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This paper proposes a hybrid model that integrates convolutional neural networks and support vector
machines, and combines multi strategy collaborative optimization to address the complexity and
dynamism of secondary system configuration tasks in smart grids. The system is based on multi-source
operational data and constructs a three-stage process of "feature extraction model training configuration
output”. The CNN part adopts a three-layer convolution and pooling structure (convolution kernel size 3
x 3, ReLU activation) to extract topology and load features; The SVM part uses radial basis kernel
functions to classify and optimize high-dimensional features. During the training process, set the learning
rate to 0.001, batch size to 128, iteration times to 500, and evaluate the model's generalization
performance through five-fold cross validation. The algorithm was trained using 1000 scheduling
instances from 3 substations for simulation verification. The configuration accuracy reached 96.8%,
which is 12.4% higher than manual experience configuration. The average response time was shortened
to 0.42 seconds, and the error rate was stably controlled within 2.1%. In terms of system integration, a
modular deployment structure is designed to support closed-loop operation of inference calculation,
configuration generation, and result feedback. It is compatible with adaptive configuration parameters
at different voltage levels such as 110kV and 220kV. In comparative testing, under consistent operating
conditions, the configuration efficiency of this method increased by about 39%, and the system ran
continuously for 72 hours without any configuration deviation or interruption, demonstrating good
stability. Research has shown that the CNN-SVM fusion model has significant advantages in extracting
features and optimizing classification, while the modular integration of various strategy optimization
architectures and systems has the effect of improving setup efficiency and trustworthiness. This study
integrates CNN-SVM, GA/PSO, reinforcement learning, and graph neural networks to form a
comprehensive strategy optimization system suitable for the secondary system setting of substations.
Unlike previous separate applications of CNN or SVM, this study highlights the synergistic effect under
complex constraints and emphasizes the online regulation effect and multi-level voltage promotion
capability. Moreover, compared to existing Al optimization applications in other fields, this article
focuses more on engineering implementation and real-time constraints in power scenarios, thus
differentiating it from existing methods.

Povzetek: Predstavljen je hibridni CNN-SVM model z vecstrategijsko optimizacijo (GA/PSO, RL, GNN)
za konfiguriranje sekundarnih sistemov v pametnih transformatorskih postajah.

Introduction

From a technical perspective, the configuration problem

Smart grid has become the mainstream trend of future
power grid development. As an important part of power
grid development, substations provide various key
services such as protection, measurement and control,
communication, and automation through their secondary
systems, which play a crucial role in the stability and
sensitivity of the entire system. However, the
architecture of the secondary system is becoming
increasingly large, including several levels (such as
interval layer, station control layer, process layer), and
traditional configuration methods relying on manual
experience cannot meet the operational requirements of
rapid response, system compatibility, and flexible
scheduling of contemporary smart grids [2].

of secondary systems in substations essentially belongs to
high-dimensional parameter optimization tasks, involving
multiple equipment types, protection logic, communication
protocols, and operational scenario variables. It has the
characteristics of strong parameter coupling, multiple
constraint conditions, and nonlinear configuration paths [3].
In the face of increasing complexity, traditional rule-based
and template-based configuration methods have significant
limitations in accuracy and scalability. On the one hand, the
lag in rule updates has resulted in some protection logic
configurations being unable to adapt to the operational
characteristics of new power electronic devices after
integration; On the other hand, the lack of a unified
optimization mechanism leads to unstable response
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efficiency and uncontrollable operating errors in
different scenarios, greatly increasing the risk of failures
and maintenance costs.

The development of artificial intelligence algorithms
provides a new technological path for optimizing the
configuration of secondary systems in substations. In
recent years, algorithms such as deep learning,
evolutionary computing, and reinforcement learning
have achieved good results in fields such as power
system scheduling, fault identification, and parameter
prediction, and have the ability to autonomously model
and quickly optimize under multi-source data-driven
conditions [4]. Especially in handling high-dimensional
spatial parameter search, nonlinear feature fitting, and
dynamic response prediction, Al models have shown
strong adaptability and generalization ability. Therefore,
building a secondary system configuration optimization
model based on artificial intelligence algorithms can not
only achieve automatic generation and dynamic
adjustment of configuration schemes, but also
continuously improve their stability and accuracy
through data training iterations, with high engineering
implementation value [5].

This article proposes a configuration optimization
oriented artificial intelligence algorithm fusion path
based on four levels: structure recognition parameter
extraction algorithm modeling system deployment.
Based on typical power grid data and measured
configuration cases, this study focuses on analyzing the
structural characteristics and configuration constraint
logic of the secondary system. On this basis, a CNN
and SVM hybrid model is constructed to improve feature
extraction and classification accuracy. Furthermore, a
multi strategy collaborative optimization framework and
system modular integration mechanism are introduced to
optimize and iterate key links in the configuration
process. In addition, an integrated platform is designed
to integrate model training into the operational workflow,
parameter inference, and configuration generation,
providing a feasible solution foundation for promoting
the transformation of intelligent substation configuration
from static manual operation to intelligent and
automated mode.The core research questions to be
addressed in this article include: how to achieve accurate
modeling and efficient operation of secondary systems
under complex topology and multiple constraint
conditions; How to ensure the generalization ability and
robustness of the model under limited computational
conditions and diverse information? How to adapt to
application requirements for different voltage levels
through algorithms/frameworks. The main research
objectives are as follows: (1) To demonstrate whether
the CNN-SVM hybrid can achieve higher configuration
accuracy compared to a single CNN or SVM; (2) Verify
whether the multi strategy joint optimization algorithm
can optimize and reduce response time and improve
system robustness in dynamic distribution network
systems; (3) Analyze the scalability of module
integration structure for comprehensive operation of
different voltage levels and types of stations.
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2 Related work

The application of artificial intelligence in the power
system is constantly deepening, and the research focus has
expanded from single point fault diagnosis to full process
optimization of configuration. Ar é valo P (2024) pointed
out that deep models can dynamically correct protection
logic in distributed energy scenarios, laying the theoretical
foundation for data-driven secondary system configuration
[6]. Krishna S B (2024) achieved collaborative prediction
of load temperature rise and protection settings through
thermal model coupled convolutional networks, verifying
the algorithm's ability to handle high-dimensional coupled
parameters [7]. HasaniA (2024) embedded predictive
control into microgrid scheduling and proposed a
distributed controller that can instantly recalculate
secondary loop parameters when topology changes occur
(8].

In terms of automatic structural recognition, Nayak P
(2024) proposed a fault detection and classification method
for transmission lines based on two-dimensional
convolutional neural networks, which utilizes wavelet time-
frequency images to improve the accuracy of feature
extraction and establish a reliable recognition mechanism
for configuration automation [9]. Alferidi A (2024) uses
multi-agent deep reinforcement learning to optimize energy
trading in interconnected systems, and its global reward and
punishment function has enlightening significance for
quadratic parameter optimization [10]. Jia H (2024) focuses
on the latency of asynchronous TSN networks and proposes
a queue shaping algorithm under configuration constraints,
providing quantitative indicators for communication and
protection synchronization [11].

In terms of real-time optimization strategy, Si R (2024)
proposed a distribution system restoration method based on
multi-agent reinforcement learning, which achieves real-
time optimal allocation of resources through dynamic
network reconstruction, demonstrating the feasibility of
distributed closed-loop optimization [12]. Gams M,
Kolenik T (2021) explored the relationship between
electronics, artificial intelligence, and the information
society, emphasizing the need to consider the impact of
information society rules in the research of smart grid
configuration [13]. Zhang D (2023) utilized an improved
GA-CNN BiGRU model for power system fault prediction,
effectively reducing false alarm rates and providing model
support for reliability evaluation of secondary system
configurations [14].

In recent years, driven by the development of smart grids,
there has been an increasing amount of research on
optimizing the secondary system settings of distribution
stations. Some studies use traditional methods such as gene
coding and population particles for optimization, but their
ability to handle high redundancy data and complex
environments is limited; Some scholars have also attempted
to introduce deep learning methods, such as using
convolutional neural networks to identify fault features, but
they cannot escape the situation of poor model universality
and slow running speed.

Based on the above research, although Al technology has
made significant progress in fault identification, parameter
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prediction, and on-site online control, it is still not
enough to rely solely on the existing end-to-end unified
design, cross scenario transfer mode, and protocol
scheme when facing the overall configuration of
secondary systems with voltage levels and multi station
collaboration. This article uses a CNN-SVM hybrid
model, combined with multi-dimensional strategy
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collaborative optimization and modular comprehensive
design, to construct an intelligent device configuration
system that ensures accuracy, real-time performance, and
scalability. Therefore, a comparative table was added in the
text to illustrate the data, performance indicators, and
limitations of existing technologies, as shown in Table 1.

Table 1 : Summary of related research

Algorithm/Method Dataset or Scenario

Performance

Indicator Limitation

Simulated substation

Genetic Algorithm operation data

Slow convergence in
high-dimensional
dynamic scenarios

Configuration
efficiency improved by
8%

Particle Swarm
Optimization (PSO)

Secondary system
simulation data

Easily trapped in local

Accuracy about 91% optima

Fault signal feature

CNN dataset

Insufficient
generalization, high
training cost

Fault recognition rate
4%

Deep Reinforcement
Learning

Dynamic load variation
scenarios

_Algorithm stability
insufficient, requires
large training data

Configuration accuracy
95%, faster response

Real substation
scheduling data (multi-
voltage, multi-
scenario)

Proposed Method
(CNN-SVM + Multi-
Strategy
Optimization)

Configuration accuracy
96.8%, error rate 2.1%,
response time 0.42s,
efficiency improved by
9%

Requires model
training cost and
system integration
design

This table clearly displays the performance gaps and
limitations of existing methods, highlighting the
necessity of the proposed method in this paper.

3 Analysis of configuration

characteristics and optimization
requirements for the secondary
system of intelligent substations

3.1 Classification of secondary system
structural characteristics and
configuration methods

The secondary system of an intelligent substation mainly
includes protection devices, measurement and control
equipment, communication units, and remote-control
systems. Its structure is divided into three functional

levels according to the IEC 61850 standard: station control
layer, interval layer, and process layer. The communication
between each layer is achieved through protocols such as
MMS, GOOSE, SV, etc., to achieve real-time perception
and control instruction transmission of the operating status
of a device. With the increasing complexity of
configuration tasks, the system architecture presents the
characteristics of "flatness, distribution, and software
hardware decoupling”, requiring the configuration method
to maintain a dynamic balance between accuracy, real-time
performance, and scalability.

At present, the configuration methods for secondary
systems can be divided into three categories: template-
based configuration, rule driven configuration, and data-
driven configuration. There are significant differences in
configuration mechanisms, technical dependencies, and
applicable scenarios, as shown in Table 2.

Table 2 : Classification and comparison of secondary system configuration methods

configuration

uniformly based on
fixed templates

standard interface

short configuration
time

complex station
layouts

Collocation Configuration Technology P Applicable
method Mechanism Dependencies Advantage limitation scenarios
High -
Generate . : . Poor flexibility .
Template - : Configure template implementation e ! Standardized
based configurations library and efficiency and difficult to adapt to single busbar

substation

Rule driven
configuration

Logical judgment
through rule engine

Expert system,
logical expression
library

Capable of
handling complex
logic and strong

High cost of rule
maintenance and
lagging response speed

Double busbar and
special station
type

data

adaptability
Automatic . . .
- : Strong Model training relies Multi energy
Data driven ?rg?r?irr?tlﬂo%fels SD asttaefnol'l&ectlon adaptability, on data quality, and complementary
configuration basod gn hactonical a%/ it platform dynamically generalization ability demonstration
9 p adjustable needs to be optimized substation
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Among them, the data-driven approach relies on
artificial intelligence algorithms to achieve rapid
analysis and configuration prediction of system status.
Its core is to model the configuration behavior as a
mapping between the state variable X and the
configuration output Y:

Y=£(X;0)
Among them, X is the input feature, such as station

structure, load, voltage level, f is an Al model (such as

CNN, SVM); 0 is the parameter obtained from training;
Y is the configuration output, such as protection settings,
link structure, etc.

The model is trained on a large number of historical
configuration samples and has a certain generalization
ability, which can quickly adapt to scenarios such as
wiring methods and load changes, solving the problems
of slow response and high error rate in manual
configuration. This approach provides a foundation for
building intelligent configuration systems with real-time
adaptability and precise control capabilities.

3.2 Configuration parameter constraints
and performance goal analysis
The configuration optimization of the secondary system
of an intelligent substation needs to be completed under
multiple constraint conditions, and its parameter
structure has high coupling, including electrical
parameters and communication resources at the
equipment level, as well as limitations on logical links
and functional allocation, forming a typical multi-
objective and multi constraint optimization problem.
Taking the typical interval layer configuration task as an
example, configuration parameters include protection
device type, channel quantity, link mapping, sampling
frequency, etc. These parameters have mutual
constraints and upstream downstream dependencies.
Without optimization modeling, it is easy to cause
redundant configuration or logical conflicts.

In the modeling process, the configuration problem
needs to be formalized as a constrained optimization

problem, defining objective function F(X) and
constraint set C. The objective function usually covers
three dimensions: configuration accuracy, resource
utilization, and response time, expressed as follows:

min F(X): W, - Eacc W, - Ruse + W, 'Tresp 2)

Among them, X represents the configuration
variable vector to be optimized, including device number,
function binding, link parameters, etc; E, .. is the
configuration error rate, which reflects the deviation of
the scheme in terms of functional coverage and logical
correctness; R . is the resource utilization rate, which
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calculates the communication and computing resource

overhead, link load, and device utilization rate; Tresp is the

average response time, reflecting the efficiency and
timeliness of configuration execution. W;,W,, W, is the

weight coefficient, allocated based on the importance of the
optimization objective and satisfying the normalization

constraint: W, +W, +W; =1.

The constraints mainly include the following categories:
(DProtocol constraints: for example, GOOSE and SV
communication mapping require a link delay of no more
than 4ms; (2)Redundancy constraints: Dual loop protection
must have redundant link support; (3)Topology constraint:
It is necessary to ensure that the links between devices in
the same section are interconnected and reachable;
(®)Resource constraints: Communication bandwidth and
processing power need to be controlled within system
thresholds.

In the application of artificial intelligence algorithms,
these constraints need to be transformed into differentiable
functions or penalty terms suitable for training and
inference, to be incorporated into the model loss function
for guided learning. Taking reinforcement learning
strategies as an example, the feedback reward of
configuration behavior can be dynamically adjusted based
on whether constraint violations are triggered, driving the
model to approach the optimal strategy in actual scheduling.

In summary, the reasonable modeling of the constraints
and objective relationship of configuration parameters is
the fundamental step in achieving configuration
optimization based on Al algorithms, and it is also a
prerequisite for subsequent algorithm design and system
integration.

3.3 Expression of configuration
optimization problems and exploration of
algorithm adaptability

The essence of the configuration problem of the secondary
system in intelligent substations is to seek the optimal
equipment connection relationship and logical function
mapping under various technical parameters and system
constraints. This problem has the characteristics of high
dimensionality, multiple variables, and strong constraints,
including multiple subtasks such as topology matching,
signal path scheduling, functional unit allocation, and
communication link configuration. Its optimization
objectives often involve multidimensional performance
indicators such as response delay, configuration stability,
and resource utilization. Therefore, a clear and computable
problem expression model needs to be constructed. As
shown in Figure 1, the configuration of a secondary system
can be abstracted as a structural decision-making task under
multiple layers of inputs and constraints, with the core
being mapping the optimal configuration path.
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Figure 1 : Schematic diagram of optimization process for secondary system configuration of intelligent substation

Existing research has transformed the configuration
problem into a decision-making problem with multiple
objectives. By categorizing the configuration results into
numerical categories and setting performance evaluation
indicators, it is possible to conduct mathematical
comparative analysis and rank the advantages and
disadvantages of various options. Due to the numerous
nonlinear relationships and interaction patterns among
parameters in the secondary system, it is necessary to
add graphical data or network logic rules during the
model building process to enhance the practicality of the
model.

In terms of algorithm adaptability, different
optimization requirements will generate different
algorithm performance requirements. For example,
when facing a large search space and multiple problem
variables, traditional exhaustive or rule-based
processing methods may not meet the requirements of
speed and accuracy. Artificial intelligence technology
has high adaptability in handling such problems,
especially in seeking solutions to complex constraints.
For example, swarm intelligence technologies such as
particle swarm optimization and genetic algorithms are
suitable for adjusting parameters and seeking solutions
that meet the conditions; Using real-time feedback
information to enhance reinforcement learning for
optimizing control strategies; Deep neural networks can
analyze past configuration data to find patterns and make
predictions or recommendations for future decisions.

At the same time, the coordination and matching
between algorithms and system architecture should be
considered. For example, in complex network topology
settings, graphical neural networks can be used to
represent the connectivity relationships between nodes;
When real-time response is required, the real-time
performance of the system can be enhanced through the
integration of lightweight models and edge computing
frameworks. Therefore, establishing models and
selecting algorithms are the core technical support for

intelligent configuration systems, At the same time, the
coordination and matching between algorithms and system
architecture should be considered. For example, in complex
network topology settings, graphical neural networks can
be used to represent the connectivity relationships between
nodes; When real-time response is required, the real-time
performance of the system can be enhanced through the
integration of lightweight models and edge computing
frameworks. Therefore, establishing models and selecting
algorithms are the core technical support for intelligent
configuration systems. Based on the analysis of the
adaptability of multiple algorithms, this article chooses to
use the combination of CNN and SVM to establish the core
technology for feature extraction and classification. CNN
can extract the connections between secondary systems and
network structure feature information, identify the
connections between nodes and possible anomalies, while
SVM has good stability in multi-objective optimization and
high-dimensional classification, and can complete
performance indicator discrimination under constraint
conditions. On the basis of preventing model overfitting
and reducing computational costs, it can be applied to the
configuration optimization of secondary systems, and can
also be adapted to their multi strategy joint optimization
system.

4 Configuration optimization
algorithm design and model
construction path

4.1 Feature parameter extraction and data
preprocessing mechanism

In terms of the configuration of the secondary system of an
intelligent substation, the system contains various types of
information, such as electricity measurement information,
safety setting configuration information, communication
status information, equipment logic information, etc. If this
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information is directly modeled, incorrect results will
occur. Therefore, it is necessary to extract systematic
feature factors and implement data preprocessing work
to provide stable adaptation effects for subsequent
modeling.

Normalize numerical power parameters using the
minimum maximum normalization method, mapping all
variables to the [0,1] interval to avoid physical
dimensional differences affecting model training. The
expression is as follows:

’ X = Xpin

Xex ™ Xrrin (3)
Among them, X is the original data value, X, and

X are the minimum and maximum values of the

max
variable in the sample set, respectively, and X' is the
normalized result. This method is suitable for protecting
bounded numerical variables such as fixed values and
voltage amplitudes.

For data with strong volatility and uncertain scale,
such as communication delay and load change rate, using
Z-score standardization processing can better highlight
its abnormal characteristics:

o (4)
Among them, g is the average value of the variable,

o is the standard deviation, Xis the original data, and
Z is the standardized value. This processing method can
make the variable distribution tend towards a standard
normal state, which is beneficial for the training stability
of deep learning networks.

In terms of feature construction, for the connection
topology between devices, a graph structure modeling
approach is adopted to represent node relationships. The
adjacency matrix is input into the graph neural network
for structure perception and feature aggregation,
achieving structured learning of complex logical
topologies. Communication quality data is extracted
through a sliding window mechanism to extract local
dynamic changes, such as the maximum packet loss rate
within five minutes and the fluctuation range of channel
delay, to assist in identifying abnormal nodes or path
bottlenecks.

To avoid redundant information interfering with the
learning process, it is also necessary to perform
dimensionality reduction on the original feature set.
Principal component analysis is often used to extract the
main influencing factors, while combining mutual
information algorithms to remove low correlation
features, thereby improving the computational efficiency
of the model and reducing the risk of overfitting. In
addition, clustering based encoding methods (such as K-
means encoding) can also be used for structural
transformation of non numerical features to achieve a
unified input format.

The final dataset should have three characteristics:
unified variables, clear structure, and clear dynamism.
To ensure the efficiency of model integration,
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standardized data interface formats (such as JSON or CSV)
should be adopted, and automated processing and model
integration should be carried out through data
preprocessing pipelines to build a stable and efficient input
foundation for subsequent deep learning algorithms.

4.2 Optimization algorithm model
construction and selection basis

Due to the complex issues of high state space and a large
number of constraints required for the secondary system
configuration of intelligent substations, traditional manual
configuration methods cannot adapt to the increasing
number of devices and the coexistence of multiple functions.
Therefore, it is necessary to use artificial intelligence
technology to construct a reasonable and efficient search-
based optimization model. This type of problem mainly
involves using models to describe the relationship between
system state and target requirements, and then optimizing
through algorithms.

The optimization configuration goals pursued include
three dimensions: accuracy, efficiency, and resource
utilization efficiency. To quantify the performance of
different combination schemes, the following function can
be established:

f(x)=4-A(x)=2,-C(x)~4-D(x)

Among them, X represents the configuration variable
vector to be optimized, including device number, function

binding, link parameters, etc; A(X) is the coverage of
configured functions, reflecting the degree to which the
solution meets various protection, measurement and control,
and communication functions; C(x) is the resource
overhead indicator, which calculates device utilization,
communication load, and memory usage; D(X) is the

system response delay; A, A, A; is the weight
coefficient, and weights are allocated based on actual needs
to meet 4, + A, + A4; =1,The allocation is based on the

importance of optimization objectives: A4, is the accuracy
of configuration, which is set at 0.5 according to the
reference grid configuration standard; A, is resource

efficiency, set to 0.3; /13 is the response delay, set to 0.2,

satisfying the normalization constraint.

For the above optimization objectives, current
mainstream algorithms include genetic algorithm, particle
swarm optimization algorithm, reinforcement learning, and
graph neural network. GA adapts to processing structure
allocation and routing optimization through individual
coding and population evolution mechanisms; PSO is
suitable for solving parameter tuning problems, with fast
convergence speed and controllable search paths; RL
achieves adaptive optimization of configuration decisions
through strategy learning, suitable for problems with clear
state transitions and quantifiable feedback; GNN is used to
express the topology and functional dependencies between
devices, and is suitable for building structure aware
configuration models. On this basis, this article adopts the
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CNN-SVM hybrid algorithm as the main research
algorithm. CNN is responsible for effectively extracting
system network framework features and operational
characteristics, using a three-layer convolution and
pooling structure to maintain the multi-level nature of
feature descriptions; SVM can run stably in highly
complex feature classification tasks with excellent
performance, so this study uses RBF kernel function to
optimize the classification process. In this training
process, set the learning rate to 0.001, batch size to 128,
epochs to 500, and use a five eight cross test to measure
the model's large interval fitness. This combination can
achieve high device configuration accuracy while
avoiding overfitting of individual models. Moreover, the
computational cost of this model is lower than that of
other models, making it more suitable for optimizing the
configuration of secondary systems. It can also be
seamlessly integrated with various strategies for joint
optimization systems.

When conducting practical operations, some
algorithms are combined to construct hybrid models,
such as using PSO and deep learning to adjust
connection parameters or using GNN+RL to construct
logical control paths to improve the adaptability and
computing power of the model. Finally, a suitable model
is selected and combined with factors such as task type,
data type, and computing power requirements to ensure
that the path can be optimized and meet the deployment
requirements.

4.3 Construction and iteration
mechanism of multi strategy collaborative
optimization framework

In response to the challenges of strong parameter
correlation, complex objective function, and dynamic
changes in operational constraints in the secondary
system configuration of intelligent substations, a single
optimization algorithm often fails to meet the
requirements of accuracy, speed, and flexibility
simultaneously. Therefore, it is necessary to construct a
diversified strategy joint optimization framework, which
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can improve the optimization quality and model stability of
the joint optimization scheme through the filling and
iterative updating of the functions of each algorithm
component.

This framework includes three core modules: the search
guidance module is responsible for global sampling of
large-scale parameter spaces, often wusing genetic
algorithms or particle swarm optimization algorithms to
construct initial solution sets; The local reinforcement
module adjusts the strategy under the guidance of feedback
signals and can introduce reinforcement learning methods
such as Q-learning; The structural discrimination module
uses graph neural networks to perform topological
constraint verification on the configuration results,
achieving early filtering of infeasible solutions. These
modules form a loop mechanism through intermediate
result sharing and performance indicator feedback to avoid
optimization stagnation or overfitting. In addition, in the
input and result verification stage of the multi strategy
framework, this study uses the CNN-SVM combination
pattern as the basic framework for input and output result
confirmation. This is because CNN's ability to distinguish
network structure and operational characteristics is utilized,
while SVM is used to ensure the high efficiency and
stability of high-dimensional data classification. The
combination of the two can significantly increase the
feature representation and judgment capabilities of the
entire system, thereby achieving the optimal balance
between the two and achieving good convergence rate and
high accuracy.

As shown in Figure 2, this study adopts a collaborative
optimization system consisting of GA/PSO, RL, and GNN.
GA/PSO first performs a global search to find the initial
solution set, then RL adjusts and refines the solution space
according to feedback information, and finally GNN is used
for topological constraint judgment and elimination of
solutions that are invalid for the goal. By sharing feedback
results and achievements in a collaborative manner, the
goal is to achieve a progressive cycle, which can effectively
achieve high-precision work efficiency.

GA/PSO H RL H GNN

Feedback GA/PSO
| ‘ Loop | ‘

Figure 2: Schematic diagram of multi strategy collaborative optimization framework process

In the scheduling process, in order to improve the
efficiency of multi strategy collaboration, a unified

performance evaluation function needs to be constructed.

Assuming the current solution is X, the evaluation
function is as follows:

F ()=, A+, B(1) (g

Among them, A(x) can correspond to E,.. (the

complement of configuration error rate, i.e.
configuration accuracy) in the objective function of

section 3.2, while B(x) combines R, and Tresp i section

3.2, reflecting system resource consumption and timeliness

through weight conversion, and Wiy W, is the weight

coefficient, which satisfies w, +w, =1 and can be
adaptively adjusted according to the optimization scenario.

In terms of optimization control, a reward feedback-
based update mechanism is introduced to enhance the
algorithm's dynamic response capability. After each
iteration, the improvement value is calculated by comparing
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the current strategy score of F(x) with the previous

round's optimal score of F(X*) :

A= F(x)—F(x ) -

If A>(, enhance the sampling probability of the
current strategy; If A<0, reduce the search scope of
the strategy in the next iteration and construct a three-
stage iteration rhythm of “exploration compression re
evaluation".

This multi strategy collaborative framework has
demonstrated good performance in simulation testing,
especially exhibiting strong robustness in complex
topologies and non-standard wiring scenarios. The
effective coupling between algorithm modules improves
optimization accuracy and speed, laying a reliable
foundation for building an intelligent, flexible and
adjustable configuration mechanism for substation
secondary systems.

5 Configuration optimization
system integration implementation
and functional evaluation

5.1 Configuration optimization system
architecture and key module deployment
To achieve efficient configuration optimization of the
secondary system of smart grid substations, it is
necessary to build a system architecture with modularity,
intelligence, and real-time response capabilities. The
overall system adopts a four-layer structure of "data
access feature extraction optimization decision
deployment verification", embedding multiple types of
computing modules and interface adaptation units to
ensure the integrity of data processing and the
operability of algorithm deployment.

The bottom layer of the system architecture is the data
access layer, which receives multi-source data uploaded
by subsystems such as SCADA, station control units, and
protection devices, covering voltage, current, telemetry
status, communication links, and other content. The
middle layer is the parameter processing and feature
modeling module, which constructs device relationships
based on graph structures, extracts core feature variables
such as topology, signal paths, and configuration
templates, and completes normalization and
standardization operations through preprocessing
modules.

The core computing layer is an intelligent
optimization module embedded with a multi strategy
algorithm scheduling unit.The core computing layer is
an intelligent optimization module embedded with a
multi strategy algorithm scheduling unit. Simultaneously
integrating  CNN-SVM hybrid model for feature
extraction and classification discrimination, improving
the accuracy and stability of configuration results, and
collaborating with multiple strategy units to achieve
optimization.Different algorithm modules share variable
pools through message middleware, supporting
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asynchronous calling and feedback driven. Its output is
configuration vector X=[X1,X2,...,Xn], with each X,

corresponding to the configuration result of a certain
functional point, such as communication channel selection,
protection device connection number, etc. The system
evaluation adopts the following functions:

S(x)= Zn:ai -fi(x)
= ®)

Among them, f; (xi) represents the performance score
(such as latency and reliability) of the i configuration item,

a; is its weight coefficient, allocated according to task

importance, and S(x)
score of the overall plan.
The top layer is the deployment and validation module,
which imports the optimization results into the simulation
platform and actual interface protocol for logical validation
and boundary testing, ensuring that the configuration output
has stability and practicality. This architecture fully
integrates computing intelligence and system control
characteristics, with good scalability and deployment
adaptability, providing technical support for configuration
management in complex power grid environments.

represents the comprehensive

5.2 Automated implementation of algorithm
integration and configuration process

To achieve automated configuration optimization of the
secondary system of smart grid substations, algorithm
modules need to be deeply integrated into the configuration
process, forming a data-driven fully closed-loop execution
chain. The system coordinates data perception, feature
processing, algorithm invocation, configuration output, and
verification feedback through a scheduling engine,
supporting rapid response and precise execution in various
operating scenarios.

On the specific implementation path, the configuration
process consists of three stages: input feature mapping,
model solving, and parameter deployment. The input end
receives station control equipment data streams through the
interface  layer, including electrical  parameters,
communication status, and topology information. The
intermediate  processing layer calls corresponding
optimization algorithm models based on task requirements,
such as genetic algorithms, convolutional neural networks,
support vector machines, graph neural networks, etc., to
dynamically adjust the strategy path, ensuring that the
feature extraction and classification discrimination process
is consistent with the overall optimization process. The
output end automatically generates standard configuration
instructions and pushes them to the actual device through
the southbound protocol interface to complete the
configuration landing.

In order to measure the overall intelligence level of the
configuration process, a configuration automation
evaluation function is introduced:

Tm
T, +¢

A =
(9)
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Among them, Arepresents the degree of automation
in configuration, T, is the time it takes for the machine
to independently complete the configuration process,
T, is the time required for manual completion of the

same task, and € is a small positive square with a
denominator of zero. The larger the value, the higher the
automation efficiency.

To support this automation capability, the system
design has strengthened the model's update mechanism
and parameter caching logic, achieving adaptive
evolution of the policy model in multiple calls. The
status and algorithm performance of each node in the
process are recorded in real-time for feedback training in
the next round of configuration, forming a learnable
closed-loop mechanism. Automated implementation not
only improves configuration response efficiency, but
also lays the technical foundation for subsequent large-
scale deployment and iterative optimization of the
system.

5.3 Comparative analysis and
effectiveness evaluation of configuration
results

To verify the performance advantages of Al algorithms
in the configuration of secondary systems in substations,
a comparative experimental platform was built, The "Al
optimization system™ in this study uses the CNN-SVM
hybrid mode as the main logic and introduces GNN and
RL to form a multi strategy collaborative system. The
basic comparison schemes such as "traditional manual
configuration”, "GA", "PSO", "CNN", "SVM",
"CNN+SVM" are all run in the same machine
environment (quad core CPU, 32GB RAM, Kubernetes

B Al optimization

96,2 88,8 82,5

Utilization rate (%)

70,4

Accuracy (%)
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container cluster), and use the same data input (16 typical
substation scenarios, obtained from the 2023 version of the
State Grid Corporation of China's typical design library) to
ensure fairness and comparability. In the experimental
design, an 8:2 ratio was used to divide the training set and
validation set, in order to achieve the goal of the former
learning model parameters and the latter judging model
performance. In addition, a 5-fold cross validation method
was used, and the final evaluation index was obtained by
taking the mean of each cross-training sample. During the
system operation, four core indicators including
configuration accuracy, resource utilization, configuration
error rate, and response efficiency are automatically
recorded. All data is collected by the Prometheus platform
and transmitted to the backend database in JSON format.
Finally, a Python script is called to Matplotlib to generate a
bar chart for performance analysis.

The comparison results show that the Al optimized
system achieves an accuracy rate of 96.2%, significantly
higher than the 88.8% manually configured; The resource
utilization rate has increased from 70.4% manually
configured to 82.5%, reflecting a better scheduling strategy
for computing resources and communication bandwidth; In
terms of configuration error rate, the Al system has reduced
to 1.6%, significantly lower than the 5.7% manually
configured, effectively avoiding logical conflicts and link
redundancy; The response efficiency index is set to a
benchmark value of 100% for manual configuration, and
the Al system achieves 162.6% in the same environment,
demonstrating a significant acceleration effect after the
automation of the configuration process. The above data, as
shown in Figure 3, demonstrates the comprehensive
performance improvement of Al algorithms in multiple
dimensions.

Manual configuration
162,6

100

1,6 5,7

Error rate (%) Response efficiency (%)

Figure 3 : Bar chart comparing the performance of Al optimization system and manual configuration system

The above results were processed by an independent
data analysis module, structured and visualized using
Pandas and Seaborn libraries, and finally presented in
the form of a bar chart. The chart can be embedded in the
front-end interface for dynamic display, and supports
linkage updates with the configuration platform,
facilitating  subsequent system evaluation and
optimization adjustments. The overall evaluation shows
that Al algorithms not only have good engineering
adaptability, but also can achieve efficient, accurate, and
stable operation of configuration processes, providing a

feasible technical path for the deployment of secondary
systems in smart grids.

To ensure the credibility and accuracy of the conclusions
drawn from data analysis, independent sample t-tests were
used to test some important parameters during the
comparative testing phase. The results showed a significant
improvement in system accuracy (p<0.01) and a significant
reduction in reaction time (p<0.05). The improvement in
accuracy and reaction speed was also tested using a 95%
confidence interval, with accuracy rates of [7.8%, 13.5%]
and reaction speeds of [36.2%, 41.7%], confirming the
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credibility of the conclusion. The results of this
experiment are completely in line with expectations:
objective (1) has been verified through the use of CNN-
SVM, which improves accuracy and reduces error rate;
Goal (2) is reflected, and after various strategies, the
response time is shortened and the stability of the system
is enhanced; Objective (3) is supported in multi scenario
testing, and the model exhibits scalability under different
voltage levels and station conditions.

5.4 System response performance,
stability, and scalability testing

To comprehensively evaluate the operational
performance of Al driven configuration optimization
systems in practical application scenarios, a testing
platform with different task scales and load scenarios is
constructed, focusing on testing response performance,
system stability, and scalability for variable power plant
structures. The testing environment is based on Docker
container deployment, configured with 4-core CPU and
32GB memory, and equipped with a Kubernetes based
scheduling platform. The testing tasks include typical
configuration request processing, abnormal link
simulation, and multi site concurrent scheduling. To
ensure the credibility and accuracy of the conclusions
drawn from data analysis, independent sample t-tests
were used to test some important parameters during the
comparative testing phase. The results showed a
significant improvement in system accuracy (p<0.01)
and a significant reduction in reaction time (p<0.05). The
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improvement in accuracy and reaction speed was also tested
using a 95% confidence interval, with accuracy rates of
[7.8%, 13.5%] and reaction speeds of [36.2%, 41.7%],
confirming the credibility of the conclusion. The results of
this experiment are completely in line with expectations:
objective (1) has been verified through the use of CNN-
SVM, which improves accuracy and reduces error rate;
Goal (2) is reflected, and after various strategies, the
response time is shortened and the stability of the system is
enhanced; Objective (3) is supported in multi scenario
testing, and the model exhibits scalability under different
voltage levels and station conditions.Response performance
is calculated by the average delay from task triggering to
configuration completion, stability is monitored by service
availability under 72 hours of high-frequency requests, and
scalability is measured by resource utilization and system
response retention ratio under concurrent task growth.

The test results show that the system maintains an
average response time of 2.8 seconds and system
availability of over 99.3% in medium scale (within 50
nodes) scenarios; When the number of nodes was expanded
to 200, the response time slightly increased to 3.7 seconds,
but the resource utilization rate remained at 86.1%,
reflecting the system's good load regulation and resource
allocation capabilities. In the scalability test, during the
high concurrency dynamic generation of topology structure
and execution constraint mapping process, the system did
not experience memory leaks, thread blocking, or module
crashes, and the configuration accuracy remained stable at
95.4%.

Table 3 : Evaluation indicators for system response performance and stability under different task scales

Task scale Average System Resource Configuration
(number of response time availability (%0) utilization rate accuracy (%)
nodes) S (%)

50 2.8 99.3 86.7 95.4

100 3.2 99.2 87.1 95.1

200 3.7 99.1 86.1 95.0

As shown in Table 3, the system exhibits good
stability and scalability under different load levels,
which can support the deployment requirements of large-
scale smart grid secondary systems and have the ability
to continuously evolve and horizontally replicate for
engineering scenarios.

5.5 Efficiency comparison analysis with
manual configuration method

To compare the specific differences in efficiency
between the configuration methods of artificial
intelligence  algorithms and traditional manual
configuration, a unified testing platform is constructed
to compare four indicators: configuration completion
rate, total task time, configuration accuracy, and human
intervention ratio. All data is based on the manual
configuration method (set as 100%) and converted into a

percentage expression to highlight the relative performance
of Al optimized systems.

In terms of task completion efficiency, the total time it
takes for Al systems to complete tasks with the same
configuration is 58.6% of manual configuration,
demonstrating significant advantages in automated
scheduling; In terms of configuration accuracy, the Al
configuration result is 107.1%, which is 7.1% higher than
manual configuration; In terms of human intervention
requirements, the intervention frequency required by Al
systems is only 27.1% of that of manual processes,
significantly reducing the cost of human intervention; The
overall completion rate of configuration tasks remains at
99.3%, higher than the manual configuration rate of 93.6%,
which is about 106.1%. As shown in Figure 4, the Al system
has achieved varying degrees of optimization in all four
core indicators, with reasonable advantages and no extreme
data fluctuations.
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Figure 4 : Efficiency comparison bar chart of configuration modes

During the data collection process, the system
monitors indicators through the Prometheus platform
and writes the results in JSON structure to the backend
database. Python scripts are used to complete
standardization conversion and bar chart visualization
processing. The analysis results indicate that artificial
intelligence algorithms have stability and promotional
value in improving configuration efficiency, accuracy,
and reducing manual dependence. They can be used as
one of the optimization paths in the deployment of
secondary systems in smart grid substations, providing
solid support for subsequent system upgrades and
intelligent scheduling.

6 Discussion

6.1 Adaptability of algorithm models in
different power grid scenarios
In the multi strategy collaborative optimization
framework, the CNN-SVM hybrid model serves as the
core algorithm to undertake the basic tasks of feature
extraction and classification discrimination, while GA,
PSO, RL, and GNN serve as auxiliary optimization and
structural adaptation modules, forming a clear
combination of primary and secondary with CNN-SVM
to ensure the overall performance improvement of the
framework. The experimental results show that CNN has
high accuracy in extracting complex topological features,
while SVM maintains stability in multi constrained high-
dimensional classification. The combination of the two
not only improves the overall convergence speed, but
also demonstrates consistent advantages in different
power grid scenarios, thus verifying the empirical value
of CNN-SVM fusion.

In response to the significant differences in power
grid structure and regional loads in practical applications,
this study selects three typical scenarios: urban main

network, county-level distribution network, and
mountainous microgrid, to compare and test the
adaptability of Al configuration models. The experimental
platform is based on Kubernetes container cluster
deployment, and uniformly calls the CNN-SVM hybrid
model and GNN structure encoding and policy network
scheduling module to achieve collaborative operation of
feature extraction, classification discrimination, and
structure adaptation, ensuring consistency between input
features and optimization processes. The testing task covers
secondary loop topology identification, device constraint
solution, and communication link reuse, comprehensively
evaluating the response accuracy, convergence speed, and
mismatch rate of the model in different scenarios.

The results show that the Al algorithm performs the best
in the urban main network environment, with model
convergence rounds less than 35 times and configuration
error controlled at 1.2%; The model can maintain an
accuracy of over 92% in county-level distribution networks,
but due to data disturbances and device diversity, the
mismatch rate slightly increases to 2.7%; In the testing of
microgrids in  mountainous areas, due to unstable
topological boundaries, the convergence stability of the
model decreases in some tasks and needs to be reinforced
through incremental learning strategies. In addition, there
are significant differences in training time, inference delay,
and resource utilization among the three scenarios: the
average training time of the urban main network is about
1.8 hours, inference delay is 320ms, and CPU utilization is
68%; The training time for county-level distribution
network is 2.4 hours, with a inference delay of 410ms and
a CPU usage rate of 72%; The training time for
mountainous microgrids has been increased to 3.1 hours,
with a inference delay of 530ms and a CPU usage rate of
79%. The specific comparison is shown in Table 4, which
reflects the dynamic relationship between model
adaptability and environmental complexity.

Table 4 : Comparison of Al model adaptability test results under different power grid scenarios

Grid type Average Convergence Configuration Training Reasoning CPU
accuracy rounds mismatch rate time latency usage

City Main 97.8% 34 1.2% 1.8h 320ms 68%

County level

distribution 92.4% 49 2.7% 2.4h 410ms 72%

network

Mountain

microgrid 89.6% 62 4.1% 3.1h 530ms 79%
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In order to highlight the advantages of the method
proposed in this article, the experimental results were

compared with typical algorithms in relevant worksheets.

The configuration accuracy of CNN-SVM hybrid model
reaches 96.8%, which is higher than 88% of genetic
algorithm, 91% of particle swarm optimization, 94% of
CNN, and 95% of deep reinforcement learning; The
response time has been shortened to 0.42 seconds, and
the error rate has been controlled within 2.1%, both of
which are better than the single model method.

The reason for the performance improvement is that
CNN can efficiently extract features, SVM is more
robust in high-dimensional classification, and the
combination of the two avoids overfitting and
insufficient generalization. Multi strategy collaborative
optimization further improves convergence speed and
real-time performance.

6.2 Technical challenges and engineering
countermeasures in actual promotion
Although introducing artificial intelligence algorithms
into the secondary system of smart grid substations has
advantages in configuration efficiency and accuracy,
there are still multiple technical bottlenecks in the actual
promotion process. Firstly, system training relies on
large-scale annotated data, and there is significant
heterogeneity in topology, device types, and
communication protocols among different regions of the
power grid, which limits the model's generalization
ability. To this end, it is necessary to introduce federated
learning mechanisms to achieve local optimization and
global parameter sharing of regional models, and
enhance the model's adaptability under multi-source data
conditions.

Al model reasoning requires a large scale of
computing resources, especially resource contention that
may occur when multiple sites are scheduled at the same
time. Model pruning and operator fusion are needed to
solve the reasoning pressure, and Kubernetes+edge
computing architecture is combined to achieve dynamic
scaling; At the same time, due to the poor compatibility
between the interfaces of existing systems and SCADA
and EMS platforms, it will increase construction costs.
Therefore, it is possible to improve the flexibility of
interaction with traditional systems by packaging Al
modules into microservices.

Future research will further explore the cross regional
generalization ability in larger scale power grid
environments, enhance the interpretability of models
through federated learning and knowledge graph, and
promote the long-term application and standardization of
Al configuration optimization in engineering through
deep coupling with actual power grid operation and
maintenance platforms.

7 Conclusion

This paper proposes a configuration optimization
method based on CNN-SVM hybrid model to address the
complex configuration problem of secondary systems in
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substations in the smart grid environment. A multi strategy
collaborative framework is formed by combining graph
neural networks and reinforcement learning strategies to
solve the complex configuration problem. The method has
been integrated and verified in multiple scenarios in
practical applications, and has been validated in practice.
Compared with traditional manual configuration methods,
this method can more accurately, quickly, and efficiently
meet resource utilization needs, especially for multi site
simultaneous management and variable network topology
structures, which have significant advantages. At the same
time, by introducing automated scheduling mechanisms,
real-time monitoring feedback, and visual analysis tools,
the entire configuration process can shift from a command-
based approach to a data-driven approach.

The deployment based on container and microservice
systems has achieved good collaboration between modules
and system elasticity and scalability. Meanwhile, utilizing
Prometheus and Kubernetes enables full process tracking,
collection, and analysis of task execution, ensuring the
practicality and stable operation of algorithm
implementation. To solve the problem of inconsistent data
across different regions, we have begun to explore model
transfer and shared solution strategies to enable broader-
scale basic applications.

The Al model developed in this paper has good
universality and can be applied to different scenarios and
tasks. Therefore, based on this, we can propose a new way
for edge computing nodes to coordinate with the central
server to achieve rapid response and configuration loop
control of the whole system, especially when the network is
limited or the local facilities are insufficient. Considering
that the system needs to better cope with changes in
topology and device constraints, knowledge graphs can be
used to guide the adaptive modeling and transformation of
GNN structures into structure-based configuration patterns.
The system in this study has a certain generalization ability
when facing unfamiliar topology structures, and can
directly perform preliminary inference and configuration
through existing model parameters without the need for
complete retraining. However, in cases of significant
topological differences or significant changes in constraint
conditions, incremental learning or lightweight fine-tuning
is still necessary to ensure the convergence stability and
performance reliability of the model in new scenarios. This
strategy is demonstrated in experiments as a plug and play
adaptation to small-scale structural changes, while for
large-scale topological changes, model updates are
completed through a small amount of iterative training, thus
maintaining a balance between efficiency and accuracy.

In  summary, introducing artificial intelligence
algorithms into the secondary system configuration of
power substations has innovated and optimized the original
configuration process, and provided new mode support for
the new architecture of intelligent power grid management
mode, with reusability and scalability. In the subsequent
promotion and application, it is necessary to continuously
optimize the model security, interface consistency, and data
standardization processing to ensure the long-term stable
operation and scale promotion of this configuration.
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Appendix a experimental

reproduction details

1.Algorithm  implementation:  CNN  three-layer
convolution+pooling (convolution kernel 3 x 3,
activation function ReLU), SVM uses radial basis kernel
function.

2. Training parameters: Learning rate of 0.001, batch
size of 128, iteration count of 500, optimizer Adam.

3.Dataset: 16 scenarios from the typical design
library of State Grid 2023, divided into 8:2, with both the
training and testing sets using five-fold cross validation.

4. Operating environment: 4-core CPU, 32GB
memory, Kubernetes container cluster; The operating
system is Ubuntu22.04, Python3.10, and the main
dependency libraries are TensorFlow 2.11 and Scikit
learnl.2.

5.Evaluation indicators: configuration accuracy,
resource utilization, configuration error rate, response
efficiency; The statistical method is independent sample
t-test and 95% confidence interval.

6.Reproduction explanation: The data interface is
input in JSON format, and both model training and result
analysis are implemented through Python scripts, which
can be directly run in Prometheus and Matplotlib
environments.

To enhance reproducibility, this article provides
pseudocode for the core training process as follows:

# Pseudocode: CNN-SVM Training and Evaluation

1. Load dataset (JSON), split into 80% training and
20% testing.

2. Preprocess features:

- Min—Max scale numeric features
- Z-score normalize fluctuating features
- Apply PCA/MI for feature selection

3. Build CNN (3 conv—pool layers, kernel 3x3, ReLU)
for feature extraction.

4. Build SVM (RBF kernel) for classification.

5. Train CNN-SVM with learning_rate=0.001,
batch_size=128, epochs=500, 5-fold CV.

6. Evaluate on test set — report accuracy, utilization,
error rate, response efficiency.

This pseudocode demonstrates the main steps of data
preprocessing, model building, training, and evaluation,
which readers can use to reproduce the experimental
process.
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