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There are core difficulties in the intelligent recognition and generation application of clothing pattern
structure, such as irregular geometric topology, weakened semantic structure, and unstable path planning.
To solve such problems, an intelligent feature extraction and structure reconstruction path learning
scheme that integrates graph neural networks is constructed. In the stage of structural diagram modeling,
a clothing structure diagram is constructed based on the node edge surface configuration relationship.
The graph convolutional network is used to embed the spatial adjacency relationship in multiple
dimensions, supplemented by attention mechanism to enhance the response ability of key nodes and
improve the stability of extracting local salient features. To better express the relationship between
structural semantics and geometry, a multi-scale graph embedding strategy and structural context
aggregation module are introduced to enable nodes to have stronger expressive power in both topological
and semantic dimensions. In terms of reconstructing path generation, a graph autoencoder architecture
is introduced to achieve controllable mapping of structure to path space, integrating geometric
consistency constraints to enhance structural accuracy. The path decision-making process adopts a
reinforcement learning model based on policy gradient, and optimizes the path guidance process through
feedback mechanism. This experiment is based on the DeepFashion2 public dataset and our self built
clothing structure graph data, with a total of 4826 samples and an average of 43 vertices. The results
show that the accuracy index of our model reaches 91.3%+0.5, the Topology Score reaches §8.0%+0.6,
and the F1 Structure Score reaches 88.4%+0.6, which is much higher than the basic method. The
innovation of this study is mainly reflected in three aspects: proposing the use of graph
convolution+attention to achieve multi task feature extraction, Introducing geometric constraints and
policy networks to achieve reconstruction methods that maintain path consistency, The first application
of GNN in the establishment of clothing style structure brings a new approach compared to traditional

graph mapping.
Povzetek: Predstavijen je vecmodulni GNN-okvir za inteligentno modeliranje in rekonstrukcijo oblacilnih

krojnih struktur. Zdruzuje vecskalne GCN, pozornost, geometrijske omejitve ter ucenje z okrepitvijo za
stabilno nacrtovanje poti. Testiran je na 4.826 vzorcih.

Introduction

the deepening development of artificial to adapt to diverse pattern organization [1].

image contours or geometric templates, making it difficult

intelligence and graph neural networks in structural
modeling, graphic recognition, and semantic generation,
intelligent analysis of graph structured data is becoming
an important means of complex structure restoration and
information reconstruction. In applications such as
intelligent clothing manufacturing and virtual fitting, the
modeling of clothing pattern structure serves as an
intermediate link, directly affecting the accuracy of 3D
reconstruction and the logic of structural restoration.
However, clothing structure diagrams have features such
as uneven node distribution, non-linear stitching paths,
and fuzzy semantic boundaries, which result in
insufficient accuracy of traditional methods based on

Previous studies have attempted to use convolutional
neural networks or generative adversarial networks to map
images to structures, but there are still shortcomings in
expressing complex structures and handling spatial
relationships. Especially for clothing graphics with
topological constraints and semantic nesting, there is an
urgent need to establish a unified graph model framework
that combines structural priors, semantic understanding,
and path planning capabilities to achieve effective
transformation from graphic perception to structural
reconstruction. In recent years, Graph Neural Networks
(GNNs) have shown good adaptability in processing non-
Euclidean structured data, providing a unified mechanism
for node propagation, structure perception, and semantic
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embedding, and providing methodoiogical support for
clothing structure modeling [3]. GNN can achieve local
fusion by aggregating adjacent node information and
perform overall modeling at the layer level, suitable for
the structural relationship of "node edge stitching
surface” in clothing. After introducing attention
mechanism, the recognition accuracy of key parts and
important suture paths can be improved, and the
robustness of the model can be enhanced [4]. The graph
autoencoder and decoder provide the basis for path
generation, but there are still challenges in coordinating
sequence  control and  structural  constraints.
Reinforcement learning has the potential to improve the
accuracy and efficiency of path generation due to its
adaptive strategy optimization ability, making it suitable
for dynamic adjustment during the path generation stage
[5].

In actual modeling, the representation of structural
diagrams, the accuracy of graph feature extraction, path
reconstruction  strategies, and control feedback
constitute the core of the system. The key to current
research is to build a multi module collaborative, feature
accurate, path reasonable, and strategy controllable
graph model system that balances modeling accuracy
and system stability. This study focuses on the core topic
of "Intelligent feature extraction and reconstruction path
construction of clothing pattern structure by integrating
graph neural networks". The technical design and
experimental verification are carried out around four
dimensions: "structure graph construction - graph feature
extraction - path reconstruction generation - strategy
guided optimization". This study focuses on the graph
feature extraction and path reconstruction of clothing
pattern structure. The research question is as follows:
RQ1: Can graph neural networks effectively model the
spatial semantic structure of clothing patterns? RQ2: Can
multitasking and attention mechanisms improve node
classification and edge prediction accuracy? RQ3: Can
reinforcement learning improve the consistency of
structural path reconstruction?

The innovation of this study lies in the fusion of
graph convolution, attention, and reinforcement learning
to form a collaborative framework; Introducing
geometric constraints to enhance the logical consistency
of complex structures in tasks; For the first time, GNN
has been applied to clothing pattern modeling,
expanding its boundaries in the field of industrial design.

2 Related work

In the interdisciplinary research of graph neural
networks and structural modeling, the extraction and
reconstruction of structural features of clothing patterns
have gradually formed a complex task process that
integrates multi-source graph data, high-dimensional
semantic mapping, and path optimization. Current
research mainly focuses on graph structure construction,
feature fusion, path prediction, and graph data-driven
learning.

Y. Duan

In terms of graph structure modeling, Dong et al. (2022)
proposed a weighted fusion of convolutional neural
networks and graph attention mechanisms for classification
tasks in high-dimensional spectral images, effectively
enhancing the recognition accuracy and structure
preservation ability of graph neural networks for boundary
regions, and providing basic support for edge detection in
subsequent structure reconstruction [7]. Sun et al. (2024)
introduced an adaptive feature fusion module in the
attribute graph clustering task and achieved stable
clustering results on irregular structured graphs, verifying
the enhancing effect of heterogeneous feature combinations
on graph structure expression [8]. Liu et al. (2022)
constructed a lightweight image super-resolution model
based on multi attention mechanism, achieving effective
recognition and enhancement of key region map features
under limited computing resources [9].

In terms of optimizing the expression of intermediate
layers in structural reconstruction paths, Chen et al. (2024)
proposed a multi-layer feature radiation field (FeRF) model,
which combines deep neural networks with high-
dimensional graph structure embedding to achieve multi-
scale fusion and hierarchical reconstruction of structural
features in image-to-image tasks [10]. Yi (2022)
constructed a convolutional neural network model based on
clothing design to explore the linear structure distribution
and pattern contour recognition in clothing images,
providing a preliminary semantic basis for mapping images
to pattern structures [11]. Yan et al. (2022) proposed the
Semantic Driven Dual Attention Network (SDAN), which
utilizes a bidirectional graph attention mechanism to mine
semantic  distribution relationships in the graph,
significantly improving the accuracy of expressing edge
connections and region boundaries during the structural
restoration process [12].

In image recognition and classification tasks, Liao etal.
(2022) combined convolutional networks and attention
mechanisms for multi class classification of clothing
images, enhancing the differential expression between
structural ~ features and  demonstrating  stronger
discriminative ability for image samples within the same
category [13]. Ning et al. (2022) constructed a
heterogeneous graph transformation relationship network
between clothing patterns and e-commerce patterns from
the perspective of cross domain image retrieval, solving the
interference problem of structural misalignment and fuzzy
features on retrieval accuracy [14]. Korosteleva and Lee
(2022) proposed the NeuralTailor method, which
reconstructs sewing pattern structures from 3D clothing
point clouds, achieving structure preserving modeling from
3D to 2D, providing direct technical reference for
intelligent reconstruction of clothing pattern structures [15].

In order to compare the differences between existing
methods and the work presented in this paper more clearly,
the core elements of the main related studies are
summarized in Table 1.
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Table 1 : Comparison and summary of related methods
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Method . Accuracy / F1/ s
Name Year Dataset Main Method Topology Limitation
] - Difficult to handle
CNN- Textile Parallel convolution +
based 2022 dataset optimization Acc 82% comprleeétsig#:tural
Synthetic Heterogeneous GNN Insufticient for
GCN-Net 2023 y feature fusion across Acc 88% capturing long-range
graph data layers dependencies
Image Dual attention Limited
SDAN 2022 generation mechanism for edge F1=85% generalization, lacks
tasks recognition path modeling
- Reconstructing sewing B Restricted to 3D
NeuralTa | 5559 3D point structures from 3D Topology ~ input, lacks path
ilor cloud point clouds 87% optimization
DeepFashio | Multi-module fusion + Acc 91.3% / S
Gl;ltNe+Str 2024 n2 & reinforcement learning Topo 88.0% / Vallo:?rtrl]%r;dscope
9y Custom data for path guidance F1 88.4%

3 Intelligent feature extraction
mechanism for clothing pattern
structure based on fused graph
neural network

3.1 Construction of clothing pattern
structure diagram and node feature setting
The construction of clothing pattern structure diagram
relies on the data format requirements of graph neural
network, which requires encoding the geometric
structure information in two-dimensional images or
CAD drawings into graph data structures with
connection relationships. Nodes represent functional
areas in the clothing structure, such as armrests, collars,
side seams, armholes, etc., while edges represent the
stitching relationships or symmetrical connections
between different parts. The graph structure is defined as

G=(V,E), where V={v,,v,,...,v,} is the set of

2 Vp

nodesand E <V xV isthe set of edges. Each node sets

an initial feature vector X; e R by extracting its

position, shape, and structural semantics, which is
specifically defined as:
F(v)=[1,.6,k,m,s]eR"

(1)

Among them, | represents the length of the

i
structural line, @, represents the corner information, k;
represents the local contour curvature, m; represents the

material code, and S; represents the structural category

label.Curvature is obtained through edge detection and
keypoint fitting, and normalized to the [0,1] interval; The
angle is extracted from the geometric relationships in the
CAD style drawing to ensure consistency at different
sizes; The material coding adopts the form of a single
heat vector, which is jointly generated by manual
annotation and process database. This formula is used to
encode the initial structural features of clothing nodes.
In practical applications, node initialization involves

multiple steps: the length of the structural line is calculated
and normalized based on the pixel values or CAD
annotation lengths of the corresponding line segments;
Edge and corner information is extracted through geometric
relationships in CAD style drawings to ensure consistency
across different sizes; Local curvature is obtained through
edge detection and keypoint fitting; The material properties
are encoded in the form of individual heat vectors,
generated by manual annotation and process databases; The
structural category labels are determined based on a
predefined set of 43 clothing parts. By extracting and
encoding the above features, the initialization of the graph
structure nodes is completed.

To enhance the geometric integrity of the graph
construction, edge determination is carried out based on the
stitching logic of the clothing process and the two-
dimensional spatial connection rules to ensure structural
connectivity. The relative spatial relationship between
nodes is encoded by normalizing coordinate differences to
enhance the geometric perception ability of graph
convolution. The calculation method for position
embedding is as follows:

XX Y Y
(2)

Among them, (Xi v Yi )is the image coordinate of node

V;, W and H are the image width and height, used to

standardize the feature expression under different clothing
sizes. This formula is used to calculate the spatial position
encoding between nodes and normalize the position of
clothing of different sizes during the graph construction
stage.

As shown in Figure 1, the process of constructing a
structural diagram includes steps such as image
preprocessing, structural region recognition, node setting,
edge relationship generation, and attribute vector
construction. The image input comes from a two-
dimensional pattern of clothing, and semantic segmentation
models. The nodes are mapped by manually annotated
keypoints, and the edge relationships are automatically
inferred under the constraints of process rules combined
with geometric relationships, supplemented by manual
correction to ensure the rationality of the structure.
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Figure 1: Construction process of clothing pattern structure diagram

In the process of node feature quantization, the
curvature of the edges and corners is normalized to the
[0,1] interval in radians, the material properties are
mapped to a 4-dimensional vector through single heat
encoding, and the structure category is set to 43 class
labels. The position coordinates are normalized
according to the width and height of the image to
eliminate the influence of clothing of different sizes. The
above features are concatenated into node input vectors
to ensure uniform and reproducible feature dimensions.

3.2 Structural space extraction mode
based on graph convolution

In the clothing pattern structure diagram, the spatial
dependency relationship between nodes presents a non-
Euclidean distribution, and traditional convolution
kernels are difficult to capture the feature propagation
under this irregular topology. Graph convolutional
neural networks can effectively transmit structural
semantic information between nodes by constructing
adjacency relationships in the graph structure, thereby
completing spatial feature extraction of clothing
structures. In the constructed structural diagram

G= (V’ E), V is the set of nodes representing the
coordinates and attributes of key parts, and E is the set
of edges, combined with geometric connections and
process sequence settings.

The core of graph convolution lies in the
neighborhood aggregation mechanism, where the
representation vector of each node is updated by
superimposing information from adjacent nodes,
formally expressed as:

I+ ~N-1/2 A -1/ I I
H = (D ¥2AD 2 HW D) o

Among them, A=A+l s the adjacency matrix

with self connection added, D s the corresponding
I

degree matrix, H ( )is the node feature representation of

(). _ . .
the Ith layer, W™is the trainable weight matrix, and

O s the activation function (such as ReLU). This
formula is applied to the graph convolution propagation
stage, where node information is updated through
adjacency matrix and degree matrix. This process

ensures the joint updating of graph structure information
and node local features.

To enhance the representation ability of different scale
structural regions, a Multi channel GCN is introduced.
Parallel paths are used to process feature channels under
different edge weight strategies, and the final fusion
expression is as follows:

K
Z=Ya-GCN,(H?)
= (4)

Among them, X is the weight coefficient of the kth

channel, Nk represents the convolution path of the kth

graph, and H(O) is the input initial node feature. This
formula is used in multi-channel convolution to enhance the
ability to recognize boundaries and structures by fusing
features from different channels. In this study, the number
of multiple channels was set to K=3, and adjacency
matrices were constructed based on semantic relationships,
geometric distances, and their fusion. The semantic channel
highlights the process logic and part categories, the
geometric channel emphasizes the spatial proximity
between nodes, and the fusion channel adopts a weighted
combination method to ensure the unified expression of
structural semantics and geometric features. This strategy
captures semantic changes from multiple angles while
maintaining the integrity of the graph structure, improving
the recognition ability of complex clothing contours and
overlapping boundary areas.

Through the above structural space extraction mode,
the model achieves accurate perception of local
configurations, overall partitioning, and node aggregation
relationships in clothing patterns, establishes a stable
structural foundation, and provides graph embedding
support for subsequent structural reconstruction and
posture regression.

3.3 Introducing attention mechanism to
enhance recognition of key structures

In the clothing pattern structure diagram, there are
significant differences in the importance of the clothing
components represented by each node in the reconstruction
accuracy. The traditional graph convolution method adopts
equal or static weight methods in the feature aggregation
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process of adjacent nodes, which makes it difficult to
effectively identify the semantic significance of key
structural regions. Therefore, introducing graph
attention mechanism to enhance the recognition ability
of the model for key nodes, dynamically allocating
information weights during feature propagation, and thus
enhancing the effectiveness of structural expression.
The core of graph attention mechanism is to assign
a learnable attention weight to the edges between each
pair of adjacent nodes, which reflects the feature update
contribution of the neighboring node to the central node.

h e RF

If the input feature of any node i in the graph is
and its set of adjacent nodes is N(I), then the output

4 .
feature hi of node ! can be calculated by the following
formula:

h' =0

Zaii ‘Wh;
jeN(i) (5)

F'xF
Among them, WeR is a shared linear
transformation matrix used for feature space projection;

a(-) represents the activation function (commonly

known as ReLU), which is applied in attention
mechanisms to dynamically focus on key structural
nodes and enhance graph convolution representation

capabilities. ajj is the attention weight of node j to node
i, which is calculated through feature similarity:

B exp(LeakyRe LU (6T Mhi [Wh; D)
i = Yo ©X0(LeakyRe LU (0" Wh|Wh, ) ¢

2F'
In this equation, oeR is a trainable weight
vector, | represents vector concatenation operation,

(I) represents the set of neighbors of node i, and
LeakyReLU is a nonlinear activation function. This
formula is used to calculate attention weights and
identify semantic similarity between nodes through
feature concatenation. Through the above mechanism,
the model can adaptively focus on key parts of clothing
such as armholes, collars, and side seams, giving higher
weights in the feature fusion stage, achieving key
extraction and discriminative expression of structural
features, and providing a more recognizable graphical
basis for subsequent reconstruction modules.
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3.4 Multi task driven feature extraction
process

In the modeling process of clothing pattern structure, the
supervision signal of a single task often fails to fully
stimulate the model's ability to understand complex
structures. Therefore, a multi task learning mechanism is
introduced to synergistically model the three sub tasks of
structure classification, edge recognition, and node feature
regression, in order to enhance the feature extraction
generalization ability of graph neural networks. This
mechanism can optimize multiple task losses in parallel
based on shared parameters, thereby obtaining more stable
and discriminative intermediate feature representations. Let

the total loss function be L., consisting of three subtask
losses:

L(atol = ﬂ’chIs + A’Z"edge + /l:ereg (7)

L
Among them, —¢Is represents the cross entropy loss of
structural classification, which is used to determine the
category of structural components to which each node

belongs; Lygge is the edge recognition loss, which uses

binary cross entropy to calculate the connection prediction

error between node pairs; L., node coordinate regression

loss, using mean square error to evaluate the deviation
between predicted coordinates and annotated coordinates;

A Ay ﬂaare the weight coefficients of three tasks, In
this study, the weight parameters are adjusted within the
{0.2, 0.5, 1.0} interval through grid search, and the optimal
combination is selected on the validation set to ensure the
balance of the three types of tasks. The results indicate that
the performance of the model remains stable under
parameter changes, with an improvement in edge

recognition accuracy at larger values of /12 . This formula is

used for joint calculation of multi task losses, and in actual
training, the model stability is improved through
collaborative optimization of three types of tasks.

To verify the improvement effect of multi task
mechanism on feature extraction performance, a
comparative experiment was designed as shown in Table 2.
Single task training refers to training independent models
for classification, edge recognition, and coordinate
regression separately, and taking the average result; Multi
task training jointly optimizes three types of tasks in the
same model. Compare and evaluate three indicators:
classification accuracy, edge prediction F1 value, and
coordinate error.

Table 2: Comparison of structure recognition performance under different training mechanisms

Training Method Classification

Edge Prediction F1

Coordinate Mean

Accuracy (%) Score Squared Error
Single-task Training 84.7 0.712 3.65 px
Multi-task Joint
Training 89.2 0.786 2.94 px

The experimental results show that the multi task
mechanism outperforms single task training in all three
indicators, especially in the recognition accuracy of

structural edge relationships and node coordinate fitting
accuracy. This indicates that graph neural networks guided
by multi task loss can more effectively extract structural
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semantic and geometric information, forming a more
stable and discriminative expression of clothing pattern
structure.

4 Intelligent reconstruction path of
clothing pattern structure based on
fused graph neural network

4.1 Node path construction method for
clothing pattern structure diagram

In the task of clothing structure reconstruction using
graph neural networks, the path information of the
structural graph not only determines the propagation
direction of graph convolution, but also directly affects
the preservation of structural relationships and semantic
restoration effects. To construct a reasonable node path
system, it is necessary to comprehensively consider the
geometric continuity and process logic of the clothing
structure, ensuring that the graph structure can
accurately map the connection mode and reconstructable
sequence of solid components.

Node path generation is based on the spatial position
and edge attribute weights of nodes in the structural
graph, defining a set of optimal traversal paths in the
directed graph. Assuming the structure diagram

G=(,E)

formalized as:

is known, the path generation target can be

Loading of structural rule
library

Enter clothing structure
diagram
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P =arg mFi)n w; +4-d;

(v, ep (8)
Among them, P is the optimal path set, Wj;
represents the process weight of edge g € E, dij is the

Euclidean distance between nodes, and A is the adjustment
coefficient, which controls the relative importance of
geometry and process. In this study, A was determined by
grid search on the validation set (with values ranging from
{0.3, 0.5, 0.7, 1.0}) to balance the contributions of process
weights and geometric distances. The experimental results

show that when A is set to 0.5-0.7, the path consistency and
reconstruction accuracy are optimal. The structural rule
library is initially annotated and generated by process
experts, but automated rule extensions and data-driven
constraint updates are introduced during the training
process to reduce manual dependencies and enhance
generalization ability. This formula is used in the path
search process to generate the optimal connection path in
the structural diagram by combining geometric and process
constraints.

The path search adopts an improved Dijkstra algorithm
and embeds clothing structure rules to remove path
branches that do not conform to the construction sequence.

Structural consistency

check

Construct edge weight

Node feature analysis .
matrix

-Spatial coordinates >
-Topological relationship

-Geometric distance
-Process rules

y

Path search algorithm
execution

-Graph traversal generation

|

Output the optimal path set

Figure 2: Path construction process of clothing structure diagram

As shown in Figure 2, the path construction process
includes key steps such as clothing structure diagram
input, structural rule library loading, feature extraction,
edge weight matrix construction, structural consistency
check, and path search execution. The system first
extracts the spatial coordinates and topological
relationships of nodes, constructs edge weight matrices
based on structural rules, and introduces geometric
distances and process rules as evaluation criteria for
edges. Subsequently, path branches that do not comply
with process constraints are eliminated through
structural consistency checks to ensure that the path
generation is logically and geometrically reasonable. In

the path search stage, graph traversal is used to generate a
path set and output the optimal path set, providing ordered
input for the subsequent structural information transmission
of the graph neural network, enhancing the coherence and
spatial consistency of feature fusion. This path system can
also provide structural references for multi-scale
convolution mechanisms, supporting advanced operations
such as region partitioning and hierarchical extraction.

4.2 Design of image feature encoding and
reconstruction path decoding

The core of graph feature encoding lies in constructing node
representations that can accurately reflect the topology and
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geometric properties of clothing pattern structure. In this
study, each node v eV

G= (V’ E)in the input graph structure 1 corresponds
to a clothing keypoint, and its feature vector is composed
of spatial coordinates, connecting edge directions,
weight values, and structural semantic labels. This
formula is applied to the graph feature encoding process
and differs from the structural spatial feature extraction
mentioned earlier in terms of application scenarios. The
embedding update formula for nodes is as follows:

in the input graph structure

1
hi(|+1) —c Z w D"
JEN(i)\/didj J (9)

Among them, h-(')

1
representation of node v; inthe |nd layer, N(i) isthe

represents the feature

set of adjacent nodes, W s the trainable graph

convolution weight matrix, G() is the nonlinear
activation function, and ,/d;d; is the degree

normalization factor, which is used to maintain the
numerical stability of information propagation. This
formula is used in the graph encoding stage to update the
node features of each layer, and in practice, it combines
the weight matrix and activation function for information
fusion.

In the reconstruction path decoding stage, it is
necessary to perform inverse graph decoding by

combining the generated path set P Considering the
spatial order and dependency of clothing structure, this
paper introduces a decoder model based on path attention
mechanism. The reconstruction state of each node in the
path is jointly determined by the context path vector and
the target embedding, and its generation probability is
modeled as follows:

D(Vi P H )zsoft max(qlT : Attn(P*, H ))

(10)

Among them, 4 is the query vector of the current
decoding step, the starting node is initialized as a zero
vector, and the remaining steps inherit the embedding of
the previous node; H is the node embedding matrix after

graph encoding, with dimensions set to 128;and Attr(')
is a standard multi head attention function module that
measures the degree of matching between nodes and path
contexts. The decoder adopts a two-layer structure,
combining self attention and cross attention mechanisms
to capture path dependencies and ensure spatial
constraints. This mechanism dynamically adjusts the
dependency ratio on historical structures during
decoding, improving the accuracy and stability of
reconstruction.

In summary, graph feature encoding and path
decoding constitute the core closed loop of structural
intelligent reconstruction. The former extracts deep
structural semantics from clothing pattern maps, while
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the latter uses path guidance for high consistency topology
restoration, providing a structurally stable input foundation
for downstream simulation and optimization modules.

4.3 Structural reconstruction process based
on geometric constraints
The intelligent reconstruction of clothing pattern structure
not only relies on the efficient propagation of structural
information by graph neural networks, but also requires the
use of geometric constraint mechanisms to ensure the
spatial rationality and topological consistency of the
generated results. This study proposes an optimization
strategy based on geometric consistency to address issues
such as structural drift and scale imbalance that may occur
during the reconstruction process. Key constraints such as
edge length and angle are introduced synchronously during
node generation and path backtracking to achieve precise
control of structural restoration.

Assuming the predicted coordinates of the nodes in the

3 2
reconstructed graph are P' €
. Pe 2 W &

coordinates are ! , and the edge set is ¢ . The
consistency loss function for edge length is defined as
follows:

e 3

(i.j)es

, the target reference

o 2
R _Pin_d”)

(11)

Among them, U represents the target edge length
between nodes extracted from the original pattern structure,

and ” ”2 is the Euclidean distance. This constraint is used to
calibrate the spatial spacing between predicted nodes,
ensuring the geometric authenticity of the boundary length,
and is applicable to areas such as sutures and splices that
require proportional preservation. To avoid confusion

with the edge recognition loss in Section 3.4, Ledge in this

section specifically refers to the geometric edge length
constraint loss, which is defined as formula (11).

On the basis of edge length constraints, an angle
consistency loss is introduced to maintain the relative
relationship between local angles of nodes. For any set of

ternary nodes (I’ ) k)ET , the angle loss function is as
follows:
Langie = Z(é(Pi’ P, R )_ Hijk)z

(i,j,k)ET (12)
Among them, Z(')represents the actual angle formed

by three points, and 9”" is the target angle value of the
structural unit, derived from the initial pattern composition
or manual rule library definition. This formula is used for
angle loss constraint to ensure that the triangular
relationship maintains structural geometric consistency.
This item helps to maintain the stability of the angular
relationship of the structural boundary and reduce the
interference of deformation areas on the path connection
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logic. To verify the effectiveness of geometric
constraints, ablation experiments were designed to
compare the results of turning off and turning on
geometric constraints under the same model. The results
showed that when angle loss was removed, the Topology
Score decreased from 88.0% to 84.7%, and the F1
Structure Score decreased from 88.4% to 85.2%,
indicating that geometric consistency constraints have a
significant effect on improving structural boundary
preservation and overall reconstruction stability.

The final optimization objective function is
combined with the above two types of constraints to
construct a joint loss model:

Ltotal = /ﬁilLedge + ﬂ’ZLangle (13)

Among them, ﬂ’l’ /1? is the adjustment factor for
the two sub loss terms, which is adjusted based on the
actual task weights. This formula combines edge length
and angle loss for global structural optimization during
the training phase. In the training and prediction stages,
the loss function is embedded in the graph network
propagation and node coordinate generation module, and
the model parameters are optimized through
backpropagation mechanism. This geometric
consistency mechanism exhibits stronger stability and
generalization in complex structural regions, providing
important guarantees for improving the accuracy of
whole image reconstruction and the reliability of
engineering applications.

4.4 Path planning and strategy network
guidance mechanism

In the reconstruction process of clothing pattern
structure, path planning bears the control of node
generation order and edge weight transmission direction,
which directly affects the efficiency of information
aggregation and structural consistency. To enhance the
path guidance effect, this study introduces edge
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information sampling control strategy in the policy network,
calculates the sampling probability of edges through
geometric distance and semantic consistency, and
suppresses the interference of redundant and noisy edges.
By combining graph search algorithms with action value
functions, dynamic optimization of path traversal is carried
out to enhance the robustness of boundary regions and
achieve better connection control between structural nodes
while maintaining topological connectivity.

Path planning is based on graph structure G = (V, E)
, Where each state S, represents the current node subgraph

traversed. The policy network outputs the next action a, , i.e.
the selection of the next hop node, through policy function
ﬂ(St), with the goal of maximizing the global path score
function:

e)=E,| e a) N

t=0

Among them, T represents the complete path
trajectory, and r(st,at) is the single step reward function,

taking into account indicators such as edge weight sparsity,
topological rationality, and geometric consistency. This
formula is used for path strategy scoring, guiding the
strategy network to generate the optimal structural rule-
constrained path. This mechanism refers to the strategy
gradient idea in reinforcement learning, combined with
structural constraints to optimize the path selection order,
in order to reduce redundant backtracking and unstructured
edge traversal.

At the implementation level of the model, the policy
network uses graph attention mechanism to capture the
contextual dependencies between nodes, and adjusts the
path priority between nodes through learnable parameters.
To clearly demonstrate the multidimensional reference
standards in the path guidance process, Table 2 lists the
main quantitative indicators and explanations:

Table 3 : Explanation of key indicators in path guidance mechanism

Metric Name Symbol Description
- ‘o Degree of deviation between the current path structure and
Geometric Deviation Sgeo the ideal edge lengths and angles
Topological Jump N Number of jump connections in non-continuous topological
Count topo segments of the current path
Structural Consistency S Proportion of path segments matching structural rules; value
Score strue range is [0, 1]

The strategy network adopts a two-layer graph
attention structure, with the state space consisting of the
current node and the generated path, and the action space
consisting of candidate adjacent nodes. Use reward
shaping during training: reward when the path conforms
to the craft rules and geometric relationships, and punish
when jumping or violating rules occur. The calculation
method for the indicators in Table 3 is as follows:
geometric deviation is estimated based on the difference
between the generated path and the ideal structure, the
number of topological jumps is counted for non
continuous connected segments, and the structural

consistency score is determined based on the proportion of
segments that conform to the rule path.

5 Model training process and
validation analysis

5.1 Dataset construction and graph format
conversion process

The experimental data of this study was constructed based
on the DeepFashion2 public clothing image set and the self
structuring PatternStruct Graph dataset, with a total of 4826
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sampled samples. Each group of samples includes
complete front and rear views and structural annotation
diagrams, covering typical clothing types such as dresses,
jackets, pants, etc. In the annotation process, key
structural points of the clothing are manually located,
and 43 node categories are uniformly defined based on
the clothing process standards. The average number of
annotated nodes per sample is 43.2, and the edge
relationships are maintained between 62-75, mainly
including stitching connections, contour extensions, and
style symmetry constraints.The PatternStruct Graph
dataset is not yet fully publicly available, and partial
annotations can be provided upon request. The 43 types
of nodes cover common parts of clothing, such as collars,
shoulder lines, sleeve tops, waistlines, hemlines, crotch,
etc., and extend to pocket edges, crease lines, and
symmetrical auxiliary points. They are completed and
cross checked by personnel with a background in
clothing craftsmanship.

The graph structure is uniformly modeled as triplet

G= (V’ E, X ) where V is the set of structural nodes,
E is the set of structural connection edges, and

V |xd
X ER‘ | is the node feature matrix. The node
features are composed of normalized coordinates,
structural type encoding, and local texture feature
concatenation, in the following form:

X: ; .
X, :{—',L,type,,(pi},l =12,...V|
W H (15)

Xy Vi ,
In the formula, "1’ 7' represents the coordinate
value of node i in the image, W and H are the width and
height of the image, type represents the encoding of

structural parts, and P represents the mean
representation of SURF texture features after
dimensionality reduction (dimension is 28). During the
dataset construction phase, node features are normalized
using coordinate differences, structural type encoding,
and local texture features to ensure that the model can
capture topological connections across regions. It should
be noted that this feature does not conflict with the initial
node feature in Section 3.1: the former is used for
modeling the original structure, while the latter extends
the relative position information and texture information
during dataset transformation to enhance the diversity
and robustness of model training.

In order to enhance the ability of structural learning,
all samples were divided into a training set (70%), a
validation set (15%), and a test set (15%) after graph
construction. In the training process, the graph neural
network is set to input node feature matrix and edge
index matrix, with the goal of predicting the
reconstruction path weights and final structural matching
relationships between node pairs.

To ensure the reproducibility of the experiment, this
study provides some pseudo dataset samples and
experimental code frameworks in the supplementary
materials. The following provides pseudocode examples
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for training and validation scheduling, demonstrating the
implementation logic of graph neural network models
during the training process:

for epoch in range(total_epochs):

for batch in training_loader:

graph, target = build_graph(batch)

pred = GNN_model(graph)

loss = loss_function(pred, target)

optimizer.zero_grad()

loss.backward()
optimizer.step()
val_score =
validation_loader)
save_best(GNN_model, val_score)

After graph format conversion and modeling
optimization processing, the model improved the accuracy
of structure recognition by 9.3% compared to the non graph
structure model, and the reconstruction integrity index
improved by 14.5%. This process provides a data
foundation and structural guarantee for subsequent
reconstruction path guidance and multi strategy fusion.

validate_model(GNN_model,

5.2 Model training process and
hyperparameter configuration explanation
This study constructed a training set based on the
DeepFashion2 and self structuring PatternStruct Graph
datasets, with a total of 4826 samples, 3378 training sets,
724 validation sets, and 724 test sets. The average number
of structural nodes was 43. During the training process,
graph neural networks are used as the backbone architecture,
and path guidance mechanisms are employed to enhance the
accuracy of structural reconstruction. Data preprocessing
includes normalizing the image to 256 x 256 resolution,
using Canny operator and semantic segmentation to extract
structural regions, locating and annotating nodes based on
process rules to generate feature vectors, and dividing the
training, validation, and testing sets into 70%/15%/15%
partitions.The training batch size is set to 16, the training
epochs are 80, the Adam optimizer is used, the initial
learning rate is 0.001, and the CosineAnnealing strategy is
dynamically adjusted. The training platform is PyTorch
Geometric, and the hardware support is RTX 4090 GPU.

To better introduce the importance weight of node
paths, a structural loss function based on path weights is
introduced:

R 2
Lpath = Zaij H Pij — pij”
((i.3)eE) (16)
Among them, Pii is the predicted path length, Pij i
A
the actual structural path length, and " is the weight
factor dynamically generated by the policy network,

representing the sensitivity contribution of edges to
structural accuracy. This formula is used for path loss

calculation, in this section, L introduces dynamic
weights generated by the policy network based on mean

square error to highlight the importance of critical
pathsThis mechanism enables high importance paths to
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obtain greater gradient updates during training,
effectively improving the accuracy control capability of
key node connections.

To control the complexity of the model, the final
loss function is defined as:

L finat = Lpatn +ﬂ'||6’||§ (17)

Among them, L n represents path loss, 0

pat|
represents all network parameters, and regularization

2 "
term /1”9” can be used to suppress excessive

parameter updates, prevent overfitting, and ensure
training stability. It should be noted that the

Luiss Lregs Langie level subtask loss mentioned earlier

has been applied to the feature extraction stage through
joint optimization in the multi task stage, and its results
have been integrated into the calculation process of path

loss Lpath. Finally, it is reflected in a unified form in

L ;. t0 ensure the consistency and completeness of the

training objectives. This formula is wused for
regularization constraints and is actually used in training
to prevent overfitting.

In terms of network structure, this study adopts a
three-layer graph convolution stacking architecture, with
output channels of 64, 64, and 128 in sequence. ReL U is
selected as the activation function, and BatchNorm is
added after each convolution layer for normalization to
improve numerical stability. To prevent overfitting,
Dropout (ratio 0.3) is introduced between the second and
third layers. The attention mechanism allocates node
weights after the convolutional layer to enhance the
expression ability of key structural parts. The decoding
part adopts a graph autoencoder structure, which embeds
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and maps the encoded nodes to the path reconstruction
space, and introduces L2 regularization term in the training
stage to limit excessive parameter fluctuations. The
parameter settings are determined based on multiple
comparative experiments, ensuring accuracy while
maintaining convergence stability.

5.3 Model structure comparison and
applicability analysis

This study is based on the Graph Neural Network and GNN
to construct a clothing pattern structure reconstruction
model, which models the spatial distribution and
connection relationship of clothing nodes, and compares its
performance with existing methods, focusing on the
model's performance in reconstruction accuracy, structural
consistency, and recognition integrity. Let the
comprehensive evaluation indicator S be the average of
three core indicators:

A+T+F
3 (18)

Among them, A represents the accuracy of node
recognition, T is the score of topology matching, and F is
the score of structure F1. This formula is used in the model
evaluation stage to measure the performance of structural
modeling by averaging the scores of three indicators. The
test data comes from the publicly available DeepFashion2
dataset and the self built graph structure dataset, with a total
of 4826 samples and an average of 43 nodes.

This section compares three model structures: (1)
Convolutional baseline model (Baseline CNN) that only
uses image features; (2) Introducing GCN Net with a simple
graph structure; (3) GNN+Strategy model integrating graph
neural network and path strategy module. The evaluation
results of the three are shown in the following figure:

S:

85,7 88,4

80,1

F1-Struct Score(%)

B GNN+Strategy

Figure 3 : Model structure comparison bar chart

The test results showed that Baseline CNN achieved
an accuracy index of 82.0% + 0.6, GCN Net was 88.7%
* 0.4, and GNN+Strategy further improved to 91.3% +
0.5; In terms of Topology Score, Baseline CNN is 73.5%
+ 0.7, GCN Net has improved to 81.2% + 0.5, and
GNN+Strategy has reached 88.0% £ 0.6; In the F1
Column Score index, the three indicators are 80.1% + 0.8,

85.7% + 0.5, and 88.4% = 0.6, respectively. The overall
trend shows that GNN+Strategy outperforms the other two
structures in  various performance evaluations,
demonstrating stronger structural reconstruction ability and
robustness, especially in complex structural conditions with
higher stability and applicability. To further verify the
significant differences between different methods, a two-
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sample t-test was conducted based on the results of three
independent experiments. The results are shown in Table 4:

Table 4 : Statistical significance test results of performance comparison between methods

Indicator Baseline-CNN vs GCN- GCN-Net vs Baseline-CNN vs
Net GNN+Strategy GNN+Strategy
Accuracy p <0.01 p <0.05 p <0.001
Topology Score p<0.01 p <0.05 p <0.001
F1-Struct Score p<0.01 p <0.05 p <0.001

The experimental results show that GNN+Strategy
achieves statistically significant differences in three
indicators compared to the other two methods, indicating
that this method has higher stability and advantages in
modeling complex clothing structures.

In addition, in actual samples, the model showed
stronger generalization ability on asymmetric complex
structured clothing such as jackets and windbreakers,
with a topological error rate reduction of nearly 40%.
This result indicates that the proposed method is not only
applicable to static image input scenes, but also suitable
for extension to 3D clothing modeling and digital twin
platforms, with high practicality and algorithm transfer
potential.

5.4 Performance indicators and
reconstruction accuracy evaluation

In order to systematically evaluate the effectiveness of
the proposed GNN+Strategy model, a comparative
experimental method was used to select Baseline CNN
and GCN Net as reference models, representing
traditional image convolution methods and basic image
neural network structures, respectively. The three
models were trained on the same training set
(DeepFashion2 subset and structure annotation
extension set, a total of 4826 samples) and consistent
hyperparameter  configuration to examine their
performance differences in  multiple structural
recognition indicators. The main evaluation dimensions

include classification accuracy, topological structure
preservation score, and structural F1 comprehensive score,
to comprehensively reflect the stability and applicability of
the model in feature extraction and structural reconstruction.

The definition of classification accuracy is as follows,
which measures the proportion of correctly classified
samples in the predicted output:

TP +TN
TP+TN +FP+FN (1)

Among them, TP and TN respectively represent the
number of positive and negative samples correctly
identified, while FP and FN are the misclassified results.
This formula is used for calculating classification accuracy
and evaluating the recognition performance of the model on
node categories. As shown in Table 5, the values are the
mean = standard deviation of three independent
experiments. Baseline CNN has an accuracy index of 82.0%
+ 0.6, GCN Net has an accuracy index of 88.7% + 0.4, while
GNN+Strategy model achieves 91.3% + 0.5, showing better
performance in high-dimensional feature representation
and complex polygon boundary recognition. In terms of
Topology Scores, they are 73.5% + 0.7, 81.2% + 0.5, and
88.0% = 0.6, respectively, indicating that the latter is better
able to maintain the connectivity of the original structural
edges; The F1 Sequence Score is 80.1% + 0.8, 85.7% £ 0.5,
and 88.4% =+ 0.6, indicating a balance and stability in
overall recognition and boundary accuracy.

Accuracy =

Table 5 : Comparison results of model structure and performance

Model structure Accuracy (%) Topology Score (%) F1-Struct Score (%)
Baseline-CNN 82.0+0.6 73.5%0.7 80.1+0.8
GCN-Net 88.7+0.4 81.2+0.5 85.7+0.5
GNN-+Strategy 91.3+0.5 88.0£0.6 88.410.6

From the comparison of results, it can be seen that
GNN-+Strategy outperforms Baseline CNN and GCN Net
in Accuracy, Topology Score, and F1 Stream Score,
demonstrating the advantage of multi module fusion.
Multi scale GCN enhances boundary aggregation
expression and improves the classification accuracy of
complex suture sites; Path attention dynamically adjusts
the connection weights during the decoding stage to
improve the problems of breakage and discontinuity;
Geometric constraints maintain consistency between edge
length and angle, improving topological retention. The
synergistic effect of the three makes the model more stable
and consistent in the restoration of complex clothing
pattern structures.

5.5 Discussion

The GNN+Strategy model proposed in this article
achieved a classification accuracy of 91.3%, a topology
score of 88.0%, and an F1 score of 88.4% in experiments,
significantly better than the baseline models Baseline
CNN (82.0%/73.5%/80.1%)  and GCN Net
(88.7%/81.2%/85.7%). Comparison with related works
shows that multi-scale GCN can effectively improve the
recognition ability of complex boundaries, attention
mechanism enhances the expression of key nodes, and
reinforcement  learning  strategy  improves path
consistency and generation stability. These improvement
factors collectively promote the overall performance
improvement of the model under complex clothing
structure conditions.
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However, this study still has certain limitations. On
the one hand, the training process of the model heavily
relies on manually annotated data, which limits its
potential application on large-scale unlabeled datasets; On
the other hand, some rule driven features may still affect
the convergence efficiency and universality of the model
in extremely complex structures. Future research can
attempt to introduce self supervised pre training and
automated node labeling mechanisms to reduce manual
dependence and enhance the robustness and
generalizability of the method.

6 Conclusion and prospect
This study constructed an intelligent feature extraction
and reconstruction model for clothing pattern structures
that integrates graph neural networks. The system
integrates structural graph modeling, graph convolution
extraction, attention mechanism, geometric constraints,
and reinforcement learning strategies, effectively
improving the recognition accuracy and reconstruction
integrity of complex clothing structures. Experimental
data shows that the proposed model has significant
advantages over traditional methods in terms of accuracy,
structural consistency, and reconstruction fidelity,
especially exhibiting good stability under asymmetric
structures and boundary blur conditions. The path
guidance mechanism of the model optimizes the structural
connection sequence, effectively avoiding path deviation
and reconstruction errors, providing algorithm foundation
and structural support for intelligent clothing design.
However, there are still two shortcomings in the
research: firstly, the current structural diagram modeling
is a semi-automatic generation method that combines
manual annotation with rule constraints. Although it can
ensure the rationality of the structure, there are still
shortcomings in manual dependence and automation;
Secondly, path strategy networks suffer from slow
convergence speed and local optima when dealing with
extremely complex structures, which affects overall
efficiency and scalability. Subsequently, self supervised
graph representation learning and large-scale pre training
mechanisms can be introduced to enhance the model's
adaptability to structural heterogeneity, and explore the
fusion framework between graph structure and 3D
modeling, expanding its application breadth and depth in
virtual clothing simulation, structure generation, and
intelligent design scenarios.
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