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New Local Search Strategy for the Minimum s-Club Cover Problem
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The Minimum s-Club Cover problem presents significant challenges in social networks and group interac-
tions analysis. Several studies have employed hybrid approaches to solve this problem, notably combining
local search techniques with multifactorial evolutionary algorithms. To enhance the computational effi-
ciency of such hybrid methodologies, this study proposes a novel local search method designed specifically
for integration with a multifactorial evolutionary framework. The proposed local search algorithm is based
on a combination of greedy and exhaustive strategies. The greedy strategy is applied when selecting clubs,
while the exhaustive strategy is used when determining the appropriate clubs for vertex relocation. Unlike
existing local search methods that operate at the vertex level, the proposed algorithm focuses on manip-
ulating clubs directly. The effectiveness of the proposed approach is evaluated using benchmark datasets
from the DIMACS library. Experimental results demonstrate that the algorithm achieves competitive per-
formance, validating its potential in solving the Minimum s-Club Cover problem.

Povzetek: Raziskava obravnava problem prekrivanja grafa z najmanjšim številom s-klubov. Avtorji pred-
lagajo novo lokalno iskalno strategijo, ki deluje na ravni klubov: klube izbirajo s pohlepnim pristopom,
premike vozlišč med klubi pa odločajo z izčrpnim preverjanjem. Metoda je zasnovana za vključitev v večo-
pravilni evolucijski okvir in na referenčnih grafih DIMACS izkaže konkurenčno učinkovitost.

1 Introduction

Graph covering problems are a fundamental and classical
area of graph theory. This subject is also important in nu-
merous mathematical models applied to various real-world
scenarios. There are two distinct types of graph covering:
edge covering and vertex covering. Both variants have re-
ceived considerable research attention and remain active ar-
eas of investigation. and are potential research subjects.
The s-Club model, introduced by Mokken in 1979 [25],

was designed to explore the coverage of vertex sets within a
graph. Created as a fundamental mathematical model, the
s-Club model was intended to facilitate research into in-
formation mining in graphs [15]. The s-Club model has
numerous applications today, including analysing protein
interactions by clustering networks with the minimal num-
ber of s-Clubs [26]. A comparable methodology has been
examined in studies [5, 21, 24, 18] focused on social net-
work analysis. Additionally, the s-Club model has been
utilised to convert graphs into discrete clusters, referred to
as s-Clubs [7].
The s-Club model exists in various forms, with one of

the earliest studied models being the task of identifying the
largest 2-Club, or, more broadly, the largest s-Club (maxi-

mum s-Club). The Maximum s-Club problem is classified
as NP-Hard for s values greater than or equal to 1 [4]. Addi-
tionally, another challenge within the s-Club model [12] in-
volves determining a collection of up to r non-overlapping
s-Club subsets (each containing a minimum of 2 vertices)
such that this collection covers the greatest number of ver-
tices in the graph.
Recently, the approach of relaxing constraints in the s-

Club model has been utilised to tackle the graph coverage
issue. One of the suggested formulations is known as the
Minimum s-Club cover problem [10]. This problem aims
to identify a collection {C1, C2, . . . , Ch} of vertex subsets
from the graph (which may not overlap) so that their com-
bined union encompasses all vertices in the graph, and the
subgraphs formed by each subset Ci(1 ≤ i ≤ h) have a
diameter that does not exceed s.
In the research conducted in [11], the researchers inves-

tigated the Minimum s-Club Cover problem, specifically
for the cases where s = 2 and s = 3. They proved that
for a given graph G = (V,E), approximating the Mini-
mum 3-Club Cover problem within a factor of |V |1−ϵ for
any ϵ > 0 is infeasible. Additionally, it is impossible to
achieve an approximate solution for the Minimum 2-Club
Cover problem with a coefficient of |V |1−ϵ for any ϵ > 0.
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In [29], the authors propose to apply a local search al-
gorithm to the best individuals of each task in a multifacto-
rial evolutionary algorithm. The local search algorithmwill
move a randomly selected vertex to the club with the most
vertices satisfying the constraints of s-Club. The study also
builds a formula to evaluate each club when multiple clubs
have the same number of vertices.
Researchers have proposed various algorithms designed

to tackle the Minimum s-Club Cover problem, encompass-
ing a range from greedy approaches to memetic algorithms
incorporating diverse algorithmic strategies. Among them,
the algorithm that combines multifactorial evolution with
local search algorithms is a potential direction, capable of
obtaining good results. However, local search algorithms
are currently focusing on processing vertices; this method-
ology may prove efficacious for problems of smaller di-
mensions, but will be less effective when applied to larger-
scale issues. Consequently, this study proposes a local
search algorithm that can be combined with multifactorial
evolutionary algorithms. This local search algorithm has
the following characteristics:

– A mechanism for processing clubs in local searches
is being introduced. Local search to improve com-
putational efficiency compared to vertex-based ap-
proaches.

– Introduce a mechanism for using a random greedy
strategy to select clubs, and an exhaustive strategy for
moving the vertex. While the random greedy strategy
promotes exploration and maintains diversity within
the population, the deterministic greedy strategy em-
phasizes exploitation, thereby enhancing the conver-
gence toward high-quality solutions.

The continuation of this document is structured as fol-
lows: Section 2 covers the definitions and notations of the
problem, while Section 3 presents the associated works.
The suggested techniques are elaborated in Section 4. Sec-
tion 5 contains the experimental settings, computational re-
sults on several test sets, and a performance comparison
with other algorithms. Finally, Section 6 includes the con-
clusions and discussion of extensions.

2 Problem definition and notations
Given an undirected and simple graph G = (V,E). For a
vertex set S ⊆ V , letG[S] denote the subgraph induced by
S. E(G) is the edges set ofG. Given two vertices u, v ∈ V ,
the distance between u and v in G, denoted by dG(u, v), is
the number of edges on the shortest path from u to v.

Definition 2.1 (s-Club) Given a graphG = (V,E), and a
subset U ⊆ V ,G[U ] is an s-Club if it has diameter at most
s.

Notice that an s-club must be a connected graph.
The Minimum s-Club Cover problem (Min s-Club

Cover) is stated as follows:

Definition 2.2 (Minimum s-Club Cover problem)
Input: a graph G = (V,E) and an integer s ≥ 2.
Output: a minimum cardinality collection C =
{V1, . . . , Vh} such that, for each i with 1 ≤ i ≤ h, Vi ⊆ V ,
G[Vi] is an s-Club, and for each vertex v ∈ V , there exists
a set Vj , with 1 ≤ j ≤ h, such that v ∈ Vj .

TheMin s-Club Cover problem in Definition 2.2 can also
be expressed as in Table 1.

Figure 1: An example of an s-Club and the Minimum s-
club Cover problem

Figure 1 depicts an example of a 2-Club and a solution
to the Minimum 2-Club Cover problem. The subgraph
induced by the vertex set V ′ = {2, 3, 4, 5} is a 2-Club.
A solution for the minimum 2-Club cover problem con-
sists of three clubs, induced by the vertex sets V1 = {1},
V2 = {2, 3, 4, 5}, and V3 = {5, 6, 7, 8}. Notice that vertex
5 is covered by both clubs V2 and V3.

3 Related works
Graph covering is a classical and extensively studied topic
in theoretical computer science. One of the earliest prob-
lems explored in this domain is the clique problem. Numer-
ous clique-related combinatorial problems have been inves-
tigated, such as the Minimum Clique Cover problem, the
Maximum Clique problem [27], and the Minimum Clique
Partition problem [6]. Among these, the Minimum Clique
Partition problem is particularly well-known; it aims to par-
tition the vertex set of a graph into the smallest possible
number of cliques. This problem remains NP-hard even
when restricted to specific graph classes. For instance, NP-
hardness has been established for planar cubic graphs [6]
and unit disk graphs [13]. Moreover, it has been shown
that, for any ϵ > 0, the Minimum Clique Partition problem
cannot be approximated within a factor of |V |1−ϵ unless
P = NP .
However, in network analysis, the requirement of a com-

plete subgraph is often too restrictive. In many cases, not
every pair of vertices within a subgraph is connected; this
may be due, for instance, to noise or missing data.
To address the limitations of the clique model, various

alternative definitions of highly connected subgraphs have
been proposed, leading to the concept of a relaxed clique.
This work focuses on distance-based relaxations. In a tra-
ditional clique, all vertices must be at a distance of exactly
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Table 1: Definition of minimum s-Club cover problem

Minimum s-Club Cover problem

Input: - An unweighted undirected graph G = (V,E).
- An integer s ≥ 2.

Output: A collection C = {V1, . . . , Vh}, 1 ≤ i ≤ h, Vi ⊆ V

Constraints: - G[Vi], ∀i = 1, . . . , h is an s-Club.
- For each vertex v ∈ V , there exist a set Vj , with 1 ≤ j ≤ h, such that v ∈ Vj .

Objective: |C| → min

one from each other. In contrast, this requirement is relaxed
by allowing vertices to be at a distance of up to s, where s
is an integer greater than one.
A subgraph where every vertex is at a maximum distance

of s is called an s-Club (it is important to note that when s =
1, an s-Club corresponds precisely to a clique). s-Clubs in
a network have been established for network analysis and
have recently been employed in examining social networks
and biological networks.
The objective of the Min s-Club Cover problem is to

cover a graph with the minimum number of s-Clubs such
that every vertex belongs to at least one s-Club. This prob-
lem has been previously studied [11], with particular focus
on the cases s = 2 and s = 3. It has been shown that de-
termining whether a graph can be covered by two 3-Clubs
or three 2-Clubs is NP-complete.
In [30], the authors proposed a multifactorial evolution-

ary algorithm for solving the Minimum s-Club Cover prob-
lem. They introduced an individual representation, as well
as crossover and mutation operators. To improve solution
quality, a greedy strategy was applied during both the initial
population generation and the crossover process. Addition-
ally, the mutation operator was implemented as a combina-
tion of three simple mutation strategies.
In [29], a hybrid approach combining multitasking op-

timization and a heuristic method was introduced. In this
approach, the heuristic serves as a local search algorithm
applied at each generation. The local search focuses on
determining effective criteria for selecting the best club to
which a vertex should be moved. Furthermore, the study
described a mechanism for applying the heuristic to indi-
viduals in the Unified Search Space (USS), specifically tar-
geting the best individual in each task.
In recent years, researchers have shown growing inter-

est in Multitasking Optimization (MTO), which focuses
on addressing multiple tasks simultaneously. Inspiration
from traditional Evolutionary Algorithm (EA), Evolution-
ary Multitasking Optimization (EMO) utilizes an evolu-
tionary search strategy to solve multiple problems in paral-
lel. This paradigm facilitates knowledge transfer between
tasks, improving solution quality and faster convergence.
One prominent example of EMO is the Multifactorial

Evolutionary Algorithm (MFEA) introduced by Gupta et
al. [16], which employs a population-based framework

known as theUSS to enable the sharing of important genetic
material among individuals from different tasks. Thanks
to these capabilities, MFEA has demonstrated outstanding
performance in various real-world applications [17], such
as complex combinatorial optimization problems [14, 28].
The MFEA has also demonstrated promising results

when applied to graph problems with clustering character-
istics. Specifically, MFEA has been used to address the
Clustered Shortest-Path Tree Problem (CluSPT) problem
through various approaches, such as decomposing the prob-
lem into two levels [19], and employing a Cayley-based en-
coding scheme for individual representation in the USS [9].
Another NP-hard problem involving graph partitioning is
the Inter-Domain Path Computation under Edge-defined
Domain Uniqueness Constraint (IDPC-EDU) problem[23].
In [2], Binh et al. applied the MFEA to solve the IDPC-
EDU problem by introducing a two-layer encoding tech-
nique.
While multitask evolutionary algorithms (MTEAs) have

been successfully applied to various graph-related prob-
lems, including the s-Club cover problem, integrating lo-
cal search strategies within these frameworks has received
relatively limited attention. A key challenge lies in accu-
rately identifying the corresponding task for each individual
in the USS, which is necessary for applying task-specific lo-
cal search methods effectively. Nevertheless, local search
plays a vital role in refining candidate solutions and accel-
erating convergence in evolutionary computation. This cre-
ates a strong incentive to investigate more effective ways of
incorporating local search intoMTEAs, especially for com-
plex combinatorial problems such as the Minimum s-Club
Cover problem. In this study, we propose an enhanced local
searchmechanism for theMinimum s-Club Cover problem,
and investigate how it can be incorporated into a multitask
evolutionary framework.

4 Proposed algorithm

This section describes the proposed algorithms based on the
combination of multitask optimisation and local search al-
gorithms, focusing on describing the mechanism of the lo-
cal algorithm. This study uses individual representation and
evolutionary operators in [30].
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Table 2: Results obtained by EMT-G, GA, EMT-DSE and SALO on instances.

Instances EMT-G GA EMT-DSE SALO

BF Avg STD CV BF Avg STD CV BF Avg STD CV BF Avg STD CV

adjnoun 27 29.0 0.89 0.03 31 32.0 0.22 0.01 28 29.3 0.73 0.03 19 19.0 0.00 0.00

celegansneural 4 4.1 0.00 0.00 9 12.8 0.91 0.07 4 4.1 0.31 0.08 4.5 4.5 0.00 0.00

celegans_metabolic 87 88.3 0.73 0.01 88 88.6 0.50 0.01 88 88.5 0.60 0.01 32 32.0 0.00 0.00

chesapeake 3 3.0 0.00 0.00 3 3.0 0.00 0.00 3 3.0 0.00 0.00 3 3.0 0.00 0.00

dolphins 15 16.7 0.00 0.00 16 17.0 0.51 0.03 15 16.8 0.64 0.04 17 17.0 0.00 0.00

football 11 13.0 0.00 0.00 13 13.3 0.47 0.04 12 13.2 0.55 0.04 15 15.0 0.00 0.00

jazz 16 16.0 0.00 0.00 16 16.0 0.00 0.00 16 16.0 0.00 0.00 14 14.0 0.00 0.00

karate 4 4.0 0.00 0.00 4 4.0 0.00 0.00 4 4.0 0.00 0.00 4 4.0 0.00 0.00

lesmis 3 3.0 0.00 0.00 3 3.1 0.31 0.10 3 3.0 0.00 0.00 3 3.0 0.00 0.00

polbooks 14 15.4 0.00 0.00 15 16.4 1.04 0.06 14 15.2 0.81 0.05 15 15.0 0.00 0.00

johnson8-2-4 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.6 0.49 0.30

hamming6-4 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.0 0.00 0.00 4 4.0 0.00 0.00

MANN_a9 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.0 0.00 0.00

c-fat200-1 13 13.0 0.00 0.00 13 13.0 0.00 0.00 13 13.0 0.00 0.00 13 13.0 0.00 0.00

hamming6-2 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.0 0.21 0.21

johnson8-4-4 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.0 0.00 0.00 2 2.0 0.00 0.00

c-fat200-2 6 6.0 0.00 0.00 6 6.0 0.00 0.00 6 6.0 0.00 0.00 6 6.6 0.50 0.08

c-fat200-5 3 3.0 0.00 0.00 3 3.0 0.00 0.00 3 3.0 0.00 0.00 3 3.0 0.00 0.00

keller4 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.0 0.00 0.00 2 2.0 0.00 0.00

gen200_p0.9_44 1 1.0 0.00 0.00 1 1.0 0.00 0.00 1 1.0 0.00 0.00 2 2.0 0.00 0.00

4.1 Algorithm scheme

Incorporating local search operators into multitask evolu-
tionary algorithms presents unique challenges compared to
single-task optimization. In traditional evolutionary algo-
rithms, local search can be directly applied to individuals
within the population. However, in multitask settings, in-
dividuals in the USS encode solutions for multiple tasks si-
multaneously, complicating the direct application of task-
specific local search operators.
Our approach addresses this challenge through a three-

stage process applied to elite individuals from each task.
First, we select the best-performing individual for each task
from the combined parent-offspring population. Second,
we decode the selected individual in USS to obtain a task-
specific solution representation. Third, we apply the pro-
posed local search operator to this decoded solution and
subsequently update the corresponding individual in USS.
This strategy ensures that local search improvements are
propagated back to the shared population while maintain-
ing the multitask optimization framework’s integrity. Al-
gorithm 1 presents the detailed implementation of this inte-
gration mechanism.
To apply the local search algorithm, first, the algorithm

decodes the individual in USS to obtain the solution of the
current task. Then, it applies the local search to the solution.
Finally, the individual in the USS is updated based on the

obtained solution.

4.2 Encoding and decoding method
A chromosome consists of two sections: the first section,
referred to as the club component, contains information
about the clubs; the second section specifies the club assign-
ment for each vertex. The direct vertex-to-cluster encoding
maps each vertex to a specific cluster label. This encoding
provides flexibility in handling a variable number of clus-
ters and helps preserve meaningful structures throughout
the evolutionary process, thereby enhancing convergence
and search efficiency. As a result, this encoding scheme [8]
is adopted for representing the second section.

Figure 2 shows an example of encoding a solution for
a task, where Figure 2(a) shows a graph with three clubs
V1 = {1, 2, 3, 4}, V2 = {6, 7}, and V3 = {5, 8}; Since
the graph has eight vertices, the individual has eight genes.
In other words, the dimension of the individual is 8. Fig-
ure 2(b) illustrates an individual encoding the graph pre-
sented in Figure 2(a), with the clubs V1, V2, and V3 labeled
as 1, 2, and 3, respectively. Since vertices 1, 2, 3, and 4
belong to club 1, these vertices’ labels are 1. Vertices 5 and
8 belong to club 2, so these two vertices have the label 3.
Similarly, the label of vertices 6 and 7 belonging to club 2
is 2.
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Algorithm 1: The main steps of the proposed algorithm
1 begin
2 N ← The population size;

/* Initialize initial population */
3 P (0)← Randomly generated individuals;
4 Assign the skill factor for the individuals in P (0);
5 t← 0;
6 while stopping conditions are not satisfied do
7 Pc(t)← ∅ ▷ Offspring population;
8 while |Pc(t)| < N do
9 pi (i = 1, 2)← Select randomly two individuals from P (t);

/* Perform crossover and mutation operators */
10 oi ← Perform crossover between the individuals pi (i = 1, 2) ;
11 o′i ← Perform mutation on the individuals oi (i = 1, 2);
12 Evaluate the individuals o′i (i = 1, 2);
13 Pc(t)← Pc(t) ∪ {o′i} (i = 1, 2);
14 R(t)← Pc(t) ∪ P (t);
15 Update scalar fitness of each individual in R(t);
16 foreach (task tsk) do
17 indtsk ← Select the best individual of the task tsk;
18 soltsk ← Decode the individual indtsk;
19 sol′tsk ← Apply local search for soltsk;
20 Update the solution sol′tsk to individual indtsk;
21 P (t+ 1)← Get N fittest individuals from R(t);
22 t← t+ 1;
23 return The best solution of Min s-Club Cover for each task.

(a)

(b)

Figure 2: An example for the solution encoding method for
a task

An individual in the USS encodes the solutions for all
tasks; therefore, the algorithm must store sufficient infor-
mation to reconstruct the solution of each task. This study
adopts the following encoding strategy for individuals in
the USS:

– The length of each section within an individual in the
USS is set to the dimension of the largest task.

– For each task, if its dimension is m, then the first m
genes from the corresponding section of the individual
are used to construct its solution.

Figure 3: An individual in USS

Figure 3 illustrates the individual in the USS for two
tasks, where both tasks have three clubs, and the number
of vertices is 8 and 10, respectively. Because the number
of vertices in the first task is 8, the first eight genes of the
individual in the USS are used to construct the solution for
the first task, i.e., 1–1–1–1–3–2–2–3. For the second task,
which has 10 vertices, the first 10 genes from the corre-
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sponding section of the individual are used, resulting in the
solution 1–1–1–1–3–2–2–3–2–2.

(a)

(b)

Figure 4: An example about decoding method

This encoding ensures that a single individual in the USS
can be decoded to provide valid solutions for multiple tasks
of varying dimensions.
The solution to a task is decoded from an individual in the

USS by extracting the first genes in the vertex section. The
club section is constructed by relabeling the gene values to
ensure consistent and sequential club labels. Figure 4 illus-
trates the decoding process. In Figure 4(a), an individual in
the USS is shown, where the last two genes are unselected
during solution construction. Figure 4(b) presents the re-
sulting solution for a task with eight vertices.

4.3 Evolutionary Operators
4.3.1 Crossover operator

The crossover operator utilised in this study is based on
the method described in [30], and consists of the following
main steps:

– Step 1: Randomly select two crossover points within
the club sections of each parent.

– Step 2: Insert the elements from the selected clubs of
the first parent into the corresponding positions in the
offspring.

– Step 3: Add the elements from the selected clubs of the
second parent to the offspring, ensuring that no dupli-
cates are introduced from those already added by the
first parent.

– Step 4: For the remaining unassigned elements, at-
tempt to place them into existing clubs in ascending
order of club size (i.e., the number of vertices in each
club). If adding a vertex to a club does not violate the
diameter constraint, assign it to that club; otherwise,
proceed to the next one.

– Step 5: If there are still unassigned vertices that cannot
be added to any existing club without violating con-

straints, create a new club and assign these vertices to
it.

– Step 6: Renumber the club labels in the offspring se-
quentially, starting from 1 up to the total number of
clubs.

(a) Parent 1

(b) Parent 2

(c) offspring

Figure 5: An illustration of crossover operator

Figure 5 depicts the crossover operator, where Fig-
ures 5(a) and 5(b) represent the two parent individuals, and
Figure 5(c) illustrates the resulting offspring.

4.3.2 Mutation operator

The mutation operator comprises three types of mutation:
move mutation, splitting mutation, and merging mutation.
The main ideas of these mutations are as follows:

– Move mutation: randomly select a club containing at
least two vertices, and then choose one vertex from
that club to move to a different club.

– Splitting mutation: split a club into two clubs.

– Merging mutation: combine two clubs into a club.

4.4 Local search algorithm
This study employs a random greedy strategy to select a
club, prioritising those with more vertices. It then sequen-
tially transfers vertices from the selected club to other clubs,
ensuring that, after the transfer, both the source club (from
which vertices were moved) and the destination clubs (to
which vertices were added) satisfy the s-club constraint.
Since deleting vertices of degree 1 does not violate the s-
club constraint, these vertices are given priority and are
moved first.
The mean steps of the propose local search are presented

in Algorithm!2.
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Algorithm 2: Local seach algorithm
Input: - A connected graph G = (V,E);

- The number of clubs s >= 2;
- The parameter of random greedy algorithm %priority and %restriction;
- An individual solp;

Output: A solution of minimum s-Club cover;
1 begin
2 cli ← A club with the smallest number of vertices;
3 if (random < %priority) then
4 foreach (vetex v in the cli ) do
5 if (The degree of vertex v is either 1 or 0) then
6 Remove vertex v from club cli;
7 foreach (club clj in solp(j ̸= i)) do
8 Add vertex v to club clj ;
9 if (club clj is a s-Club) then
10 break;
11 else
12 Remove vertex v from club clj ;
13 if (No suitable club is found for adding vertex v) then
14 Add vertex v to club cli;
15 else
16 Ni ← The number of vertices in the club cli;
17 max_vertex← Ni ∗ (1 +%restriction) ▷ Compute the maximum number of vertices for selecting a

club.;
18 tList← The list consists of clubs containing fewer thanmax_vertex vertices;
19 clr ← RandomSelect(tList) ▷ Randomly selected a club from the list tList;
20 foreach (vetex v in the clr ) do
21 if (The degree of vertex v is either 1 or 0) then
22 Remove vertex v from the club clr;
23 foreach (club clj in solp(j ̸= r)) do
24 Add vertex v to club clj ;
25 if (club clj is a s-Club) then
26 break;
27 else
28 Remove the vertex v from the club clr;
29 if (No suitable club is found for adding vertex v) then
30 Add vertex v to club clr;
31 return solp;

5 Computational results

5.1 Problem instances
To evaluate the performance of the proposed algorithm,
Min s-Club Cover instances from the DIMACS benchmark
suite [1, 20] are used. The selected instances contain fewer
than 3,00 vertices, making them suitable for computational
experimentation. Descriptive statistics for these instances
are provided in Tables 3, where |V | denotes the number of
vertices, |E| denotes the number of edges, andDG denotes
the graph density.

5.2 Experimental criteria
Criteria for assessing the quality of the output of the algo-
rithms are presented in Table 4.

Table 4: Criterias for assessing the quality of the output of
the algorithm

Average (Avg) Average function value over all

Best-found (BF) Best function value achieved over
all runs

STD Standard deviation

CV Coefficient of Variation

5.3 Experimental Settings
The proposed is compared with three algorithm:

– Genetic Algorithm (GA), representing a classical



502 Informatica 49 (2025) 495–506 T.P. Dinh et al.

(a) Comparison with EMT-DSE

(b) Comparison with SALO

Figure 6: Scatter plot illustrating the relationship between the number of vertices and the performance of the EMT-G
algorithm in comparison with SALO and EMT-DSE

single-task optimization approach, was employed
in [30] to address the problem.

– EMT-DSE [30, 11] is an evolutionary multitasking al-
gorithm explicitly designed for the Min s-Club Cover.
It leverages a dynamic solution encoding strategy to
enable knowledge transfer across tasks.

– Simulated Annealing-based Local Optimization
(SALO) [22] is a recently introduced heuristic method
aimed at partitioning the vertex set of a graph into
subsets. We adapt SALO by defining a neighborhood
structure where a solution is modified by relocating

a vertex from one club to another, thereby enhancing
exploration in the solution space.

Since previous studies [10, 11, 30] only addresses the Min
s-Club Cover problem with s = 2, the proposed algorithm
is also implemented for this specific case. With respect
to EMT-G and EMT-DSE, we adopt the same parameter
settings as those used in the work of Cheng [16], specifi-
cally setting the random mating probability (rmp) to 0.3.
These settings are widely used and validated in prior stud-
ies [3, 31]. The parameter configuration for the SALO al-
gorithm follows the setup described by Zhi Lu et al. [22],
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Table 3: Summary information of instances

Instances |V | |E| DG

karate 34 78 0.139
chesapeake 39 170 0.229
dolphins 62 159 0.084
lesmis 77 254 0.087
adjnoun 112 425 0.068

football 115 613 0.094
jazz 198 2742 0.141
celegansneural 297 2148 0.049
celegans_metabolic 453 2025 0.020
polbooks 1490 16715 0.015

johnson8-2-4 28 210 0.56
hamming6-4 64 704 0.35
MANN_a9 45 918 0.93
c-fat200-1 200 1534 0.08
hamming6-2 64 1824 0.90

johnson8-4-4 70 1855 0.77
c-fat200-2 200 3235 0.16
c-fat200-5 200 8473 0.43
keller4 171 9435 0.65
gen200_p0.9_44 200 17910 0.90

|V |: The number of vertices; |E|: The number of edges; DG: The
density of a graph.

with θsize = 8, θcool = 0.96, and θminper = 1%. For the
proposed local search algorithm, the priority and restriction
parameters are assigned values of 0.8 and 0.7, respectively.
To ensure a fair comparison, all algorithms are indepen-
dently executed 20 times on a machine with an Intel Core
i7-12700K CPU and 32GB of RAM, running Microsoft
Windows 10. The EMT-G, GA and EMT-DSE methods
utilise a population of 100 individuals and perform 50,000
evaluations. The implementations were developed in the
C# programming language.

5.4 Experimental results
5.4.1 A Comparative Analysis of Algorithms

The results obtained by the algorithms are presented in Ta-
ble 2. In the table, bold and italic cells in a column indicate
the instances where the EMT-G algorithm outperforms the
corresponding algorithm in that column.
The table presents a comparative summary of EMT-G
against GA, EMT-DSE, and SALO. The columns ‘Worse’,
‘Better’, and ‘Equal’ indicate the number of instances in
which EMT-G performed worse than, better than, or equal
to each respective algorithm.
The Table 5 presents a summary of comparisons of EMT-G
against three other algorithms: GA, EMT-DSE, and SALO.
The comparison metrics are the number of instances where
the EMT-G algorithm performedWorse, Better, or Equal to
the respective compared algorithms.

Table 5: Summary of the Comparison of Results Obtained
by EMT-G, GA, EMT-DSE, and SALO

Algorithm EMT-G

Better Equal Worse

GA 7 13 0

EMT-DSE 4 15 1

SALO 9 8 3

– Comparison with GA:

– The EMT-G algorithm performed better than
GA in 7 instances and equal to GA in 13 in-
stances. There were no instances where EMT-G
performed worse than GA.

– This indicates that EMT-G consistently outper-
forms GA, with a strong lead in the number of
better-performing cases and no cases of inferior
performance.

– Comparison with EMT-DSE:

– EMT-G performs worse than EMT-DSE in 1 in-
stances, better in 4 instances, and equally in 15
instance.

– Similar to the comparison with GA, EMT-G
shows a strong advantage over EMT-DSE.

– Comparison with SALO:

– EMT-G performs worse than SALO in 3 in-
stances, better in 9 instances, and equally in 8
instances..

– The results suggest amore balanced performance
between EMT-G and SALO. Although EMT-G
demonstrates a number of better outcomes, it
also has more cases of worse performance com-
pared to the other algorithms. The relatively high
number of equal cases implies that SALO is a
more competitive counterpart to EMT-G.

In summary, EMT-G generally demonstrates superior per-
formance compared to GA and EMT-DSE, consistently
achieving more favorable outcomes. However, when com-
pared to SALO, its performance is more mixed, indicating
that SALO presents a stronger challenge and, in some cases,
may even outperform EMT-G.

5.4.2 Analysis of influential factors

In this subsection, we analyse the influence of the input
graph’s dimensions (number of vertices) and its density on
the performance of EMT-G.
To examine the correlation between the number of vertices
and graph density, scatter plots were generated showing the
relationship between the number of vertices, graph density,
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and the performance comparison of EMT-G against EMT-
DSE and SALO for the given instances. The correlation co-
efficient for this relationship was then calculated, as shown
in Figure 6 and Figure 7. In these figures, circles indicate
that EMT-G performs worse than the compared algorithms,
squares indicate that EMT-G outperforms them, and trian-
gles indicate equal performance between the algorithms.
As shown in Figure 6, when the number of vertices in an
instance is less than 16.715, SALO does not outperform
EMT-G. The figure also indicates that EMT-G outperforms
SALO when the number of edges is relatively small.
Figure 7 shows that EMT-G is no worse than the compared
algorithms for instances with a graph density greater than or
equal to 0.16. When the graph density is greater than 0.09,
EMT-G consistently outperforms EMT-DSE. This means
that EMT-G tends to be more efficient than EMT-DSE as
the graph density increases. When the graph density is
greater than0.16, EMT-G consistently outperforms SALO.

6 Conclusion
The minimum s-club cover problem has attracted consid-
erable attention from researchers in the analysis of social
networks and group interactions. In this study, we propose
a local search algorithm that utilizes a randomized greedy
strategy to select clubs for evaluation, aiming to minimize
the number of vertices required. The local search method
is integrated into a multifactorial evolutionary algorithm
framework, enhancing the quality of the best individual in
each task at every generation. Experimental evaluations
conducted on datasets from the DIMACS library demon-
strate that the proposed algorithm outperforms existing ap-
proaches.
In future work, we aim to further improve the efficiency of
the local search component by reducing the computational
cost of verifying valid clubs.
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