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At present, embroidery image restoration technology still has deficiencies in terms of color uniformity
and detail restoration. To address these issues, the study improves the densely connected convolutional
network and the deep convolutional generative adversarial network through spatial pyramid pooling, and
proposes a novel method for embroidery image classification and restoration. The experimental results
showed that the research method largely restored the details and colors of the original image and
effectively addressed the uneven color issue. The average prediction accuracy, recall rate, and specificity
of the image classification model on Suzhou embroidery, Hunan embroidery, Guangdong embroidery,
and Shu embroidery reached 96.3%, 98.5%, and 99.4%, respectively. The structural similarity index of
the image restoration model has reached 0.99. The restored image was almost indistinguishable to the
naked eye in terms of details, texture, and color. The research method has significant advantages in
classifying embroidery images and high-quality restoration tasks, and can provide reliable technical
support for the digital protection and intelligent restoration of traditional embroidery cultural relics.

Povzetek: Za klasifikacijo in digitalno obnovo vezenin so razviti izboljsani DenseNet in DCGAN z
dodanim SPP, razsirjenimi konvolucijami ter CBAM. Izboljsani model skoraj povsem naravno obnovi

teksture in barve.

1 Introduction

Embroidery works have attracted countless people's
attention with their exquisite craftsmanship, rich patterns,
and profound cultural connotations. However, over time,
many embroidery artifacts have suffered from natural or
human damage, such as fading, breakage, and insect
infestation, which seriously threaten the preservation and
inheritance of embroidery artifacts [1]. The traditional
restoration of Embroidered Cultural Relics (ECR) mainly
relies on manual skills. Although this method can finely
handle every damage, it is limited by lower work
efficiency and dependence on the superb skills of the
restorer [2]. In addition, the subjectivity in the manual
repair process may also lead to deviations in the
consistency and accuracy of the repair effect. In this
context, the emergence of Artificial Intelligence (Al)
technology, especially Deep Learning (DL) technology,
has provided new solutions for the restoration of cultural
relics. By training DL models, staff can automatically
detect and classify the types of damage to cultural relics,
providing a scientific basis for restoration work. At
present, many researchers have explored it. For example,
Maitin et al. proposed a direct reconstruction technique
without image segmentation using DL technology to
reconstruct missing architectural elements in Greek
temple ruins images from virtual image paintings. This
method has successfully reconstructed the missing

architectural elements in the images of Greek temple
ruins, improving the efficiency of restoration and
enhancing the consistency and accuracy of the restoration
effect [3]. Alessandro et al. used a trained
multidimensional DL neural network to associate color
images with X-ray fluorescence imaging raw data to
complete the restoration of Al digital cultural heritage,
achieving digital restoration of graphic artworks [4].
With the further advancement of DL technology,
Generative Adversarial Networks (GANs) have made
breakthrough progress in image recognition, providing a
good solution for cultural relic image restoration [5].
Praveen et al. proposed a new GAN-based art restoration
method to digitally repair damaged artworks and assist in
physical restoration. This method performed well in
digital restoration and could effectively restore the
original appearance of artworks, providing important
guidance for physical restoration [6]. Zheng et al.
proposed an Example Attention Generative Adversarial
Network (EA-GAN) that fuses with reference examples,
which addressed the issue of significant reconstruction
errors in traditional character restoration methods.
Compared with existing internal drawing networks, EA-
GAN could obtain the correct text structure through the
guidance of additional examples in the "example attention
block”. The Peak Signal-to-Noise Ratio (PSNR) and
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Structural Similarity Index (SSIM) values have increased
by 9.82% and 1.82% [7].

In summary, numerous scholars have achieved
significant results in cultural relic image restoration.
However, there are still issues with GAN in terms of
image feature extraction, such as poor network training
stability and poor generated image quality. At present,
there is relatively limited discussion on embroidery
classification and restoration in cultural relic image
classification and restoration. Given this, this study
innovatively constructs an ECR-Image Classification
Model (ICM) based on Densely Connected Convolutional
Network (DenseNet) and an ECR-Image Restoration
Model (IRM) based on Deep Convolutional GAN
(DCGAN). Based on these models, improvements are
made by introducing Local Binary Patterns (LBPs), Canny
operator edge extraction, and Convolutional Block
Attention Module (CBAM). The fusion of these
technologies aims to enhance the model's capacity to
capture details in ECR images, improve the precise
reconstruction of textures and edges during the restoration
process, and achieve higher quality ECR image restoration
results. The main novelizations and contributions of this
paper include: (1) For the first time, DenseNet is combined
with Spatial Pyramid Pooling (SPP) and applied to
classify embroidery images, improving the recognition
performance under cross-style and complex patterns; (2)
The structure of the DCGAN generator and discriminator
is innovatively adjusted. By integrating a dilated
convolutional layer, the receptive field of the model is
expanded, which helps to capture image features more
comprehensively and achieve high-quality restoration of
embroidery texture and color. (3) A large-scale dataset
containing eight types of traditional embroidery images is
constructed, providing fundamental support for
subsequent research. The research results have practical
value for the digital inheritance and Al-assisted restoration
of traditional embroidery culture.

2 Methods and materials

2.1 Construction of ECR-ICM based on
SPP-1DenseNet

ECR image classification is the prerequisite and
foundation for ECR image restoration. By classifying
ECR images, different embroidery types, styles, and eras
can be quickly identified and distinguished, providing a
scientific foundation for protecting the cultural relics. This
study first explores the classification of ECR images.
DenseNet was proposed by Gao et al. in 2017. Itis a novel
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DL model architecture that can establish dense
connections  between  network layers  through
DenseBlocks, thereby improving the information flow and
gradient flow of the network, alleviating the problem of
gradient vanishing, and promoting feature reuse [8-9]. The
structure of DenseBlock in DenseNet is displayed in Fig.1.

In Fig.1, the connection mechanism of DenseBlock is
more aggressive compared to the Residual Network
(ResNet). Each layer is connected to all previous layers,
providing each layer with a rich input that integrates the
features of all previous layers [10]. This design ensures the
uniformity of feature map size within DenseBlock and
greatly promotes feature reuse through dense connections
between layers, enabling the network to learn and transmit
information more effectively [11]. However, DenseNet
still has certain shortcomings in the image classification
process, such as the problem of input image size limitation
and the problem of network training not converging [12-
13]. Therefore, this study improves it through techniques
such as SPP, LBP, and Canny operator, and proposes a
novel ECR-ICM model, namely the SPP-IDenseNet
model. The training process for the embroidery image
classification of this model is shown in Fig.2.

In Fig.2, this study first randomly selects a batch of
data from the training set based on a preset batch size, and
normalizes it to standardize the standard deviation of the
Red-Green-Blue (RGB) color channels for each
embroidery image. Subsequently, the normalized image is
input into the network for forward propagation to extract
features and predict categories. Secondly, by comparing
the predicted categories of the network with the actual
categories, the value of the loss function is calculated.
Next, by adjusting the weights through the backward
propagation process of the network, the model’s
performance is optimized. After completing a batch of
training, the system will check if the entire dataset has
been traversed. If the traversal is hot completed, the model
will continue to process the next training batch and repeat
the above steps. Once the training traversal of the entire
dataset is completed, the model will save the weight
parameters of the current round and evaluate whether the
predetermined training round has been reached. If the
training rounds have not been completed, the model will
restart the training process and continue iterative
optimization. After reaching the predetermined training
round, the model training terminates, and the weight
parameters at this time will be used for subsequent image
classification tasks. The calculation of the RGB three
channel pixel values Output, , Output;, and Output, of

the normalized image is shown in formula (1).

Figure 1: Schematic structure of DenseBlock (Source from: https://colorhub.me/photos/e7RVB).
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Figure 2: Training process of SPP-1DenseNet model for embroidery image classification (Source from:
https://colorhub.me/photos/e7RVB).
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Figure 3: Schematic diagram of SPP structure.
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In formula (1), lutput,, lutput; , and lutput, are
the RGB three channel pixel values of the image before
normalization processing. mean,, mean, , and mean,
are the mean values of the RGB channels. std;, std; ,
and std, represent the standard deviation of the RGB
three channels. The output feature M, is shown in
formula (2).

Mn =F(M1®M2®'”Mn—1) (2)

In formula (2), n is the hierarchy of the model
network. F and @ are convolution operations and
feature interconnection operations. The loss | during the
training process is shown in formula (3).

I=L(Y,Y,) A3)
In formula (3), L is the loss function. Y, and Y, are

the real category and the predicted category. The updated
network weight 8" is shown in formula (4).

6'=6-1,xvg(l) (4)

In formula (4), @ is the network weight before the
update. |, and Vg() are learning efficiency and
derivative calculation. In response to the issue of input
image size limitation in DenseNet model image
classification tasks, this study uses SPP to enable the

model to adapt to input images of different sizes. The
structure of SPP is shown in Fig.3.
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In Fig.3, this study integrates the SPP structure
between the convolutional layer and the Fully Connected
Layer (FCL) at the end of the DenseNet model. By
dividing the feature map into grids of 1x1, 4x4, and
16%16, and applying max pooling, this study achieves
comprehensive capture of features of different resolutions.
Subsequently, these multi-scale pooled feature maps will
be merged into a fixed-length feature vector, providing
rich information for the input of FCL. In addition, by
pooling on windows of different sizes, this study generates
feature maps with diverse resolutions and fine-tunes the
channel dimensions through a 1x1 convolutional layer.
The ReLU activation function used in DenseNet may
cause neuron deactivation when the input is less than 0
[14]. Therefore, this study introduces the Leaky RelLU
function and sets the negative slope coefficient to 0.01,
effectively expanding the applicability of ReLU and
promoting the stability and convergence of network
training. The SPP module enhances the model's
understanding of the structural hierarchy of embroidery
patterns through multi-scale pooling operations and
improves the receptive field coverage of complex patterns.
LBP extracts fine-grained texture features from
embroidery images, enabling the model to pay more
attention to the local texture restoration of the defect area.
Canny edge detection provides clear structural contour
constraints, guiding the generator to maintain the
coherence and integrity of the pattern edges. The three
work in synergy, enhancing the quality and stability of
image restoration from multiple dimensions, such as
structure, texture, and edge.

2.2 Construction of ECR-IRM based on
Improved DCGAN

The SPP-1DenseNet model designed above provides
strong technical support for the digital restoration and
intelligent management of ECR. However, further
technological innovation and method improvement are
needed in ECR image restoration to achieve more efficient
and accurate restoration results. Therefore, this study
explores the restoration of ECR images. GAN is a DL
model containing two parts: the Generator and
Discriminator. Although GANSs are widely popular in
computer image vision, in traditional GAN architectures,
models do not rely on a determined distribution, but
instead use internal feedback to adjust their parameters
[15]. Although this approach enhances the flexibility of

Generator G

Generated image
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the model, it may also cause training instability and
sometimes even lead to model training crashes [16-17].
Therefore, this study further introduces a novel derivative
GAN, namely DCGAN. This network can improve the
quality of image generation and enhance the learning and
representation capabilities of the model by combining the
deep architecture of CNN with the GAN framework. The
generator extends and reshapes 100-dimensional noise
into a 3D feature map through FCL, and then gradually
forms the final image size through upsampling and
dimension adjustment of transposed convolutional layers.
Batch normalization and ReLU are applied after each
layer, and the output image is finally activated by Sigmoid
to produce a specific tensor image [18-19]. The
generator’s loss function is shown in formula (5).

L =—E, »[l0g(D (G (2))] (5)

In formula (5), E is the expected operation symbol,
usually taken as the average or expected value. z is a
noise sample from the latent spatial prior distribution.
G (z) is the data generated by the generator through the

noise sample z . D' (G'(z)) is the output of the

discriminator to the data generated by the generator, which
represents the probability of real data. At this point, the
loss function of the discriminator is shown in formula (6).

Ly = -E.- pdata(x)[log(D\(Xz )] ©)
—E, i [=DG (x,))]
In formula (6), D*(x,) means the discriminator’s
output for the real sample X, , and D’(x,) is the

probability of the real data. Based on the above formulas,
compared to traditional GANs, DCGAN uses
convolutional and deconvolution layers to replace FCL in
traditional GANs. This operation can capture the local
structure and spatial message of embroidery images [20].
In addition, DCGAN also uses batch normalization
techniques and expected values to accelerate the training
process and stabilize the training of GAN. The aim is to
further enhance the performance of DCGAN in
embroidery image restoration tasks, improve the

naturalness of restoration effects, and provide experts with
more accurate texture and color information to assist them
in more refined restoration work. Given this, the study also
improves DCGAN and proposes a new type of ECR-IRM,
namely IDCGAN. The overall model structure is shown in
Fig.4.

Generator D

Extracting
missing regions

Figure 4: Overall structural framework of the IDCGAN (Source from: https://colorhub.me/photos/e7RVB).
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Figure 5: Specific structure of the generator in the IDCGAN model.
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Figure 6: Specific structure of the discriminator in the IDCGAN.

In Fig.4, innovative adjustments are made to the
generator architecture by integrating dilated convolutional
layers to expand the model's receptive field, thereby
helping the model capture image features more
comprehensively. At the same time, CBAM is introduced
to enhance the attention to key features at both the channel
and spatial levels, thereby improving the accuracy of
image restoration. The discriminator adopts a strategy of
enhancing its depth and increasing the number of FCLs,
thereby improving the network's ability to handle complex
nonlinear problems, enabling the discriminator to more
effectively recognize and distinguish between real and
generated images. The loss function combines traditional
MSE loss with adversarial loss. The calculation of mean

square error loss L, is shown in formula (7).
1 n

Lyvse :HZ(yi _gi)2 @)
i=1

In formula (7), g; is the predicted value of the model
on the training data X; . The adversarial loss L,,, isshown
in formula (8).

Ladv = minG maXD Equda(a [Ing D(X)]

+E, 5 [log,(1-D(G(2)))] ©)

In formula (8), the algebraic meaning remains the
same as before. The specific structure of the generator in
the IDCGAN model is shown in Fig.5.

In Fig.5, the architecture of the generator in the
IDCGAN model mainly consists of three key modules,

namely the convolution block, dilated convolution block,
and CBAM. Hollow convolution blocks use convolutional
layers with different void rates, namely 2, 4, 8, and 16, to
achieve multi-scale capture of image features. When the
hole rate is set to 1, the hole convolution degenerates into
a standard convolution operation. This is reflected in the
Conv6 to Conv10 layers of the generator, forming a series
of ConvLs with different hole rates that ensure the
flexibility and adaptability of the network. The
introduction of CBAM adds the ability for dynamic
weighting to the generator. It can weight features in both
channel and spatial dimensions, highlighting the features
that have the greatest impact on image quality. The
framework of the discriminator in the IDCGAN model is
shown in Fig.6.

In Fig.6, to improve the performance of the
discriminator in addressing complex nonlinear problems,
this study adds two FCLs based on the original
discriminator architecture, making the discriminator
contain a total of three FCLs. The interconnection of these
layers enhances the discriminator's ability to learn
features, thereby significantly improving model
performance. Ultimately, the discriminator determines the
authenticity of the input image through a binary
classification task, distinguishing whether the image was
generated by the generator or from a real dataset. The
research is conducted based on a self-built embroidery
image dataset. The images mainly come from digital
museums, high-resolution cultural relic catalogues, and
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cultural heritage archives, covering multiple historical
periods and diverse embroidery styles. The initial dataset
contains 1,800 images. After expansion, the dataset
ultimately includes 8,957 images. For the unified model
input, the image is cropped and scaled to 256 x256 pixels,
and normalization processing is carried out
simultaneously. Ultimately, the dataset is divided into a
training set and a test set in an 8:2 ratio. To simulate the
common damage forms of ECR, the study also uses
random occlusion to generate defect images. The
occlusion forms include rectangles, free-shaped patterns,
and speckled textures, and the area ratio is controlled at
10% to 40%. On this basis, image enhancement is carried
out by applying methods such as rotation, flipping, scaling,
and color perturbation to improve the robustness and
generalization ability of the model. In addition, by
analyzing the color and style distribution of the images, a
balanced sampling strategy is adopted to control the
category bias, ensuring the diversity and balance of the
training data in terms of pattern style and damage type. All
the code modules in the research are built based on the
PyTorch framework. Some of the code is as follows:

G. Dong et al.

3 Results

3.1 SPP-1DenseNet model performance
testing

The study adopts five-fold cross-validation to evaluate the
model’s performance. The training set is evenly divided
into five subsets of similar size. Four subsets are selected
in sequence for model training, and the remaining subset
is used as the validation set. This process is repeated five
times to ensure that each subset participates in the
verification. Through multiple rounds of training and
validation, the mean and standard deviation of the
accuracy, recall rate, and specificity of the calculation
model are calculated, effectively avoiding the randomness
brought by a single division and enhancing the statistical
reliability and generalization ability of the evaluation
results. Table 1 shows the experimental setup and
environmental parameters.

According to the settings in Table 1, the effectiveness
of the proposed model was first validated through ablation
testing, as shown in Fig.8.

Figure 7: Code.
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Table 1: Environment and parameter configuration.

Serial number Experimental environments and hyperparameter categories Settings

1 Num epochs 200

2 Pre-training No

3 Batch size 20

4 Num class 8

5 Optimizer Adam

6 Learning rate 0.0001

7 Development Environment Windows 10

8 CPU Intel Core i9-10900K
9 GPU NVIDIA RTX 3090
10 Memory 64GB

11 Graphics Memory 16GB GDDR6X

12 Programming Tools PyTorch 1.6.0
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Figure 8: Ablation test results of SPP-IDenseNet.

Figs.8 (a) and (b) show the test results of the new
model in two datasets. As the test samples continue to
grow, the standalone DenseNet module shows lower
classification accuracy in both datasets, with the highest
being only 65.3%. After introducing the SPP module,
LBP, Canny operator, and Gabor filter module
successively, the classification effectiveness of the entire
model has been significantly improved. The result
indicates that when dealing with embroidery images with
complex texture features, relying solely on global features
for extraction has certain performance bottlenecks. The
classification accuracy of SPP-1DenseNet is highest at
96.4% in the training set and 95.6% in the testing set. This
study has improved various parts of the DenseNet model
to varying degrees for classifying and recognizing ECR
images, demonstrating the effectiveness of the improved
method. In addition, popular ICMs of the same type,
including Lightweight CNN (LCNN), Efficient CNN
(ECNN), StyleGAN, and Global Image Spatial Texture
(GIST), are introduced as comparative models.
Performance tests are conducted using precision, recall,
and specificity as indicators, as shown in Table 2.

In Table 2, due to their relatively simplified structures,
LCNN and ECNN models have obvious deficiencies in
feature expression ability and fine-grained classification.

Although the GIST model can capture certain texture
information, it is limited by its feature extraction method
based on compressed texture description. GIST’s
recognition ability for irregular shapes and multi-scale
patterns is weak, resulting in limited classification
performance. The  SPP-IDenseNet model has
demonstrated superior performance in all four types of
embroidery image recognition tasks. This model enhances
its feature perception ability for different scales and spatial
structures by introducing SPP modules, and combines
LBP and Gabor filters to model fine-grained textures,
effectively improving the model's ability to recognize the
microstructure of embroidery patterns. Meanwhile, the
addition of the Canny edge detection operator enhances
the ability to capture boundary and contour features,
enabling the model to maintain high classification
accuracy even in the face of complex background
interference. The SPP-IDenseNet model has the highest
accuracy rate of 96.3%, the highest recall rate of 98.5%,
and the highest specificity of 99.4% on Suzhou
embroidery, Hunan embroidery, Guangdong embroidery,
and Shu embroidery. These indicators are numerically
superior to other convolutional neural network models and
have a more balanced distribution across categories. This
result demonstrates the adaptability and effectiveness of
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the SPP-IDenseNet model in handling the classification
task of ECR images. The confusion matrix obtained on the
embroidery image classification dataset before and after
model improvement is shown in Fig.9.

Figs. 9 (a) and (b) show the confusion matrices before
and after model improvement. The SPP-IDenseNet model
has the highest classification and recognition accuracy for
Shui ethnic ponytail embroidery, Xigin, Hami, Su, Xiang,
Shu, and other embroidery in the embroideries image
classification dataset. Its classification accuracy in Yue
embroidery types is relatively the lowest. Overall, the
SPP-IDenseNet model achieves an average prediction
accuracy of over 80% for the 8 styles of embroidery
images in the embroidery image classification dataset.
This indicates that the SPP-IDenseNet model
demonstrates strong robustness in handling noise,
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occlusion issues, and identifying embroidery images with
similar features in the embroidery image classification
dataset. This robustness makes the SPP-1DenseNet model
a powerful tool for ECR image classification, which can
effectively address the challenges in practical
applications.

3.2 Performance simulation testing of
ECR-IRM for IDCGAN

This study uses the Tensorflow DL framework to
implement the training and testing of the entire ECR-IRM.
The weights B1 and B2 of the Adam optimizer are set to
0.5 and 0.9. The loss changes of IDCGAN generator and
discriminator at different network learning rates are shown
in Fig.10.

Table 2: Multi-metric performance test results for different models.

Style Model Precision/% Recall/% Specificity/%
LCNN 63.5 65.7 80.2
ECNN 67.2 69.8 81.6
Suzhou embroidery GIST 70.3 68.7 83.4
StyleGAN 85.7 87.4 89.1
Research method 95.8 98.5 94.2
LCNN 55.2 56.3 89.6
ECNN 58.7 60.4 90.2
Hunan embroidery GIST 60.2 61.7 91.6
StyleGAN 83.4 85.1 92.3
Research method 96.3 90.2 99.4
LCNN 57.6 59.8 53.8
ECNN 66.3 70.4 60.5
Cantonese embroidery GIST 71.6 69.7 70.8
StyleGAN 80.2 82.5 75.4
Research method 95.1 90.8 95.1
LCNN 58.8 60.5 55.6
ECNN 62.8 68.8 58.3
Sichuan embroidery GIST 70.4 734 60.7
StyleGAN 79.8 81.7 69.2
Research method 924 96.7 90.3
Confusion matrix Confusion matrix
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Figure 9: Confusion matrix plots before and after model improvement.
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Figure 10: Loss variation of IDCGAN between generator and discriminator at different learning rates.
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Figure 11: Repair effects of the model before and after the improvement (Source from: https://colorhub.me/).

In Fig.10 (a), the loss of the IDCGAN generator
slowly increases with the growth of training cycles, and
the curve with a learning rate of 0.00002 shows a low and
stable loss value. The curves with learning rates of 0.002
and 0.0002 show higher loss values and larger
fluctuations. In Fig.10 (b), the discriminator loss slowly
decreases as the number of training cycles increases. The
curve with a learning rate of 0.00002 decreases the fastest
and tends to stabilize, indicating that a smaller learning
rate helps the discriminator learn more effectively. In
contrast, the curves with learning rates of 0.002 and
0.0002 exhibit significant fluctuations and higher loss
values. Based on the comprehensive experimental data,
this study ultimately sets the network learning rate of the
IDCGAN model to 0.00002. To verify the impact of
dilated convolutional layers, loss functions, and CBAM on

model performance, the repair effect of the improved
model before and after random occlusion is compared, as
shown in Fig.11.

Figs.11 (a) to (d) show the embroidery original image,
images subjected to random occlusion, images restored by
the DCGAN model, and images restored by the IDCGAN
model. By comparing these images, the effectiveness of
IDCGAN in handling different types of embroidery and
varying degrees of occlusion can be demonstrated.
IDCGAN can enhance the focus on key features, thereby
enabling the restored image to largely restore the details
and colors of the original image, effectively solving the
problem of color non-uniformity. However, DCGAN's
repair effect is not ideal when facing large-scale defects,
and it cannot maintain good contextual consistency,
resulting in poor repair performance. This discovery
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validates the necessity of improving the DCGAN. To
further test the effectiveness of the research model in
embroidery image restoration, the Cycle-Consistency
GAN (CCGAN), Conditional GAN (CGAN), and Stacked
GAN  (Stack-GAN) models are introduced for
comparison. The test results of SSIM as the experimental
indicator are shown in Fig.12.

Figs.12 (a) and (b) show the SSIM performance
comparison of four models in two datasets. Both in the
training and testing sets, the IDCGAN model performs the
best, followed by Stack-GAN and CCGAN, while CGAN
performs the worst. In the training set, the maximum
SSIM values for CGAN, CCGAN, Stack-GAN, and the
research model are 0.64, 0.72, 0.85, and 0.98, while in the
testing set, they are 0.69, 0.78, 0.90, and 0.99. The above
data indicates that the research model has significant
advantages in maintaining image structure and quality.
The reason behind this is that the dilated convolution
technique effectively expands the receptive field, allowing
it to capture richer contextual information in the image. In
addition, CBAM further enhances the model's attention to
key features by weighting important features in both
channel and spatial dimensions. These improvements have
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led to significant advantages of IDCGAN in embroidery
image restoration. Finally, to confirm the resolution
capability of the proposed model, this study also tests four
models using image clarity as an indicator, as shown in
Fig.13.

Figs.13 (a) to (d) show the clarity performance of
CGAN, CCGAN, Stack-GAN, and IDCGAN models in
the Yue embroidery image restoration task. Figure 13 (e)
shows the clarity of the original image. The Yue
embroidery restoration images generated by IDCGAN are
visually very similar to the original images, and it is
almost impossible to distinguish the quality differences
with the naked eye. In contrast, there are significant
differences between the restoration results of CGAN,
CCGAN, and Stack-GAN and the original images.
Especially for the restored images of the CGAN model,
there is a significant decrease in clarity in comparison to
the original images. In summary, the research model
surpasses the comparative model in image resolution for
Guangdong embroidery restoration, demonstrating its
potential and advantages in embroidery image restoration
processing.

A CGAN — — —Stack-GAN 4 —CGAN — — —Stack-GAN
05 — -CCGAN  -omm IDCGAN 05/ — _CCGAN IDCGAN
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Figure 12: Schematic of SSIM test results for different models.

Image Gradient Entrop

Figure 13: The clarity of restored images of Cantonese embroidery (Source from:

(e) Original image

(d) IDCGAN

AN

https://colorhub.me/photos/VVXe03).
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4 Conclusion

The study focused on the task of image restoration of ECR
and innovatively constructed an ECR-ICM based on SPP-
IDenseNet and an ECR-IRM based on the improved
DCGAN. The experimental results showed that the SPP-
IDenseNet model achieved an average prediction
accuracy rate of over 80% for the embroidery images of
eight styles. The IRM could enhance the focus on key
features, thereby enabling the restored image to largely
restore the details and colors of the original image,
effectively solving the problem of uneven color. The
SSIM value has reached 0.99. Furthermore, the research
model could still maintain an excellent restoration effect
even when dealing with large-area damaged embroidery
images. The restored image of Cantonese embroidery
generated was visually extremely similar to the original
image, and it was almost impossible to distinguish the
quality difference with the naked eye. The results show
that the research model achieves innovation in technology
and demonstrates significant advantages in practical
applications. However, the research model also has certain
limitations. On the one hand, the current models mainly
target 2D embroidery images. At present, there is no
adaptive research on complex 3D multi-level embroidery
structures and heterogeneous multi material embroidery
patterns, which limits their promotion and application in
high-precision virtual restoration. On the other hand, due
to the adoption of a deep generative network structure, the
model has a certain dependence on computing resources
during the training and inference stages. This may pose
practical challenges in resource constrained cultural
heritage conservation institutions or mobile deployments.
Furthermore, for severely damaged or extremely blurry
images, there is still a certain risk of distortion in the
structural reconstruction of the research model. Future
research can be carried out in the following directions: (1)
Expansion of model generalization ability: By integrating
3D reconstruction and multimodal input, the restoration
ability of 3D ECR can be enhanced; (2) Enhanced multi-
material adaptability: Material perception module or style
transfer mechanism can be introduced to achieve texture
simulation and reconstruction of heterogeneous
embroidery materials; (3) Lightweight deployment
optimization: By applying techniques such as model
pruning, quantization, and distillation, the network
structure is compressed to adapt to edge devices or mobile
terminal applications. Overall, the research method
provides a feasible and effective technological path for
ECR digital protection, which is expected to have practical
applications in digital museum construction, virtual
restoration of cultural heritage, and reconstruction of
cultural creative models.

References

[1] Xinyang Guan, Likang Luo, Honglin Li, He Wang,
Chen Liu, Su Wang, and Xiaogang Jin. Automatic
embroidery texture synthesis for garment design and
online display. The Visual Computer, 37(9):2553-

Informatica 49 (2025) 361-372 371

2565, 2021.
02216-0

[2] Xiaoli Fu, and Niwat Angkawisittpan. Detecting
surface defects of heritage buildings based on deep
learning. Journal of Intelligent Systems, 33(1):163-
169, 2024. https://doi.org/10.1515/jisys-2023-0048

[3] Ana M. Maitin, Alberto Nogales, Emilio Delgado-
Martos, Giovanni Intra Sidola, Carlos Pesqueira-
Calvo, Gabriel Furnieles, and Alvaro J. Garcia-
Tejedor. Evaluating activation functions in GAN
models for virtual inpainting: A path to architectural
heritage restoration. Applied Sciences, 14(16):6854-
6854, 2024. https://doi.org/10.3390/app14166854

[4] Alessandro Bombini, Fernando Garcia-Avello
Bofias, Chiara Ruberto, and Francesco Taccetti. A
cloud-native application for digital restoration of

https://doi.org/10.1007/s00371-021-

cultural  heritage  using  nuclear  imaging:
THESPIAN-XRF. Rendiconti Lincei. Scienze
Fisiche e Naturali, 34(3):867-887, 2023.

https://doi.org/10.1007/s12210-023-01174-0

[5] Kanghyeok Ko, Taesun Yeom, and Minhyeok Lee.
SuperstarGAN: Generative adversarial networks for
image-to-image translation in large-scale domains.
Neural ~ Networks, 162(42):330-339, 2023.
https://doi.org/10.1016/j.neunet.2023.02.042

[6] Praveen Kumar, and Varun Gupta. Restoration of
damaged artworks based on a generative adversarial
network. Multimedia Tools and Applications,
82(26):40967-40985, 2023.
https://doi.org/10.1007/s11042-023-15222-2

[71 Wenjun Zheng, Benpeng Su, Ruigi Feng, Xihua
Peng, and Shanxiong Chen. EA-GAN: Restoration
of text in ancient Chinese books based on an example
attention generative adversarial network. Heritage

Science, 11(1):55-62, 2023.
https://doi.org/10.1186/s40494-023-00882-y
[8] Mihai Bundea, and Gabriel Mihail Danciu.

Pneumonia image classification using DenseNet
architecture. Information, 15(10):611-619, 2024.
https://doi.org/10.3390/INFO15100611

[9] Sherly Alphonse, S. Abinaya, and Nishant Kumar.
Pain assessment from facial expression images
utilizing Statistical Frei-Chen Mask (SFCM)-based
features and DenseNet. Journal of Cloud Computing,
13(1):142-148, 2024.
https://doi.org/10.1186/S13677-024-00706-9

[10] Chunyang Zhu, Lei Wang, Weihua Zhao, and Heng
Lian. Image classification based on tensor network
DenseNet model. Applied Intelligence, 54(8):6624-
6636, 2024. https://doi.org/10.1007/S10489-024-
05472-4

[11] S. Deepa, Beevi S. Zulaikha, Laxman L. Kumarwad,
and Sabbineni Poojitha. Namib beetle firefly
optimization enabled DenseNet architecture for
hyperspectral image segmentation and classification.
International Journal of Image & Data Fusion,
15(2):190-213, 2024.
https://doi.org/10.1080/19479832.2023.2284781

[12] Suresh Samudrala, and C. Krishna Mohan. Semantic
segmentation of breast cancer images using
DenseNet with proposed PSPNet. Multimedia Tools



372 Informatica 49 (2025) 361-372

and Applications, 83(15):46037-46063, 2023.
https://doi.org/10.1007/S11042-023-17411-5

[13] M. Karthikeyan, and D. Raja. Deep transfer learning
enabled DenseNet model for content-based image
retrieval in agricultural plant disease images.
Multimedia Tools and Applications, 82(23):36067-
36090, 2023. https://doi.org/10.1007/S11042-023-
14992-7

[14] Babu Rajendra Prasad, and Dr. B. Sai Chandana.
Human face emotions recognition from thermal
images using DenseNet. International Journal of
Electrical and Computer Engineering Systems,
14(2):155-167, 2023.
https://doi.org/10.32985/IJECES.14.2.5

[15] Ning Wang, Yanzheng Chen, Yi Wei, Tingkai Chen,
and Hamid Reza Karimi. UP-GAN: Channel-spatial
attention-based progressive generative adversarial
network for underwater image enhancement. Journal
of Field Robotics, 41(8):2597-2614, 2024.
https://doi.org/10.1002/ROB.22378

[16] Noa Barzilay, Tal Berkovitz Shalev, and Raja Giryes.
MISS GAN: A Multi-llluStrator style generative
adversarial network for image to illustration
translation. Pattern Recognition Letters,
151(16):140-147, 2021.
https://doi.org/10.1016/J.PATREC.2021.08.006

[17] Manuel Dominguez-Rodrigo, Ander Fernandez-
Jalregui, Gabriel Cifuentes-Alcobendas, and
Enrique Baquedano. Use of generative adversarial
networks  (GAN) for taphonomic  image
augmentation and model protocol for the deep
learning analysis of bone surface modifications.
Applied  Sciences, 11(11):5237-5247, 2021.
https://doi.org/10.3390/APP11115237

[18] Aram You, Jin Kuk Kim, Ik Hee Ryu, and Tae Keun
Yoo. Application of generative adversarial networks
(GAN) for ophthalmology image domains: A survey.
Eye and Vision, 9(1):6-16, 2022.
https://doi.org/10.1186/S40662-022-00277-3

[19] Zhiguo Xiao, Jia Lu, Xiaokun Wang, Nianfeng Li,
Yuying Wang, and Nan Zhao. WCE-DCGAN: A
data augmentation method based on wireless capsule
endoscopy images for gastrointestinal disease
detection. IET Image Processing, 17(4):1170-1180,
2022. https://doi.org/10.1049/IPR2.12704

[20] Betelhem Zewdu Wubineh, Andrzej Rusiecki, and
Krzysztof Halawa. Classification of cervical cells
from the Pap smear image using the RESDCGAN
data augmentation and ResNet50V2 with self-
attention architecture. Neural Computing and
Applications, 18(24):1-15, 2024.
https://doi.org/10.1007/S00521-024-10404-X

G. Dong et al.



