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Electrocardiogram (ECG) based Artificial Intelligence (AI) analysis has evolved. Its performance in diag-
nosing arrhythmias is now comparable to that of human experts, and it has the potential to assist societies
with limited healthcare resources. However, these settings often have paper-based ECG image archives
only, while the current AI-ECG analysis requires digitised ECG signals. To address this, we previously
introduced Cardio Care, a mobile-friendly diagnostic pipeline capable of analysing both ECG signals and
scanned ECG images. In this extended study, we enhance the pipeline’s explainability and expand its model
benchmarking by comparing the Vision Transformer (ViT) with two of its data-efficient variants: DeiT and
BEiT. These models were evaluated on two image-based ECG datasets—one public dataset (Mendeley) and
one private dataset (Tam Duc Cardiometabolic). Our results show that ViT achieves the strongest classifi-
cation performance among all three variants, with macro F1-scores of up to 0.99 on Mendeley and 0.81 on
Tam Duc. Additionally, we integrate a Grad-CAM-based explainability feature to visualise model atten-
tion, improving interpretability for clinical use. The enhanced Cardio Care pipeline now has an explainable
function using Grad-Cam, demonstrating significant potential for scalable, low-cost cardiac screening in
underserved healthcare settings.

Povzetek: Študija predstavlja razložljiv multimodalni okvir Cardio Care za analizo slik ECG z
ViT/DeiT/BEiT. ViT dosega najboljše rezultate, Grad-CAM izboljša interpretabilnost, sistem je uporaben v
okoljih z omejenimi viri.

1 Introduction

Cardiovascular disease (CVD) has remained the leading
cause of global mortality for over 100 years [21] [16] and
is responsible for approximately 20 million deaths annually
[3]. While various medical devices can assist cardiologists
in identifying cardiac abnormalities, the electrocardiogram
(ECG) plays a central role, offering a non-invasive, conve-
nient, and economical tool in modern medicine for evaluat-
ing the electrical activity associated with the cardiac activ-
ities [18].
In the past decade, advances in artificial intelligence (AI)

have demonstrated the effectiveness of automated ECG in-
terpretation. Deep learning networks, particularly convo-
lutional neural networks (CNNs), have achieved expert-
level accuracy and shown promising results in detecting ar-
rhythmias and other heart-related abnormalities from dig-
ital ECG signal, reducing the reliance on trained health-
care professionals [8]. This has the potential of support-
ing the under-resourced healthcare systems with few spe-
cialist cardiologists. However, these models are not practi-
cal in low-income and rural real-world settings that only
have paper based ECG and digital ECG devices are un-

available and clinicians rely on paper-based ECG print-
outs. This makes the AI-based ECG analysis unsuitable in
such settings, where expert-level readers are scarce [12].
Thus, by excluding image-based ECGs from AI develop-
ment pipelines results in excluding those who need this
the most, and will lead to a sharp divide between people
who will benefit from AI in health and those who will not.
Hence, to promote equality in the benefits of AI in health-
care, the AI model should be developed to support both,
digital ECG, and ECG images that can be used by front-
end health care providers without latest ECG equipment.

To bridge this gap, we have developed and validated Car-
dio Care, a smartphone-friendly deep learning pipeline ca-
pable of analysing a standard 10-second resting ECG test,
suitable for receiving both digitised ECG and imaging ECG
from scanned or printed ECG reports [26]. Built on the Vi-
sion Transformer (ViT) architecture [7], Cardio Care em-
ploys self-attention mechanisms to effectively recognise
patterns in ECG image data, providing a flexible and de-
ployable solution, which is suitable for resource-limited
settings. Our innovative pipeline has the capability to pre-
dict multiple cardiac abnormalities, both multi-label and
single-label. Unlike other semi-supervised zero-shot mod-
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els for general image classification [9, 10, 17, 27], our ViT
models, trained on supervised datasets with cardiologist-
level labels, are fine-tuned specifically for ECG reports.
Cardio Care takes a different approach from traditional
methods at the clinics, as can be seen in Figure 1, in which
patients can easily photograph their ECG reports and up-
load them via a mobile app, and our AI model can pro-
vide highly accurate predictions to assist both patients and
healthcare providers.

Figure 1: Simplified flowchart of Cardio Care application

In this extended study, we aim to improve both the ar-
chitectural comparison and the explainability of the Car-
dio Care pipeline by introducing additional Vision Trans-
former variants. Specifically, aside from ViT, we evaluate
two prominent extensions: the Data-efficient image Trans-
former (DeiT) [24], and the Microsoft Bidirectional En-
coder representation from Image Transformers (BeiT) [2].
These models are designed for improved learning in envi-
ronments with limited annotated data, making them well-
suited for real-world clinical datasets. Since DeiT and BeiT
are known for their performance on small-scale datasets,
they will be trained on our two image-based datasets: the
Mendeley (public) and Tam Duc (private) datasets. Fur-
thermore, we enhance the transparency of Cardio Care by
integrating a Grad-CAM-based explainability module, en-
abling visual interpretation of the model’s attention on ECG
waveform regions.
These extensions bring our proposed solution closer

to real-world clinical deployment, particularly in under-
resourced healthcare settings, by enhancing its perfor-
mance, flexibility, and generalizability—all while operat-
ing on image-based ECG inputs without the need for digital
signal acquisition or specialised infrastructure.

2 Methodology
This study builds upon our previously published confer-
ence paper [26], which introduced the Cardio Care, devel-
oped using the ViT architecture for ECG image and signal
classification. In this extended version, we introduce two
new Transformer variants (DeiT, BEiT), add an explain-
ability module (Grad-CAM), and evaluate the performance
across multiple datasets. We structured our methodology
into three main components.
First, Section 2.1 - Datasets describes the three ECG

datasets used for model development and evaluation. These
include both signal- and image-based ECGs, covering a va-
riety of dataset sizes and characteristics to represent real-

world clinical variability. Second, Section 2.2 - Preprocess-
ing outlines the preprocessing procedures applied to both
signal and image ECG inputs. This involves preprocess-
ing steps to transform ECG signals into usable waveform
graphs, as well as cropping, augmentation, and normali-
sation of images to ensure consistency across modalities.
Third, Section 2.3 - Training Pipeline presents themodel ar-
chitectures and training pipeline. We implement and com-
pare three variants of Transformer-based algorithms: The
Google’s ViT [7], the Facebook’s DeiT [24], and the Mi-
crosoft’s BeiT [2] — for ECG classification. This section
also details the training setup, evaluation metrics, explain-
able technique and cross-validation approach used to assess
model performance across datasets.
For completeness, we retain the ViTmodel trained on the

signal-derived ECG plots from our original study (using the
CPSC dataset) in Section 3.2, as a baseline demonstrating
Cardio Care’s compatibility with signal inputs. However,
no additional experiments were performed on this dataset
in this extended work.

2.1 Datasets
To evaluate network performance across sample sizes and
input types, we used three 12-lead ECG datasets, the char-
acteristics of which are listed in Table 1.

Table 1: Distribution of abnormalities per datasets
Dataset CPSC Mendeley Tam Duc
Input signal image image
Sample 6877 929 170
Small-scale No Yes Yes
Class 9 4 2
Balance No Yes No
Access Public Public Private

The China Physiological Signal Challenge (CPSC) [19]
was released in 2018 and is publicly available at http://
2018.icbeb.org/Challenge.html. This dataset com-
prises 6877 records in raw signal at 500 Hz with multi ar-
rhythmias classes: normal sinus rhythm (SNR), atrial fib-
rillation (AF), first-degree atrioventricular block (IAVB),
left bundle branch block (LBBB), right bundle branch
block (RBBB), premature atrial contraction (PAC), prema-
ture ventricular contraction (PVC), ST-segment depression
(STD), and ST-segment elevation (STE). For comparison,
the study utilised a 10-second ECG printout [20].
The 12-lead Mendeley ”ECG Images dataset of Car-

diac Patients” [11] is publicly available at https://data.
mendeley.com/datasets/gwbz3fsgp8/2, consists of
929 ECG images in four classes: normal, myocardial in-
farction (MI), abnormal heartbeat, and previous history of
myocardial infarction (MI his).
The third and new dataset is a private clinical dataset col-

lected at Tam Duc Cardiology Hospital (Ho Chi Minh City,
Vietnam), comprising 170 de-identified ECG images from

http://2018.icbeb.org/Challenge.html
http://2018.icbeb.org/Challenge.html
https://data.mendeley.com/datasets/gwbz3fsgp8/2
https://data.mendeley.com/datasets/gwbz3fsgp8/2
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patients who visited between 2021 and 2023. The dataset
is categorised into two classes: cardiometabolic (n = 71)
and control (n = 99). All ECGs were standard 10-second,
12-lead printed reports scanned into high-resolution image
format. The use of this dataset was approved by the hospi-
tal’s ethics committee (Ref. No. 18.23/GCN-BVTD).
In this extended version, we clarify the class distribu-

tion in the Cardiometabolic dataset. The dataset contains
71 records labeled as disease and 99 as healthy, which cor-
rects the reversed figures reported in our earlier conference
paper [26]. That version mistakenly listed 71 as healthy
and 99 as disease. All model training and evaluation use
the corrected labels.

2.2 Preprocessing
To ensure consistent model input across various ECG data
types, we designed a standardised preprocessing pipeline
for both signal-based and image-based ECG inputs. The
goal was to generate high-quality, normalised images from
all modalities, suitable for Vision Transformer-based clas-
sification.

2.2.1 ECG signal preprocessing

Figure 2: Preprocessing - Cardio Care framework for digi-
tal signal-based ECG inputs

Raw 12-lead ECG signals from the CPSC dataset were
preprocessed in three stages [4, 6] before being converted
into waveform images (Figure 2):

– Denoising: Signal noise was reduced using discrete
wavelet transform with Daubechies-4 wavelet at level
4 decomposition [14, 25]. For noise thresholding,
we applied the Median Absolute Deviation (MAD)
method [15], a robust statistical estimator less affected
by outliers, to identify and suppress high-frequency

noise components while preserving clinically relevant
waveform features.

– Normalisation: Signal was rescaled to a standard-
ised amplitude range to reduce inter-record variability.
This normalisation step improves signal consistency,
enhances comparability across samples, and facilitates
more reliable pattern recognition during model train-
ing.

– Segmentation: ECG records were segmented into a
10-second window, corresponding to 5000 samples at
a 500 Hz sampling rate. Preprocessed signals were
then converted into waveform plots, with 12 leads ar-
ranged in a 3x4 layout as a grayscale image to match
model input requirements.

2.2.2 ECG image preprocessing

Image-based ECG reports, such as those from Mendeley
and Cardiometabolic datasets, followed the standard for-
mat in clinical practice [13], underwent the following pre-
processing steps: Non-relevant textual regions (e.g., patient
information or hospital identifiers) were cropped, retaining
only the 12-lead waveform area in a standardised layout.
All ECG report images were then enhanced to 600 DPI and
resized to 224 × 224 pixels to match the input resolution
of the Transformer models. To simulate real-world varia-
tions such as misaligned scanning or handheld capture, we
applied random rotations of ±10° as a form of data aug-
mentation, inspired by prior work on image-based ECG in-
terpretation [23]. This process enhances generalisability to
real-world image acquisition settings. An illustration of this
process is provided in the modelling overview Figure 3.

Figure 3: Preprocessing - Cardio Care framework for
image-based ECG inputs

Finally, each 224 × 224 image was divided into non-
overlapping 16 × 16 pixel patches, resulting in 196 patches
per image. These patches were then flattened and embed-
ded as input tokens to the Vision Transformer encoder. The
patch size was chosen to capture local waveform features
across multiple rows while maintaining spatial resolution
consistent with standard ViT configurations.
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2.3 Training pipeline
This study evaluates and compares three Vision Trans-
former architectures for ECG classification: ViT, DeiT
and BEiT. All models were trained independently on each
dataset using only preprocessed image-based ECG inputs.
All experiments were conducted on Google Colab using
NVIDIAA100GPU (48GBVRAM). The pipeline is shown
in Figure 4.

Figure 4: Multimodal pipeline of Cardio Care application

2.3.1 Model architectures

– The Google Vision Transformer (ViT) was introduced
by Dosovitskiy et al. [7] is an advanced deep-learning
architecture designed explicitly for visual recognition
tasks. Unlike traditional deep-learning convolutional
neural networks (CNN), ViT breaks down images into
smaller patches and analyses the global relationships
between them. This model’s self-attention mecha-
nism efficiently accesses the entire image and captures
complex patterns, subtleties and anomalies in images.
[Variant used: VIT-BASE-PATCH16-224-IN21K]

– The Facebook Data-efficient image Transformer
(DeiT) was introduced by Touvron et al. [24] is partic-
ularly designed under constraints of limited data avail-
ability. Unlike the standard ViT, which requires large-
scale datasets for optimal performance, DeiT incor-
porates knowledge distillation during training facili-
tated by a teacher-student paradigm. This strategy in-

volves a distillation token that learns to mimic the out-
put of a powerful, pre-trained teacher model (typically
a CNN), effectively transferring the teacher’s knowl-
edge to the DeiT model. This enhances DeiT’s ability
to perform competitively with much smaller datasets
than those required by traditional ViTs. [Variant used:
DEIT-BASE-DISTILLED-PATCH16-224]

– The Microsoft Bidirectional Encoder representation
from Image Transformers (BeiT) was introduced by
Bao et al. [2] who proposed a masked image mod-
elling (MIM) task to use two views for each image,
image patches and visual tokens. Their study indi-
cated that BeiT can improve the generalisation abil-
ity of fine-tuned models, particularly on small-scale
datasets. [Variant used: BEIT-PATCH16-224]

2.3.2 Training and evaluation

Table 2: Training configuration per dataset
Datasets CPSC Mendeley Tam Duc
Epoch 50 25 50
Batch 256 32 16
Learning rate 2e-4 2e-4 2e-5
Optimizer AdamW AdamW AdamW
Train/Test 80/20 85/15 80/20
Multi-label Y N N

To address class imbalance, we applied a stratified split
and class-weighted cross-entropy loss, with weights in-
versely proportional to class frequencies in the training set.
This approach ensures balanced accuracy, which is crucial
in medical diagnostics, where missing rare cases can have
serious consequences.
We employed 10-fold cross-validation on the full dataset

to guarantee consistent performance estimates. For each
fold, the performance metrics recorded include both Preci-
sion and Recall and F1-Score, which combines both met-
rics for a balanced assessment. Finally, the macro F1-
score across n classes addresses class imbalance and re-
flects overall performance. Additionally, confusion matri-
ces are visualised to aid interpretation.

3 Results

This section presents the performance of three Vision
Transformer-based models (ViT, DeiT, and BeiT) trained
and evaluated on three ECG datasets of different types and
sizes. All models were trained solely using preprocessed
image inputs. For consistency, CPSC signals were con-
verted into 12-lead waveform plots.
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3.1 Dataset summary
We utilised 12-lead ECGs from three datasets to demon-
strate the performance of three model variants. In Section
Method - Table 1 already summarises the characteristics of
the datasets used in this study, including sample sizes, class
labels, and modality. The categorical distribution of the ab-
normality can be seen below in Table 3. Due to the low
prevalence of a few classes (236 cases or 3.43%LBBB; 220
cases or 3.20% STE), data were stratified based on clinical
labels to ensure consistent distribution across both training
and testing sets. A new cardiometabolic dataset (Tam Duc)
comprising 170 samples has been introduced for evaluation
utilising real-world clinical data.

Table 3: Distribution of abnormalities per dataset
CPSC Mendeley Tam Duc

1 918 SNR 284 Normal 99 Control
2 1221 AF 240 MI 71 Disease
3 722 IAVB 172 MI his
4 236 LBBB 233 Abnormal
5 1857 RBBB
6 616 PAC
7 700 PVC
8 869 STD
9 220 STE

3.2 Classification performances - ECG
signal dataset

Although studies have been utilising the CPSC 2018 [28]
[5], none of them have attempted shorter segments of the
original signal or converted those to an imaging-based
model. To evaluate our model, we compare it with ma-
chine learning classifiers as baselines for comparison. Our
baseline classifiers used extracted statistical features as in-
put for training, algorithms including Logistic Regression
(LR), Random Forest (RF), Multilayer Perceptron (MLP),
and Gradient Boosting Tree (GBT).

Table 4: Our ViT vs. baseline classifiers on CPSC dataset:
Overall 10-fold CV performance

LR RF MLP GBT Ours
Accuracy 0.40 0.36 0.45 0.50 0.93
Precision 0.58 0.88 0.54 0.84 0.71
Recall 0.41 0.34 0.48 0.49 0.61
F1-score 0.47 0.44 0.50 0.58 0.65

FromTable 5, macro F1-scores are shown for all classes.
With the exception of IAVB and STE, the harmonised F1-
scores for the other classes ranged from 0.54 to 0.88. Our
model also delivers the highest average performance across
all classes, with a 7% improvement over the second model,
GBT at 0.58.
To demonstrate the best fold’s performance, confusion

matrix is shown in Figure 5.

Table 5: Our ViT vs. baseline classifier on CPSC dataset:
F1-score per class performance

LR RF MLP GBT Ours
SNR 0.50 0.46 0.47 0.62 0.60
AF 0.58 0.58 0.62 0.74 0.85
IAVB 0.30 0.04 0.29 0.28 0.36
LBBB 0.77 0.84 0.70 0.88 0.79
RBBB 0.80 0.84 0.78 0.85 0.78
PAC 0.03 0.02 0.24 0.20 0.54
PVC 0.59 0.59 0.65 0.70 0.74
STD 0.41 0.38 0.50 0.61 0.59
STE 0.24 0.17 0.28 0.30 0.48
Average 0.47 0.44 0.50 0.58 0.65

Figure 5: Best fold performed on CPSC dataset: Confusion
matrix from fold no.5

Among all arrhythmia categories, the predictions for AF,
LBBB, RBBB, and PVC were the most accurate in signal-
based models, with F1 scores of 0.85, 0.79, 0.78, and 0.74,
respectively. However, the model struggles to correctly
identify positive cases of IAVB, resulting in a high num-
ber of false negatives — 52 out of 72 cases. This difficulty
likely stems from the challenge of diagnosing IAVB in clin-
ical practice due to its subtle features and overlap with other
conditions. A similar pattern is observed in the STE class,
as diagnosis can be challenged for clinical interpretation;
[5] the performance of this class could reduce the overall
macro metrics, as nearly half of the cases are being incor-
rectly identified (9 false negatives over 22 STE.). There-
fore, interpretation should take this into account.

3.3 Classification performances - ECG
image datasets

In this extended research, we enhance Cardio Care capabil-
ities on small-scale datasets by utilising two variants of the
ViT: Deit and Beit. On the Mendeley dataset (N=929), ViT
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and DeiT models outperformed BeiT and previous stud-
ies, achieving a precision, recall and overall F1 score of
0.99. Meanwhile, Sadaq et al. achieved an overall F1
score of 0.98 with a lightweight 4-layer CNN [22], whereas
Abubaker et al. obtained the same F1 score but with a
slightly better recall of 0.99 compared to 0.98 using 2D
CNN network [1].

Table 6: Our Transformer variants vs. CNNs on Mendeley
dataset: Overall 10-fold CV performance

2D Light ViT DeiT BeiT
CNN CNN

Accuracy 0.98 0.98 0.99 0.99 0.86
Precision 0.98 0.98 0.99 0.99 0.85
Recall 0.99 0.98 0.99 0.99 0.85
F1-score 0.98 0.98 0.99 0.99 0.85

Table 7: Our best model ViT vs. CNNs on Mendeley
dataset: per class performance

Metric 2D Light Ours
CNN CNN

Normal Precision 0.97 - 1
Recall - - 1
F1 - - 1

Abnorm Precision 1 - 1
beat Recall - - 0.98

F1 - - 0.99
MI Precision 0.98 - 1

Recall - - 1
F1 - - 1

MI his Precision 0.98 - 0.96
Recall - - 1
F1 - - 0.98

Average Precision 0.98 0.98 0.99
Recall 0.99 0.98 0.99
F1 0.98 0.98 0.99

Overall, with the Mendeley sample size and balanced
class distributions, ViT continues to deliver the strongest
results among all models. DeiT serves as a comparable al-
ternative to ViT, exhibiting similar performance (0.992 and
0.993, respectively).

In each individual class, ViT’s performance per class
can be found in Table 7, achieving 100% F1-scores for
healthy and myocardial infarction subjects, 99% for abnor-
mal heartbeat conditions, and 98% for individuals with a
history of myocardial infarction.

In this study, we explore all three Transformer variants
on another private image-based dataset (Table 8). Our ViT
model achieves the highest F1-score of 0.81 compared to
the other two variants.

Table 8: Our Transformer variants on the private Tam Duc
dataset: Overall 10-fold CV performance

ViT DeiT BeiT
Accuracy 0.82 0.82 0.82
Precision 0.85 0.87 0.87
Recall 0.80 0.78 0.78
F1-score 0.81 0.79 0.79

3.4 Explainability with Grad-Cam
To enhance model interpretability, we applied Gradient-
weighted Class Activation Mapping (Grad-CAM) to visu-
alise the attention distribution of the ViT on ECG images.
Grad-CAM heatmaps were overlaid on the original input
images to highlight regions that contributed most signifi-
cantly to the model’s predictions. Our Grad-Cam function
successfully explains abnormal heartbeat and myocardial
conditions in a balanced data set (Mendeley).
Representative examples are shown in Figure 6 and 7,

drawn from the Mendeley dataset. In correctly classi-
fied abnormal ECGs with myocardial infarction, the atten-
tion maps consistently focused on waveform segments with
clinical relevance—such as ST-segment deviations and ir-
regular QRS morphology. Notably, Grad-CAM confirmed
that the model does not depend on irrelevant regions (e.g.,
gridlines or metadata text), thereby further validating the
efficacy of the preprocessing pipeline.

4 Discussion
This study offers notable contributions, including the fol-
lowing key points:

– We extend the Cardio Care pipeline by evaluating
three Vision Transformer architectures—ViT, DeiT,
and BEiT—for the classification of cardiac abnormal-
ities from ECG images.

– Webenchmarkmodel performance on real-world ECG
report images, using three datasets of varying size and
modality.

– We demonstrate the feasibility of deploying Vision
Transformer-based models in low-resource clinical
settingswhere only image-based ECG inputs are avail-
able.

– We integrate a Grad-CAM-based explainability fea-
ture into the pipeline, enabling visual interpretation
of the model’s attention on ECG waveform regions to
support clinical decision-making.

4.1 Model performance and generalisability
Despite the relatively small sample sizes of the image-
based datasets, the Vision Transformer models demon-
strated competitive performance in ECG classification. On
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Figure 6: We evaluate our GradCam function (features ex-
tracted from the second and third-to-last layers: highlight
in yellow and red for elevated ST segments) to predict my-
ocardial infarction and a history of myocardial infarction
cases [Random subjects - ID No. 10 in each class]

Figure 7: We evaluate our GradCam function (features ex-
tracted from the second and third-to-last layers: highlight
in yellow and red for flutter or fibrillation segments) to pre-
dict abnormal heartbeat [Random subject]

the Tam Duc Cardiometabolic dataset, the best-performing
model achieved amacro F1-score of 0.81, while theMende-
ley dataset yielded extremely well performance (F1-score
of 0.99), with balanced precision and recall across classes.
These results indicate that Vision Transformers are capable
of effectively capturing clinically relevant waveform fea-
tures from real-world ECG images.
Among the evaluated architectures, ViT consistently out-

performed ormatchedDeiT andBeiT across all datasets, re-
inforcing its suitability for ECG image interpretation tasks.
Compared to prior CNN-based approaches [1, 22], ViT-
based models achieved superior results, particularly in gen-
eralisation and consistency across input variations. This
endorses the ongoing incorporation of transformer-based
methodologies into image-oriented diagnostic procedures
within resource-limited clinical settings.
A key addition in this study was the implementation of a

Grad-CAM-based explainability module to visualise where
the model concentrates on the ECGwaveform. This feature
is crucial for enhancing transparency and building clinical
trust in AI systems. Grad-CAM heatmaps revealed that the
models mainly focus on leads and segments that are patho-
logically relevant, which enhances the interpretability of
the predictions and supports the decision-making process.

4.2 Limitations and further research
This study has several limitations. First, the CPSC and
Tam Duc datasets exhibit class imbalance, which may in-
troduce bias or skew evaluation metrics despite the use of
class-weighted loss functions. Future work should explore
advanced strategies for handling imbalance, such as focal
loss or synthetic data augmentation. Although Transformer
models such as ViT are capable of learning from small
datasets due to pretraining, recent studies suggest that train-
ing at large-scale (from 100000 samples) may be necessary
to fully exploit their capacity and improve generalisability
in clinical applications.
Secondly, the Grad-CAM visualisations, while effective

on the larger Mendeley dataset, showed limited interpretive
clarity on the smaller Tam Duc dataset. This limitation is
likely due to the restricted sample size, whichmay constrain
themodel’s ability to form robust attention patterns. In low-
data scenarios, the model may lack sufficient examples to
produce consistent or clinically meaningful explanations.
This highlights the need for either larger annotated datasets
or the adoption of interpretability-focused architectures op-
timised for small-sample learning.
Lastly, although the model was evaluated across three

datasets with different label structures, its diagnostic cov-
erage remains limited to major rhythm classes and binary
disease classification. Future work should aim to expand
the model’s label space to include more granular and rare
ECG abnormalities, and explore multi-task learning to cap-
ture broader cardiovascular and metabolic risk profiles.

5 Conclusion
While modern ECG analysis techniques have demonstrated
high diagnostic accuracy, their dependence on digital signal
data presents limitations in low-resource and image-only
clinical environments [12]. This study demonstrates that
integrating Vision Transformer architectures into ECG im-
age classification pipelines offers a viable and effective al-
ternative.
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By benchmarking ViT, DeiT, and BEiT models across
datasets—including a real-world clinical ECG image
dataset—we show that these models can achieve strong
classification performance, even with limited data. The in-
clusion of a Grad-CAM-based explainability module fur-
ther enhances the transparency of the pipeline, making it
more suitable for clinical decision support.
These findings support using image-based deep learning

in cardiac screening, especially where access to digitised
ECG data is limited.
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