
 Informatica 40 (2016) 125–132 125

Modular Integrated Probabilistic Model of Software Reliability

Estimation

Roman Yu. Tsarev, Alexey S. Chernigovskiy, Elena N. Shtarik and Andrey V. Shtarik

Siberian Federal University, Department of Informatics, Krasnoyarsk, Russia

E-mail: tsarev.sfu@mail.ru

Mustafa S. Durmuş

Pamukkale University, Department of Electrical and Electronics Engineering, Denizli, Turkey

E-mail: msdurmus@pau.edu.tr

Ilker Üstoglu

Yildiz Technical University, Department of Control and Automation Engineering, Istanbul, Turkey

E-mail: ustoglu@yildiz.edu.tr

Keywords: software reliability, reliability estimation, mean time to failure, mean time to repair, availability,

multiversion software

Received: October 22, 2015

A modular integrated probabilistic model of software reliability estimation and an algorithm of its

application for estimation of software reliability with different architecture such as multilevel,

multiversion, distributed and object-oriented ones are presented in the article. The modification of this

model is given there for the object-oriented multiversion software with the distributed architecture. The

procedure of its estimation is perfected to improve the quality of the reliability prediction. The

description of the developed program system based on the modular integrated probabilistic model of

reliability estimation of the object-oriented multiversion software with the distributed architecture is

presented in the article. The analysis of relation of software reliability parameters to the component

count, conditional and unconditional probability of the failure appearance in components and

temporary components characteristics is done there as well.

Povzetek: Opisan je modularni verjetnostni model za oceno zanesljivosti programske opreme.

1 Introduction
The interest to the software reliability estimation has

arisen at the same time as the software origin. It has been

caused by the natural need to get traditional probabilistic

software reliability estimation as one of the computer

system components. Originally the approach to the

computer system parts reliability estimation was a little

different from the hardware reliability estimation and it

consisted in application of well-known statistical

methods of classical reliability theory in a new

technological branch which laid the corner stone of the

individual trend like the software reliability theory [22].

However, as far as computing machinery was developed

it became obvious that software was not only the part of

the computing system.

In the modern conditions of digital technology

development the software discontinued to be a part of the

one computing system as it used to be, it began to be

used on hundreds and thousands of similar computers

(basically, on personal ones) [16]. It is obvious that the

problem of assurance of the stable programs functioning,

identification and correcting the failures in programs

sharply exists for software developers nowadays.

Over previous decades, lots of approaches, models

and methods of software reliability research have been

created [3], [4], [5], [19]. However, any unified approach

to the solution of this problem has not been proposed yet

and, apparently, it will not happen in the near future.

Nevertheless, developing difficult programs systems,

their creators are trying to get software reliability

estimation [8], [17], [20]. One of the most effective

approaches consists in sequential estimation of the

programs reliability at every stage of their development

[10], [19]. The main difficulty in using statistical

methods is the absence of the sufficient amount of the

input data. The detection of errors dynamics should be

thoroughly registered and processed. Another important

problem is a grain size of element’s computing reliability

[7], [14]. Defining all the paths of program execution

during information processing as it sometimes offers is

virtually unreal even for an easy program. According to

this, the elements’ computing reliability detailing (they

are theoretically called program modules) should be

limited by the completed program formations, which are

connected to each other, compose more complicated unit

(complex) which reliability holds our interest [6], [11],

[12]. In this case it is acceptable that the computing

machinery, the operating system and the programming

environment are absolutely reliable. Of interest is only

mailto:tsarev.sfu@mail.ru

126 Informatica 40 (2016) 125–132 R.Y. Tsarev et al.

the reliability of functioning of special software tools

which solve the main system problem [21].

As the result of the analysis of many researchers’

works [2], [5], [9], [13], [15], [16] in the field of software

reliability research, three basic problem groups can be

distinguished. They are:

- the absence of the unified methodology of high-

reliable software system development;

- the absence of the unified methodology of high-

reliable software system testing;

- the absence of the unified approach in software

systems reliability estimation and analysis.

One of solutions of the previous problems is the

usage of the software reliability estimation models

presented in this paper. The generic modular integrated

probabilistic model of software reliability estimation and

its modification for the multiversion software with the

distributed architecture are adapted to the modern

analysis and software development methods; in particular

the option of application of the models for the software

building following the object-oriented approach is

presented there.

2 Methodology

2.1 The generic modular integrated

probabilistic model of software

reliability estimation

The following generic modular integrated probabilistic

model of software reliability estimation has been

developed to evaluate the reliability parameters of the

software.

It is obligatory to satisfy the condition for this

model:

1
1




F

i
iPU ,

where F is a number of software architecture

components; PUi is probability of using component i, i =

1, …, F.

The mean time to repair is calculated as follows:

.]]]]])(

[[

[

]]])([

[[

[[

,

,1

,

,

,1

1

 

 

 

 

 

 













Dml
llllm

F

jmm
mmmmk

Dik
kkkki

Djl
llllj

F

ijj
jjjji

F

i
iiiii

TETCTAPL

TETCTAPL

TETCTAPL

TETCTAPL

TETCTAPL

TETCTAPFPUMTTR

 (1)

where M is a number of the software architecture levels;

PFi is theoretical probability of component i failure, i =

1, …, F; PLij is conditional probability of component i

failure under component j failure, i = 1, …, F, j = 1, …,

F; TAi is relative time of the access to component i, i = 1,

…, F; TCi is relative time of failure’s analysis in

component i, i = 1, …, F; Dmj is disjoint sets of

component j at level m, m = 1, …, M, j = 1, …, F; TEi is

relative time of failure recovery in component i, i = 1, …,

F.

The mean time to failure is calculated as follows:

,]]]]]]]]]])1[(

[)1[([)1[(

)1[([)1[(

[)1([

,

,1,

,,1

1

 

  

  

 









Dml
llm

F

imm
mmk

Dik
kki

Djl
llij

F

ijj
ji

F

i
i

TUPL

TUPLTUPL

TUPLTUPL

i
TU

i
PFPUMTTF

(2)

where TUi is relative time of using component i, i = 1,

…, F.

The software availability ratio is calculated as

follows:

.)(/ MTTRMTTFMTTFS 

The software reliability is computed as follows:

 


F

i
ii RPU

s
R

1

, where 
Zik

iki PFR 1 . (3)

where Ri is component i’s reliability, i = 1, …, F; Zi is a

set of component i’s versions, i = 1, …, F.

The cost of software development is calculated as

follows:

 
 

F

i Zij
js CC

1

,

where Ci is the cost of component i’s development, i = 1,

…, F.

2.2 The algorithm of using the generic

modular integrated probabilistic model

of software reliability estimation

The algorithm of software reliability parameters’

evaluation with the help of the developed generic

modular integrated probabilistic model is described

below.

Algorithm 1: software reliability parameters’

evaluation with the help of the developed generic

modular integrated probabilistic model

1) Divide the estimating software into modules, define

the modules’ scopes, their characteristics and

interaction order.

2) Define the number of architecture levels. If the

architecture is multilevel, it is necessary to pass to

step 4 or follow step 3 if it is not.

3) Eliminate Dmj from the model in formulas (1) and

(2). Next, pass to step 4.

4) Define the number of versions. If the architecture is

multiversion, it is necessary to pass to step 6 or

follow step 5 if it is not.

5) Eliminate Zi from the model in formula (3). After

that, pass to step 6.

Modular Integrated Probabilistic Model... Informatica 40 (2016) 125–132 127

6) Define if it is possible to eliminate failures. If it is

not, pass to step 8 or, if it is so, follow step 7.

7) Eliminate TCi, TEi from the model in formula (1).

Then, pass to step 8.

8) Get summarized expressions R, MTTR, and MTTF,

solving formulas (1), (2), and (3).

There is a flowchart of the algorithm of the generic

modular integrated probabilistic model of software

reliability estimation in Figure 1.

Figure 1: Flowchart of the algorithm of the generic

modular integrated probabilistic model of software

reliability estimation.

2.3 The modular integrated probabilistic

model of reliability estimation of the

object-oriented multiversion software

with the distributed architecture

The difficulty in the usage of the generic modular

integrated probabilistic model at the step of designing the

software architecture is that all required parameters are

not always known. If the component reliability is

unknown beforehand, it can be estimated only at the

coding stage. More exact information about reliability

can be obtained at the module testing stage. The

probability of using the component and component’s

failure can be gained after software testing. Parameters

such as access, analysis and recovery component time for

the distributed multiversion software can be estimated

after testing, so it is not ruled out that the structure

formation of the architecture of the projectable software

can be at the conceptual phase. It is possible to build a

class hierarchy and method’s tree for the object-oriented

software. In general, at this step it is necessary to set the

parameters which have to be estimated at the following

stages.

According to the object-oriented approach

computational process is a consecutive calling sequence

of class methods. The number of architecture levels

equals 1 for this variant. Such parameters as access,

analysis and recovery time are parts of the distributed

multiversion software.

Let us examine the modification of the generic

modular integrated probabilistic model for the instance of

the object-oriented multiversion software with the

distributed architecture in detail.

The software architecture is a set of class hierarchies

for the object-oriented approach. Every class is a set of

properties (variables) and methods (functions) of the

object.

The process is a set of transitions from one class

method to different class method [1], [9]. It is obligatory

to satisfy the condition for this model:

1
1




F

i
iPU ,

where F is a general component (class) count in the

software architecture, PUi is a probability of component

i's usage, i = 1, …, F.

The reliability of the multiversion component

depends on the reliability of each version and meta-class

which implements the multiversion approach:

mul
ZK

iki RPFR

i

)1(


 ,

where Ri is a reliability of component i, i = 1, …, F;

Zi is a variety of component i's versions, i = 1, …, F; Rmul

is a reliability of the meta-class which implements the

multiversion approach. Let us mention that the meta-

class should not be considered as the architecture’s

component and it should be eliminated from computing

MTTR, MTTF, and Rs.

The mean time to repair is calculated as follows:

no

yes

no

no

yes

yes

The start

Define

the component’s

scope

Define

the number of

architecture levels

Multilevel?

Eliminate Dmj

from the model

Multiversion?
Eliminate Zi

from the model

Possibility

of failure’s

elimination?

Eliminate TCi,

TEi from the

model

The end

Get summarized

expressions

MTTR and MTTF

128 Informatica 40 (2016) 125–132 R.Y. Tsarev et al.

]].]][[

[[

,1

1

 

 





F

ijj
jjjji

F

i
iiiii

TETCTAPL

TETCTAPFPUMTTR

The mean time to failure is calculated as follows:

]].])1[([

)1([

,1

1

 

 





F

ijj
jjii

F

i
ii

TUPLTU

PFPUMTTF

The software availability ratio is computed in the

following way:

)/(MTTRMTTFMTTFS  .

The software reliability is calculated as follows:

 


F

i
iis RPUR

1

, where 
Zik

iki PFR 1 .

As the suggested approach does not take into

account the conditional probability of the failure in

components, the following model modification was used

in the implementation of the model:

  


F

ijj
jijj

F

i
iis PLRPURPUR

,11

)]1([.

3 Results and discussion
Let us study the program realization of the system of the

reliability estimation of the object-oriented multiversion

software with the distributed architecture based on the

presented model.

3.1 The system of the reliability estimation

of the object-oriented multiversion

software with the distributed

architecture

The modular integrated probabilistic model of reliability

estimation of the object-oriented multiversion software

with the distributed architecture has been realized as the

program system in C# language.

The operational system’s function is:

the system user’s provision of the information about

the projectable software reliability parameters;

the definition of the likehood degree of the modular

integrated probabilistic model of software reliability

estimation in comparison with the real software.

The primary performing functions are:

the definition of the reliability parameters of the

projectable software by means of the modular integrated

probabilistic model;

the definition of the reliability parameters of the

projectable software by means of estimation of its

simulator’s behaviour;

the visualization of components’ behaviour of the

software simulator in the time.

A great number of the system functions forms the

structure from five blocks (Figure 2):

the data reduction provides data input and

presentation in the form which is convenient for the user;

the modular integrated probabilistic model makes it

possible to define the reliability parameters of the

projectable software;

the simulator duplicates the behavior of the

projectable software following the data which are

obtained from the block of data reduction during the

specified number of cycles;

the simulator monitoring is done for the statistics’

gathering of the simulator work and definition of the

reliability parameters of the projectable software

following the collected data;

the output is done to lead the results of system work.

Figure 2: The structure of the system of the object-

oriented multiversion software reliability estimation.

The subsystem “The block of the data reduction”

serves for the solution of the following tasks:

data editing;

checkout of the correction of the posted data.

The statistical data about the structure of the

projectable software are imported into the table with the

clipboard or directly by the user.

The visualization of the array of software parameters

and its components is performed as the table. In case of

having a mistake in edited data the system user will be

informed about it by means of the message “An error”.

The subsystem “The block of the modular integrated

probabilistic model” is basic in the system structure and

serves for definition of the reliability parameters of the

projectable system by means of using the modular

integrated probabilistic model of estimation of object-

oriented multiversion software with the distributed

architecture.

The input data of the block of the modular integrated

probabilistic model is a result of the subsystem “The

block of the data reduction” works.

The block of

the data reduction

The block of

modular

integrated

probabilistic

model

The simulator

block

The block of

the simulator

monitoring

The block of

the output

Modular Integrated Probabilistic Model... Informatica 40 (2016) 125–132 129

The subsystem “The simulator block” is basic in the

system structure and serves for the imitation of the

projectable software work in compliance with the data

received from the subsystem “The block of the data

reduction”. The imitation of software execution

continues during the time interval specified by the user.

During the work of this block it is supposed that each

component of the projectable software is invoked to

execute the probability PUi during the time equal TUi. At

the same time during the execution of the component the

failure will be made with the probability PFi, which time

equals the sum of TAi (the access time of the component

i), TCi (the analysis time of the failure in the component

i) and TEi (the time of failure’s elimination in component

i). Defining the failure, the probability PLij (the

probability of the failure in the component i during the

failure of the component j) is also considered.

The subsystem “The block of simulator monitoring”

is assigned for the statistics information gathering about

simulator work and defining the reliability parameters of

the projectable software on basis of this statistics.

The subsystem “The block of output” serves to lead

the results of the system work. It displays the operating

schedule of the simulator for the user and the results in

the work of the block of simulator monitoring and the

block of the modular integrated probabilistic model.

3.2 The analysis of the modular integrated

probabilistic model of reliability

estimation of the object-oriented multi-

versioned software with the distributed

architecture

The analysis of the modular integrated probabilistic

model of reliability estimation of the software includes

the analysis of the model behaviour subject to the

software components number, conditional and

unconditional probability of the failures in the

components, and also the relation of software reliability

parameters to time characteristics of the components.

Let us guess that the software consists of

homogeneous components with the following

characteristics: the probability of using PUi = 1,

unconditional probability of the failure PFi = 0.1,

conditional probability of the failure PLij = 0 for all j, the

access time TAi = 5 cycles, the analysis time TCi = 7

cycles, the clearing rime of the failure TEi = 10 cycles,

the average time of the using components TUi = 30

cycles. The time of imitation is 1200 cycles.

The analysis of the software reliability relation to the

component count has detected the different behavior

pattern of reliability parameters in the modular integrated

probabilistic model of software reliability estimation

from the component count. Thus, for example, the

relation of the mean time to repair MTTR and of the

reliability R to the component count F has a linear form

(Figure 3 and 4). At the same time, the relation of the

meaning of the mean time to failure to the component

count has a nonlinear form (Figure 5).

Figure 3: The relation of the mean time to repair to the

component count.

Figure 4: The relation of the software reliability to the

component count.

Figure 5: The relation of the mean time to failure to the

component count.

Analyzing the relation of software reliability

parameters to the committed component count F = 10

from the quantity of the unconditional probability of the

failure in the software components, the linear growth of

the mean time to repair time (Figure 6), the scaling-down

of the mean time to failure and the reliability have been

detected (Figure 7 and 8).

Figure 6: The relation of the mean time to repair to the

quantity of unconditional probability of the failure in

software components.

130 Informatica 40 (2016) 125–132 R.Y. Tsarev et al.

Figure 7: The relation of the mean time to failure to the

quantity of the unconditional probability of the failure in

the software components.

Figure 8: The relation of the reliability to the quantity of

unconditional probability of the failure in software

components.

Analyzing the relation of software reliability

parameters to the committed component count F = 10

from the value of the conditional probability of the

failure in the software components, the scaling-down of

the mean time to failure MTTF is marked due to

increasing of unconditional probability of the failure in

the component (Figure 9). The scaling-up of the mean

time to repair MTTR occurs during the augmenter of the

unconditional probability of the failure in software

components (Figure 10). At the same time, the relation of

the probability point of the meaning of the software

reliability R to the value of conditional probability of the

failure in the component is absent (Figure 11).

Figure 9: The relation of the mean time to failure to the

conditional probability of the failure in the component in

case of the failure’s appearance in component 1.

Figure 10: The relation of the mean time to repair to the

conditional probability of the failure in the component in

case of the failure’s appearance in component 1.

Figure 11: The relation of the software reliability to the

conditional probability of the failure in the component in

case of the failure’s appearance in component 1.

As this exponent of the software reliability as the

probability of no-failure operation does not take into

account conditional probability of the failure in

components, let us use its modified evaluation (10) to

increase the quality of the forecast. The result is shown in

Figure 12.

Figure 12: The relation of the software reliability to

conditional probability of the failure in the component

during the failure’s appearance in component 1.

In Figure 13 there is a relation of the average time of

usage of the component from the component count

included in the software structure to the average time

between the failures which equals 675 cycles.

Modular Integrated Probabilistic Model... Informatica 40 (2016) 125–132 131

Figure 13: The relation of the average time of the usage

of the component to the component count in the system.

In Figure 14 there is a relation of the mean time of

the recovery of the component from the software

component count to the average time of the system

recovery which equals 11 cycles.

Figure 14: The relation of the mean time of the recovery

after the failure of the component to the component count

in the system.

During the analysis a backward exponential relation

of the average time of the component recovery to the

software component count has been detected.

The analysis has shown a high forecast accuracy of

the meanings of the reliability parameters in the modular

integrated probabilistic model of reliability estimation for

the systems with a low intermodule relation. The

degradation of the forecast accuracy has been detected

for the systems with a high intermodule relation who is

specified by a lack of attention to conditional probability

of the component’s failure and partial ignorance of the

intermodule communications and the depth of system

components integration. The presented modification of

reliability calculation for the modular integrated

probabilistic model permits to expand a model range of

application and to improve the quality of forecasting.

4 Conclusion
The presented generic modular integrated probabilistic

model of reliability estimation of software permits to do

sums of assessment of the software reliability parameters

of different architecture: multilevel, multiversion,

distributed, object-oriented ones. The authors have

offered the algorithm of the developed model application

for the software reliability estimation with specified

software architecture.

In the work the modification of generic modular

integrated probabilistic model for the case of the object-

oriented multiversion software with the distributed

architecture has been analyzed in detail.

The developed system on the basis of the presented

modification of the generic modular integrated

probabilistic model for the case of the object-oriented

multiversion software with the distributed architecture

provides end-to-end solution of the following problems:

the system user’s support in reliability parameters of the

projectable software and the definition of the adequacy

degree of modular integrated probabilistic model of

software reliability estimation towards the real software.

The research has confirmed high performance of the

modular integrated probabilistic model of software

reliability estimation which is characterized by the weak

dependence between the modules. The nonlinear relation

between the quantities of the average time of using the

component, the average time of recovery after the

component’s failure and the number of the components

in software, and also behaviour pattern of the model

during the change of the quantities in conditional and

unconditional probability of the failure in software

components have been detected. It has been revealed

experimentally that the mean time to failure and the

mean time to repair linearly depend on unconditional

probability of the failure in the components of software.

5 Acknowledgment
The reported study was funded by RFBR according to

the research project №16-57-46016 СТ_а and by

TUBITAK according to the research project №215E196.

References

[1] Abdallah, C., Hafida, B. (2010). A new

architectural approach for dynamic adaptation of

components-based software using multi agent

system. Control Engineering and Applied

Informatics, vol.12, no.4, pp. 43-50.

[2] Avizienis, A., Laprie, J.C., and Randell, B. (2001).

Fundamental Concepts of Dependability, Research

Report no. 1145, LAAS-CNRS.

[3] Avizienis, A., Laprie, J.C., Randell, B. and

Landwehr, C. (2004). Basic concepts and taxonomy

of dependable and secure computing. IEEE

Transactions on Dependable and Secure

Computing, vol.1, no.1, pp. 11-33.

[4] Benso, A., Di Carlo, S. (2011). The art of fault

injection. Control Engineering and Applied

Informatics, vol.13, no.4, pp. 9-18.

[5] Boehm, B. (2011). The Future of Software

Engineering, Springer Berlin Heidelberg.

[6] Golubev, I.M., Tsarev, R.Ju., Semenko, T.I. (2005).

N-version software systems design. 11th

International Scientific and Practical Conference of

Students, Postgraduates and Young Scientists;

"Modem Techniques and Technologies", MTT 2005

- Proceedings, IEEE, Tomsk, Russian Federation,

pp. 147-149.

132 Informatica 40 (2016) 125–132 R.Y. Tsarev et al.

[7] Huang, C.-Y., Hung, T.-Y. (2010). Software

reliability analysis and assessment using queueing

models with multiple change-points. Computers

and Mathematics with Applications, vol.60, no.7,

pp. 2015-2030.

[8] Huang, G., Mei, H., and Yang, F. (2006). Runtime

recovery and manipulation of software architecture

of component based systems. Automated Software

Engineering, vol.13, no.2, pp. 257-281.

[9] Huang, C.-Y., Lin, C.-T. (2006). Software

reliability analysis by considering fault dependency

and debugging time lag. IEEE Transactions on

Reliability, vol.55, no.3, pp. 436-450.

[10] Kang, W.-H., Kliese, A. (2014). A rapid reliability

estimation method for directed acyclic lifeline

networks with statistically dependent components.

Reliability Engineering and System Safety, vol.124,

pp. 81-91.

[11] Kulyagin, V.A., Tsarev, R.Y., Prokopenko, A.V.,

Nikiforov, A.Y., Kovalev, I.V. (2015). N-version

design of fault-tolerant control software for

communications satellite system. 2015

International Siberian Conference on Control and

Communications, SIBCON 2015 - Proceedings,

IEEE Inc., Omsk, Russian Federation, pp. 1-5.

[12] Landon, J., Özekici, S., Soyer, R. (2013). A Markov

modulated Poisson model for software reliability.

European Journal of Operational Research,

vol.229, no.2, pp. 404-410.

[13] Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.

(1985). Fault tree analysis, methods, and

applications - a review. IEEE Transactions on

Reliability, vol.34, no.3, pp. 194-203.

[14] Li, X., Xie, M., Ng, S.H. (2010). Sensitivity

analysis of release time of software reliability

models incorporating testing effort with multiple

change-points. Applied Mathematical Modeling,

vol.34, no.11, pp. 3560-3570.

[15] Myers, G.J., Hocker, D.G. (1981). Use of software

simulators in the testing and debugging of

microprogram logic. IEEE Transactions on

Computers, vol.C-30, no.7, pp. 519-523.

[16] Okamura, H., Dohi, T., Osaki, S. (2012). Software

reliability growth models with normal failure time

distributions. Reliability Engineering and System

Safety, vol.16, pp. 135-141.

[17] Park, G.-Y., Jang, S.C. (2014). A software

reliability estimation method to nuclear safety

software. Nuclear Engineering and Technology,

vol.46, no.1, pp. 55-62.

[18] Rekab, K., Thompson, H., Wu, W. (2013). A

multistage sequential test allocation for software

reliability estimation. IEEE Transactions on

Reliability, vol.62, no.2, pp. 424-433.

[19] Rekab, K., Thompson, H., Wu, W. (2013). An

efficient test allocation for software reliability

estimation. Applied Mathematics and Computation,

vol. 220, pp. 94-103.

[20] Toader, C. (2010). Increasing reliability of web

services. Control Engineering and Applied

Informatics, vol.12, no.4, pp. 30-35.

[21] Tyagi, K., Sharma, A. (2012). A rule-based

approach for estimating the reliability of

component-based systems. Advances in

Engineering Software, vol.54, pp. 24-29.

[22] Zheng, C., Liu, X., Huang, S., Yao, Y. (2011). A

parameter estimation method for software reliability

models. Procedia Engineering, vol.15, pp. 3477-

3481.

