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At present, embroidery image restoration technology still has deficiencies in terms of color uniformity 

and detail restoration. To address these issues, the study improves the densely connected convolutional 

network and the deep convolutional generative adversarial network through spatial pyramid pooling, and 

proposes a novel method for embroidery image classification and restoration. The experimental results 

showed that the research method largely restored the details and colors of the original image and 

effectively addressed the uneven color issue. The average prediction accuracy, recall rate, and specificity 

of the image classification model on Suzhou embroidery, Hunan embroidery, Guangdong embroidery, 

and Shu embroidery reached 96.3%, 98.5%, and 99.4%, respectively. The structural similarity index of 

the image restoration model has reached 0.99. The restored image was almost indistinguishable to the 

naked eye in terms of details, texture, and color. The research method has significant advantages in 

classifying embroidery images and high-quality restoration tasks, and can provide reliable technical 

support for the digital protection and intelligent restoration of traditional embroidery cultural relics. 

 

Povzetek: Za klasifikacijo in digitalno obnovo vezenin so razviti izboljšani DenseNet in DCGAN z 

dodanim SPP, razširjenimi konvolucijami ter CBAM. Izboljšani model skoraj povsem naravno obnovi 

teksture in barve. 

 

1 Introduction 
Embroidery works have attracted countless people's 

attention with their exquisite craftsmanship, rich patterns, 

and profound cultural connotations. However, over time, 

many embroidery artifacts have suffered from natural or 

human damage, such as fading, breakage, and insect 

infestation, which seriously threaten the preservation and 

inheritance of embroidery artifacts [1]. The traditional 

restoration of Embroidered Cultural Relics (ECR) mainly 

relies on manual skills. Although this method can finely 

handle every damage, it is limited by lower work 

efficiency and dependence on the superb skills of the 

restorer [2]. In addition, the subjectivity in the manual 

repair process may also lead to deviations in the 

consistency and accuracy of the repair effect. In this 

context, the emergence of Artificial Intelligence (AI) 

technology, especially Deep Learning (DL) technology, 

has provided new solutions for the restoration of cultural 

relics. By training DL models, staff can automatically 

detect and classify the types of damage to cultural relics, 

providing a scientific basis for restoration work. At 

present, many researchers have explored it. For example, 

Maitin et al. proposed a direct reconstruction technique 

without image segmentation using DL technology to 

reconstruct missing architectural elements in Greek 

temple ruins images from virtual image paintings. This 

method has successfully reconstructed the missing  

 

architectural elements in the images of Greek temple 

ruins, improving the efficiency of restoration and  

enhancing the consistency and accuracy of the restoration 

effect [3]. Alessandro et al. used a trained 

multidimensional DL neural network to associate color 

images with X-ray fluorescence imaging raw data to 

complete the restoration of AI digital cultural heritage, 

achieving digital restoration of graphic artworks [4]. 

With the further advancement of DL technology, 

Generative Adversarial Networks (GANs) have made 

breakthrough progress in image recognition, providing a 

good solution for cultural relic image restoration [5]. 

Praveen et al. proposed a new GAN-based art restoration 

method to digitally repair damaged artworks and assist in 

physical restoration. This method performed well in 

digital restoration and could effectively restore the 

original appearance of artworks, providing important 

guidance for physical restoration [6]. Zheng et al. 

proposed an Example Attention Generative Adversarial 

Network (EA-GAN) that fuses with reference examples, 

which addressed the issue of significant reconstruction 

errors in traditional character restoration methods. 

Compared with existing internal drawing networks, EA-

GAN could obtain the correct text structure through the 

guidance of additional examples in the "example attention 

block". The Peak Signal-to-Noise Ratio (PSNR) and 
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Structural Similarity Index (SSIM) values have increased 

by 9.82% and 1.82% [7]. 

In summary, numerous scholars have achieved 

significant results in cultural relic image restoration. 

However, there are still issues with GAN in terms of 

image feature extraction, such as poor network training 

stability and poor generated image quality. At present, 

there is relatively limited discussion on embroidery 

classification and restoration in cultural relic image 

classification and restoration. Given this, this study 

innovatively constructs an ECR-Image Classification 

Model (ICM) based on Densely Connected Convolutional 

Network (DenseNet) and an ECR-Image Restoration 

Model (IRM) based on Deep Convolutional GAN 

(DCGAN). Based on these models, improvements are 

made by introducing Local Binary Patterns (LBPs), Canny 

operator edge extraction, and Convolutional Block 

Attention Module (CBAM). The fusion of these 

technologies aims to enhance the model's capacity to 

capture details in ECR images, improve the precise 

reconstruction of textures and edges during the restoration 

process, and achieve higher quality ECR image restoration 

results. The main novelizations and contributions of this 

paper include: (1) For the first time, DenseNet is combined 

with Spatial Pyramid Pooling (SPP) and applied to 

classify embroidery images, improving the recognition 

performance under cross-style and complex patterns; (2) 

The structure of the DCGAN generator and discriminator 

is innovatively adjusted. By integrating a dilated 

convolutional layer, the receptive field of the model is 

expanded, which helps to capture image features more 

comprehensively and achieve high-quality restoration of 

embroidery texture and color. (3) A large-scale dataset 

containing eight types of traditional embroidery images is 

constructed, providing fundamental support for 

subsequent research. The research results have practical 

value for the digital inheritance and AI-assisted restoration 

of traditional embroidery culture. 

2 Methods and materials 

2.1 Construction of ECR-ICM based on 

SPP-IDenseNet 

ECR image classification is the prerequisite and 

foundation for ECR image restoration. By classifying 

ECR images, different embroidery types, styles, and eras 

can be quickly identified and distinguished, providing a 

scientific foundation for protecting the cultural relics. This 

study first explores the classification of ECR images. 

DenseNet was proposed by Gao et al. in 2017. It is a novel 

DL model architecture that can establish dense 

connections between network layers through 

DenseBlocks, thereby improving the information flow and 

gradient flow of the network, alleviating the problem of 

gradient vanishing, and promoting feature reuse [8-9]. The 

structure of DenseBlock in DenseNet is displayed in Fig.1. 

In Fig.1, the connection mechanism of DenseBlock is 

more aggressive compared to the Residual Network 

(ResNet). Each layer is connected to all previous layers, 

providing each layer with a rich input that integrates the 

features of all previous layers [10]. This design ensures the 

uniformity of feature map size within DenseBlock and 

greatly promotes feature reuse through dense connections 

between layers, enabling the network to learn and transmit 

information more effectively [11]. However, DenseNet 

still has certain shortcomings in the image classification 

process, such as the problem of input image size limitation 

and the problem of network training not converging [12-

13]. Therefore, this study improves it through techniques 

such as SPP, LBP, and Canny operator, and proposes a 

novel ECR-ICM model, namely the SPP-IDenseNet 

model. The training process for the embroidery image 

classification of this model is shown in Fig.2. 

In Fig.2, this study first randomly selects a batch of 

data from the training set based on a preset batch size, and 

normalizes it to standardize the standard deviation of the 

Red-Green-Blue (RGB) color channels for each 

embroidery image. Subsequently, the normalized image is 

input into the network for forward propagation to extract 

features and predict categories. Secondly, by comparing 

the predicted categories of the network with the actual 

categories, the value of the loss function is calculated. 

Next, by adjusting the weights through the backward 

propagation process of the network, the model’s 

performance is optimized. After completing a batch of 

training, the system will check if the entire dataset has 

been traversed. If the traversal is not completed, the model 

will continue to process the next training batch and repeat 

the above steps. Once the training traversal of the entire 

dataset is completed, the model will save the weight 

parameters of the current round and evaluate whether the 

predetermined training round has been reached. If the 

training rounds have not been completed, the model will 

restart the training process and continue iterative 

optimization. After reaching the predetermined training 

round, the model training terminates, and the weight 

parameters at this time will be used for subsequent image 

classification tasks. The calculation of the RGB three 

channel pixel values ROutput , GOutput , and BOutput  of 

the normalized image is shown in formula (1). 

 

Figure 1: Schematic structure of DenseBlock (Source from: https://colorhub.me/photos/e7RVB). 
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Figure 2: Training process of SPP-IDenseNet model for embroidery image classification (Source from: 

https://colorhub.me/photos/e7RVB). 
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Figure 3: Schematic diagram of SPP structure. 
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In formula (1), RIutput , GIutput , and BIutput  are 

the RGB three channel pixel values of the image before 

normalization processing. Rmean , Gmean , and Bmean  

are the mean values of the RGB channels. Rstd , Gstd , 

and Bstd  represent the standard deviation of the RGB 

three channels. The output feature nM  is shown in 

formula (2). 

1 2 1( )n nM F M M M −=    (2) 

In formula (2), n  is the hierarchy of the model 

network. F  and   are convolution operations and 

feature interconnection operations. The loss l  during the 

training process is shown in formula (3). 

( )'1 1,l L Y Y=   (3) 

In formula (3), L  is the loss function. 
1Y  and '

1Y  are 

the real category and the predicted category. The updated 

network weight '  is shown in formula (4). 

' ( )rl g l = −    (4) 

In formula (4),   is the network weight before the 

update. rl  and ( )g   are learning efficiency and 

derivative calculation. In response to the issue of input 

image size limitation in DenseNet model image 

classification tasks, this study uses SPP to enable the 

model to adapt to input images of different sizes. The 

structure of SPP is shown in Fig.3. 
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In Fig.3, this study integrates the SPP structure 

between the convolutional layer and the Fully Connected 

Layer (FCL) at the end of the DenseNet model. By 

dividing the feature map into grids of 1×1, 4×4, and 

16×16, and applying max pooling, this study achieves 

comprehensive capture of features of different resolutions. 

Subsequently, these multi-scale pooled feature maps will 

be merged into a fixed-length feature vector, providing 

rich information for the input of FCL. In addition, by 

pooling on windows of different sizes, this study generates 

feature maps with diverse resolutions and fine-tunes the 

channel dimensions through a 1×1 convolutional layer. 

The ReLU activation function used in DenseNet may 

cause neuron deactivation when the input is less than 0 

[14]. Therefore, this study introduces the Leaky ReLU 

function and sets the negative slope coefficient to 0.01, 

effectively expanding the applicability of ReLU and 

promoting the stability and convergence of network 

training. The SPP module enhances the model's 

understanding of the structural hierarchy of embroidery 

patterns through multi-scale pooling operations and 

improves the receptive field coverage of complex patterns. 

LBP extracts fine-grained texture features from 

embroidery images, enabling the model to pay more 

attention to the local texture restoration of the defect area. 

Canny edge detection provides clear structural contour 

constraints, guiding the generator to maintain the 

coherence and integrity of the pattern edges. The three 

work in synergy, enhancing the quality and stability of 

image restoration from multiple dimensions, such as 

structure, texture, and edge. 

2.2 Construction of ECR-IRM based on 

Improved DCGAN 

The SPP-IDenseNet model designed above provides 

strong technical support for the digital restoration and 

intelligent management of ECR. However, further 

technological innovation and method improvement are 

needed in ECR image restoration to achieve more efficient 

and accurate restoration results. Therefore, this study 

explores the restoration of ECR images. GAN is a DL 

model containing two parts: the Generator and 

Discriminator. Although GANs are widely popular in 

computer image vision, in traditional GAN architectures, 

models do not rely on a determined distribution, but 

instead use internal feedback to adjust their parameters 

[15]. Although this approach enhances the flexibility of 

the model, it may also cause training instability and 

sometimes even lead to model training crashes [16-17]. 

Therefore, this study further introduces a novel derivative 

GAN, namely DCGAN. This network can improve the 

quality of image generation and enhance the learning and 

representation capabilities of the model by combining the 

deep architecture of CNN with the GAN framework. The 

generator extends and reshapes 100-dimensional noise 

into a 3D feature map through FCL, and then gradually 

forms the final image size through upsampling and 

dimension adjustment of transposed convolutional layers. 

Batch normalization and ReLU are applied after each 

layer, and the output image is finally activated by Sigmoid 

to produce a specific tensor image [18-19]. The 

generator’s loss function is shown in formula (5). 

~ ( )` [log( `( `( ))]G z pz zL E D G z= −  (5) 

In formula (5), E  is the expected operation symbol, 

usually taken as the average or expected value. z  is a 

noise sample from the latent spatial prior distribution. 

( )G z、  is the data generated by the generator through the 

noise sample z . ( ( ))D G z、 、  is the output of the 

discriminator to the data generated by the generator, which 

represents the probability of real data. At this point, the 

loss function of the discriminator is shown in formula (6). 

~ ( )

~ ( )

` [log( `( )]

[1 ( `( )))]

D x pdata x z

z pz z z

L E D x

E D G x

= −

− −
 (6) 

In formula (6), ( )zD x、  means the discriminator’s 

output for the real sample 
zx , and `( )zD x  is the 

probability of the real data. Based on the above formulas, 

compared to traditional GANs, DCGAN uses 

convolutional and deconvolution layers to replace FCL in 

traditional GANs. This operation can capture the local 

structure and spatial message of embroidery images [20]. 

In addition, DCGAN also uses batch normalization 

techniques and expected values to accelerate the training 

process and stabilize the training of GAN. The aim is to 

further enhance the performance of DCGAN in 

embroidery image restoration tasks, improve the 

naturalness of restoration effects, and provide experts with 

more accurate texture and color information to assist them 

in more refined restoration work. Given this, the study also 

improves DCGAN and proposes a new type of ECR-IRM, 

namely IDCGAN. The overall model structure is shown in 

Fig.4. 

Generator G Generated image

Generator D

Y/N

Extracting 

missing regions

 

Figure 4: Overall structural framework of the IDCGAN (Source from: https://colorhub.me/photos/e7RVB). 
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Figure 5: Specific structure of the generator in the IDCGAN model. 
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Figure 6: Specific structure of the discriminator in the IDCGAN. 

In Fig.4, innovative adjustments are made to the 

generator architecture by integrating dilated convolutional 

layers to expand the model's receptive field, thereby 

helping the model capture image features more 

comprehensively. At the same time, CBAM is introduced 

to enhance the attention to key features at both the channel 

and spatial levels, thereby improving the accuracy of 

image restoration. The discriminator adopts a strategy of 

enhancing its depth and increasing the number of FCLs, 

thereby improving the network's ability to handle complex 

nonlinear problems, enabling the discriminator to more 

effectively recognize and distinguish between real and 

generated images. The loss function combines traditional 

MSE loss with adversarial loss. The calculation of mean 

square error loss MSEL  is shown in formula (7). 

2

1

1
( )

n

MSE i i

i

L y g
n =

= −  (7) 

In formula (7), ig  is the predicted value of the model 

on the training data ix . The adversarial loss advL  is shown 

in formula (8). 

 

 

2

2

min max log ( )

log (1 ( ( )))

data

data

adv G D x P

z P

L E D x

E D G Z

=

+ −  (8)
 

In formula (8), the algebraic meaning remains the 

same as before. The specific structure of the generator in 

the IDCGAN model is shown in Fig.5. 

In Fig.5, the architecture of the generator in the 

IDCGAN model mainly consists of three key modules, 

namely the convolution block, dilated convolution block, 

and CBAM. Hollow convolution blocks use convolutional 

layers with different void rates, namely 2, 4, 8, and 16, to 

achieve multi-scale capture of image features. When the 

hole rate is set to 1, the hole convolution degenerates into 

a standard convolution operation. This is reflected in the 

Conv6 to Conv10 layers of the generator, forming a series 

of ConvLs with different hole rates that ensure the 

flexibility and adaptability of the network. The 

introduction of CBAM adds the ability for dynamic 

weighting to the generator. It can weight features in both 

channel and spatial dimensions, highlighting the features 

that have the greatest impact on image quality. The 

framework of the discriminator in the IDCGAN model is 

shown in Fig.6. 

In Fig.6, to improve the performance of the 

discriminator in addressing complex nonlinear problems, 

this study adds two FCLs based on the original 

discriminator architecture, making the discriminator 

contain a total of three FCLs. The interconnection of these 

layers enhances the discriminator's ability to learn 

features, thereby significantly improving model 

performance. Ultimately, the discriminator determines the 

authenticity of the input image through a binary 

classification task, distinguishing whether the image was 

generated by the generator or from a real dataset. The 

research is conducted based on a self-built embroidery 

image dataset. The images mainly come from digital 

museums, high-resolution cultural relic catalogues, and 
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cultural heritage archives, covering multiple historical 

periods and diverse embroidery styles. The initial dataset 

contains 1,800 images. After expansion, the dataset 

ultimately includes 8,957 images. For the unified model 

input, the image is cropped and scaled to 256×256 pixels, 

and normalization processing is carried out 

simultaneously. Ultimately, the dataset is divided into a 

training set and a test set in an 8:2 ratio. To simulate the 

common damage forms of ECR, the study also uses 

random occlusion to generate defect images. The 

occlusion forms include rectangles, free-shaped patterns, 

and speckled textures, and the area ratio is controlled at 

10% to 40%. On this basis, image enhancement is carried 

out by applying methods such as rotation, flipping, scaling, 

and color perturbation to improve the robustness and 

generalization ability of the model. In addition, by 

analyzing the color and style distribution of the images, a 

balanced sampling strategy is adopted to control the 

category bias, ensuring the diversity and balance of the 

training data in terms of pattern style and damage type. All 

the code modules in the research are built based on the 

PyTorch framework. Some of the code is as follows: 

3 Results 

3.1 SPP-IDenseNet model performance 

testing 

The study adopts five-fold cross-validation to evaluate the 

model’s performance. The training set is evenly divided 

into five subsets of similar size. Four subsets are selected 

in sequence for model training, and the remaining subset 

is used as the validation set. This process is repeated five 

times to ensure that each subset participates in the 

verification. Through multiple rounds of training and 

validation, the mean and standard deviation of the 

accuracy, recall rate, and specificity of the calculation 

model are calculated, effectively avoiding the randomness 

brought by a single division and enhancing the statistical 

reliability and generalization ability of the evaluation 

results. Table 1 shows the experimental setup and 

environmental parameters. 

According to the settings in Table 1, the effectiveness 

of the proposed model was first validated through ablation 

testing, as shown in Fig.8. 

import torch

import torch.nn as nn

# Simple Generator example

class Generator(nn.Module):

def__ init__ (self):

super().__init__ ()

self.net = nn.Sequential(

nn.Linear(100, 256),

nn.ReLU(),

nn.Linear(256, 3*64*64).

nn.Sigmoid()

def forward(self, x):

retum self.net(x).view(-1, 3, 64, 64)

# Simple Discriminator example

class Discriminator(nn.Module):

def__ init__(self):

super().__ init__ ()

self.net = nn.Sequential(

nn.Flatten(),

nn.Linear(3*64*64, 256),

nn.ReLU().

nn.Linear(256, 1)，
nn. Sigmoid()

def forward(self, x):

return self.net(x)

# Training example (pseudo code)

# z = torch.randn(batch_ size, 100)

# fake_ images = generator(z)

# real_ output = discriminator(real_ images)

# fake_ output = discriminator(fake_ images)

 

Figure 7: Code. 
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Table 1: Environment and parameter configuration. 

Serial number Experimental environments and hyperparameter categories Settings 

1 Num epochs 200 

2 Pre-training No 

3 Batch size 20 

4 Num class 8 

5 Optimizer Adam 

6 Learning rate 0.0001 

7 Development Environment Windows 10 

8 CPU Intel Core i9-10900K 

9 GPU NVIDIA RTX 3090 

10 Memory 64GB 

11 Graphics Memory 16GB GDDR6X 

12 Programming Tools PyTorch 1.6.0 
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Figure 8: Ablation test results of SPP-IDenseNet. 

Figs.8 (a) and (b) show the test results of the new 

model in two datasets. As the test samples continue to 

grow, the standalone DenseNet module shows lower 

classification accuracy in both datasets, with the highest 

being only 65.3%. After introducing the SPP module, 

LBP, Canny operator, and Gabor filter module 

successively, the classification effectiveness of the entire 

model has been significantly improved. The result 

indicates that when dealing with embroidery images with 

complex texture features, relying solely on global features 

for extraction has certain performance bottlenecks. The 

classification accuracy of SPP-IDenseNet is highest at 

96.4% in the training set and 95.6% in the testing set. This 

study has improved various parts of the DenseNet model 

to varying degrees for classifying and recognizing ECR 

images, demonstrating the effectiveness of the improved 

method. In addition, popular ICMs of the same type, 

including Lightweight CNN (LCNN), Efficient CNN 

(ECNN), StyleGAN, and Global Image Spatial Texture 

(GIST), are introduced as comparative models. 

Performance tests are conducted using precision, recall, 

and specificity as indicators, as shown in Table 2. 

In Table 2, due to their relatively simplified structures, 

LCNN and ECNN models have obvious deficiencies in 

feature expression ability and fine-grained classification. 

Although the GIST model can capture certain texture 

information, it is limited by its feature extraction method 

based on compressed texture description. GIST’s 

recognition ability for irregular shapes and multi-scale 

patterns is weak, resulting in limited classification 

performance. The SPP-IDenseNet model has 

demonstrated superior performance in all four types of 

embroidery image recognition tasks. This model enhances 

its feature perception ability for different scales and spatial 

structures by introducing SPP modules, and combines 

LBP and Gabor filters to model fine-grained textures, 

effectively improving the model's ability to recognize the 

microstructure of embroidery patterns. Meanwhile, the 

addition of the Canny edge detection operator enhances 

the ability to capture boundary and contour features, 

enabling the model to maintain high classification 

accuracy even in the face of complex background 

interference. The SPP-IDenseNet model has the highest 

accuracy rate of 96.3%, the highest recall rate of 98.5%, 

and the highest specificity of 99.4% on Suzhou 

embroidery, Hunan embroidery, Guangdong embroidery, 

and Shu embroidery. These indicators are numerically 

superior to other convolutional neural network models and 

have a more balanced distribution across categories. This 

result demonstrates the adaptability and effectiveness of 
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the SPP-IDenseNet model in handling the classification 

task of ECR images. The confusion matrix obtained on the 

embroidery image classification dataset before and after 

model improvement is shown in Fig.9. 

Figs. 9 (a) and (b) show the confusion matrices before 

and after model improvement. The SPP-IDenseNet model 

has the highest classification and recognition accuracy for 

Shui ethnic ponytail embroidery, Xiqin, Hami, Su, Xiang, 

Shu, and other embroidery in the embroideries image 

classification dataset. Its classification accuracy in Yue 

embroidery types is relatively the lowest. Overall, the 

SPP-IDenseNet model achieves an average prediction 

accuracy of over 80% for the 8 styles of embroidery 

images in the embroidery image classification dataset. 

This indicates that the SPP-IDenseNet model 

demonstrates strong robustness in handling noise, 

occlusion issues, and identifying embroidery images with 

similar features in the embroidery image classification 

dataset. This robustness makes the SPP-IDenseNet model 

a powerful tool for ECR image classification, which can 

effectively address the challenges in practical 

applications. 

3.2 Performance simulation testing of 

ECR-IRM for IDCGAN 

This study uses the Tensorflow DL framework to 

implement the training and testing of the entire ECR-IRM. 

The weights β1 and β2 of the Adam optimizer are set to 

0.5 and 0.9. The loss changes of IDCGAN generator and 

discriminator at different network learning rates are shown 

in Fig.10. 

Table 2: Multi-metric performance test results for different models. 

Style Model Precision/% Recall/% Specificity/% 

Suzhou embroidery 

LCNN 63.5 65.7 80.2 

ECNN 67.2 69.8 81.6 

GIST 70.3 68.7 83.4 

StyleGAN 85.7 87.4 89.1 

Research method 95.8 98.5 94.2 

Hunan embroidery 

LCNN 55.2 56.3 89.6 

ECNN 58.7 60.4 90.2 

GIST 60.2 61.7 91.6 

StyleGAN 83.4 85.1 92.3 

Research method 96.3 90.2 99.4 

Cantonese embroidery 

LCNN 57.6 59.8 53.8 

ECNN 66.3 70.4 60.5 

GIST 71.6 69.7 70.8 

StyleGAN 80.2 82.5 75.4 

Research method 95.1 90.8 95.1 

Sichuan embroidery 

LCNN 58.8 60.5 55.6 

ECNN 62.8 68.8 58.3 

GIST 70.4 73.4 60.7 

StyleGAN 79.8 81.7 69.2 

Research method 92.4 96.7 90.3 
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Figure 9: Confusion matrix plots before and after model improvement. 
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Figure 10: Loss variation of IDCGAN between generator and discriminator at different learning rates. 

(a) Original image

(b) Random masking

(c) DCGAN

(c) IDCGAN
 

Figure 11: Repair effects of the model before and after the improvement (Source from: https://colorhub.me/). 

In Fig.10 (a), the loss of the IDCGAN generator 

slowly increases with the growth of training cycles, and 

the curve with a learning rate of 0.00002 shows a low and 

stable loss value. The curves with learning rates of 0.002 

and 0.0002 show higher loss values and larger 

fluctuations. In Fig.10 (b), the discriminator loss slowly 

decreases as the number of training cycles increases. The 

curve with a learning rate of 0.00002 decreases the fastest 

and tends to stabilize, indicating that a smaller learning 

rate helps the discriminator learn more effectively. In 

contrast, the curves with learning rates of 0.002 and 

0.0002 exhibit significant fluctuations and higher loss 

values. Based on the comprehensive experimental data, 

this study ultimately sets the network learning rate of the 

IDCGAN model to 0.00002. To verify the impact of 

dilated convolutional layers, loss functions, and CBAM on 

model performance, the repair effect of the improved 

model before and after random occlusion is compared, as 

shown in Fig.11. 

Figs.11 (a) to (d) show the embroidery original image, 

images subjected to random occlusion, images restored by 

the DCGAN model, and images restored by the IDCGAN 

model. By comparing these images, the effectiveness of 

IDCGAN in handling different types of embroidery and 

varying degrees of occlusion can be demonstrated. 

IDCGAN can enhance the focus on key features, thereby 

enabling the restored image to largely restore the details 

and colors of the original image, effectively solving the 

problem of color non-uniformity. However, DCGAN's 

repair effect is not ideal when facing large-scale defects, 

and it cannot maintain good contextual consistency, 

resulting in poor repair performance. This discovery 
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validates the necessity of improving the DCGAN. To 

further test the effectiveness of the research model in 

embroidery image restoration, the Cycle-Consistency 

GAN (CCGAN), Conditional GAN (CGAN), and Stacked 

GAN (Stack-GAN) models are introduced for 

comparison. The test results of SSIM as the experimental 

indicator are shown in Fig.12. 

Figs.12 (a) and (b) show the SSIM performance 

comparison of four models in two datasets. Both in the 

training and testing sets, the IDCGAN model performs the 

best, followed by Stack-GAN and CCGAN, while CGAN 

performs the worst. In the training set, the maximum 

SSIM values for CGAN, CCGAN, Stack-GAN, and the 

research model are 0.64, 0.72, 0.85, and 0.98, while in the 

testing set, they are 0.69, 0.78, 0.90, and 0.99. The above 

data indicates that the research model has significant 

advantages in maintaining image structure and quality. 

The reason behind this is that the dilated convolution 

technique effectively expands the receptive field, allowing 

it to capture richer contextual information in the image. In 

addition, CBAM further enhances the model's attention to 

key features by weighting important features in both 

channel and spatial dimensions. These improvements have 

led to significant advantages of IDCGAN in embroidery 

image restoration. Finally, to confirm the resolution 

capability of the proposed model, this study also tests four 

models using image clarity as an indicator, as shown in 

Fig.13. 

Figs.13 (a) to (d) show the clarity performance of 

CGAN, CCGAN, Stack-GAN, and IDCGAN models in 

the Yue embroidery image restoration task. Figure 13 (e) 

shows the clarity of the original image. The Yue 

embroidery restoration images generated by IDCGAN are 

visually very similar to the original images, and it is 

almost impossible to distinguish the quality differences 

with the naked eye. In contrast, there are significant 

differences between the restoration results of CGAN, 

CCGAN, and Stack-GAN and the original images. 

Especially for the restored images of the CGAN model, 

there is a significant decrease in clarity in comparison to 

the original images. In summary, the research model 

surpasses the comparative model in image resolution for 

Guangdong embroidery restoration, demonstrating its 

potential and advantages in embroidery image restoration 

processing. 
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Figure 12: Schematic of SSIM test results for different models. 

(a) CGAN (b) CCGAN (c) Stack-GAN (d) IDCGAN

(e) Original image

Image Gradient Entrop

7.86

5.65 6.12 6.78 7.82

 

Figure 13: The clarity of restored images of Cantonese embroidery (Source from: https://colorhub.me/photos/VXeo3). 



Improved DenseNet-DCGAN for Enhanced Digital Restoration… Informatica 49 (2025) 361–372 371 

 

4 Conclusion 
The study focused on the task of image restoration of ECR 

and innovatively constructed an ECR-ICM based on SPP-

IDenseNet and an ECR-IRM based on the improved 

DCGAN. The experimental results showed that the SPP-

IDenseNet model achieved an average prediction 

accuracy rate of over 80% for the embroidery images of 

eight styles. The IRM could enhance the focus on key 

features, thereby enabling the restored image to largely 

restore the details and colors of the original image, 

effectively solving the problem of uneven color. The 

SSIM value has reached 0.99. Furthermore, the research 

model could still maintain an excellent restoration effect 

even when dealing with large-area damaged embroidery 

images. The restored image of Cantonese embroidery 

generated was visually extremely similar to the original 

image, and it was almost impossible to distinguish the 

quality difference with the naked eye. The results show 

that the research model achieves innovation in technology 

and demonstrates significant advantages in practical 

applications. However, the research model also has certain 

limitations. On the one hand, the current models mainly 

target 2D embroidery images. At present, there is no 

adaptive research on complex 3D multi-level embroidery 

structures and heterogeneous multi material embroidery 

patterns, which limits their promotion and application in 

high-precision virtual restoration. On the other hand, due 

to the adoption of a deep generative network structure, the 

model has a certain dependence on computing resources 

during the training and inference stages. This may pose 

practical challenges in resource constrained cultural 

heritage conservation institutions or mobile deployments. 

Furthermore, for severely damaged or extremely blurry 

images, there is still a certain risk of distortion in the 

structural reconstruction of the research model. Future 

research can be carried out in the following directions: (1) 

Expansion of model generalization ability: By integrating 

3D reconstruction and multimodal input, the restoration 

ability of 3D ECR can be enhanced; (2) Enhanced multi-

material adaptability: Material perception module or style 

transfer mechanism can be introduced to achieve texture 

simulation and reconstruction of heterogeneous 

embroidery materials; (3) Lightweight deployment 

optimization: By applying techniques such as model 

pruning, quantization, and distillation, the network 

structure is compressed to adapt to edge devices or mobile 

terminal applications. Overall, the research method 

provides a feasible and effective technological path for 

ECR digital protection, which is expected to have practical 

applications in digital museum construction, virtual 

restoration of cultural heritage, and reconstruction of 

cultural creative models. 
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