (Ours) 86.50 92.55 91.40 90.05
ARMA+ELMo Graph Dynamic (Ours)  89.05 93.15 92.65 92.10

We also examine the learning behavior across embed-
dings through validation accuracy curves shown in Fig. 3.
Our dynamic embeddings (particularly ARMA+ELMo
Graph Dynamic) achieve higher initial accuracy and con-
verge more quickly, illustrating improved training effi-
ciency and robustness to overfitting compared to static em-
beddings.
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Figure 3: Validation accuracy curves during training on
sentiment classification with different embeddings using
Bi-LSTM classifier.

The results indicate clear advantages for contextu-
ally enriched dynamic embeddings in capturing subtle
emotional nuances compared to static approaches. Al-
though transformer-based embeddings such as BERT re-
main strong competitors, our ARMA+ELMo Graph Dy-
namic embeddings achieve comparable or superior accu-
racy across classifiers, suggesting their suitability in captur-
ing complex contextual and syntactic relations critical for
sentiment analysis tasks.
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4.3 Disaster tweet classification results

We next evaluate our embeddings on the task of disaster
tweet classification, utilizing the dataset provided by the
Kaggle Natural Language Processing with Disaster Tweets
challenge [12]. This binary classification task involves
distinguishing tweets describing actual disasters from non-
disaster tweets.

Table 3 summarizes classification accuracies achieved
by each embedding method across different neural archi-
tectures. Again, our dynamic graph-based embeddings
exhibit strong performance, closely rivaling transformer-
based methods.

Table 3: Disaster tweet classification accuracy (%) for vari-
ous embedding and classifier combinations. Bold indicates
the best performance in each column.

Embedding CNN Bi-LSTM CNN+Bi-LSTM ARMAConv
Word2Vec [1] 75.11 77.35 76.03 75.25
GloVe [2] 74.66 75.71 74.85 75.38
FastText [6] 76.10 78.00 77.20 76.85
BERT [4] 79.90 81.50 80.70 80.30
DistilBERT [17] 79.20 80.85 80.20 79.95
ELMo-Like Dynamic (Ours) 77.45 79.15 78.35 77.89
ARMA Graph Dynamic (Ours) 77.85 79.65 78.80 78.35
ARMA-+ELMo Graph Dynamic (Ours) ~ 80.05 81.10 80.85 80.55

Fig. 4 illustrates the validation accuracy curves obtained
during training. The dynamic graph embeddings, particu-
larly ARMA+ELMo Graph Dynamic, exhibit rapid initial
improvement and efficient convergence compared to static
embeddings, highlighting their effectiveness in capturing
complex contextual signals from short, noisy texts.
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Figure 4: Validation accuracy curves during training on
disaster tweet classification using the Bi-LSTM classifier
across different embeddings.

The task of disaster tweet classification presents unique
challenges due to short text length, informal language, and
noisy data. Despite these challenges, our proposed dy-
namic embeddings consistently perform better than tra-
ditional static embeddings and remain competitive with
transformer-based contextual embeddings. These results
reinforce the robustness and adaptability of our method, es-
pecially in real-world text classification scenarios involving
noisy data.
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4.4 Topic classification and spam detection
results

We evaluate the performance of our embeddings on two ad-
ditional classification tasks: topic classification using the
AG News dataset [13] and spam detection using the SMS
Spam Collection dataset [14]. These tasks test our embed-
dings’ ability to handle diverse textual structures, ranging
from formal news articles to informal SMS messages.

Table 4 reports the classification accuracies across var-
ious embeddings and neural architectures for both tasks.
Our proposed dynamic graph embeddings maintain strong
performance, consistently outperforming static embed-
dings and achieving results comparable to transformer-
based models.

The performance improvements observed with our dy-
namic graph embeddings indicate their ability to effectively
capture both semantic and syntactic patterns across diverse
text types. In the topic classification task, our embeddings
nearly match or exceed the performance of transformer-
based models. Similarly, for spam detection, dynamic em-
beddings significantly outperform static ones and yield re-
sults highly competitive with BERT-based baselines. These
findings highlight the robustness and adaptability of our ap-
proach across both formal and informal textual domains.

4.5 Named entity recognition (NER) results

To evaluate the effectiveness of our embeddings in struc-
tured prediction tasks, we apply them to Named Entity
Recognition (NER) using the CoNLL-2003 dataset [15].
This task involves identifying and categorizing named en-
tities in text into predefined categories: Person, Organiza-
tion, Location, and Miscellaneous.

NER performance is measured using the F1-score, which
balances precision and recall. Table 5 presents the F1-
scores for different embeddings across four neural models.
Our dynamic graph-based embeddings achieve competitive
results compared to transformer models, particularly when
used with the Bi-LSTM and ARMAConv classifiers.

NER requires models to effectively capture both local
context and long-range dependencies in sequences. As
shown in Table 5, our proposed ARMA+ELMo Graph
Dynamic embeddings outperform all static baselines and
closely match the performance of DistilBERT across all
classifier types. Although BERT achieves the highest F1-
scores overall, the performance gap between BERT and our
dynamic models is relatively narrow—especially with the
Bi-LSTM architecture, where ARMA+ELMo Graph Dy-
namic reaches an F1-score of 94.2% compared to BERT’s
94.8%.

This confirms that combining dynamic sequence model-
ing with syntactic graph representations enables strong per-
formance in structured prediction tasks. Our embeddings
offer a compelling trade-off between model complexity and
accuracy, making them well-suited for use in environments
where deploying large transformer models may not be fea-
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Table 4: Classification accuracy (%) for topic classification and spam detection tasks. Bold indicates the best performance

in each column.

Topic Classification

Spam Detection

Embedding CNN  Bi-LSTM CNN+Bi-LSTM ARMAConv | CNN  Bi-LSTM CNN+Bi-LSTM ARMACony
Word2Vec [1] 885 893 89.1 88.9 962 968 965 963
GloVe [2] 88.8 89.5 89.3 89.0 965 969 96.7 96.5
FastText [6] 89.7 902 89.9 89.8 970 974 97.2 97.0
BERT [4] 924 936 93.1 92.9 984 989 98.7 98.6
DistilBERT [17] 918  93.0 9.7 925 980 986 98.4 98.3
ELMo-Like Dynamic (Ours) 903 912 908 90.6 975 980 97.7 975
ARMA Graph Dynamic (Ours) 907 915 91.0 90.8 976 982 97.9 97.7
ARMA+ELMo Graph Dynamic (Ours) 925 93.4 93.2 93.0 983 988 98.7 98.6

Table 5: Fl-score (%) for Named Entity Recognition on the CoNLL-2003 dataset. Bold indicates the best result in each

column.
Embedding CNN Bi-LSTM CNN+Bi-LSTM ARMAConv
Word2Vec [1] 88.1 90.2 89.7 88.9
GloVe [2] 88.5 90.4 89.9 89.1
FastText [6] 89.2 91.0 90.4 90.0
BERT [4] 93.6 94.8 94.4 94.2
DistilBERT [17] 93.0 94.1 93.8 93.5
ELMo-Like Dynamic (Ours) 90.5 92.7 91.8 91.2
ARMA Graph Dynamic (Ours) 91.1 93.0 92.4 91.8
ARMA+ELMo Graph Dynamic (Ours)  92.2 94.2 93.9 93.4

sible. 5 Discussion

4.6 Intent classification results

The final classification task we examine is intent classifica-
tion using the SNIPS dataset [16]. This task involves iden-
tifying the intent behind user queries in natural language,
and is commonly used in voice assistants and dialogue sys-
tems. The dataset includes seven distinct intent categories
such as GetWeather, PlayMusic, and BookRestaurant.

We report classification accuracy in Table 6 for all em-
bedding methods across four model architectures. Our
dynamic embeddings continue to perform robustly across
architectures and outperform static embeddings by a no-
table margin. ARMA+ELMo Graph Dynamic again
achieves performance comparable to transformer-based
embeddings.

Intent classification requires fine-grained understanding
of short and often ambiguous user utterances. As shown in
Table 6, transformer-based embeddings (especially BERT)
achieve the best overall performance, with accuracy up
to 99.0% using the Bi-LSTM classifier. However, our
ARMA-+ELMo Graph Dynamic embeddings come remark-
ably close—achieving up to 98.9%—despite being signifi-
cantly more lightweight and modular.

These results reinforce the capability of our dynamic em-
beddings to generalize well across intent-oriented tasks,
offering a strong balance between performance and effi-
ciency. Their flexibility makes them attractive for use in
production environments such as mobile voice assistants
or embedded NLP systems, where full transformer models
may be impractical.

The experimental results across five diverse NLP tasks—
sentiment analysis, disaster tweet classification, topic clas-
sification, spam detection, named entity recognition, and
intent classification—demonstrate the robustness and ef-
fectiveness of our proposed dynamic graph-based word em-
bedding framework.

According to the effectiveness of dynamic graph-based
embeddings, our approach consistently outperformed tra-
ditional static embeddings (Word2Vec, GloVe, FastText)
and achieved competitive results when compared to con-
textual embeddings like BERT and DistilBERT. Notably,
the ARMA+ELMo Graph Dynamic variant frequently
achieved top-tier performance across all tasks, validating
the benefit of combining sequence-based and graph-based
contextual modeling. This hybrid approach captures both
syntactic dependencies and dynamic semantic shifts within
context—something that static embeddings inherently lack.

According to the performance across diverse tasks, the
method’s performance held consistently across tasks with
varying characteristics, from short, noisy inputs (e.g.,
tweets and SMS messages) to long-form structured content
(e.g., news and NER data). This suggests that the proposed
dynamic embeddings generalize well across domains and
linguistic complexities.

In comparing with Transformer-based embeddings,
while BERT-based models often achieved slightly higher
scores, our ARMA-+ELMo dynamic embeddings delivered
nearly equivalent performance in many settings—with the
added advantage of being lighter-weight and easier to in-
tegrate into traditional neural pipelines. This is especially
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Table 6: Intent classification accuracy (%) on the SNIPS dataset using different embedding methods and classifiers. Bold

indicates the best performance in each column.

Embedding CNN Bi-LSTM CNN+Bi-LSTM ARMAConv
Word2Vec [1] 94.6 96.2 95.5 95.1
GloVe [2] 94.9 96.4 95.7 95.4
FastText [6] 95.6 96.8 96.2 95.8
BERT [4] 98.4 99.0 98.8 98.7
DistilBERT [17] 98.1 98.7 98.5 98.3
ELMo-Like Dynamic (Ours) 96.7 97.5 97.2 97.0
ARMA Graph Dynamic (Ours) 97.0 97.8 97.5 97.3
ARMA+ELMo Graph Dynamic (Ours)  98.2 98.9 98.7 98.6

beneficial in latency-sensitive or resource-constrained ap-
plications.

Another key observation is the adaptability of our em-
beddings across various classifier architectures. Whether
used with CNNs, Bi-LSTMs, or GNN-based ARMAConv
models, the proposed embeddings led to improved or com-
petitive performance, confirming their architectural flexi-
bility.

Future work could focus on optimizing model com-
pression and exploring multilingual and cross-lingual ex-
tensions. Additionally, integrating our embeddings into
generative or retrieval-augmented frameworks could be a
promising direction. In summary, our dynamic graph-
based word embedding framework presents a powerful and
generalizable alternative to both static and large contextual
models, offering a strong trade-off between performance,
interpretability, and model size.

6 Conclusion

In this work, we presented an extended study of a dy-
namic graph-based word embedding framework initially
proposed in our previous SOICT 2024 publication. The
method combines static embeddings with dynamic fea-
tures derived from next-word prediction models and inte-
grates syntactic structure through undirected graph repre-
sentations. Three embedding variants—ELMo-Like Dy-
namic, ARMA Graph Dynamic, and ARMA+ELMo Graph
Dynamic—were introduced and evaluated extensively.

To validate the generalizability and effectiveness of
our approach, we conducted comprehensive experiments
across a wide range of NLP tasks, including sentiment
analysis, disaster tweet classification, topic classification,
spam detection, named entity recognition, and intent clas-
sification. The results consistently demonstrated that our
dynamic embeddings outperform static baselines and are
competitive with state-of-the-art transformer-based models
such as BERT and DistilBERT.

Notably, our ARMA+ELMo Graph Dynamic embed-
dings achieved a classification accuracy of 93.2% on the
AG News topic classification task and an Fl-score of
94.2% on the CONLL-2003 NER benchmark—results that
are on par with, and in some cases surpass, those of larger

pretrained models. These strong performances demonstrate
the power of combining sequential and graph-based contex-
tualization for semantic representation.

Our framework shows promising potential for applica-
tions in environments where model interpretability, train-
ing efficiency, and adaptability across tasks are critical.
It serves as a scalable and flexible alternative to large-
scale pretrained language models, especially in resource-
constrained settings.

In future work, we plan to explore multilingual and cross-
lingual extensions, investigate model compression tech-
niques, and integrate our embedding strategy into large-
scale retrieval-augmented and generative frameworks.
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