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There are core difficulties in the intelligent recognition and generation application of clothing pattern 

structure, such as irregular geometric topology, weakened semantic structure, and unstable path planning. 

To solve such problems, an intelligent feature extraction and structure reconstruction path learning 

scheme that integrates graph neural networks is constructed. In the stage of structural diagram modeling, 

a clothing structure diagram is constructed based on the node edge surface configuration relationship. 

The graph convolutional network is used to embed the spatial adjacency relationship in multiple 

dimensions, supplemented by attention mechanism to enhance the response ability of key nodes and 

improve the stability of extracting local salient features. To better express the relationship between 

structural semantics and geometry, a multi-scale graph embedding strategy and structural context 

aggregation module are introduced to enable nodes to have stronger expressive power in both topological 

and semantic dimensions. In terms of reconstructing path generation, a graph autoencoder architecture 

is introduced to achieve controllable mapping of structure to path space, integrating geometric 

consistency constraints to enhance structural accuracy. The path decision-making process adopts a 

reinforcement learning model based on policy gradient, and optimizes the path guidance process through 

feedback mechanism. This experiment is based on the DeepFashion2 public dataset and our self built 

clothing structure graph data, with a total of 4826 samples and an average of 43 vertices. The results 

show that the accuracy index of our model reaches 91.3%+0.5, the Topology Score reaches 88.0%+0.6, 

and the F1 Structure Score reaches 88.4%+0.6, which is much higher than the basic method. The 

innovation of this study is mainly reflected in three aspects: proposing the use of graph 

convolution+attention to achieve multi task feature extraction; Introducing geometric constraints and 

policy networks to achieve reconstruction methods that maintain path consistency; The first application 

of GNN in the establishment of clothing style structure brings a new approach compared to traditional 

graph mapping. 

Povzetek: Predstavljen je večmodulni GNN-okvir za inteligentno modeliranje in rekonstrukcijo oblačilnih 

krojnih struktur. Združuje večskalne GCN, pozornost, geometrijske omejitve ter učenje z okrepitvijo za 

stabilno načrtovanje poti. Testiran je na 4.826 vzorcih. 
 

 

1  Introduction 
With the deepening development of artificial 

intelligence and graph neural networks in structural 

modeling, graphic recognition, and semantic generation, 

intelligent analysis of graph structured data is becoming 

an important means of complex structure restoration and 

information reconstruction. In applications such as 

intelligent clothing manufacturing and virtual fitting, the 

modeling of clothing pattern structure serves as an 

intermediate link, directly affecting the accuracy of 3D 

reconstruction and the logic of structural restoration. 

However, clothing structure diagrams have features such 

as uneven node distribution, non-linear stitching paths, 

and fuzzy semantic boundaries, which result in 

insufficient accuracy of traditional methods based on 

image contours or geometric templates, making it difficult 

to adapt to diverse pattern organization [1]. 

Previous studies have attempted to use convolutional 

neural networks or generative adversarial networks to map 

images to structures, but there are still shortcomings in 

expressing complex structures and handling spatial 

relationships. Especially for clothing graphics with 

topological constraints and semantic nesting, there is an 

urgent need to establish a unified graph model framework 

that combines structural priors, semantic understanding, 

and path planning capabilities to achieve effective 

transformation from graphic perception to structural 

reconstruction. In recent years, Graph Neural Networks 

(GNNs) have shown good adaptability in processing non-

Euclidean structured data, providing a unified mechanism 

for node propagation, structure perception, and semantic 
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embedding, and providing methodoiogical support for 

clothing structure modeling [3]. GNN can achieve local 

fusion by aggregating adjacent node information and 

perform overall modeling at the layer level, suitable for 

the structural relationship of "node edge stitching 

surface" in clothing. After introducing attention 

mechanism, the recognition accuracy of key parts and 

important suture paths can be improved, and the 

robustness of the model can be enhanced [4]. The graph 

autoencoder and decoder provide the basis for path 

generation, but there are still challenges in coordinating 

sequence control and structural constraints. 

Reinforcement learning has the potential to improve the 

accuracy and efficiency of path generation due to its 

adaptive strategy optimization ability, making it suitable 

for dynamic adjustment during the path generation stage 

[5]. 

In actual modeling, the representation of structural 

diagrams, the accuracy of graph feature extraction, path 

reconstruction strategies, and control feedback 

constitute the core of the system. The key to current 

research is to build a multi module collaborative, feature 

accurate, path reasonable, and strategy controllable 

graph model system that balances modeling accuracy 

and system stability. This study focuses on the core topic 

of "Intelligent feature extraction and reconstruction path 

construction of clothing pattern structure by integrating 

graph neural networks". The technical design and 

experimental verification are carried out around four 

dimensions: "structure graph construction - graph feature 

extraction - path reconstruction generation - strategy 

guided optimization". This study focuses on the graph 

feature extraction and path reconstruction of clothing 

pattern structure. The research question is as follows: 

RQ1: Can graph neural networks effectively model the 

spatial semantic structure of clothing patterns? RQ2: Can 

multitasking and attention mechanisms improve node 

classification and edge prediction accuracy? RQ3: Can 

reinforcement learning improve the consistency of 

structural path reconstruction? 

The innovation of this study lies in the fusion of 

graph convolution, attention, and reinforcement learning 

to form a collaborative framework; Introducing 

geometric constraints to enhance the logical consistency 

of complex structures in tasks; For the first time, GNN 

has been applied to clothing pattern modeling, 

expanding its boundaries in the field of industrial design. 

2  Related work 
In the interdisciplinary research of graph neural 

networks and structural modeling, the extraction and 

reconstruction of structural features of clothing patterns 

have gradually formed a complex task process that 

integrates multi-source graph data, high-dimensional 

semantic mapping, and path optimization. Current 

research mainly focuses on graph structure construction, 

feature fusion, path prediction, and graph data-driven 

learning. 

In terms of graph structure modeling, Dong et al. (2022) 

proposed a weighted fusion of convolutional neural 

networks and graph attention mechanisms for classification 

tasks in high-dimensional spectral images, effectively 

enhancing the recognition accuracy and structure 

preservation ability of graph neural networks for boundary 

regions, and providing basic support for edge detection in 

subsequent structure reconstruction [7]. Sun et al. (2024) 

introduced an adaptive feature fusion module in the 

attribute graph clustering task and achieved stable 

clustering results on irregular structured graphs, verifying 

the enhancing effect of heterogeneous feature combinations 

on graph structure expression [8]. Liu et al. (2022) 

constructed a lightweight image super-resolution model 

based on multi attention mechanism, achieving effective 

recognition and enhancement of key region map features 

under limited computing resources [9]. 

In terms of optimizing the expression of intermediate 

layers in structural reconstruction paths, Chen et al. (2024) 

proposed a multi-layer feature radiation field (FeRF) model, 

which combines deep neural networks with high-

dimensional graph structure embedding to achieve multi-

scale fusion and hierarchical reconstruction of structural 

features in image-to-image tasks [10]. Yi (2022) 

constructed a convolutional neural network model based on 

clothing design to explore the linear structure distribution 

and pattern contour recognition in clothing images, 

providing a preliminary semantic basis for mapping images 

to pattern structures [11]. Yan et al. (2022) proposed the 

Semantic Driven Dual Attention Network (SDAN), which 

utilizes a bidirectional graph attention mechanism to mine 

semantic distribution relationships in the graph, 

significantly improving the accuracy of expressing edge 

connections and region boundaries during the structural 

restoration process [12]. 

In image recognition and classification tasks, Liao et al. 

(2022) combined convolutional networks and attention 

mechanisms for multi class classification of clothing 

images, enhancing the differential expression between 

structural features and demonstrating stronger 

discriminative ability for image samples within the same 

category [13]. Ning et al. (2022) constructed a 

heterogeneous graph transformation relationship network 

between clothing patterns and e-commerce patterns from 

the perspective of cross domain image retrieval, solving the 

interference problem of structural misalignment and fuzzy 

features on retrieval accuracy [14]. Korosteleva and Lee 

(2022) proposed the NeuralTailor method, which 

reconstructs sewing pattern structures from 3D clothing 

point clouds, achieving structure preserving modeling from 

3D to 2D, providing direct technical reference for 

intelligent reconstruction of clothing pattern structures [15].  

In order to compare the differences between existing 

methods and the work presented in this paper more clearly, 

the core elements of the main related studies are 

summarized in Table 1. 
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Table 1：Comparison and summary of related methods 

Method 
Name 

Year Dataset Main Method 
Accuracy / F1 / 

Topology 
Limitation 

CNN-
based 

2022 
Textile 
dataset 

Parallel convolution + 
optimization 

Acc 82% 
Difficult to handle 
complex structural 

relations 

GCN-Net 2023 
Synthetic 
graph data 

Heterogeneous GNN 
feature fusion across 

layers 
Acc 88% 

Insufficient for 
capturing long-range 

dependencies 

SDAN 2022 
Image 

generation 
tasks 

Dual attention 
mechanism for edge 

recognition 
F1 ≈ 85% 

Limited 
generalization, lacks 

path modeling 

NeuralTa
ilor 

2022 
3D point 

cloud 

Reconstructing sewing 
structures from 3D 

point clouds 

Topology ≈ 
87% 

Restricted to 3D 
input, lacks path 

optimization 

GNN+Str
ategy 

2024 
DeepFashio

n2 & 
Custom data 

Multi-module fusion + 
reinforcement learning 

for path guidance 

Acc 91.3% / 
Topo 88.0% / 

F1 88.4% 

Validation scope 
limited 

 

3  Intelligent feature extraction 
mechanism for clothing pattern 
structure based on fused graph 
neural network 

3.1  Construction of clothing pattern 
structure diagram and node feature setting 
The construction of clothing pattern structure diagram 

relies on the data format requirements of graph neural 

network, which requires encoding the geometric 

structure information in two-dimensional images or 

CAD drawings into graph data structures with 

connection relationships. Nodes represent functional 

areas in the clothing structure, such as armrests, collars, 

side seams, armholes, etc., while edges represent the 

stitching relationships or symmetrical connections 

between different parts. The graph structure is defined as 

( )EVG ,= , where  nvvv ,…,,V 21=  is the set of 

nodes and VVE  is the set of edges. Each node sets 

an initial feature vector 
d

i Rx  by extracting its 

position, shape, and structural semantics, which is 

specifically defined as: 

( )   d

iiiiii RsmklvF = ,,,,
（1） 

Among them, il represents the length of the 

structural line, i represents the corner information, ik  

represents the local contour curvature, im represents the 

material code, and is  represents the structural category 

label.Curvature is obtained through edge detection and 

keypoint fitting, and normalized to the [0,1] interval; The 

angle is extracted from the geometric relationships in the 

CAD style drawing to ensure consistency at different 

sizes; The material coding adopts the form of a single 

heat vector, which is jointly generated by manual 

annotation and process database. This formula is used to 

encode the initial structural features of clothing nodes. 

In practical applications, node initialization involves  

 

multiple steps: the length of the structural line is calculated 

and normalized based on the pixel values or CAD 

annotation lengths of the corresponding line segments; 

Edge and corner information is extracted through geometric 

relationships in CAD style drawings to ensure consistency 

across different sizes; Local curvature is obtained through 

edge detection and keypoint fitting; The material properties 

are encoded in the form of individual heat vectors, 

generated by manual annotation and process databases; The 

structural category labels are determined based on a 

predefined set of 43 clothing parts. By extracting and 

encoding the above features, the initialization of the graph 

structure nodes is completed. 

To enhance the geometric integrity of the graph 

construction, edge determination is carried out based on the 

stitching logic of the clothing process and the two-

dimensional spatial connection rules to ensure structural 

connectivity. The relative spatial relationship between 

nodes is encoded by normalizing coordinate differences to 

enhance the geometric perception ability of graph 

convolution. The calculation method for position 

embedding is as follows: 








 −−
=

H

yy

W

xx
P

ijij

ij ,

（2） 

Among them, ( )ii yx , is the image coordinate of node 

iv , W and H are the image width and height, used to 

standardize the feature expression under different clothing 

sizes. This formula is used to calculate the spatial position 

encoding between nodes and normalize the position of 

clothing of different sizes during the graph construction 

stage. 

As shown in Figure 1, the process of constructing a 

structural diagram includes steps such as image 

preprocessing, structural region recognition, node setting, 

edge relationship generation, and attribute vector 

construction. The image input comes from a two-

dimensional pattern of clothing, and semantic segmentation 

models. The nodes are mapped by manually annotated 

keypoints, and the edge relationships are automatically 

inferred under the constraints of process rules combined 

with geometric relationships, supplemented by manual 

correction to ensure the rationality of the structure.
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Figure 1: Construction process of clothing pattern structure diagram 
 

In the process of node feature quantization, the 

curvature of the edges and corners is normalized to the 

[0,1] interval in radians, the material properties are 

mapped to a 4-dimensional vector through single heat 

encoding, and the structure category is set to 43 class 

labels. The position coordinates are normalized 

according to the width and height of the image to 

eliminate the influence of clothing of different sizes. The 

above features are concatenated into node input vectors 

to ensure uniform and reproducible feature dimensions. 

3.2  Structural space extraction mode 
based on graph convolution 
In the clothing pattern structure diagram, the spatial 

dependency relationship between nodes presents a non-

Euclidean distribution, and traditional convolution 

kernels are difficult to capture the feature propagation 

under this irregular topology. Graph convolutional 

neural networks can effectively transmit structural 

semantic information between nodes by constructing 

adjacency relationships in the graph structure, thereby 

completing spatial feature extraction of clothing 

structures. In the constructed structural diagram

( )EVG ,=
, V is the set of nodes representing the 

coordinates and attributes of key parts, and E is the set 

of edges, combined with geometric connections and 

process sequence settings. 

The core of graph convolution lies in the 

neighborhood aggregation mechanism, where the 

representation vector of each node is updated by 

superimposing information from adjacent nodes, 

formally expressed as: 

( ) ( ) ( )( )lll WHDADH 2/12/11 ~~~ −−+ =
（3） 

Among them, IAA +=
~

is the adjacency matrix 

with self connection added, D
~

 is the corresponding 

degree matrix, 
( )lH is the node feature representation of 

the l th layer, 
( )lW is the trainable weight matrix, and

 is the activation function (such as ReLU). This 

formula is applied to the graph convolution propagation 

stage, where node information is updated through 

adjacency matrix and degree matrix. This process 

ensures the joint updating of graph structure information 

and node local features. 

To enhance the representation ability of different scale 

structural regions, a Multi channel GCN is introduced. 

Parallel paths are used to process feature channels under 

different edge weight strategies, and the final fusion 

expression is as follows: 

( )( )
=

=
K

k

kk HGCNZ
1

0
（4） 

Among them, k  is the weight coefficient of the kth 

channel, kGCN
represents the convolution path of the kth 

graph, and 
( )0H is the input initial node feature. This 

formula is used in multi-channel convolution to enhance the 

ability to recognize boundaries and structures by fusing 

features from different channels. In this study, the number 

of multiple channels was set to K=3, and adjacency 

matrices were constructed based on semantic relationships, 

geometric distances, and their fusion. The semantic channel 

highlights the process logic and part categories, the 

geometric channel emphasizes the spatial proximity 

between nodes, and the fusion channel adopts a weighted 

combination method to ensure the unified expression of 

structural semantics and geometric features. This strategy 

captures semantic changes from multiple angles while 

maintaining the integrity of the graph structure, improving 

the recognition ability of complex clothing contours and 

overlapping boundary areas. 

Through the above structural space extraction mode, 

the model achieves accurate perception of local 

configurations, overall partitioning, and node aggregation 

relationships in clothing patterns, establishes a stable 

structural foundation, and provides graph embedding 

support for subsequent structural reconstruction and 

posture regression. 

3.3  Introducing attention mechanism to 
enhance recognition of key structures 
In the clothing pattern structure diagram, there are 

significant differences in the importance of the clothing 

components represented by each node in the reconstruction 

accuracy. The traditional graph convolution method adopts 

equal or static weight methods in the feature aggregation 

Image preprocessing 

stage 

Attribute Vector 

Construction and 

Encoding Stage 

Edge relationship 

generation stage 

Node setting stage 
Structural area 

identification stage 
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process of adjacent nodes, which makes it difficult to 

effectively identify the semantic significance of key 

structural regions. Therefore, introducing graph 

attention mechanism to enhance the recognition ability 

of the model for key nodes, dynamically allocating 

information weights during feature propagation, and thus 

enhancing the effectiveness of structural expression. 

The core of graph attention mechanism is to assign 

a learnable attention weight to the edges between each 

pair of adjacent nodes, which reflects the feature update 

contribution of the neighboring node to the central node. 

If the input feature of any node i in the graph is

F

i Rh 

and its set of adjacent nodes is 
( )iN

, then the output 

feature ih
of node i can be calculated by the following 

formula: 

( )













= 

 iNj

jiji Whh 

（5） 

Among them, 
FFRW   is a shared linear 

transformation matrix used for feature space projection; 

( ) represents the activation function (commonly 

known as ReLU), which is applied in attention 

mechanisms to dynamically focus on key structural 

nodes and enhance graph convolution representation 

capabilities. ij is the attention weight of node j to node 

i, which is calculated through feature similarity: 

 ( )( )
( )  ( )( )ki

T

iNk

ji

T

ij
WhWhLULeaky

WhWhLULeaky




=

 Reexp

Reexp


（6） 

In this equation, 
FR


 2

 is a trainable weight 

vector, represents vector concatenation operation,

( )iN
represents the set of neighbors of node i, and 

LeakyReLU is a nonlinear activation function. This 

formula is used to calculate attention weights and 

identify semantic similarity between nodes through 

feature concatenation. Through the above mechanism, 

the model can adaptively focus on key parts of clothing 

such as armholes, collars, and side seams, giving higher 

weights in the feature fusion stage, achieving key 

extraction and discriminative expression of structural 

features, and providing a more recognizable graphical 

basis for subsequent reconstruction modules. 

3.4  Multi task driven feature extraction 
process 
In the modeling process of clothing pattern structure, the 

supervision signal of a single task often fails to fully 

stimulate the model's ability to understand complex 

structures. Therefore, a multi task learning mechanism is 

introduced to synergistically model the three sub tasks of 

structure classification, edge recognition, and node feature 

regression, in order to enhance the feature extraction 

generalization ability of graph neural networks. This 

mechanism can optimize multiple task losses in parallel 

based on shared parameters, thereby obtaining more stable 

and discriminative intermediate feature representations. Let 

the total loss function be totalL , consisting of three subtask 

losses: 

regedgeclstatol LLLL 321  ++=
（7） 

Among them, clsL
represents the cross entropy loss of 

structural classification, which is used to determine the 

category of structural components to which each node 

belongs; edgeL  is the edge recognition loss, which uses 

binary cross entropy to calculate the connection prediction 

error between node pairs; regL node coordinate regression 

loss, using mean square error to evaluate the deviation 

between predicted coordinates and annotated coordinates; 

321  ，，
are the weight coefficients of three tasks, In 

this study, the weight parameters are adjusted within the 

{0.2, 0.5, 1.0} interval through grid search, and the optimal 

combination is selected on the validation set to ensure the 

balance of the three types of tasks. The results indicate that 

the performance of the model remains stable under 

parameter changes, with an improvement in edge 

recognition accuracy at larger values of 2 . This formula is 

used for joint calculation of multi task losses, and in actual 

training, the model stability is improved through 

collaborative optimization of three types of tasks. 

To verify the improvement effect of multi task 

mechanism on feature extraction performance, a 

comparative experiment was designed as shown in Table 2. 

Single task training refers to training independent models 

for classification, edge recognition, and coordinate 

regression separately, and taking the average result; Multi 

task training jointly optimizes three types of tasks in the 

same model. Compare and evaluate three indicators: 

classification accuracy, edge prediction F1 value, and 

coordinate error.
 

Table 2: Comparison of structure recognition performance under different training mechanisms 

Training Method 
Classification 
Accuracy (%) 

Edge Prediction F1 
Score 

Coordinate Mean 
Squared Error 

Single-task Training 84.7 0.712 3.65 px 
Multi-task Joint 

Training 
89.2 0.786 2.94 px 

The experimental results show that the multi task 

mechanism outperforms single task training in all three 

indicators, especially in the recognition accuracy of 

structural edge relationships and node coordinate fitting 

accuracy. This indicates that graph neural networks guided 

by multi task loss can more effectively extract structural 
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semantic and geometric information, forming a more 

stable and discriminative expression of clothing pattern 

structure. 

4  Intelligent reconstruction path of 
clothing pattern structure based on 
fused graph neural network 

4.1  Node path construction method for 
clothing pattern structure diagram 
In the task of clothing structure reconstruction using 

graph neural networks, the path information of the 

structural graph not only determines the propagation 

direction of graph convolution, but also directly affects 

the preservation of structural relationships and semantic 

restoration effects. To construct a reasonable node path 

system, it is necessary to comprehensively consider the 

geometric continuity and process logic of the clothing 

structure, ensuring that the graph structure can 

accurately map the connection mode and reconstructable 

sequence of solid components. 

Node path generation is based on the spatial position 

and edge attribute weights of nodes in the structural 

graph, defining a set of optimal traversal paths in the 

directed graph. Assuming the structure diagram 

( )EVG ,=
 is known, the path generation target can be 

formalized as: 

( )




+=
Pvv

ijij
P

ji

dwP
,

* minarg 

（8） 

Among them,
*P  is the optimal path set, ijw

represents the process weight of edge Eeij  , ijd is the 

Euclidean distance between nodes, and  is the adjustment 

coefficient, which controls the relative importance of 

geometry and process. In this study,  was determined by 

grid search on the validation set (with values ranging from 

{0.3, 0.5, 0.7, 1.0}) to balance the contributions of process 

weights and geometric distances. The experimental results 

show that when  is set to 0.5-0.7, the path consistency and 

reconstruction accuracy are optimal. The structural rule 

library is initially annotated and generated by process 

experts, but automated rule extensions and data-driven 

constraint updates are introduced during the training 

process to reduce manual dependencies and enhance 

generalization ability. This formula is used in the path 

search process to generate the optimal connection path in 

the structural diagram by combining geometric and process 

constraints. 

The path search adopts an improved Dijkstra algorithm 

and embeds clothing structure rules to remove path 

branches that do not conform to the construction sequence. 

 
Figure 2: Path construction process of clothing structure diagram 

 

As shown in Figure 2, the path construction process 

includes key steps such as clothing structure diagram 

input, structural rule library loading, feature extraction, 

edge weight matrix construction, structural consistency 

check, and path search execution. The system first 

extracts the spatial coordinates and topological 

relationships of nodes, constructs edge weight matrices 

based on structural rules, and introduces geometric 

distances and process rules as evaluation criteria for 

edges. Subsequently, path branches that do not comply 

with process constraints are eliminated through 

structural consistency checks to ensure that the path 

generation is logically and geometrically reasonable. In 

the path search stage, graph traversal is used to generate a 

path set and output the optimal path set, providing ordered 

input for the subsequent structural information transmission 

of the graph neural network, enhancing the coherence and 

spatial consistency of feature fusion. This path system can 

also provide structural references for multi-scale 

convolution mechanisms, supporting advanced operations 

such as region partitioning and hierarchical extraction. 

4.2  Design of image feature encoding and 
reconstruction path decoding 
The core of graph feature encoding lies in constructing node 

representations that can accurately reflect the topology and 

Enter clothing structure 

diagram 

Output the optimal path set 

Structural consistency 

check 

Loading of structural rule 

library 

Node feature analysis 

-Spatial coordinates 

-Topological relationship  

Path search algorithm 

execution 

-Graph traversal generation 

Construct edge weight 

matrix 

-Geometric distance 

-Process rules 
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geometric properties of clothing pattern structure. In this 

study, each node
Vvi  in the input graph structure 

( )EVG ,=
in the input graph structure 1 corresponds 

to a clothing keypoint, and its feature vector is composed 

of spatial coordinates, connecting edge directions, 

weight values, and structural semantic labels.  This 

formula is applied to the graph feature encoding process 

and differs from the structural spatial feature extraction 

mentioned earlier in terms of application scenarios. The 

embedding update formula for nodes is as follows: 

( ) ( ) ( )

( ) 












= 



+

iNj

l

j

l

ji

l

i hW
dd

h
11 

（9） 

Among them,
( )l
ih  represents the feature 

representation of node iv  in the l nd layer, ( )iN  is the 

set of adjacent nodes, 
( )lW  is the trainable graph 

convolution weight matrix, 
( )

is the nonlinear 

activation function, and jjdd is the degree 

normalization factor, which is used to maintain the 

numerical stability of information propagation. This 

formula is used in the graph encoding stage to update the 

node features of each layer, and in practice, it combines 

the weight matrix and activation function for information 

fusion. 

In the reconstruction path decoding stage, it is 

necessary to perform inverse graph decoding by 

combining the generated path set
*P . Considering the 

spatial order and dependency of clothing structure, this 

paper introduces a decoder model based on path attention 

mechanism. The reconstruction state of each node in the 

path is jointly determined by the context path vector and 

the target embedding, and its generation probability is 

modeled as follows: 

( ) ( )( )HPAttnqHPvp T

ii ,maxsoft, ** =
（10） 

Among them, iq
 is the query vector of the current 

decoding step, the starting node is initialized as a zero 

vector, and the remaining steps inherit the embedding of 

the previous node; H is the node embedding matrix after 

graph encoding, with dimensions set to 128;and
( )Attn

is a standard multi head attention function module that 

measures the degree of matching between nodes and path 

contexts. The decoder adopts a two-layer structure, 

combining self attention and cross attention mechanisms 

to capture path dependencies and ensure spatial 

constraints. This mechanism dynamically adjusts the 

dependency ratio on historical structures during 

decoding, improving the accuracy and stability of 

reconstruction. 

In summary, graph feature encoding and path 

decoding constitute the core closed loop of structural 

intelligent reconstruction. The former extracts deep 

structural semantics from clothing pattern maps, while 

the latter uses path guidance for high consistency topology 

restoration, providing a structurally stable input foundation 

for downstream simulation and optimization modules. 

4.3  Structural reconstruction process based 
on geometric constraints 
The intelligent reconstruction of clothing pattern structure 

not only relies on the efficient propagation of structural 

information by graph neural networks, but also requires the 

use of geometric constraint mechanisms to ensure the 

spatial rationality and topological consistency of the 

generated results. This study proposes an optimization 

strategy based on geometric consistency to address issues 

such as structural drift and scale imbalance that may occur 

during the reconstruction process. Key constraints such as 

edge length and angle are introduced synchronously during 

node generation and path backtracking to achieve precise 

control of structural restoration. 

Assuming the predicted coordinates of the nodes in the 

reconstructed graph are 

2ˆ RPi  , the target reference 

coordinates are 

2RPi  , and the edge set is  . The 

consistency loss function for edge length is defined as 

follows: 

( )

2

,
2

ˆˆ







 −−=

ji

ijjiedge dPPL

（11） 

Among them, ijd
 represents the target edge length 

between nodes extracted from the original pattern structure, 

and 2


 is the Euclidean distance. This constraint is used to 

calibrate the spatial spacing between predicted nodes, 

ensuring the geometric authenticity of the boundary length, 

and is applicable to areas such as sutures and splices that 

require proportional preservation.  To avoid confusion 

with the edge recognition loss in Section 3.4, edgeL in this 

section specifically refers to the geometric edge length 

constraint loss, which is defined as formula (11). 

On the basis of edge length constraints, an angle 

consistency loss is introduced to maintain the relative 

relationship between local angles of nodes. For any set of 

ternary nodes
( ) Tkji ,,

, the angle loss function is as 

follows: 

( )( )
( )




−=
Tkji

ijkkjiangle PPPL
,,

2
ˆ,ˆ,ˆ 

（12） 

Among them, 
( )

represents the actual angle formed 

by three points, and ijk
is the target angle value of the 

structural unit, derived from the initial pattern composition 

or manual rule library definition. This formula is used for 

angle loss constraint to ensure that the triangular 

relationship maintains structural geometric consistency. 

This item helps to maintain the stability of the angular 

relationship of the structural boundary and reduce the 

interference of deformation areas on the path connection 
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logic. To verify the effectiveness of geometric 

constraints, ablation experiments were designed to 

compare the results of turning off and turning on 

geometric constraints under the same model. The results 

showed that when angle loss was removed, the Topology 

Score decreased from 88.0% to 84.7%, and the F1 

Structure Score decreased from 88.4% to 85.2%, 

indicating that geometric consistency constraints have a 

significant effect on improving structural boundary 

preservation and overall reconstruction stability. 

The final optimization objective function is 

combined with the above two types of constraints to 

construct a joint loss model: 

angleedgetotal LLL 21  +=
（13） 

Among them, 21 ，
 is the adjustment factor for 

the two sub loss terms, which is adjusted based on the 

actual task weights. This formula combines edge length 

and angle loss for global structural optimization during 

the training phase. In the training and prediction stages, 

the loss function is embedded in the graph network 

propagation and node coordinate generation module, and 

the model parameters are optimized through 

backpropagation mechanism. This geometric 

consistency mechanism exhibits stronger stability and 

generalization in complex structural regions, providing 

important guarantees for improving the accuracy of 

whole image reconstruction and the reliability of 

engineering applications. 

4.4  Path planning and strategy network 
guidance mechanism 
In the reconstruction process of clothing pattern 

structure, path planning bears the control of node 

generation order and edge weight transmission direction, 

which directly affects the efficiency of information 

aggregation and structural consistency. To enhance the 

path guidance effect, this study introduces edge 

information sampling control strategy in the policy network, 

calculates the sampling probability of edges through 

geometric distance and semantic consistency, and 

suppresses the interference of redundant and noisy edges. 

By combining graph search algorithms with action value 

functions, dynamic optimization of path traversal is carried 

out to enhance the robustness of boundary regions and 

achieve better connection control between structural nodes 

while maintaining topological connectivity. 

Path planning is based on graph structure ( )EVG ,=

, where each state ts represents the current node subgraph 

traversed. The policy network outputs the next action ta , i.e. 

the selection of the next hop node, through policy function

( )ts , with the goal of maximizing the global path score 

function: 

( ) ( )







= 

=

T

t

ttr asrEJ
0

~ ,

（14） 

Among them, T  represents the complete path 

trajectory, and ( )tt asr , is the single step reward function, 

taking into account indicators such as edge weight sparsity, 

topological rationality, and geometric consistency. This 

formula is used for path strategy scoring, guiding the 

strategy network to generate the optimal structural rule-

constrained path. This mechanism refers to the strategy 

gradient idea in reinforcement learning, combined with 

structural constraints to optimize the path selection order, 

in order to reduce redundant backtracking and unstructured 

edge traversal. 

At the implementation level of the model, the policy 

network uses graph attention mechanism to capture the 

contextual dependencies between nodes, and adjusts the 

path priority between nodes through learnable parameters. 

To clearly demonstrate the multidimensional reference 

standards in the path guidance process, Table 2 lists the 

main quantitative indicators and explanations:

 
Table 3：Explanation of key indicators in path guidance mechanism 

Metric Name Symbol Description 

Geometric Deviation δgeo 
Degree of deviation between the current path structure and 

the ideal edge lengths and angles 
Topological Jump 

Count 
Ntopo 

Number of jump connections in non-continuous topological 
segments of the current path 

Structural Consistency 
Score 

Sstruc 
Proportion of path segments matching structural rules; value 

range is [0, 1] 

The strategy network adopts a two-layer graph 

attention structure, with the state space consisting of the 

current node and the generated path, and the action space 

consisting of candidate adjacent nodes. Use reward 

shaping during training: reward when the path conforms 

to the craft rules and geometric relationships, and punish 

when jumping or violating rules occur. The calculation 

method for the indicators in Table 3 is as follows: 

geometric deviation is estimated based on the difference 

between the generated path and the ideal structure, the 

number of topological jumps is counted for non 

continuous connected segments, and the structural 

consistency score is determined based on the proportion of 

segments that conform to the rule path. 

5  Model training process and 
validation analysis 

5.1  Dataset construction and graph format 
conversion process 
The experimental data of this study was constructed based 

on the DeepFashion2 public clothing image set and the self 

structuring PatternStruct Graph dataset, with a total of 4826 
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sampled samples. Each group of samples includes 

complete front and rear views and structural annotation 

diagrams, covering typical clothing types such as dresses, 

jackets, pants, etc. In the annotation process, key 

structural points of the clothing are manually located, 

and 43 node categories are uniformly defined based on 

the clothing process standards. The average number of 

annotated nodes per sample is 43.2, and the edge 

relationships are maintained between 62-75, mainly 

including stitching connections, contour extensions, and 

style symmetry constraints.The PatternStruct Graph 

dataset is not yet fully publicly available, and partial 

annotations can be provided upon request. The 43 types 

of nodes cover common parts of clothing, such as collars, 

shoulder lines, sleeve tops, waistlines, hemlines, crotch, 

etc., and extend to pocket edges, crease lines, and 

symmetrical auxiliary points. They are completed and 

cross checked by personnel with a background in 

clothing craftsmanship. 

The graph structure is uniformly modeled as triplet

( )XEVG ,,=
, where V is the set of structural nodes, 

E is the set of structural connection edges, and 

dV
RX


  is the node feature matrix. The node 

features are composed of normalized coordinates, 

structural type encoding, and local texture feature 

concatenation, in the following form: 

Vitype
H

y

W

x
X ii

ii
i ,…,2,1,,,, =








= 

（ 15） 

In the formula, ii yx ,
represents the coordinate 

value of node i in the image, W and H are the width and 

height of the image, type represents the encoding of 

structural parts, and i represents the mean 

representation of SURF texture features after 

dimensionality reduction (dimension is 28). During the 

dataset construction phase, node features are normalized 

using coordinate differences, structural type encoding, 

and local texture features to ensure that the model can 

capture topological connections across regions. It should 

be noted that this feature does not conflict with the initial 

node feature in Section 3.1: the former is used for 

modeling the original structure, while the latter extends 

the relative position information and texture information 

during dataset transformation to enhance the diversity 

and robustness of model training. 

In order to enhance the ability of structural learning, 

all samples were divided into a training set (70%), a 

validation set (15%), and a test set (15%) after graph 

construction. In the training process, the graph neural 

network is set to input node feature matrix and edge 

index matrix, with the goal of predicting the 

reconstruction path weights and final structural matching 

relationships between node pairs. 

To ensure the reproducibility of the experiment, this 

study provides some pseudo dataset samples and 

experimental code frameworks in the supplementary 

materials. The following provides pseudocode examples 

for training and validation scheduling, demonstrating the 

implementation logic of graph neural network models 

during the training process: 

for epoch in range(total_epochs): 

for batch in training_loader: 

graph, target = build_graph(batch) 

pred = GNN_model(graph) 

loss = loss_function(pred, target) 

optimizer.zero_grad() 

loss.backward() 

optimizer.step() 

val_score = validate_model(GNN_model, 

validation_loader) 

save_best(GNN_model, val_score) 

After graph format conversion and modeling 

optimization processing, the model improved the accuracy 

of structure recognition by 9.3% compared to the non graph 

structure model, and the reconstruction integrity index 

improved by 14.5%. This process provides a data 

foundation and structural guarantee for subsequent 

reconstruction path guidance and multi strategy fusion. 

5.2  Model training process and 
hyperparameter configuration explanation 
This study constructed a training set based on the 

DeepFashion2 and self structuring PatternStruct Graph 

datasets, with a total of 4826 samples, 3378 training sets, 

724 validation sets, and 724 test sets. The average number 

of structural nodes was 43. During the training process, 

graph neural networks are used as the backbone architecture, 

and path guidance mechanisms are employed to enhance the 

accuracy of structural reconstruction. Data preprocessing 

includes normalizing the image to 256 × 256 resolution, 

using Canny operator and semantic segmentation to extract 

structural regions, locating and annotating nodes based on 

process rules to generate feature vectors, and dividing the 

training, validation, and testing sets into 70%/15%/15% 

partitions.The training batch size is set to 16, the training 

epochs are 80, the Adam optimizer is used, the initial 

learning rate is 0.001, and the CosineAnnealing strategy is 

dynamically adjusted. The training platform is PyTorch 

Geometric, and the hardware support is RTX 4090 GPU. 

To better introduce the importance weight of node 

paths, a structural loss function based on path weights is 

introduced: 

( )( )




−=
Eji

ijijijpath ppL
,

2

ˆ

（16） 

Among them, ijp̂
 is the predicted path length, ijp

is 

the actual structural path length, and ij
 is the weight 

factor dynamically generated by the policy network, 

representing the sensitivity contribution of edges to 

structural accuracy. This formula is used for path loss 

calculation, in this section, pathL introduces dynamic 

weights generated by the policy network based on mean 

square error to highlight the importance of critical 

pathsThis mechanism enables high importance paths to 
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obtain greater gradient updates during training, 

effectively improving the accuracy control capability of 

key node connections. 

To control the complexity of the model, the final 

loss function is defined as: 

2

2
 += pathfinal LL
（17） 

Among them, 
pathL represents path loss, 

represents all network parameters, and regularization 

term
2

  can be used to suppress excessive 

parameter updates, prevent overfitting, and ensure 

training stability. It should be noted that the

angleregcls LLL ,, level subtask loss mentioned earlier 

has been applied to the feature extraction stage through 

joint optimization in the multi task stage, and its results 

have been integrated into the calculation process of path 

loss pathL . Finally, it is reflected in a unified form in

finalL to ensure the consistency and completeness of the 

training objectives. This formula is used for 

regularization constraints and is actually used in training 

to prevent overfitting. 

In terms of network structure, this study adopts a 

three-layer graph convolution stacking architecture, with 

output channels of 64, 64, and 128 in sequence. ReLU is 

selected as the activation function, and BatchNorm is 

added after each convolution layer for normalization to 

improve numerical stability. To prevent overfitting, 

Dropout (ratio 0.3) is introduced between the second and 

third layers. The attention mechanism allocates node 

weights after the convolutional layer to enhance the 

expression ability of key structural parts. The decoding 

part adopts a graph autoencoder structure, which embeds 

and maps the encoded nodes to the path reconstruction 

space, and introduces L2 regularization term in the training 

stage to limit excessive parameter fluctuations. The 

parameter settings are determined based on multiple 

comparative experiments, ensuring accuracy while 

maintaining convergence stability. 

5.3  Model structure comparison and 
applicability analysis 
This study is based on the Graph Neural Network and GNN 

to construct a clothing pattern structure reconstruction 

model, which models the spatial distribution and 

connection relationship of clothing nodes, and compares its 

performance with existing methods, focusing on the 

model's performance in reconstruction accuracy, structural 

consistency, and recognition integrity. Let the 

comprehensive evaluation indicator S be the average of 

three core indicators: 

3

FTA
S

++
=

（18） 

Among them, A represents the accuracy of node 

recognition, T is the score of topology matching, and F is 

the score of structure F1. This formula is used in the model 

evaluation stage to measure the performance of structural 

modeling by averaging the scores of three indicators. The 

test data comes from the publicly available DeepFashion2 

dataset and the self built graph structure dataset, with a total 

of 4826 samples and an average of 43 nodes. 

This section compares three model structures: ① 

Convolutional baseline model (Baseline CNN) that only 

uses image features; ② Introducing GCN Net with a simple 

graph structure; ③ GNN+Strategy model integrating graph 

neural network and path strategy module. The evaluation 

results of the three are shown in the following figure:

 
Figure 3：Model structure comparison bar chart 

 

The test results showed that Baseline CNN achieved 

an accuracy index of 82.0% ± 0.6, GCN Net was 88.7% 

± 0.4, and GNN+Strategy further improved to 91.3% ± 

0.5; In terms of Topology Score, Baseline CNN is 73.5% 

± 0.7, GCN Net has improved to 81.2% ± 0.5, and 

GNN+Strategy has reached 88.0% ± 0.6; In the F1 

Column Score index, the three indicators are 80.1% ± 0.8, 

85.7% ± 0.5, and 88.4% ± 0.6, respectively. The overall 

trend shows that GNN+Strategy outperforms the other two 

structures in various performance evaluations, 

demonstrating stronger structural reconstruction ability and 

robustness, especially in complex structural conditions with 

higher stability and applicability. To further verify the 

significant differences between different methods, a two-
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sample t-test was conducted based on the results of three 

independent experiments. The results are shown in Table 4: 

 

Table 4：Statistical significance test results of performance comparison between methods 

Indicator 
Baseline-CNN vs GCN-

Net 
GCN-Net vs 

GNN+Strategy 
Baseline-CNN vs 
GNN+Strategy 

Accuracy p < 0.01 p < 0.05 p < 0.001 
Topology Score p < 0.01 p < 0.05 p < 0.001 
F1-Struct Score p < 0.01 p < 0.05 p < 0.001 

The experimental results show that GNN+Strategy 

achieves statistically significant differences in three 

indicators compared to the other two methods, indicating 

that this method has higher stability and advantages in 

modeling complex clothing structures. 

In addition, in actual samples, the model showed 

stronger generalization ability on asymmetric complex 

structured clothing such as jackets and windbreakers, 

with a topological error rate reduction of nearly 40%. 

This result indicates that the proposed method is not only 

applicable to static image input scenes, but also suitable 

for extension to 3D clothing modeling and digital twin 

platforms, with high practicality and algorithm transfer 

potential. 

5.4  Performance indicators and 
reconstruction accuracy evaluation 
In order to systematically evaluate the effectiveness of 

the proposed GNN+Strategy model, a comparative 

experimental method was used to select Baseline CNN 

and GCN Net as reference models, representing 

traditional image convolution methods and basic image 

neural network structures, respectively. The three 

models were trained on the same training set 

(DeepFashion2 subset and structure annotation 

extension set, a total of 4826 samples) and consistent 

hyperparameter configuration to examine their 

performance differences in multiple structural 

recognition indicators. The main evaluation dimensions 

include classification accuracy, topological structure 

preservation score, and structural F1 comprehensive score, 

to comprehensively reflect the stability and applicability of 

the model in feature extraction and structural reconstruction. 

The definition of classification accuracy is as follows, 

which measures the proportion of correctly classified 

samples in the predicted output: 

FNFPTNTP

TNTP
Accuracy

+++

+
=

（19） 

Among them, TP and TN respectively represent the 

number of positive and negative samples correctly 

identified, while FP and FN are the misclassified results. 

This formula is used for calculating classification accuracy 

and evaluating the recognition performance of the model on 

node categories. As shown in Table 5, the values are the 

mean ± standard deviation of three independent 

experiments. Baseline CNN has an accuracy index of 82.0% 

± 0.6, GCN Net has an accuracy index of 88.7% ± 0.4, while 

GNN+Strategy model achieves 91.3% ± 0.5, showing better 

performance in high-dimensional feature representation 

and complex polygon boundary recognition. In terms of 

Topology Scores, they are 73.5% ± 0.7, 81.2% ± 0.5, and 

88.0% ± 0.6, respectively, indicating that the latter is better 

able to maintain the connectivity of the original structural 

edges; The F1 Sequence Score is 80.1% ± 0.8, 85.7% ± 0.5, 

and 88.4% ± 0.6, indicating a balance and stability in 

overall recognition and boundary accuracy.

 
Table 5：Comparison results of model structure and performance 

Model structure Accuracy (%) Topology Score (%) F1-Struct Score (%) 
Baseline-CNN 82.0±0.6 73.5±0.7 80.1±0.8 

GCN-Net 88.7±0.4 81.2±0.5 85.7±0.5 
GNN+Strategy 91.3±0.5 88.0±0.6 88.4±0.6 

From the comparison of results, it can be seen that 

GNN+Strategy outperforms Baseline CNN and GCN Net 

in Accuracy, Topology Score, and F1 Stream Score, 

demonstrating the advantage of multi module fusion. 

Multi scale GCN enhances boundary aggregation 

expression and improves the classification accuracy of 

complex suture sites; Path attention dynamically adjusts 

the connection weights during the decoding stage to 

improve the problems of breakage and discontinuity; 

Geometric constraints maintain consistency between edge 

length and angle, improving topological retention. The 

synergistic effect of the three makes the model more stable 

and consistent in the restoration of complex clothing 

pattern structures. 

 

5.5  Discussion 
The GNN+Strategy model proposed in this article 

achieved a classification accuracy of 91.3%, a topology 

score of 88.0%, and an F1 score of 88.4% in experiments, 

significantly better than the baseline models Baseline 

CNN (82.0%/73.5%/80.1%) and GCN Net 

(88.7%/81.2%/85.7%). Comparison with related works 

shows that multi-scale GCN can effectively improve the 

recognition ability of complex boundaries, attention 

mechanism enhances the expression of key nodes, and 

reinforcement learning strategy improves path 

consistency and generation stability. These improvement 

factors collectively promote the overall performance 

improvement of the model under complex clothing 

structure conditions. 
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However, this study still has certain limitations. On 

the one hand, the training process of the model heavily 

relies on manually annotated data, which limits its 

potential application on large-scale unlabeled datasets; On 

the other hand, some rule driven features may still affect 

the convergence efficiency and universality of the model 

in extremely complex structures. Future research can 

attempt to introduce self supervised pre training and 

automated node labeling mechanisms to reduce manual 

dependence and enhance the robustness and 

generalizability of the method. 

6  Conclusion and prospect 
This study constructed an intelligent feature extraction 

and reconstruction model for clothing pattern structures 

that integrates graph neural networks. The system 

integrates structural graph modeling, graph convolution 

extraction, attention mechanism, geometric constraints, 

and reinforcement learning strategies, effectively 

improving the recognition accuracy and reconstruction 

integrity of complex clothing structures. Experimental 

data shows that the proposed model has significant 

advantages over traditional methods in terms of accuracy, 

structural consistency, and reconstruction fidelity, 

especially exhibiting good stability under asymmetric 

structures and boundary blur conditions. The path 

guidance mechanism of the model optimizes the structural 

connection sequence, effectively avoiding path deviation 

and reconstruction errors, providing algorithm foundation 

and structural support for intelligent clothing design. 

However, there are still two shortcomings in the 

research: firstly, the current structural diagram modeling 

is a semi-automatic generation method that combines 

manual annotation with rule constraints. Although it can 

ensure the rationality of the structure, there are still 

shortcomings in manual dependence and automation; 

Secondly, path strategy networks suffer from slow 

convergence speed and local optima when dealing with 

extremely complex structures, which affects overall 

efficiency and scalability. Subsequently, self supervised 

graph representation learning and large-scale pre training 

mechanisms can be introduced to enhance the model's 

adaptability to structural heterogeneity, and explore the 

fusion framework between graph structure and 3D 

modeling, expanding its application breadth and depth in 

virtual clothing simulation, structure generation, and 

intelligent design scenarios. 
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