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This paper proposes a hybrid model that integrates convolutional neural networks and support vector 

machines, and combines multi strategy collaborative optimization to address the complexity and 

dynamism of secondary system configuration tasks in smart grids. The system is based on multi -source 

operational data and constructs a three-stage process of "feature extraction model training configuration 

output". The CNN part adopts a three-layer convolution and pooling structure (convolution kernel size 3 

× 3, ReLU activation) to extract topology and load features; The SVM part uses radial basis kernel 

functions to classify and optimize high-dimensional features. During the training process, set the learning 

rate to 0.001, batch size to 128, iteration times to 500, and evaluate the model's generalization 

performance through five-fold cross validation. The algorithm was trained using 1000 scheduling 

instances from 3 substations for simulation verification. The configuration accuracy reached 96.8%, 

which is 12.4% higher than manual experience configuration. The average response time was shortened 

to 0.42 seconds, and the error rate was stably controlled within 2.1%. In terms of system integration, a 

modular deployment structure is designed to support closed-loop operation of inference calculation, 

configuration generation, and result feedback. It is compatible with adaptive configuration parameters 

at different voltage levels such as 110kV and 220kV. In comparative testing, under consistent operating 

conditions, the configuration efficiency of this method increased by about 39%, and the system ran 

continuously for 72 hours without any configuration deviation or interruption, demonstrating good 

stability. Research has shown that the CNN-SVM fusion model has significant advantages in extracting 

features and optimizing classification, while the modular integration of various strategy optimization 

architectures and systems has the effect of improving setup efficiency and trustworthiness. This study 

integrates CNN-SVM, GA/PSO, reinforcement learning, and graph neural networks to form a 

comprehensive strategy optimization system suitable for the secondary system setting of substations. 

Unlike previous separate applications of CNN or SVM, this study highlights the synergistic effect under 

complex constraints and emphasizes the online regulation effect and multi-level voltage promotion 

capability. Moreover, compared to existing AI optimization applications in other fields, this article 

focuses more on engineering implementation and real-time constraints in power scenarios, thus 

differentiating it from existing methods. 

Povzetek: Predstavljen je hibridni CNN–SVM model z večstrategijsko optimizacijo (GA/PSO, RL, GNN) 

za konfiguriranje sekundarnih sistemov v pametnih transformatorskih postajah. 

 

1  Introduction 
Smart grid has become the mainstream trend of future 

power grid development. As an important part of power 

grid development, substations provide various key 

services such as protection, measurement and control, 

communication, and automation through their secondary 

systems, which play a crucial role in the stability and 

sensitivity of the entire system. However, the 

architecture of the secondary system is becoming 

increasingly large, including several levels (such as 

interval layer, station control layer, process layer), and 

traditional configuration methods relying on manual 

experience cannot meet the operational requirements of 

rapid response, system compatibility, and flexible 

scheduling of contemporary smart grids [2]. 

From a technical perspective, the configuration problem 

of secondary systems in substations essentially belongs to 

high-dimensional parameter optimization tasks, involving 

multiple equipment types, protection logic, communication 

protocols, and operational scenario variables. It has the 

characteristics of strong parameter coupling, multiple 

constraint conditions, and nonlinear configuration paths [3]. 

In the face of increasing complexity, traditional rule-based 

and template-based configuration methods have significant 

limitations in accuracy and scalability. On the one hand, the 

lag in rule updates has resulted in some protection logic 

configurations being unable to adapt to the operational 

characteristics of new power electronic devices after 

integration; On the other hand, the lack of a unified 

optimization mechanism leads to unstable response 
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efficiency and uncontrollable operating errors in 

different scenarios, greatly increasing the risk of failures 

and maintenance costs. 

The development of artificial intelligence algorithms 

provides a new technological path for optimizing the 

configuration of secondary systems in substations. In 

recent years, algorithms such as deep learning, 

evolutionary computing, and reinforcement learning 

have achieved good results in fields such as power 

system scheduling, fault identification, and parameter 

prediction, and have the ability to autonomously model 

and quickly optimize under multi-source data-driven 

conditions [4]. Especially in handling high-dimensional 

spatial parameter search, nonlinear feature fitting, and 

dynamic response prediction, AI models have shown 

strong adaptability and generalization ability. Therefore, 

building a secondary system configuration optimization 

model based on artificial intelligence algorithms can not 

only achieve automatic generation and dynamic 

adjustment of configuration schemes, but also 

continuously improve their stability and accuracy 

through data training iterations, with high engineering 

implementation value [5]. 

This article proposes a configuration optimization 

oriented artificial intelligence algorithm fusion path 

based on four levels: structure recognition parameter 

extraction algorithm modeling system deployment. 

Based on typical power grid data and measured 

configuration cases, this study focuses on analyzing the 

structural characteristics and configuration constraint 

logic of the secondary system.  On this basis, a CNN 

and SVM hybrid model is constructed to improve feature 

extraction and classification accuracy. Furthermore, a 

multi strategy collaborative optimization framework and 

system modular integration mechanism are introduced to 

optimize and iterate key links in the configuration 

process. In addition, an integrated platform is designed 

to integrate model training into the operational workflow, 

parameter inference, and configuration generation, 

providing a feasible solution foundation for promoting 

the transformation of intelligent substation configuration 

from static manual operation to intelligent and 

automated mode.The core research questions to be 

addressed in this article include: how to achieve accurate 

modeling and efficient operation of secondary systems 

under complex topology and multiple constraint 

conditions; How to ensure the generalization ability and 

robustness of the model under limited computational 

conditions and diverse information? How to adapt to 

application requirements for different voltage levels 

through algorithms/frameworks. The main research 

objectives are as follows: (1) To demonstrate whether 

the CNN-SVM hybrid can achieve higher configuration 

accuracy compared to a single CNN or SVM; (2) Verify 

whether the multi strategy joint optimization algorithm 

can optimize and reduce response time and improve 

system robustness in dynamic distribution network 

systems; (3) Analyze the scalability of module 

integration structure for comprehensive operation of 

different voltage levels and types of stations. 

2  Related work 
The application of artificial intelligence in the power 

system is constantly deepening, and the research focus has 

expanded from single point fault diagnosis to full process 

optimization of configuration. Ar é valo P (2024) pointed 

out that deep models can dynamically correct protection 

logic in distributed energy scenarios, laying the theoretical 

foundation for data-driven secondary system configuration 

[6]. Krishna S B (2024) achieved collaborative prediction 

of load temperature rise and protection settings through 

thermal model coupled convolutional networks, verifying 

the algorithm's ability to handle high-dimensional coupled 

parameters [7]. HasaniA (2024) embedded predictive 

control into microgrid scheduling and proposed a 

distributed controller that can instantly recalculate 

secondary loop parameters when topology changes occur 

[8]. 

In terms of automatic structural recognition, Nayak P 

(2024) proposed a fault detection and classification method 

for transmission lines based on two-dimensional 

convolutional neural networks, which utilizes wavelet time-

frequency images to improve the accuracy of feature 

extraction and establish a reliable recognition mechanism 

for configuration automation [9]. Alferidi A (2024) uses 

multi-agent deep reinforcement learning to optimize energy 

trading in interconnected systems, and its global reward and 

punishment function has enlightening significance for 

quadratic parameter optimization [10]. Jia H (2024) focuses 

on the latency of asynchronous TSN networks and proposes 

a queue shaping algorithm under configuration constraints, 

providing quantitative indicators for communication and 

protection synchronization [11]. 

In terms of real-time optimization strategy, Si R (2024) 

proposed a distribution system restoration method based on 

multi-agent reinforcement learning, which achieves real-

time optimal allocation of resources through dynamic 

network reconstruction, demonstrating the feasibility of 

distributed closed-loop optimization [12]. Gams M, 

Kolenik T (2021) explored the relationship between 

electronics, artificial intelligence, and the information 

society, emphasizing the need to consider the impact of 

information society rules in the research of smart grid 

configuration [13]. Zhang D (2023) utilized an improved 

GA-CNN BiGRU model for power system fault prediction, 

effectively reducing false alarm rates and providing model 

support for reliability evaluation of secondary system 

configurations [14]. 

In recent years, driven by the development of smart grids, 

there has been an increasing amount of research on 

optimizing the secondary system settings of distribution 

stations. Some studies use traditional methods such as gene 

coding and population particles for optimization, but their 

ability to handle high redundancy data and complex 

environments is limited; Some scholars have also attempted 

to introduce deep learning methods, such as using 

convolutional neural networks to identify fault features, but 

they cannot escape the situation of poor model universality 

and slow running speed. 

Based on the above research, although AI technology has 

made significant progress in fault identification, parameter 
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prediction, and on-site online control, it is still not 

enough to rely solely on the existing end-to-end unified 

design, cross scenario transfer mode, and protocol 

scheme when facing the overall configuration of 

secondary systems with voltage levels and multi station 

collaboration. This article uses a CNN-SVM hybrid 

model, combined with multi-dimensional strategy 

collaborative optimization and modular comprehensive 

design, to construct an intelligent device configuration 

system that ensures accuracy, real-time performance, and 

scalability. Therefore, a comparative table was added in the 

text to illustrate the data, performance indicators, and 

limitations of existing technologies, as shown in Table 1. 

 

Table 1：Summary of related research 

Algorithm/Method Dataset or Scenario 
Performance 

Indicator 
Limitation 

Genetic Algorithm 
Simulated substation 

operation data 

Configuration 
efficiency improved by 

8% 

Slow convergence in 
high-dimensional 
dynamic scenarios 

Particle Swarm 
Optimization (PSO) 

Secondary system 
simulation data 

Accuracy about 91% 
Easily trapped in local 

optima 

CNN 
Fault signal feature 

dataset 
Fault recognition rate 

94% 

Insufficient 
generalization, high 

training cost 

Deep Reinforcement 
Learning 

Dynamic load variation 
scenarios 

Configuration accuracy 
95%, faster response 

Algorithm stability 
insufficient, requires 

large training data 

Proposed Method 
(CNN–SVM + Multi-

Strategy 
Optimization) 

Real substation 
scheduling data (multi-

voltage, multi-
scenario) 

Configuration accuracy 
96.8%, error rate 2.1%, 

response time 0.42s, 
efficiency improved by 

39% 

Requires model 
training cost and 

system integration 
design 

This table clearly displays the performance gaps and 

limitations of existing methods, highlighting the 

necessity of the proposed method in this paper. 

3  Analysis of configuration 
characteristics and optimization 
requirements for the secondary 
system of intelligent substations 

3.1  Classification of secondary system 
structural characteristics and 
configuration methods 
The secondary system of an intelligent substation mainly 

includes protection devices, measurement and control 

equipment, communication units, and remote-control 

systems. Its structure is divided into three functional 

levels according to the IEC 61850 standard: station control 

layer, interval layer, and process layer. The communication 

between each layer is achieved through protocols such as 

MMS, GOOSE, SV, etc., to achieve real-time perception 

and control instruction transmission of the operating status 

of a device. With the increasing complexity of 

configuration tasks, the system architecture presents the 

characteristics of "flatness, distribution, and software 

hardware decoupling", requiring the configuration method 

to maintain a dynamic balance between accuracy, real-time 

performance, and scalability. 

At present, the configuration methods for secondary 

systems can be divided into three categories: template-

based configuration, rule driven configuration, and data-

driven configuration. There are significant differences in 

configuration mechanisms, technical dependencies, and 

applicable scenarios, as shown in Table 2.

 
Table 2：Classification and comparison of secondary system configuration methods 

Collocation 
method 

Configuration 
Mechanism 

Technology 
Dependencies 

Advantage limitation 
Applicable 
scenarios 

Template 
based 
configuration 

Generate 
configurations 
uniformly based on 
fixed templates 

Configure template 
library and 
standard interface 

High 
implementation 
efficiency and 
short configuration 
time 

Poor flexibility, 
difficult to adapt to 
complex station 
layouts 

Standardized 
single busbar 
substation 

Rule driven 
configuration 

Logical judgment 
through rule engine 

Expert system, 
logical expression 
library 

Capable of 
handling complex 
logic and strong 
adaptability 

High cost of rule 
maintenance and 
lagging response speed 

Double busbar and 
special station 
type 

Data driven 
configuration 

Automatic 
generation of 
training models 
based on historical 
data 

Data collection 
system, AI 
algorithm platform 

Strong 
adaptability, 
dynamically 
adjustable 

Model training relies 
on data quality, and 
generalization ability 
needs to be optimized 

Multi energy 
complementary 
demonstration 
substation 
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Among them, the data-driven approach relies on 

artificial intelligence algorithms to achieve rapid 

analysis and configuration prediction of system status. 

Its core is to model the configuration behavior as a 

mapping between the state variable X and the 

configuration output Y: 

( );XfY =
（1） 

Among them, X is the input feature, such as station 

structure, load, voltage level; 
f

is an AI model (such as 

CNN, SVM); is the parameter obtained from training; 

Y is the configuration output, such as protection settings, 

link structure, etc. 

The model is trained on a large number of historical 

configuration samples and has a certain generalization 

ability, which can quickly adapt to scenarios such as 

wiring methods and load changes, solving the problems 

of slow response and high error rate in manual 

configuration. This approach provides a foundation for 

building intelligent configuration systems with real-time 

adaptability and precise control capabilities. 

3.2  Configuration parameter constraints 
and performance goal analysis 
The configuration optimization of the secondary system 

of an intelligent substation needs to be completed under 

multiple constraint conditions, and its parameter 

structure has high coupling, including electrical 

parameters and communication resources at the 

equipment level, as well as limitations on logical links 

and functional allocation, forming a typical multi-

objective and multi constraint optimization problem. 

Taking the typical interval layer configuration task as an 

example, configuration parameters include protection 

device type, channel quantity, link mapping, sampling 

frequency, etc. These parameters have mutual 

constraints and upstream downstream dependencies. 

Without optimization modeling, it is easy to cause 

redundant configuration or logical conflicts. 

In the modeling process, the configuration problem 

needs to be formalized as a constrained optimization 

problem, defining objective function 
( )xF

and 

constraint set C. The objective function usually covers 

three dimensions: configuration accuracy, resource 

utilization, and response time, expressed as follows: 

( ) respuseacc TwRwEwxF ++= 321min
（2） 

Among them, x  represents the configuration 

variable vector to be optimized, including device number, 

function binding, link parameters, etc; accE  is the 

configuration error rate, which reflects the deviation of 

the scheme in terms of functional coverage and logical 

correctness; useR is the resource utilization rate, which 

calculates the communication and computing resource 

overhead, link load, and device utilization rate; respT is the 

average response time, reflecting the efficiency and 

timeliness of configuration execution. 321 ,, www is the 

weight coefficient, allocated based on the importance of the 

optimization objective and satisfying the normalization 

constraint: 1321 =++ www . 

The constraints mainly include the following categories: 

①Protocol constraints: for example, GOOSE and SV 

communication mapping require a link delay of no more 

than 4ms; ②Redundancy constraints: Dual loop protection 

must have redundant link support; ③Topology constraint: 

It is necessary to ensure that the links between devices in 

the same section are interconnected and reachable; 

④Resource constraints: Communication bandwidth and 

processing power need to be controlled within system 

thresholds. 

In the application of artificial intelligence algorithms, 

these constraints need to be transformed into differentiable 

functions or penalty terms suitable for training and 

inference, to be incorporated into the model loss function 

for guided learning. Taking reinforcement learning 

strategies as an example, the feedback reward of 

configuration behavior can be dynamically adjusted based 

on whether constraint violations are triggered, driving the 

model to approach the optimal strategy in actual scheduling.  

In summary, the reasonable modeling of the constraints 

and objective relationship of configuration parameters is 

the fundamental step in achieving configuration 

optimization based on AI algorithms, and it is also a 

prerequisite for subsequent algorithm design and system 

integration. 

3.3  Expression of configuration 
optimization problems and exploration of 
algorithm adaptability 
The essence of the configuration problem of the secondary 

system in intelligent substations is to seek the optimal 

equipment connection relationship and logical function 

mapping under various technical parameters and system 

constraints. This problem has the characteristics of high 

dimensionality, multiple variables, and strong constraints, 

including multiple subtasks such as topology matching, 

signal path scheduling, functional unit allocation, and 

communication link configuration. Its optimization 

objectives often involve multidimensional performance 

indicators such as response delay, configuration stability, 

and resource utilization. Therefore, a clear and computable 

problem expression model needs to be constructed. As 

shown in Figure 1, the configuration of a secondary system 

can be abstracted as a structural decision-making task under 

multiple layers of inputs and constraints, with the core 

being mapping the optimal configuration path.
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Figure 1：Schematic diagram of optimization process for secondary system configuration of intelligent substation 

 

Existing research has transformed the configuration 

problem into a decision-making problem with multiple 

objectives. By categorizing the configuration results into 

numerical categories and setting performance evaluation 

indicators, it is possible to conduct mathematical 

comparative analysis and rank the advantages and 

disadvantages of various options. Due to the numerous 

nonlinear relationships and interaction patterns among 

parameters in the secondary system, it is necessary to 

add graphical data or network logic rules during the 

model building process to enhance the practicality of the 

model. 

In terms of algorithm adaptability, different 

optimization requirements will generate different 

algorithm performance requirements. For example, 

when facing a large search space and multiple problem 

variables, traditional exhaustive or rule-based 

processing methods may not meet the requirements of 

speed and accuracy. Artificial intelligence technology 

has high adaptability in handling such problems, 

especially in seeking solutions to complex constraints. 

For example, swarm intelligence technologies such as 

particle swarm optimization and genetic algorithms are 

suitable for adjusting parameters and seeking solutions 

that meet the conditions; Using real-time feedback 

information to enhance reinforcement learning for 

optimizing control strategies; Deep neural networks can 

analyze past configuration data to find patterns and make 

predictions or recommendations for future decisions. 

At the same time, the coordination and matching 

between algorithms and system architecture should be 

considered. For example, in complex network topology 

settings, graphical neural networks can be used to 

represent the connectivity relationships between nodes; 

When real-time response is required, the real-time 

performance of the system can be enhanced through the 

integration of lightweight models and edge computing 

frameworks. Therefore, establishing models and 

selecting algorithms are the core technical support for 

intelligent configuration systems, At the same time, the 

coordination and matching between algorithms and system 

architecture should be considered. For example, in complex 

network topology settings, graphical neural networks can 

be used to represent the connectivity relationships between 

nodes; When real-time response is required, the real-time 

performance of the system can be enhanced through the 

integration of lightweight models and edge computing 

frameworks. Therefore, establishing models and selecting 

algorithms are the core technical support for intelligent 

configuration systems. Based on the analysis of the 

adaptability of multiple algorithms, this article chooses to 

use the combination of CNN and SVM to establish the core 

technology for feature extraction and classification. CNN 

can extract the connections between secondary systems and 

network structure feature information, identify the 

connections between nodes and possible anomalies, while 

SVM has good stability in multi-objective optimization and 

high-dimensional classification, and can complete 

performance indicator discrimination under constraint 

conditions. On the basis of preventing model overfitting 

and reducing computational costs, it can be applied to the 

configuration optimization of secondary systems, and can 

also be adapted to their multi strategy joint optimization 

system. 

4  Configuration optimization 
algorithm design and model 
construction path 

4.1  Feature parameter extraction and data 
preprocessing mechanism 
In terms of the configuration of the secondary system of an 

intelligent substation, the system contains various types of 

information, such as electricity measurement information, 

safety setting configuration information, communication 

status information, equipment logic information, etc. If this 

Configure task initiator 

Send configuration 

request 

Write system feedback Output configuration plan 

Match configuration path 

Configureo ptimizational 

gorithm platform 

Analyze structure and 

requirements 
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information is directly modeled, incorrect results will 

occur. Therefore, it is necessary to extract systematic 

feature factors and implement data preprocessing work 

to provide stable adaptation effects for subsequent 

modeling. 

Normalize numerical power parameters using the 

minimum maximum normalization method, mapping all 

variables to the [0,1] interval to avoid physical 

dimensional differences affecting model training. The 

expression is as follows: 

minmax

min

xx

xx
x

−

−
=

       （3） 

Among them, x is the original data value, minx  and 

maxx  are the minimum and maximum values of the 

variable in the sample set, respectively, and x  is the 

normalized result. This method is suitable for protecting 

bounded numerical variables such as fixed values and 

voltage amplitudes. 

For data with strong volatility and uncertain scale, 

such as communication delay and load change rate, using 

Z-score standardization processing can better highlight 

its abnormal characteristics: 



−
=

x
z

          （4） 

Among them,  is the average value of the variable, 

 is the standard deviation, x is the original data, and 

z is the standardized value. This processing method can 

make the variable distribution tend towards a standard 

normal state, which is beneficial for the training stability 

of deep learning networks. 

In terms of feature construction, for the connection 

topology between devices, a graph structure modeling 

approach is adopted to represent node relationships. The 

adjacency matrix is input into the graph neural network 

for structure perception and feature aggregation, 

achieving structured learning of complex logical 

topologies. Communication quality data is extracted 

through a sliding window mechanism to extract local 

dynamic changes, such as the maximum packet loss rate 

within five minutes and the fluctuation range of channel 

delay, to assist in identifying abnormal nodes or path 

bottlenecks. 

To avoid redundant information interfering with the 

learning process, it is also necessary to perform 

dimensionality reduction on the original feature set. 

Principal component analysis is often used to extract the 

main influencing factors, while combining mutual 

information algorithms to remove low correlation 

features, thereby improving the computational efficiency 

of the model and reducing the risk of overfitting. In 

addition, clustering based encoding methods (such as K-

means encoding) can also be used for structural 

transformation of non numerical features to achieve a 

unified input format. 

The final dataset should have three characteristics: 

unified variables, clear structure, and clear dynamism. 

To ensure the efficiency of model integration, 

standardized data interface formats (such as JSON or CSV) 

should be adopted, and automated processing and model 

integration should be carried out through data 

preprocessing pipelines to build a stable and efficient input 

foundation for subsequent deep learning algorithms. 

4.2  Optimization algorithm model 
construction and selection basis 
Due to the complex issues of high state space and a large 

number of constraints required for the secondary system 

configuration of intelligent substations, traditional manual 

configuration methods cannot adapt to the increasing 

number of devices and the coexistence of multiple functions. 

Therefore, it is necessary to use artificial intelligence 

technology to construct a reasonable and efficient search-

based optimization model. This type of problem mainly 

involves using models to describe the relationship between 

system state and target requirements, and then optimizing 

through algorithms. 

The optimization configuration goals pursued include 

three dimensions: accuracy, efficiency, and resource 

utilization efficiency. To quantify the performance of 

different combination schemes, the following function can 

be established: 

( ) ( ) ( ) ( )xDxCxAxf −−= 321 
（5） 

Among them, x  represents the configuration variable 

vector to be optimized, including device number, function 

binding, link parameters, etc; ( )xA is the coverage of 

configured functions, reflecting the degree to which the 

solution meets various protection, measurement and control, 

and communication functions; ( )xC is the resource 

overhead indicator, which calculates device utilization, 

communication load, and memory usage; ( )xD  is the 

system response delay; 321  ，，  is the weight 

coefficient, and weights are allocated based on actual needs 

to meet 1321 =++  ,The allocation is based on the 

importance of optimization objectives: 1   is the accuracy 

of configuration, which is set at 0.5 according to the 

reference grid configuration standard; 2 is resource 

efficiency, set to 0.3;
3  is the response delay, set to 0.2, 

satisfying the normalization constraint. 

For the above optimization objectives, current 

mainstream algorithms include genetic algorithm, particle 

swarm optimization algorithm, reinforcement learning, and 

graph neural network. GA adapts to processing structure 

allocation and routing optimization through individual 

coding and population evolution mechanisms; PSO is 

suitable for solving parameter tuning problems, with fast 

convergence speed and controllable search paths; RL 

achieves adaptive optimization of configuration decisions 

through strategy learning, suitable for problems with clear 

state transitions and quantifiable feedback; GNN is used to 

express the topology and functional dependencies between 

devices, and is suitable for building structure aware 

configuration models. On this basis, this article adopts the 
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CNN-SVM hybrid algorithm as the main research 

algorithm. CNN is responsible for effectively extracting 

system network framework features and operational 

characteristics, using a three-layer convolution and 

pooling structure to maintain the multi-level nature of 

feature descriptions; SVM can run stably in highly 

complex feature classification tasks with excellent 

performance, so this study uses RBF kernel function to 

optimize the classification process. In this training 

process, set the learning rate to 0.001, batch size to 128, 

epochs to 500, and use a five eight cross test to measure 

the model's large interval fitness. This combination can 

achieve high device configuration accuracy while 

avoiding overfitting of individual models. Moreover, the 

computational cost of this model is lower than that of 

other models, making it more suitable for optimizing the 

configuration of secondary systems. It can also be 

seamlessly integrated with various strategies for joint 

optimization systems. 

When conducting practical operations, some 

algorithms are combined to construct hybrid models, 

such as using PSO and deep learning to adjust 

connection parameters or using GNN+RL to construct 

logical control paths to improve the adaptability and 

computing power of the model. Finally, a suitable model 

is selected and combined with factors such as task type, 

data type, and computing power requirements to ensure 

that the path can be optimized and meet the deployment 

requirements. 

4.3  Construction and iteration 
mechanism of multi strategy collaborative 
optimization framework 
In response to the challenges of strong parameter 

correlation, complex objective function, and dynamic 

changes in operational constraints in the secondary 

system configuration of intelligent substations, a single 

optimization algorithm often fails to meet the 

requirements of accuracy, speed, and flexibility 

simultaneously. Therefore, it is necessary to construct a 

diversified strategy joint optimization framework, which 

can improve the optimization quality and model stability of 

the joint optimization scheme through the filling and 

iterative updating of the functions of each algorithm 

component. 

This framework includes three core modules: the search 

guidance module is responsible for global sampling of 

large-scale parameter spaces, often using genetic 

algorithms or particle swarm optimization algorithms to 

construct initial solution sets; The local reinforcement 

module adjusts the strategy under the guidance of feedback 

signals and can introduce reinforcement learning methods 

such as Q-learning; The structural discrimination module 

uses graph neural networks to perform topological 

constraint verification on the configuration results, 

achieving early filtering of infeasible solutions. These 

modules form a loop mechanism through intermediate 

result sharing and performance indicator feedback to avoid 

optimization stagnation or overfitting. In addition, in the 

input and result verification stage of the multi strategy 

framework, this study uses the CNN-SVM combination 

pattern as the basic framework for input and output result 

confirmation. This is because CNN's ability to distinguish 

network structure and operational characteristics is utilized, 

while SVM is used to ensure the high efficiency and 

stability of high-dimensional data classification. The 

combination of the two can significantly increase the 

feature representation and judgment capabilities of the 

entire system, thereby achieving the optimal balance 

between the two and achieving good convergence rate and 

high accuracy. 

As shown in Figure 2, this study adopts a collaborative 

optimization system consisting of GA/PSO, RL, and GNN. 

GA/PSO first performs a global search to find the initial 

solution set, then RL adjusts and refines the solution space 

according to feedback information, and finally GNN is used 

for topological constraint judgment and elimination of 

solutions that are invalid for the goal. By sharing feedback 

results and achievements in a collaborative manner, the 

goal is to achieve a progressive cycle, which can effectively 

achieve high-precision work efficiency. 

 
Figure 2: Schematic diagram of multi strategy collaborative optimization framework process  

 

 

In the scheduling process, in order to improve the 

efficiency of multi strategy collaboration, a unified 

performance evaluation function needs to be constructed. 

Assuming the current solution is x, the evaluation 

function is as follows: 

( ) ( ) ( )xBwxAwxF += 21 （6） 

Among them, ( )xA can correspond to accE  (the 

complement of configuration error rate, i.e. 

configuration accuracy) in the objective function of 

section 3.2, while ( )xB combines useR and respT in section 

3.2, reflecting system resource consumption and timeliness 

through weight conversion, and 21, ww
is the weight 

coefficient, which satisfies 121 =+ww and can be 

adaptively adjusted according to the optimization scenario.  

In terms of optimization control, a reward feedback-

based update mechanism is introduced to enhance the 

algorithm's dynamic response capability. After each 

iteration, the improvement value is calculated by comparing 

GA/PSO GA/PSO 
Feedback 

Loop 
GNN RL 
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the current strategy score of ( )xF with the previous 

round's optimal score of ( )*xF ： 

( ) ( )*xFxF −= （7） 

If ＞0 , enhance the sampling probability of the 

current strategy; If 0 , reduce the search scope of 

the strategy in the next iteration and construct a three-

stage iteration rhythm of "exploration compression re 

evaluation". 

This multi strategy collaborative framework has 

demonstrated good performance in simulation testing, 

especially exhibiting strong robustness in complex 

topologies and non-standard wiring scenarios. The 

effective coupling between algorithm modules improves 

optimization accuracy and speed, laying a reliable 

foundation for building an intelligent, flexible and 

adjustable configuration mechanism for substation 

secondary systems. 

5  Configuration optimization 
system integration implementation 
and functional evaluation 

5.1  Configuration optimization system 
architecture and key module deployment 
To achieve efficient configuration optimization of the 

secondary system of smart grid substations, it is 

necessary to build a system architecture with modularity, 

intelligence, and real-time response capabilities. The 

overall system adopts a four-layer structure of "data 

access feature extraction optimization decision 

deployment verification", embedding multiple types of 

computing modules and interface adaptation units to 

ensure the integrity of data processing and the 

operability of algorithm deployment. 

The bottom layer of the system architecture is the data 

access layer, which receives multi-source data uploaded 

by subsystems such as SCADA, station control units, and 

protection devices, covering voltage, current, telemetry 

status, communication links, and other content. The 

middle layer is the parameter processing and feature 

modeling module, which constructs device relationships 

based on graph structures, extracts core feature variables 

such as topology, signal paths, and configuration 

templates, and completes normalization and 

standardization operations through preprocessing 

modules. 

The core computing layer is an intelligent 

optimization module embedded with a multi strategy 

algorithm scheduling unit.The core computing layer is 

an intelligent optimization module embedded with a 

multi strategy algorithm scheduling unit. Simultaneously 

integrating CNN-SVM hybrid model for feature 

extraction and classification discrimination, improving 

the accuracy and stability of configuration results, and 

collaborating with multiple strategy units to achieve 

optimization.Different algorithm modules share variable 

pools through message middleware, supporting 

asynchronous calling and feedback driven. Its output is 

configuration vector  n21 x,…,, xxx = , with each ix

corresponding to the configuration result of a certain 

functional point, such as communication channel selection, 

protection device connection number, etc. The system 

evaluation adopts the following functions: 

( ) ( )i

n

i

ii xfxS 
=

=
1


（8） 

Among them, ( )ii xf  represents the performance score 

(such as latency and reliability) of the i  configuration item, 

i  is its weight coefficient, allocated according to task 

importance, and ( )xS   represents the comprehensive 

score of the overall plan. 

The top layer is the deployment and validation module, 

which imports the optimization results into the simulation 

platform and actual interface protocol for logical validation 

and boundary testing, ensuring that the configuration output 

has stability and practicality. This architecture fully 

integrates computing intelligence and system control 

characteristics, with good scalability and deployment 

adaptability, providing technical support for configuration 

management in complex power grid environments. 

5.2  Automated implementation of algorithm 
integration and configuration process 
To achieve automated configuration optimization of the 

secondary system of smart grid substations, algorithm 

modules need to be deeply integrated into the configuration 

process, forming a data-driven fully closed-loop execution 

chain. The system coordinates data perception, feature 

processing, algorithm invocation, configuration output, and 

verification feedback through a scheduling engine, 

supporting rapid response and precise execution in various 

operating scenarios. 

On the specific implementation path, the configuration 

process consists of three stages: input feature mapping, 

model solving, and parameter deployment. The input end 

receives station control equipment data streams through the 

interface layer, including electrical parameters, 

communication status, and topology information. The 

intermediate processing layer calls corresponding 

optimization algorithm models based on task requirements, 

such as genetic algorithms, convolutional neural networks, 

support vector machines, graph neural networks, etc., to 

dynamically adjust the strategy path, ensuring that the 

feature extraction and classification discrimination process 

is consistent with the overall optimization process. The 

output end automatically generates standard configuration 

instructions and pushes them to the actual device through 

the southbound protocol interface to complete the 

configuration landing. 

In order to measure the overall intelligence level of the 

configuration process, a configuration automation 

evaluation function is introduced: 

+
=

h

m

T

T
A

（9） 
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Among them, A represents the degree of automation 

in configuration, mT is the time it takes for the machine 

to independently complete the configuration process, 

hT is the time required for manual completion of the 

same task, and   is a small positive square with a 

denominator of zero. The larger the value, the higher the 

automation efficiency. 

To support this automation capability, the system 

design has strengthened the model's update mechanism 

and parameter caching logic, achieving adaptive 

evolution of the policy model in multiple calls. The 

status and algorithm performance of each node in the 

process are recorded in real-time for feedback training in 

the next round of configuration, forming a learnable 

closed-loop mechanism. Automated implementation not 

only improves configuration response efficiency, but 

also lays the technical foundation for subsequent large-

scale deployment and iterative optimization of the 

system. 

5.3  Comparative analysis and 
effectiveness evaluation of configuration 
results 
To verify the performance advantages of AI algorithms 

in the configuration of secondary systems in substations, 

a comparative experimental platform was built, The "AI 

optimization system" in this study uses the CNN-SVM 

hybrid mode as the main logic and introduces GNN and 

RL to form a multi strategy collaborative system. The 

basic comparison schemes such as "traditional manual 

configuration", "GA", "PSO", "CNN", "SVM", 

"CNN+SVM" are all run in the same machine 

environment (quad core CPU, 32GB RAM, Kubernetes 

container cluster), and use the same data input (16 typical 

substation scenarios, obtained from the 2023 version of the 

State Grid Corporation of China's typical design library) to 

ensure fairness and comparability. In the experimental 

design, an 8:2 ratio was used to divide the training set and 

validation set, in order to achieve the goal of the former 

learning model parameters and the latter judging model 

performance. In addition, a 5-fold cross validation method 

was used, and the final evaluation index was obtained by 

taking the mean of each cross-training sample. During the 

system operation, four core indicators including 

configuration accuracy, resource utilization, configuration 

error rate, and response efficiency are automatically 

recorded. All data is collected by the Prometheus platform 

and transmitted to the backend database in JSON format. 

Finally, a Python script is called to Matplotlib to generate a 

bar chart for performance analysis. 

The comparison results show that the AI optimized 

system achieves an accuracy rate of 96.2%, significantly 

higher than the 88.8% manually configured; The resource 

utilization rate has increased from 70.4% manually 

configured to 82.5%, reflecting a better scheduling strategy 

for computing resources and communication bandwidth; In 

terms of configuration error rate, the AI system has reduced 

to 1.6%, significantly lower than the 5.7% manually 

configured, effectively avoiding logical conflicts and link 

redundancy; The response efficiency index is set to a 

benchmark value of 100% for manual configuration, and 

the AI system achieves 162.6% in the same environment, 

demonstrating a significant acceleration effect after the 

automation of the configuration process. The above data, as 

shown in Figure 3, demonstrates the comprehensive 

performance improvement of AI algorithms in multiple 

dimensions.

 
Figure 3：Bar chart comparing the performance of AI optimization system and manual configuration system 

 

The above results were processed by an independent 

data analysis module, structured and visualized using 

Pandas and Seaborn libraries, and finally presented in 

the form of a bar chart. The chart can be embedded in the 

front-end interface for dynamic display, and supports 

linkage updates with the configuration platform, 

facilitating subsequent system evaluation and 

optimization adjustments. The overall evaluation shows 

that AI algorithms not only have good engineering 

adaptability, but also can achieve efficient, accurate, and 

stable operation of configuration processes, providing a 

feasible technical path for the deployment of secondary 

systems in smart grids. 

To ensure the credibility and accuracy of the conclusions 

drawn from data analysis, independent sample t-tests were 

used to test some important parameters during the 

comparative testing phase. The results showed a significant 

improvement in system accuracy (p<0.01) and a significant 

reduction in reaction time (p<0.05). The improvement in 

accuracy and reaction speed was also tested using a 95% 

confidence interval, with accuracy rates of [7.8%, 13.5%] 

and reaction speeds of [36.2%, 41.7%], confirming the 
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credibility of the conclusion. The results of this 

experiment are completely in line with expectations: 

objective (1) has been verified through the use of CNN-

SVM, which improves accuracy and reduces error rate; 

Goal (2) is reflected, and after various strategies, the 

response time is shortened and the stability of the system 

is enhanced; Objective (3) is supported in multi scenario 

testing, and the model exhibits scalability under different 

voltage levels and station conditions. 

5.4  System response performance, 
stability, and scalability testing 
To comprehensively evaluate the operational 

performance of AI driven configuration optimization 

systems in practical application scenarios, a testing 

platform with different task scales and load scenarios is 

constructed, focusing on testing response performance, 

system stability, and scalability for variable power plant 

structures. The testing environment is based on Docker 

container deployment, configured with 4-core CPU and 

32GB memory, and equipped with a Kubernetes based 

scheduling platform. The testing tasks include typical 

configuration request processing, abnormal link 

simulation, and multi site concurrent scheduling. To 

ensure the credibility and accuracy of the conclusions 

drawn from data analysis, independent sample t-tests 

were used to test some important parameters during the 

comparative testing phase. The results showed a 

significant improvement in system accuracy (p<0.01) 

and a significant reduction in reaction time (p<0.05). The 

improvement in accuracy and reaction speed was also tested 

using a 95% confidence interval, with accuracy rates of 

[7.8%, 13.5%] and reaction speeds of [36.2%, 41.7%], 

confirming the credibility of the conclusion. The results of 

this experiment are completely in line with expectations: 

objective (1) has been verified through the use of CNN-

SVM, which improves accuracy and reduces error rate; 

Goal (2) is reflected, and after various strategies, the 

response time is shortened and the stability of the system is 

enhanced; Objective (3) is supported in multi scenario 

testing, and the model exhibits scalability under different 

voltage levels and station conditions.Response performance 

is calculated by the average delay from task triggering to 

configuration completion, stability is monitored by service 

availability under 72 hours of high-frequency requests, and 

scalability is measured by resource utilization and system 

response retention ratio under concurrent task growth. 

The test results show that the system maintains an 

average response time of 2.8 seconds and system 

availability of over 99.3% in medium scale (within 50 

nodes) scenarios; When the number of nodes was expanded 

to 200, the response time slightly increased to 3.7 seconds, 

but the resource utilization rate remained at 86.1%, 

reflecting the system's good load regulation and resource 

allocation capabilities. In the scalability test, during the 

high concurrency dynamic generation of topology structure 

and execution constraint mapping process, the system did 

not experience memory leaks, thread blocking, or module 

crashes, and the configuration accuracy remained stable at 

95.4%.

 
Table 3：Evaluation indicators for system response performance and stability under different task scales 

Task scale 
(number of 
nodes) 

Average 
response time 
(S) 

System 
availability (%) 

Resource 
utilization rate 
(%) 

Configuration 
accuracy (%) 

50 2.8 99.3 86.7 95.4 

100 3.2 99.2 87.1 95.1 

200 3.7 99.1 86.1 95.0 

As shown in Table 3, the system exhibits good 

stability and scalability under different load levels, 

which can support the deployment requirements of large-

scale smart grid secondary systems and have the ability 

to continuously evolve and horizontally replicate for 

engineering scenarios. 

5.5  Efficiency comparison analysis with 
manual configuration method 

To compare the specific differences in efficiency 

between the configuration methods of artificial 

intelligence algorithms and traditional manual 

configuration, a unified testing platform is constructed 

to compare four indicators: configuration completion 

rate, total task time, configuration accuracy, and human 

intervention ratio. All data is based on the manual 

configuration method (set as 100%) and converted into a 

percentage expression to highlight the relative performance 

of AI optimized systems. 

In terms of task completion efficiency, the total time it 

takes for AI systems to complete tasks with the same 

configuration is 58.6% of manual configuration, 

demonstrating significant advantages in automated 

scheduling; In terms of configuration accuracy, the AI 

configuration result is 107.1%, which is 7.1% higher than 

manual configuration; In terms of human intervention 

requirements, the intervention frequency required by AI 

systems is only 27.1% of that of manual processes, 

significantly reducing the cost of human intervention; The 

overall completion rate of configuration tasks remains at 

99.3%, higher than the manual configuration rate of 93.6%, 

which is about 106.1%. As shown in Figure 4, the AI system 

has achieved varying degrees of optimization in all four 

core indicators, with reasonable advantages and no extreme 

data fluctuations. 
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Figure 4：Efficiency comparison bar chart of configuration modes 

 

During the data collection process, the system 

monitors indicators through the Prometheus platform 

and writes the results in JSON structure to the backend 

database. Python scripts are used to complete 

standardization conversion and bar chart visualization 

processing. The analysis results indicate that artificial 

intelligence algorithms have stability and promotional 

value in improving configuration efficiency, accuracy, 

and reducing manual dependence. They can be used as 

one of the optimization paths in the deployment of 

secondary systems in smart grid substations, providing 

solid support for subsequent system upgrades and 

intelligent scheduling. 

6  Discussion 

6.1  Adaptability of algorithm models in 
different power grid scenarios 
In the multi strategy collaborative optimization 

framework, the CNN-SVM hybrid model serves as the 

core algorithm to undertake the basic tasks of feature 

extraction and classification discrimination, while GA, 

PSO, RL, and GNN serve as auxiliary optimization and 

structural adaptation modules, forming a clear 

combination of primary and secondary with CNN-SVM 

to ensure the overall performance improvement of the 

framework. The experimental results show that CNN has 

high accuracy in extracting complex topological features, 

while SVM maintains stability in multi constrained high-

dimensional classification. The combination of the two 

not only improves the overall convergence speed, but 

also demonstrates consistent advantages in different 

power grid scenarios, thus verifying the empirical value 

of CNN-SVM fusion. 

In response to the significant differences in power 

grid structure and regional loads in practical applications, 

this study selects three typical scenarios: urban main 

network, county-level distribution network, and 

mountainous microgrid, to compare and test the 

adaptability of AI configuration models. The experimental 

platform is based on Kubernetes container cluster 

deployment, and uniformly calls the CNN-SVM hybrid 

model and GNN structure encoding and policy network 

scheduling module to achieve collaborative operation of 

feature extraction, classification discrimination, and 

structure adaptation, ensuring consistency between input 

features and optimization processes. The testing task covers 

secondary loop topology identification, device constraint 

solution, and communication link reuse, comprehensively 

evaluating the response accuracy, convergence speed, and 

mismatch rate of the model in different scenarios. 

The results show that the AI algorithm performs the best 

in the urban main network environment, with model 

convergence rounds less than 35 times and configuration 

error controlled at 1.2%; The model can maintain an 

accuracy of over 92% in county-level distribution networks, 

but due to data disturbances and device diversity, the 

mismatch rate slightly increases to 2.7%; In the testing of 

microgrids in mountainous areas, due to unstable 

topological boundaries, the convergence stability of the 

model decreases in some tasks and needs to be reinforced 

through incremental learning strategies. In addition, there 

are significant differences in training time, inference delay, 

and resource utilization among the three scenarios: the 

average training time of the urban main network is about 

1.8 hours, inference delay is 320ms, and CPU utilization is 

68%; The training time for county-level distribution 

network is 2.4 hours, with a inference delay of 410ms and 

a CPU usage rate of 72%; The training time for 

mountainous microgrids has been increased to 3.1 hours, 

with a inference delay of 530ms and a CPU usage rate of 

79%. The specific comparison is shown in Table 4, which 

reflects the dynamic relationship between model 

adaptability and environmental complexity.

 
Table 4：Comparison of AI model adaptability test results under different power grid scenarios 

Grid type Average 
accuracy 

Convergence 
rounds 

Configuration 
mismatch rate 

Training 
time 

Reasoning 
latency 

CPU 
usage 

City Main 
Network 

97.8% 34 1.2% 1.8h 320ms 68% 

County level 
distribution 
network 

92.4% 49 2.7% 2.4h 410ms 72% 

Mountain 
microgrid 

89.6% 62 4.1% 3.1h 530ms 79% 
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In order to highlight the advantages of the method 

proposed in this article, the experimental results were 

compared with typical algorithms in relevant worksheets. 

The configuration accuracy of CNN-SVM hybrid model 

reaches 96.8%, which is higher than 88% of genetic 

algorithm, 91% of particle swarm optimization, 94% of 

CNN, and 95% of deep reinforcement learning; The 

response time has been shortened to 0.42 seconds, and 

the error rate has been controlled within 2.1%, both of 

which are better than the single model method. 

The reason for the performance improvement is that 

CNN can efficiently extract features, SVM is more 

robust in high-dimensional classification, and the 

combination of the two avoids overfitting and 

insufficient generalization. Multi strategy collaborative 

optimization further improves convergence speed and 

real-time performance. 

6.2  Technical challenges and engineering 
countermeasures in actual promotion 
Although introducing artificial intelligence algorithms 

into the secondary system of smart grid substations has 

advantages in configuration efficiency and accuracy, 

there are still multiple technical bottlenecks in the actual 

promotion process. Firstly, system training relies on 

large-scale annotated data, and there is significant 

heterogeneity in topology, device types, and 

communication protocols among different regions of the 

power grid, which limits the model's generalization 

ability. To this end, it is necessary to introduce federated 

learning mechanisms to achieve local optimization and 

global parameter sharing of regional models, and 

enhance the model's adaptability under multi-source data 

conditions. 

AI model reasoning requires a large scale of 

computing resources, especially resource contention that 

may occur when multiple sites are scheduled at the same 

time. Model pruning and operator fusion are needed to 

solve the reasoning pressure, and Kubernetes+edge 

computing architecture is combined to achieve dynamic 

scaling; At the same time, due to the poor compatibility 

between the interfaces of existing systems and SCADA 

and EMS platforms, it will increase construction costs. 

Therefore, it is possible to improve the flexibility of 

interaction with traditional systems by packaging AI 

modules into microservices. 

Future research will further explore the cross regional 

generalization ability in larger scale power grid 

environments, enhance the interpretability of models 

through federated learning and knowledge graph, and 

promote the long-term application and standardization of 

AI configuration optimization in engineering through 

deep coupling with actual power grid operation and 

maintenance platforms. 

7  Conclusion 
This paper proposes a configuration optimization 

method based on CNN-SVM hybrid model to address the 

complex configuration problem of secondary systems in 

substations in the smart grid environment. A multi strategy 

collaborative framework is formed by combining graph 

neural networks and reinforcement learning strategies to 

solve the complex configuration problem. The method has 

been integrated and verified in multiple scenarios in 

practical applications, and has been validated in practice. 

Compared with traditional manual configuration methods, 

this method can more accurately, quickly, and efficiently 

meet resource utilization needs, especially for multi site 

simultaneous management and variable network topology 

structures, which have significant advantages. At the same 

time, by introducing automated scheduling mechanisms, 

real-time monitoring feedback, and visual analysis tools, 

the entire configuration process can shift from a command-

based approach to a data-driven approach. 

The deployment based on container and microservice 

systems has achieved good collaboration between modules 

and system elasticity and scalability. Meanwhile, utilizing 

Prometheus and Kubernetes enables full process tracking, 

collection, and analysis of task execution, ensuring the 

practicality and stable operation of algorithm 

implementation. To solve the problem of inconsistent data 

across different regions, we have begun to explore model 

transfer and shared solution strategies to enable broader-

scale basic applications. 

The AI model developed in this paper has good 

universality and can be applied to different scenarios and 

tasks. Therefore, based on this, we can propose a new way 

for edge computing nodes to coordinate with the central 

server to achieve rapid response and configuration loop 

control of the whole system, especially when the network is 

limited or the local facilities are insufficient. Considering 

that the system needs to better cope with changes in 

topology and device constraints, knowledge graphs can be 

used to guide the adaptive modeling and transformation of 

GNN structures into structure-based configuration patterns. 

The system in this study has a certain generalization ability 

when facing unfamiliar topology structures, and can 

directly perform preliminary inference and configuration 

through existing model parameters without the need for 

complete retraining. However, in cases of significant 

topological differences or significant changes in constraint 

conditions, incremental learning or lightweight fine-tuning 

is still necessary to ensure the convergence stability and 

performance reliability of the model in new scenarios. This 

strategy is demonstrated in experiments as a plug and play 

adaptation to small-scale structural changes, while for 

large-scale topological changes, model updates are 

completed through a small amount of iterative training, thus 

maintaining a balance between efficiency and accuracy. 

In summary, introducing artificial intelligence 

algorithms into the secondary system configuration of 

power substations has innovated and optimized the original 

configuration process, and provided new mode support for 

the new architecture of intelligent power grid management 

mode, with reusability and scalability. In the subsequent 

promotion and application, it is necessary to continuously 

optimize the model security, interface consistency, and data 

standardization processing to ensure the long-term stable 

operation and scale promotion of this configuration. 
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Appendix a  experimental 
reproduction details 
1.Algorithm implementation: CNN three-layer 

convolution+pooling (convolution kernel 3 × 3, 

activation function ReLU), SVM uses radial basis kernel 

function. 

2. Training parameters: Learning rate of 0.001, batch 

size of 128, iteration count of 500, optimizer Adam. 

 3.Dataset: 16 scenarios from the typical design 

library of State Grid 2023, divided into 8:2, with both the 

training and testing sets using five-fold cross validation.  

4. Operating environment: 4-core CPU, 32GB 

memory, Kubernetes container cluster; The operating 

system is Ubuntu22.04, Python3.10, and the main 

dependency libraries are TensorFlow 2.11 and Scikit 

learn1.2.  

5.Evaluation indicators: configuration accuracy, 

resource utilization, configuration error rate, response 

efficiency; The statistical method is independent sample 

t-test and 95% confidence interval.  

6.Reproduction explanation: The data interface is 

input in JSON format, and both model training and result 

analysis are implemented through Python scripts, which 

can be directly run in Prometheus and Matplotlib 

environments. 

To enhance reproducibility, this article provides 

pseudocode for the core training process as follows: 

# Pseudocode: CNN–SVM Training and Evaluation 

1. Load dataset (JSON), split into 80% training and 

20% testing. 

2. Preprocess features: 

   - Min–Max scale numeric features 

   - Z-score normalize fluctuating features 

   - Apply PCA/MI for feature selection 

3. Build CNN (3 conv–pool layers, kernel 3×3, ReLU) 

for feature extraction. 

4. Build SVM (RBF kernel) for classification. 

5. Train CNN–SVM with learning_rate=0.001, 

batch_size=128, epochs=500, 5-fold CV. 

6. Evaluate on test set → report accuracy, utilization, 

error rate, response efficiency. 

This pseudocode demonstrates the main steps of data 

preprocessing, model building, training, and evaluation, 

which readers can use to reproduce the experimental 

process. 
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