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Effective software effort estimation is one of the challenging tasks in software engineering. There have
been various alternatives introduced to enhance the accuracy of predictions. In this respect, estimation ap-
proaches based on algorithmic models have been widely used. These models consider modeling software
effort as a function of the size of the developed project. However, most approaches sharing a common
thread of complex mathematical models face the difficulties in parameters calibration and tuning. This
study proposes using a directed artificial bee colony algorithm in order to tune the values of model param-
eters based on past actual effort. The proposed methods were verified with NASA software dataset and the
obtained results were compared to the existing models in other literature. The results indicated that our
proposal has significantly improved the performance of the estimations.

Povzetek: S pomočjo algoritma umetne čebelje kolonije so optimirani parametri za oceno potrebnega soft-
verskega dela.

1 Introduction

Software effort estimation is the process of predicting the
most realistic amount of effort which is usually expressed
in terms of person-hours required to develop or maintain
software based on incomplete, uncertain and noisy input.
This activity has become a crucial task in software engi-
neering and project management. Effort estimation at the
early stages of software development is a challenge due to
the lack of understanding the requirements and information
regarding to the project. Both underestimated and overes-
timated effort are harmful for projects under development.
Underestimation results in a situation where commitments
of the project cannot be accomplished because of a short-
age of time and/or resources. In contrast, overestimation
can lead to the rejection of a project proposal or cause the
allocation of an excess of resources to the project [1].

Several techniques for cost and effort estimation have
been proposed over the last few decades, and they can be
classified into three main categories [2]. These categories
comprise:

1. Expert judgement [3]: a technique widely used, re-
lies on an expert’s previous experience on similar
projects to gather, evaluate, discuss, and analyze data
concerning a target project to generate an estimation.

2. Algorithmic models [4]: also known as parametric
models attempt to represent the relationship between
effort and characteristics of project. The main cost
driver of these models is the software size, usually
measured by Kilo Line of Code (KLOC) or function

point. This is still the most popular technique in the
literature [26]. These models include COCOMO I [6],
COCOMO II [7], SLIM model [8], and SEER-SEM
[9].

3. Machine learning: In recent years, machine learning
approaches have been used in conjunction or as alter-
native to the above two techniques. These techniques
in this group consist of fuzzy logic models [10], neu-
ral networks [11], case-based reasoning [2], and re-
gression trees [12].

However, none of the aforementioned approaches are
complete and can be appropriate in all situations [13]. This
study focuses on the algorithmic models and deals with
their difficulties in parameters calibration and tuning in or-
der to enhance the accuracy of software effort predictions.
The objective of this study is to focus on improving the al-
gorithmic models which were proposed in the literatures of
Sheta [14] and Uysal [15] by using the directed artificial
bee colony algorithm with several modifications.

Swarm intelligence is the discipline that collectives be-
haviors from the local interactions of the individuals with
each other and with their environment. This discipline also
models swarms that are able to self-organize [16]. Exam-
ples of systems studied by swarm intelligence are behav-
iors of real ants [17], schools of fish, flocks of birds [18].
Artificial bee colony (ABC) algorithm [16] is one of the
most-studied swarm intelligence algorithms. There have
been a lot of improved variants of ABC algorithm used
to tackle a wide range of optimization problems. Among
these studies, the directed artificial bee colony (DABC) al-
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gorithm [19] is a new version of basic ABC. This algorithm
is better than the original ABC in terms of solution quality
and convergence characteristics [19]. This work, therefore,
applies the DABC in order to optimize parameters of algo-
rithmic models for software cost estimation.

Our contributions in this paper include:

– We combine a control parameter and direction infor-
mation for each dimension of food source position
to update position of the current food source in the
state-of-the-art of the Directed Artificial Bee Colony
Algorithm. We also use a new boundary constraint-
handling mechanism for the DABC if the position of
the food source exceeds the boundaries of variables.

– We apply the DABC to improve the effort estimation
models introduced in recent literature.

– We evaluate the efficiency of the proposed approaches
compared with original models.

The rest of this paper is organized as follows. Section 2
briefly represents software effort estimation models in gen-
eral and algorithmic models in particular. Section 3 shows
the DABC algorithm. Experimental results are presented
in Section 4 and Section 5 concludes the obtained results
of the study.

2 Software effort estimation models
Estimation methods based on algorithmic models are com-
mon. Researchers have attempted to derive algorithmic
models and formulas to present the relationship between
size, cost drivers, methodology used in the project and ef-
fort. As a result, an algorithmic model can be expressed as
follows:

Effort = f(x1, x2, ..., xn) (1)

where {x1, x2, ..., xn} denote the cost factors. In additon
to the software size, there are many other cost factors pro-
posed and used by Boehm et al in the Constructive Cost
Model (COCOMO) II [20]. These cost factors can be di-
vided into four categories:

– Product factors: required software reliability,
database size, product complexity.

– Computer factors: execution time constraint, main
storage constraint, virtual machine volatility, and
computer turnaround constraints.

– Personnel factors: analyst capability, application ex-
perience, programmer capability, virtual machine ex-
perience, and language experience.

– Project factors: multi-site development, use of soft-
ware tool, and required development schedule

The existing algorithmic models differ in two aspects:
the selected cost factors, and the function f used.

2.1 Algorithmic models
The simplest formula of relationship between effort and in-
put factors is a linear function, which means that if size in-
creases then effort also rises at a steady rate. Linear models
have the form:

Effort = a0 +

n∑

i=1

ai ∗ xi (2)

where the coefficients a0, a1, ..., an are selected to best fit
the completed project data.

The linear model, nevertheless, is not appropriate for es-
timates of non-trivial projects in large and complicated en-
vironments. Therefore, more complex models were devel-
oped. These ones reflected the fact that costs do not nor-
mally increase linearly with project size. In the most gen-
eral form, an algorithmic estimation for software cost can
be represented as:

Effort = A ∗ SizeB ∗M (3)

where A is a constant factor depending on local organiza-
tional practices and the kind of software that is developed.
Size might be either the size of the software or a function-
ality estimation expressed in function or object points. The
value of exponent B is normally between 1 and 1.5. M is
a multiplier formulated by combining process, product and
development attributes.

COCOMO which was introduced by Boehm [21] is one
of a very famous software effort estimation models using
general formula presented in Eq. 3. The COCOMO model
is an empirical model that was derived by collecting data
from 63 software projects. These data were analyzed to
construct a formula that was the best fit to the observations.
The formula of the basic COCOMO is shown in Eq. 4.

E = A ∗ (KLOC)B (4)

where E shows the software effort computed in person-
months. KLOC stands for Kilo Line of Code. The val-
ues of the parameters A and B depend mainly on the type
of software project. There were three classes of software
projects that were classified based on the complexity of
projects. They are Organic, Semidetached and Embedded
models [21].

1. For simple, well-understood applications (Organic): A
= 2.4, B = 1.05

2. For more complex systems (Semidetached): A = 3.0,
B = 1.15

3. For Embedded systems: A = 3.6, B = 1.2

COCOMO model ignores requirements and documen-
tation, customer skills, cooperation, knowledge, hardware
issues, personnel turnover levels at all. Therefore, with
regard to the complex projects, the estimated results us-
ing COCOMO model are not accurate. Extensions of CO-
COMO, such as COMCOMO II [20], enhanced the quality
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of software estimates. However, this paper does not take
into consideration this model.

Another method to improve the quality of the COCOMO
model is to complement a methodology (ME) factor used
in the software project into the equation to estimate effort.
It was also found that adding the ME factor similar to the
classes of regression models assists to stabilize the model
and reduce the influence of noise in measurements [14].
Software effort estimation model is changed to:

E = f(KLOC,ME) (5)

where f is a nonlinear function in terms of KLOC and ME.
Sheta [14] presented two various versions for function f

as follows:

– Sheta’s Model 1:

E = A ∗ (KLOC)B + C ∗ME (6)

where A = 3.1938, B = 0.8209, C = −0.1918.

– Sheta’s Model 2:

E = A ∗ (KLOC)B + C ∗ME +D (7)

where A = 3.3602, B = 0.8116,
C = −0.4524, D = 17.8025.

Uysal [15] developed Sheta’s models and proposed two
new models as the following functions:

– Uysal’s Model 1:

E = A ∗ (KLOC)B + C ∗MED + E (8)

where A = 3.3275, B = 0.8202,
C = −0.0874, D = 1.6840, E = 18.0550.

– Uysal’s Model 2:

E = A ∗ (KLOC)B + C ∗MED

+E ∗ ln(ME) + F ∗ ln(KLOC) +G
(9)

where A = 3.8930, B = 0.7923,
C = −0.2984, D = 1.3863, E = 2.8935,
F = −1.2346, G = 15.5338.

This study uses the DABC algorithm with several modi-
fications to optimize the parameters of four aforementioned
models in order to enhance the accuracy of estimates.

2.2 Measuring estimation quality
The approaches which are widely used to evaluate the qual-
ity of software effort estimation models encompass:

– The Mean Magnitude of Relative Error (MMRE) [22]

– The Median Magnitude of Relative Error (MdMRE)
[23]

– The Prediction at level N (PRED(N)) [24]

The Mean Magnitude of Relative Error is probably the
most widely employed evaluation criterion for appraising
the performance of software prediction models [26]. The
MMRE is defined as Eq. 10.

MMRE =
1

T

T∑

i=1

MREi (10)

where T is the number of observations, i expresses each
observation for which effort is predicted and MRE is Mag-
nitude of Relative Error, which is computed as:

MREi =
|ActualEfforti − EstimatedEfforti|

ActualEfforti
(11)

Conte et al. [24] indicated that MMRE ≤ 0.25 is ac-
ceptable for effort estimation models. Given two data sets
A and B, suppose that data set A includes small projects
whereas B contains large projects. Given everything else
is equal and MMRE(B) is smaller than MMRE(A). As a
result, a prediction model assessed on data set B will be
considered as better than a competing model evaluated on
data set A.

Unlike the mean value, the median always shows the
middle value m, given a distribution of values, and assures
that there is the same number of values above m as below
m. Therefore, the median of MRE values for the number of
observations called the MdMRE is an alternative to evalu-
ate the performance of software prediction models. Similar
to MMRE, the value of MdMRE less than or equal to 0.25
is acceptable for effort estimation models.

Another method which is commonly used is the Predic-
tion at level N known as PRED(N). It is the percentage of
projects for which the predicted values fall within N% of
their actual values. For instance, if PRED(25) = 85, this
indicates that 85% of the projects fall within 25% error
ranges. Conte et al [24] claimed that N should be set at
25% and a good estimation system should offer this accu-
racy level to 75% of the effort. Eq. 12 illustrates the way
to compute the value of PRED(N):

PRED (N) =
100

T
∗

T∑

i=1

{
1, if MREi ≤ N

100

0, otherwise
(12)

Although MMRE and MRE were frequently used for
assessing the accuracy of effort estimation, Shepperd and
MacDonell [25] criticized that the use of these criteria is
biased. For instance, we have two projects where the first
project is an over-estimate and the second project is an
under-estimate. The actual and estimated values of the ef-
fort of project 1 are 20 and 100 respectively. Project 2 has
the actual effort value being 100, and the estimated value
is 20. Both estimates have identical absolute residual with
80, but the MMRE values differ by an order of magnitude.
Consequently, MMRE will be biased towards prediction
systems that under-estimate [25]. Therefore, Shepperd and
MacDonell proposed a novel measure called mean absolute
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residual (MAR), and it is shown in Eq. 13.

MAR =

T∑
i=1

|ActualEfforti − EstimatedEfforti|

T
(13)

This paper uses all four approaches above to assess the
accuracy of the various software effort estimation models
presented. Next section shows the DABC algorithm with
some modifications to optimize the parameters of predic-
tion models.

3 Directed artificial bee colony
algorithm

The original ABC algorithm was proposed by Karaboga
[16] based on simulating intelligent behavior of real honey
bee colonies. One half of the artificial bees population con-
tains the employed bees, while the other one includes the
onlookers and scouts. In this algorithm, the total number
of food sources (solutions) is equal to number of employed
bees. The employed bees search the food around the food
source and then give their information about the quality of
the food sources to the onlookers. On the basis of infor-
mation obtained, the onlooker bees make a decision, which
food source to visit, and further search the foods around
the chosen food sources. When the food source is ex-
hausted, the corresponding employed and onlooker bees
become scouts. These bees will abandon the food source
and search for a new food source randomly. The general
structure of ABC algorithm is shown in Algorithm 1.

Algorithm 1 General framework of Artificial Bee Colony
Algorithm

Initialization Phase
while Cycle < Maximum Cycle Number (MCN) do

Employed Phase
Onlooker Phase
Scout Phase
Memorize the best solution achieved so far

end while

There are four control parameters in the original ABC.
They are the maximum cycle number (MCN), the size of
the population (SP) (the sum of numbers of employed and
onlooker bees), the number of trials for abandoning food
source limit and the number of scout bees (usually chosen
as 1) [16].

In the initialization phase, the population of solutions is
randomly produced in the range of parameters by using Eq.
14:

xij = Lbj + r ∗ (Ubj − Lbj),
i = 1, 2, ..., SP/2, j = 1, 2, ..., D

(14)

where D is the number of decision variables of the problem
(also the number of variables need to be optimized in soft-
ware effort estimation models), xij is the jth dimension of

the ith food source which will be assigned to the ith em-
ployed bee. Lbj and Ubj are the lower and upper bounds
of the jth dimension respectively, r is a random number in
the range of [0, 1].

After the food sources are generated,
their qualities are measured by using
Eq. 15.

fiti =

{
1

1+fi
, if fi > 0

1 + |fi|, otherwise
(15)

where fiti is the fitness of the ith food source, and fi is
the corresponding cost function value for the optimization
problem. This study uses fi as the value of MMRE on N
projects of the training dataset using parameter values of
the ith food source, fi =MMREi.

In the employed bee phase of the orig-
inal ABC algorithm, every solution xi
(i = 1,...,SP/2) is updated according to the following
equation:

vij = xij + ϕ ∗ (xij − xkj) (16)

where vi is the candidate food source position generated
for food source position xi, xij denotes the jth parameter
of xi, j and k are random indexes (j, k ∈ {1, ..., SP/2}),
ϕ is a uniform random number in the range of [-1, 1], xk
presents the other solution chosen randomly from the pop-
ulation.

It can be seen that only one dimension of the food source
position is updated by the employed bees. This leads to a
slow convergence rate. In order to overcome this issue,
Akay and Karaboga [27] introduced a control parameter
called modification rate (MR). In this improved algorithm,
whether a dimension will be updated is decided by using
the predefined MR value which is a number in the range of
[0,1]. Eq. 16 is modified as follows:

vij =

{
xij + ϕ ∗ (xij − xkj), if rij < MR

xij , otherwise
(17)

where rij is a random number generated in the range of
[0, 1] for the jth parameter of xi. If rij is less than MR,
the dimension j is changed and at least one dimension is
updated by using Eq. 16, otherwise the dimension j is re-
mained [27].

Kiran et al. [19] claimed that the search process around
the current food source in the basic ABC is fully random
in terms of direction because ϕ is a random number in [-1,
1]. Therefore, they proposed adding direction information
for each dimension of food source position and Eq. 16 is
changed as follows:

uij =





xij + ϕ ∗ (xij − xkj), if dij = 0

xij + r ∗ |xij − xkj |, if dij = 1

xij − r ∗ |xij − xkj |, if dij = −1
(18)

where ui is the candidate food source position generated
for food source position xi, dij is the direction information
for jth dimension of the ith food source position and while
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ϕ is a random number in the range of [-1, 1], r is a number
generated randomly in the range of [0, 1].

This paper uses the following function to update position
of the current food source:

vij =

{
uij , if rij < MR

xij , otherwise
(19)

where rij is a random number generated in the range of [0,
1], uij is presented in Eq. 18.

Algorithm 2 The pseudo code of the DABC algorithm
Input:

– the maximum cycle number: MCN

– the size of the population: SP

– the number of trials for abandoning food source: limit

– the modification rate: MR

– the dimensionality: D
Output: The best individual in the population: ~xbest =
{x1, x2, ..., xD}.

Initialize the population solutions xij , i = 1,...,SP /2, j =
1,...,D.
Compute fitness value for each xi by using Eq. 15
cycle = 1
while cycle ≤MCN do

for i = 1 to SP/2 do
- Generate a new solution vi for the employed bee xi

by using Eq. 19
- Apply the boundary constraint-handling mechanism
for the created solution vi by using Eq. 20
- Compute fitness value for each xi by using Eq. 15
- Apply the greedy selection process

end for
for i = 1 to SP/2 do

- Compute the probability value pi for the solution xi

by Eq. 21
end for
Formulate the set of potential solutions S by using the
roulette-wheel selection mechanism to select SP/2 solu-
tions in the population based on the probability value pi
for each solution xi in S do

- Generate a new solution vi for the employed bee xi

by using Eq. 19
- Apply the boundary constraint-handling mechanism
for the created solution vi by using Eq. 20
- Compute fitness value for each xi by using Eq. 15
- Apply the greedy selection process

end for
for i = 1 to SP/2 do

if value litmit of solution xi is reached then
Produce a random solution and replace
xi with this solution
break;

end if
end for
Memorize the best solution achieved so far
cycle = cycle+ 1

end while

At the beginning of the algorithm, the direction infor-
mation for all dimensions is equal to 0. If the new solution

obtained by Eq. 18 has fitness value better than old one, the
direction information will be updated. If prior value of the
dimension is less than current value, the direction informa-
tion of this dimension is set to -1; otherwise it is set to 1. If
the fitness of candidate food source is worse than old one,
the direction information of the dimension is assigned to 0.
This way will help to improve the local search capability
and enhance the convergence rate of the algorithm [19].

After generating the candidate food source position, if
this position exceeds the boundaries of the variables then
boundary constraint-handling mechanism is used and a di-
verse set of parameter values is produced, which helps to
maintain diversity in the population. This paper applies the
mechanism proposed in the Kukkonen and Lampinen work
[28]. This mechanism is presented as follows:

vij =





2 ∗ Lbj − vij , if vij < Lbj

2 ∗ Ubj − vij , if vij > Ubj

vij , otherwise
(20)

where vij is the jth variable of the candidate solution vi,
Lbj and Ubj are the lower and upper bounds of the vari-
able vij . By using Eq. 20, if there are a lot of solutions fo-
cused on the extreme values of the search space, the bound-
ary constraint-handling mechanism will help algorithm to
avoid getting stuck in the local minimum. After boundary
constraint-handling mechanism is applied to the new solu-
tion, if the fitness of candidate food source is better than the
old one, the new food source position will be memorized
and trial counter of the food source is reset; otherwise the
trial counter of the food source is increased by 1. This task
is called the greedy selection process.

In the onlooker phase, each onlooker bee chooses an em-
ployed bee based on the probability value associated with
food source of the employed bee and improves the quality
of the food source chosen by using roulette-wheel selec-
tion mechanism [29] with the probability value given as
follows:

pi =
fiti

SP/2∑
j=1

fitj

(21)

where pi is the being selected probability of the ith em-
ployed bee by an onlooker bee. Thereafter, the onlooker
bee searches around the food source position chosen and
the update process for the current food source position in
the onlooker bee phase is the same as in the aforementioned
employed bee phase.

In the scout phase, solutions that do not change over a
certain number of trials are again initialized by using Eq.
14. In our study, each cycle has a maximum of one scout
bee. The details of DABC algorithm are shown in Algo-
rithm 2.
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4 Experiments and results

4.1 Experimental dataset
Experiments in this paper have been conducted on a dataset
represented by Bailey and Basili [30]. The dataset includes
two variables, which are the Kilo Line of code (KLOC) and
the Methodology (ME). The measured effort is described in
person-months. The dataset is shown in Table 1.

Project No. KLOC ME Measured Effort
1 90.2 30.0 115.8
2 46.2 20.0 96.0
3 46.5 19.0 79.0
4 54.5 20.0 90.8
5 31.1 35.0 39.6
6 67.5 29.0 98.4
7 12.8 26.0 18.9
8 10.5 34.0 10.3
9 21.5 31.0 28.5

10 3.1 26.0 7.0
11 4.2 19.0 9.0
12 7.8 31.0 7.3
13 2.1 28.0 5.0
14 5.0 29.0 8.4
15 78.6 35.0 98.7
16 9.7 27.0 15.6
17 12.5 27.0 23.9
18 100.8 34.0 138.3

Table 1: NASA software project data

In [14] and [15], authors utilized the data of first thirteen
projects to optimize parameters of the estimation model,
and five remaining projects were used for testing the perfor-
mance after optimizing the parameters. To ensure compar-
ison with these studies, we also took first thirteen projects
as a learning set, and remaining ones are the testing set.

4.2 Experimental setup
The parameters of software effort estimation models are
real numbers. With regard to Sheta’s Model 1 and Sheta’s
Model 2, this paper used the range of parameters as pre-
sented in [14], and shown in Table 2. Table 3 presents pa-

Parameter Minimum Value Maximum Value
a 0 10
b 0.3 2
c -0.5 0.5
d 0 20

Table 2: Configuration parameters for Sheta’s Model 1 and
Sheta’s Model 2

rameter settings for Uysal’s Model 1, and Table 4 shows
configuration parameters for Uysal’s Model 2.

In [14], Sheta used the maximum generation for genetic
algorithms to optimize parameters of Sheta’s Model 1 and
Sheta’s Model 2 is 100. This paper, therefore, also used the

Parameter Minimum Value Maximum Value
a 0 10
b 0.3 2
c -0.5 0.5
d 0 5
e 0 20

Table 3: Parameter settings for Uysal’s Model 1

Parameter Minimum Value Maximum Value
a 0 10
b 0.3 2
c -0.5 0.5
d 0 5
e 0 5
f -5 5
g 0 20

Table 4: Parameter settings for Uysal’s Model 2

value of 100 for the maximum cycle number of the DABC
algorithm when optimizing parameters of models. The re-
mainder settings of the DABC algorithm to optimize pa-
rameters for four software effort estimation models were
as follows:

– The size of the population: 10

– The number of trials for abandoning food source: 2

– The modification rate: 0.7

4.3 Results and empirical evaluations
The model parameters which presented by Eq. 6 were op-
timized using the DABC algorithm as bellow. This model
after optimizing parameters using the DABC was called as
Model 1.

A = 5.4507, B = 0.7082, C = −0.3184

The model represented by Eq. 7 was named as Model 2 af-
ter its parameters was optimized by using the DABC algo-
rithm. The optimal values of parameters of Model 2 were
as bellow:

A = 1.7319, B = 0.966, C = −0.5,
D = 11.5731

This paper calls the software effort estimation model pre-
sented by Eq. 8 after optimizing parameters using the
DABC as Model 3. The optimal values of parameters in
Model 3 were as follows:

A = 2.3003, B = 0.8982, C = −0.0164,
D = 2.0623, E = 14.1862

Model shown by Eq. 9 after optimizing parameters using
the DABC was called as Model 4. Model 4 got the optimal
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values as bellow:

A = 4.4442, B = 0.7826, C = −0.373,
D = 1.2756, E = 2.4425,

F = −4.9198, G = 17.0804

Table 5 shows the actual effort, and predicted effort val-
ues using Model 1, Sheta’s Model 1, Model 2, Sheta’s
Model 2, and simple Regression model. Table 6 presents
measured data, predicted values of Model 3, Uysal’s Model
1, Model 4, Uysal’s Model 2, and simple Regression
model.

First of all, we assess the accuracy of models using cri-
teria MMRE, MdMRE, and PRED(25). Table 7 shows the
obtained results of nine estimation models on 18 NASA
projects. The results indicated that Model 1 could not
improve the MMRE of Sheta’s Model 1, while Model 2
significantly enhanced the MMRE of Sheta’s Model 2 by
46.5%. After applying the DABC algorithm, the MMRE of
Uysal’s Model 1 decreased by more than 5.8% and an ad-
ditional 5.6% improvement over Uysal’s Model 2 was ob-
tained. Model 2, Model 3, and Model 4 produced the bet-
ter results compared with simple regression with regard to
MMRE. This means that the efficiency of software cost es-
timation models except for Model 1 has been significantly
improved after using the DABC algorithm to optimize pa-
rameters. With regard to MdMRE, Model 4 gave the lowest
result, the second one belonged to Model 3, while Sheta’s
Model 2 produced the highest value. In general, the values
of MdMRE for models with parameters optimized using
the DABC are lower than those using original models.

With respect to PRED(25), Model 4, Model 3, and Re-
gression produced the highest value, while the lowest value
belonged to Sheta’s Model 2. An improvement of 5.5%
was achieved in PRED(25) on Uysal’s models after apply-
ing the DABC algorithm for optimizing parameters. Three
out of four improved models gave the values of PRED(25)
higher than 75%. This proved that the improved models
have been good effort estimation systems. Meanwhile, the
values of PRED(25) of both models proposed by Sheta
were less than 75%. These results indicated that the models
of Sheta have not been suitable for making effort estimates.

In general, the improved models using the DABC algo-
rithm to optimize parameters presented the good prediction
accuracy, and were better than the original models in terms
of all evaluation criteria. It is also seen that Model 4 gave
the most accurate predictions.

As mentioned above, the MMRE criterion is biased, so
MAR is used for evaluating the performance of predicted
models. The values of MAR of each model on 18 projects
are reported in Table 8.

Based on the results of the experiments, it is seen that all
improved models outperformed their original ones in terms
of MAR. It is also found that the Model 4 overcame all
models, while the Model 3 was ranked second. Although
Sheta’s models were enhanced by using DABC to optimize
parameters, they could not show better performance when
compared with Uysal’s models and the simple regression

model. These results continue to prove that Sheta’s models
are not suitable for software effort estimation.

To enrich the study of the MAR results of the Model 4,
we carried out statistical tests to see whether the Model 4
is statistically different from other models in datasets. We
also applied statistical tests to see whether the Model 3, the
second winning model, is statistically different from other
models. We used a normality test on the results obtained
and identified that data were not normally distributed. For
this reason, we employed the Wilcoxon test, which is a
nonparametric test; this type of tests should be used when
the distribution is not normal. Table 9 gives the results of
the Wilcoxon test based on the 95 % confidence interval
(CI). Bold text indicates that the model is statistically dif-
ferent at 95% CI. If the p-value is less than or equal to 0.05,
then we conclude that the current model is statistically dif-
ferent from the other models at 95% CI. Otherwise, models
are not statistically different at 95% CI. Based on Table 9,
we can see that the Model 4 is statistically different from
the model 3, and Sheta’s Model 2, but it fails to be statis-
tically different from remaining models. Model 3 is sta-
tistically different from the Model 2 and Sheta’s Model 2,
but it is not also statistically different from the remaining
models.

5 Conclusion and future work

In this paper, we studied the problem of optimizing param-
eters for software effort estimation models. The directed
artificial bee colony algorithm with several modifications
was used to tackle this optimization problem. The models
after optimizing parameters produced the results whose ac-
curacy was considerably improved in comparison with the
original models in terms of all evaluation criteria such as
MMRE, MdMRE, PRED(25), and MAR. In general, the
accuracy of software effort is enhanced by more than 5.5%
by applying the improved models.

The future work focuses on employing the DABC al-
gorithm to optimize parameters for other effort estimation
models. We also use other algorithms of Swarm Intelli-
gence for four models presented in this paper and carry out
the comprehensive assessment in terms of the performance
of algorithms for the cost estimation problem.
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