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Bayesian Stackelberg game theory has recently been applied for security-resource allocation at ports and
airports, transportation, shipping and infrastructure, modeled as security games. We model the interactions
in a camera surveillance problem as a security game, and show that the Stackelberg equilibrium of this
game can be formulated as the solution to a non-linear program (NLP). We provide two approximate
solutions to this formulation: (a) a linear approximation based on an existing approach (called ASAP),
and (b) a hill-climbing based policy search approximation. The first reduces the problem to a single (but
difficult) linear program, while the second reduces it to a set of (easier) linear programs. We consider two
variants of the problem: one where the camera is visible, and another where it is contained in a tinted
enclosure. We show experimental results comparing our approaches to standard NLP solvers.

Povzetek: V zadnjih letih se v varnostnih nalogah pogosto uporablja metode za iskanje ravnotežja. V
prispevku je predstavljena teorija iger na osnovi Bayesa in Stackelberga.

1 Introduction

Bayesian Stackelberg game theory has recently been ap-
plied for security-resource allocation at ports and airports,
transportation, shipping and infrastructure [7]. Stackel-
berg games are played by two players: a “leader” and a
“follower”. In security applications, these players are re-
ferred to as “defender” and “attacker” respectively. Typi-
cally a defender (leader) acts first by committing to a pa-
trolling/inspection strategy, which is observed by an at-
tacker (follower) of some type. The attacker then plays
a best response, such as attack what it predicts to be
the weakest/least protected asset, which also determines
the defender’s payoff besides the attacker’s own payoff.
The task for the defender is to play its expected-payoff-
maximizing strategy, knowing the game payoffs (both its
and the various types of attackers’ payoffs) and the dis-
tribution over attacker types. These games are typically
non-zero-sum, i.e., one player’s loss does not numerically
equal the other player’s gain. The defender’s optimal strat-
egy incorporates randomization because security-resources
are typically limited, i.e., not every asset can be simulta-
neously protected. In the rest of this article, we shall em-
ploy the security application terminology and refer to the
players as “defender” and “attacker”, instead of the general
leader-follower game theoretic terminology.

In this article, we formulate a camera surveillance prob-
lem as a security game. In a typical camera surveillance
scenario, a few fixed cameras are located in strategic spots,
each with large coverage and concomitantly low resolution,
that often fail to give sufficient details of forensic value af-
ter a crime. We consider unmanned surveillance, where

no active control of the cameras is possible. For instance,
in our university campus there are two cameras in each
computer lab, yet articles have been stolen and never have
the (fuzzy, grainy) footage enabled post facto identifica-
tion of any perpetrator. The reliance on short focus setting
(i.e., low zoom) aims to balance between the amount of
data collected and coverage of the surveilled area. There-
fore, attempts to solve the problem by increasing the num-
ber of cameras increases the amount of data collected (be-
sides cost), or by increasing the resolution of each cam-
era increases the cost and demand on technology for large
surveilled areas.

Our goal is to allow cameras to operate at long focus set-
tings (i.e., high zoom) to capture greater details for forensic
value. However, this would lead to reduction in space cov-
erage (unless we deploy a lot of cameras to regain coverage,
but this would also blow up the amount of collected data).
To address this problem, we allow the cameras to turn (i.e.,
move from one pan/tilt setting to another) at a Stackelberg-
randomized schedule, regaining coverage in time, without
increasing the amount of collected data compared to the
fixed cameras scenario.

Figures 1, 2 illustrate the problem and our approach.
The target scenario is of unmanned video recordings (from
fixed cameras) that may be called for a closer look post
facto, e.g., for a crime investigation after the crime has oc-
curred. Figure 1 shows a snapshot from such a (real) video
recording, where a vehicle is identified as the object of in-
terest. However, zooming in post facto (Figure 2) does not
help; not only the license plate but also the make/model
are not discernible. The alternative envisaged in this article
is a Stackelberg optimized schedule of (pan, tilt) settings
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Figure 1: A snapshot from a security video.

Figure 2: Zooming in to an object of interest in Figure 1
hardly gives any information.

for a camera always operating at a high zoom setting, so
that there would be a high likelihood of the camera catch-
ing details of the vehicle—thus being of post facto forensic
value—even if the vehicle was actively trying to evade it.
Instead of actually optimizing likelihoods, we optimize the
expected payoff of the camera by assigning differing val-
ues to different strategic locations (in an abstract waypoint
graph). For instance, in Figure 1, the choke-point (around
the bend) could be valued highly, resulting in more frequent
coverage of it.

Our formulation of the camera surveillance problem as
a security game shows that the Stackelberg equilibrium is
given by the solution to a mixed integer non-linear pro-
gram. We evaluate two first-cut approximate approaches:
(a) a linear approximation approach that reduces the mixed
integer non-linear program (MI-NLP) to a single (but diffi-
cult) mixed integer linear program (MILP), and (b) a policy
search approach that generates many mixed integer linear
programs that are potentially easier to solve because they
have fewer integer variables (and constraints). Our experi-
ments show that indeed the policy search approach is more
scalable and produces higher quality solutions, compared
not only to (a) but also to some standard NLP solvers.

2 Problem formulation
Henceforth, we will refer to the camera as the “de-
fender” and any target of future interest as the “attacker”.
We define the camera surveillance problem as a tuple
〈L,O, Ta, Td, Ra, Rd〉, where

– L is a set of potential locations of the attacker (i.e.,
vertices in a waypoint graph),

– O is a set of defender orientations (i.e., discrete pan-
tilt settings),

– Ta(`) denotes the set of (neighboring) locations that
the attacker can reach from location ` ∈ L in one step,

– Td(o) denotes the set of (neighboring) orientations
that the defender can reach from orientation o ∈ O
in one step,

– Ra(`, o) and Rd(`, o) denote the rewards received by
the attacker and defender, respectively, when the at-
tacker is in location ` ∈ L and the defender orientation
is o ∈ O.

We assume discretized time, and that the defender
and attacker can change (or not) their current orienta-
tion/location simultaneously on each tick. Since the de-
fender wants to cover the current location of the attacker,
but the latter wants to evade the defender, Rd(`, o) > 0 and
Ra(`, o) < 0 iff ` is covered in orientation o. Otherwise,
we assume Rd = 0 and Ra ≥ 0. Ra can also vary accord-
ing to attacker types. As in general security games, this
application is not zero/constant-sum. This is easily seen
from the fact that the defender’s valuation of assets that it
covers may differ from the attacker’s, which may further
vary by attacker types. For instance, a shoplifter in a super-
store may value a flash drive more than a 65” television. On
the other hand, a vandal’s valuation of a television may be
higher than a pricier piece of wood furniture, but negligible
for a flash drive. However, it is reasonable to assume that
the defender has a fixed valuation for all assets—a depar-
ture from traditional security games where the defender’s
valuations can vary by attacker types. In this article, we
assume a single attacker type, but our methodology can be
easily extended to multiple attacker types.

Given a problem model 〈L,O, Ta, Td, Ra, Rd〉, the goal
of the defender is to find a policy that maximizes its
expected reward, assuming that the attacker will always
play the best response to the defender’s policy. Since the
defender is unable to observe the attacker’s location (it
doesn’t know who the attacker is), its policy is based on
its current orientation only. If it was a deterministic policy
that always mapped an orientation to the same neighbor-
ing orientation, then an attacker’s best response could de-
terministically allow it to stay out of the defender’s view.
In fact, as in general security games, this application also
presents resource constraint, where the resource is the abil-
ity to cover waypoints at high enough resolution to be of
high forensic value later. Therefore, we use a stochastic
policy representation for the defender. It is represented as
a real-valued transition function, giving a probability dis-
tribution over its next (neighboring) orientation given its
current orientation ζ : O × O 7→ [0, 1]. The attacker’s
policy is a Boolean function that gives a mapping from
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location-orientation pairs to subsequent (neighboring) lo-
cations, σ : L × O × L 7→ {0, 1}. Thus we assume that
the attacker can observe the defender’s current orientation
in its decision making.

Although the problem can be considered episodic from
the perspective of a particular attacker (with well-defined
source and sink vertices in its waypoint graph), from the de-
fender’s perspective it is a continuing task, with no horizon,
because it never knows the attacker (except after the fact).
Since we solve the problem from the defender’s perspec-
tive with indefinite attacker, we consider the steady state of
the Markov chain over L × O occupancies (i.e. the state
space) for a given joint policy 〈ζ, σ〉. Notice that from
the defender’s perspective the states of the Markov chain
are positive recurrent. Now for the particular joint policy
〈ζ, σ〉, the steady-state probability distribution over L×O
is given by the solution to the following set of recursive
equations:

P (`′, o′|ζ, σ) =
∑

`∈L,o∈O

ζ(o, o′)σ(`, o, `′)P (`, o|ζ, σ).

(1)
We make a key assumption that the above Markov chain is
irreducible. This is a reasonable assumption in any surveil-
lance domain because typical “blind spots”—locations that
the defender cannot cover (such as restrooms), or the at-
tacker cannot access—can simply be omitted from the at-
tacker’s waypoint graph. Thus the system of Equations 1
must have a unique solution.

The attacker’s best-response to a particular defender pol-
icy ζ, is given by

σζ = argmax
σ

1

1− γ
∑

`∈L,o∈O

P (`, o|ζ, σ)Ra(`, o), (2)

where γ ∈ [0, 1) is a discount factor. The defender’s goal,
then, is to find

ζ∗ = argmax
ζ

1

1− γ
∑

`∈L,o∈O

P (`, o|ζ, σζ)Rd(`, o). (3)

The above solution based on the steady state is a depar-
ture from traditional security games, and the key reason
why the resulting program turns out to be non-linear (elab-
orated at the end of the next section). We formulate the
solution program in the next section. In the rest of this ar-
ticle, we will ignore the multiplicative constant involving
the discount factor in the objective functions only.

3 Mixed Integer Non-linear
Program (MI-NLP)

We use the following variables to formulate the optimiza-
tion problem for Equation 3:

– ζ : O × O 7→ [0, 1] variables represent the defender’s
policy, i.e. ζ(o, o′) gives the likelihood that the de-
fender will transition to orientation o′ ∈ O from ori-
entation o ∈ O.

– σ : L × O × L 7→ {0, 1} represent the attacker’s de-
terministic policy, i.e. if the attacker would transition
to location l′ ∈ L from state (l, o) ∈ L × O, then
σ(l, o, l′) = 1.

– X : L × O 7→ [0, 1] variables represent the steady
state joint occupation probabilities from Equation 1,
i.e. P (`, o|ζ, σ).

– v : L × O × L 7→ < variables that represent the
attacker’s optimal expected value function for transi-
tioning to location `′ from state `, o:

v(`, o, `′) = Ra(`, o)X(`, o)+

γ
∑

o′∈Td(o)

ζ(o, o′) max
`′′

v(`′, o′, `′′)

– maxV : L×O 7→ < variables represent optimal v,

maxV (`, o) = max
`′

v(`, o, `′). (4)

– maxV E : L × O × O 7→ < variables represent the
products

maxV E(`, o, o′) = ζ(o, o′)maxV (`, o′). (5)

The linear objective function is

Maximize:
∑

`∈L,o∈O

X(`, o)Rd(`, o)

and the constraints include (in addition to Equation 5)

– the steady state probabilities, ∀`′ ∈ L, o′ ∈ O

X(`′, o′) =
∑

`∈T−1
a (`′),

o∈T−1
d (o′)

ζ(o, o′)σ(`, o, `′)X(`, o) (6)

– the linearization of Equation 4, ∀` ∈ L, o ∈ O, `′ ∈
Ta(`) and for a large enough M ,

maxV (`, o) ≥ v(`, o, `′)

maxV (`, o) ≤ v(`, o, `′) +M(1− σ(`, o, `′))

– the resulting linearized v function, ∀` ∈ L, o ∈
O, `′ ∈ Ta(`),

v(`, o, `′) = Ra(`, o)X(`, o)+

γ
∑

o′∈Td(o)

maxV E(`′, o, o′)

– probability distribution and mutual exclusivity con-
straints:

∀o ∈ O,
∑

o′∈Td(o)

ζ(o, o′) = 1 (7)

∑
`∈L,o∈O

X(`, o) = 1

∀` ∈ L, o ∈ O,
∑

`′∈Ta(`)

σ(`, o, `′) = 1
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In most security games, the game is assumed to be one-
shot, i.e., the game ends for both players when the at-
tacker succeeds or fails. However, in our case the game
never really ends for the defender, as the attacker is indefi-
nite. As a consequence, our formulation has a steady state
term X(`, o), which does not appear in traditional secu-
rity games. We shall see in the next section that this new
term X(`, o), particularly its presence in Constraint 6, is
the only roadblock to completely linearizing the above MI-
NLP. Thus the use of steady state in our solution turns out
to be the key reason why our formulation is non-linear.

4 Linear approximation
Note that in the above NLP, all constraints are linear ex-
cept for Equations 6 and 5. Constraint 6’s non-linearity
lies in the summands, which are products of three vari-
ables ζ(o, o′),σ(`, o, `′), and X(`, o). In order to fo-
cus on the summands individually, we represent each
ζ(o, o′)σ(`, o, `′)X(`, o) summand with a new variable
β(`, o, `′, o′) ∈ [0, 1] and rewrite constraint 6 as

∀`′ ∈ L, o′ ∈ O,X(`′, o′) =
∑

`∈T−1
a (`′),

o∈T−1
d (o′)

β(`, o, `′, o′) (8)

and add the constraint∑
`∈L,o∈O,`′∈Ta(`),o′∈Td(o)

β(`, o, `′, o′) = 1. (9)

Now we constrain the β(`, o, `′, o′) variables without
reintroducing non-linearity. First, we note that since
σ(`, o, `′) is binary, the product ζ(o, o′)σ(`, o, `′)X(`, o)
will be zero when σ(`, o, `′) = 0, and it will be
ζ(o, o′)X(`, o) when σ(`, o, `′) = 1. While the former is
relatively simple, the latter is still non-linear.

In determining a practical way to linearize
ζ(o, o′)X(`, o), it is useful to consider Constraint 5,
which also needs to be linearized. Constraint 5 con-
tains the product ζ(o, o′)maxV (`, o′). Note that if
ζ(o, o′) were constant, then both of these expressions
would be linearlized. To this end, we invoke the lim-
ited randomization approach (ASAP) from [4] where
the defender’s mixed strategy is limited to be integer
multiples of 1/k for a predetermined integer k. That is,
we introduce a set of discrete, constant “snap” points
S = { 0

|S|−1 ,
1

|S|−1 , . . . ,
|S|−1
|S|−1} and a set of indicator

variables IS : S ×O ×O ∈ {0, 1} constrained as follows:
∀s ∈ S, o ∈ O, o′ ∈ Td(o),

ζ(o, o′) ≥ s · IS(s, o, o′)

ζ(o, o′) ≤ s+M(1− IS(s, o, o′)) (10)

in addition to: ∀o ∈ O, o′ ∈ Td(o),
∑
s∈S IS(s, o, o′) = 1.

Together, these constraints ensure that ζ(o, o′) ∈ S. Note
that Constraint 7 is still required to ensure that ζ(o, ∗) is a
proper distribution.

To demonstrate how this discretization is used, we first
address the non-linear Constraint 5. We want to define
maxV E(`, o, o′) to be equal to s·maxV (`, o′) for the snap
point corresponding to ζ(o, o′), i.e. s s.t. IS(s, o, o′) = 1.
Thus we replace Constraint 5 with the following pair: ∀s ∈
S, ` ∈ L, o ∈ O, o′ ∈ Td(o),

maxV E(`, o, o′) ≤ s ·maxV (`, o′) +M(1− IS(s, o, o′))

maxV E(`, o, o′) ≥ s ·maxV (`, o′)−M(1− IS(s, o, o′)).

Next we use a similar approach to appropriately con-
strain the β(`, o, `′, o′) variables. First, we bound
β(`, o, `′, o′) from above with the following: ∀` ∈ L, o ∈
O, `′ ∈ Ta(`), o′ ∈ Td(o),

β(`, o, `′, o′) ≤ σ(`, o, `′) (11)
∀s ∈ S, β(`, o, `′, o′) ≤ s ·X(`, o) +M(1− IS(s, o, o′)).

Then, we bound β(`, o, `′, o′) from below with: ∀s ∈
S, ` ∈ L, o ∈ O, `′ ∈ Ta(`), o′ ∈ Td(o),

β(`, o, `′, o′) ≥ s ·X(`, o)−
M [2− IS(s, o, o′)− σ(`, o, `′)] (12)

Finally, while we have related X to a summation over β
in Constraint 8, we must add another similar constraint to
ensure that X(`, o) values are recursively consistent:

∀` ∈ L, o ∈ O,X(`, o) =
∑

`′∈Ta(`),
o′∈Td(o)

β(`, o, `′, o′) (13)

Thus the MI-NLP reduces to an MILP, whose solution
will be an approximation of the exact NLP solution. How-
ever, the above ASAP [4] approach, like ASAP itself, in-
corporates many more integer variables (and constraints)
which poses a challenge to linear programming solvers. In
the next section, we describe a different approximate ap-
proach.

5 Policy search
The above linear approximation of the original NLP re-
quires simultaneous solution of both the defender’s and at-
tacker’s policies (which are dependent upon each other),
which can require significant computation time. In this sec-
tion, we present a potentially more efficient alternative to
this approach.

In a Stackelberg game, it is assumed that the attacker
has full knowledge of the defender’s policy, and therefore,
an attacker’s equilibrium policy is an optimal response to
the defender’s equilibrium policy. On the other hand, the
defender’s equilibrium policy is optimized with respect to
the space of attacker responses. It is important to note
that when the defender’s policy is given (i.e., ζ are con-
stants), the attacker’s optimal policy is given by the follow-
ing (mixed integer) linear program:
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Algorithm 1 POLICYSEARCH(restarts, δ)

1: overallMax← (−∞, ∅)
2: for r = 1 . . . restarts do
3: currentMax← randomPolicy()
4: while True do
5: done← true
6: neighbors←GETNEIGHBORS(currentMax, δ)
7: for n ∈ neighbors do
8: solution← (evaluate(n), n)
9: if solution1 > currentMax1 then

10: currentMax← solution
11: done← false
12: end if
13: end for
14: if done then
15: break
16: end if
17: end while
18: if currentMax1 > overallMax1 then
19: overallMax← currentMax
20: end if
21: end for
22: Return overallMax

Maximize:
∑

`∈L,o∈O

X(`, o)Ra(`, o)

subject to all constraints in the MI-NLP formulation (in-
cluding Equation 5 which is now linear because ζ is given),
except Equation 6. To replace Equation 6, we use the fol-
lowing set of linear constraints: Equations 8, 9, 11, 13, and
the following pair: ∀` ∈ L, o ∈ O, `′ ∈ Ta(`), o′ ∈ Td(o),

β(`, o, `′, o′) ≤ ζ(o, o′)X(`, o) (14)
β(`, o, `′, o′) +M(1− σ(`, o, `′)) ≥ ζ(o, o′)X(`, o) (15)

which are again linear for a given ζ.
To leverage this linearity, we separate the defender’s de-

cision problem from the (linear) attacker’s problem, and
perform a hill-climbing search for the former. This search,
with multiple restarts, is given in Algorithm 1.

The variables overallMax, currentMax, and
solution in Algorithm 1 are all tuples, specifically pairs,
where the second component is the defender’s policy, and
the first component is its value. For instance, overallMax
is initialized to the empty policy with a value of −∞,
in Line 1 of Algorithm 1. Subscripted notations in this
algorithm, such as currentMax1 in Line 9, refer to
the first (value) component of the tuple. The function
evaluate(ζ) returns the objective value of the defender,∑
`,oX

∗(`, o)Rd(`, o), whereX∗ are computed by solving
the attacker’s MILP for the given defender’s policy ζ, as
described above in this section. Algorithm 2 specifies one
way to generate a limited set of neighboring distributions
of a given ζ, with only one dimension perturbed (by δ)

Algorithm 2 GETNEIGHBORS(ζ, δ)

1: neighbors← ∅
2: indices← Td(1)× Td(2)× . . .× Td(|O|)
3: for (i1, i2, . . . , i|O|) ∈ indices do
4: ζ ′ ← ζ
5: for o ∈ |O| do
6: ζ ′(o, io)← ζ ′(o, io) + δ
7: for o′ ∈ |O| do
8: ζ ′ ← ζ′(o,o′)

1+δ
9: end for

10: end for
11: neighbors← neighbors ∪ {ζ ′}
12: end for
13: Return neighbors

at a time. Thus the parameter δ ∈ (0, 1] controls the
distance between a given ζ and its neighbors. Note that
the evaluation of neighbors can be executed in parallel.
The function randomPolicy() returns a random ζ and
solution value, as determined by evaluate(ζ).

6 Tinted enclosure
We also consider a variant of the surveillance problem
where the attacker is unable to observe the current orien-
tation of the defender, perhaps because the camera is con-
tained in a tinted enclosure. This requires the redefinition
of v(`, o, `′) as v(`, `′) and simplifies its expression as

v(`, `′) =
∑
o∈O

Ra(`, o)X(`, o) + γmax
`′′

v(`′, `′′)

Furthermore, maxV (`, o) is redefined as maxV (`), and
the attacker’s policy as σ(`, `′). Despite these, the key con-
straint 6 remains cubic, and the above approaches are still
applicable. However, the handicap of the attacker means
that the defender’s policy values can be expected to im-
prove in this setting.

7 Experiments
In the first batch of experiments, we evaluated the linear
approximation (ASAP) and Policy Search, over 9 sets of
random camera surveillance (non-tinted) problems, the sets
defined by increasing number of waypoint vertices of at-
tacker locations, |L|, ranging from 2 to 10. Each set con-
tains 20 random problem instances defined by a random
edge set in the waypoint graph (single component), and
random functions Ra, Rd. In all instances, we restricted
|Ta(`)|, |Td(o)| to 3.

For comparison, we also evaluated two standard NLP
solvers, Bonmin and SNOPT, and used the (unapproxi-
mated) MI-NLP formulation given earlier. Bonmin is a
full-fledged MI-NLP solver. SNOPT, on the other hand,
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treats integer variables as continuous variables when solv-
ing MI-NLPs. All solvers except for SNOPT were run
on cluster nodes with 12 processors (a mix of Intel Xeon
X5570, X5670, and AMD Opteron processors with up to
12 cores each) and solvers were allowed to use all cores
for threading/multiprocessing; however, Bonmin does not
support multithreading. SNOPT was run on the NEOS
Server [9], and its memory usage was not available.

The Policy Search solver was configured with δ = 0.01
and restarts = 4, and the Linear Approximation solver
was configured with 25 snap points (i.e. |S| = 25). Both
of these approaches require MILP solvers, for which we
used IBM’s ILOG CPLEX. Since the Linear Approxima-
tion solver requires solution of a single MILP, we allocated
12 threads to a single CPLEX instance for this solver. On
the other hand, since the Policy Search solver requires so-
lution of numerous (but less difficult) MILPs, we allowed
for 6 instances of CPLEX to run simultaneously, using 2
threads each. For each problem instance, we measured the
expected value of the defender’s policy produced by each
solver, the amount of wall time (in seconds) required by
each solver to find a solution, and the maximum amount of
RAM used (in megabytes).

Figure 3 shows the average defender’s objective value,
runtimes and memory usage for the first 3 sets, |L| =
2, 3, 4. The performances of Bonmin and SNOPT clearly
show the inadequacy of general purpose MI-NLP solvers
for the camera surveillance problem. While the growth in
the time and memory requirements of the Policy Search
solver is orders of magnitude smaller than Bonmin, it pro-
duces higher quality solutions than Bonmin. SNOPT, on
the other hand, is more efficient but it produces extremely
poor solutions. The performance of the (ASAP based) Lin-
ear Approximation solver is clearly dominated by the Pol-
icy Search solver, hence we selected the latter for further
evaluation. Furthermore, the time and memory require-
ments of both the Linear Approximation solver and Bon-
min were prohibitively high for |L| > 4, so we did not run
those experiments. For the problem sets |L| = 5 . . . 10, we
only compare Policy Search with SNOPT.

Figures 4 (left and middle) show the defender’s value
and computation times of Policy Search and SNOPT on the
remaining problem sets. It is interesting that the computa-
tion times of SNOPT remains fairly constant. However the
solutions continue to be extremely poor compared to Policy
Search. SNOPT performs a general purpose approximation
by treating Boolean variables as real. This, apart from its
handling of non-linear constraints, is less suited than the
more targetted MILP approximation performed by Policy
Search.

The second batch of experiments reported in Figure 4
(right) shows the comparative policy values produced by
Policy Search on the original (labeled “PS Visible”) and
the tinted (labeled “PS Tinted”) variants of the surveillance
problem. As expected, the average defender’s policy value
improves in the tinted variant and Policy Search is able to
significantly pick up this improvement for |L| > 2. For

comparison, the plot also shows the defender values when
ζ is held fixed at the uniform random policy, verifying that
Policy Search does produce non-trivial solutions.

8 Related work

Most solution systems for targetted applications of security
games, such as ARMOR (LAX airport security [5]), IRIS
(federal air marshal service [8]) and GUARDS (transporta-
tion security administration [6]) formulate the resource
allocation/scheduling problems as (mixed-integer) linear
programming problems. Both the defender and the at-
tacker’s decision problems are formulated as linear pro-
grams. In the camera surveillance problem, although the
attacker’s decision problem is indeed a mixed integer lin-
ear program, the defender’s decision problem becomes a
non-linear program. Our problem formulation shares many
key characteristics of security games, including multiple
types of attackers, non-zero-sum utilities, and randomized
optimal strategy for the defender, as discussed before.

The attacker’s decision problem in this article, that of
stealth navigation, has been addressed separately before.
For instance, [1] considers the navigation of a robot through
a field of dynamic obstacles (e.g., beams of search light)
without colliding with any. They present a polynomial time
algorithm for the case that the robot can move faster than
any obstacle. In our time-discretized setting, however, the
defender’s view and the attacker’s location can vary at ev-
ery time step, hence at the same speed. Therefore, it is
likely that no polynomial solution exists even for our at-
tacker’s decision problem. More recently, [3] has looked
into stealth navigation of a defender, sneaking up on an
invader, in order to be detected by the invader as late as
possible, ideally no earlier than capture time. They apply
heuristic approaches to determine the defender’s plan based
on a predetermined roadmap (waypoint graph). While we
also use a waypoint graph to represent the decision prob-
lems, our objective and methodologies are very different.

The defender’s decision problem has often been ad-
dressed in a distributed constrained optimization setting,
such as a sensor network, where multiple fixed sensor
nodes must coordinate to track (potentially multiple) tar-
gets [2, 10]. The sensors are assumed to have significant
computational capabilities. By contrast, we consider a sin-
gle defender and (mobile) attacker, and our approach is
readily implementable on existing pan-tilt-zoom cameras
since the computation occurs offline. Furthermore, with
multiple defenders (cameras), it may become difficult for
the attacker to observe their (joint) policies, therefore the
attacker’s policies may need to be represented in a poten-
tially less interesting way for this application. However,
with an appropriate formulation and improved approxima-
tion, it may be possible to extend the camera surveillance
problem to multiple cameras (defenders) in the future.

Our take on the camera surveillance problem appears
unique, and we are unaware of any existing study on the
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Figure 3: Plots of average (over 20 instances) metrics over the smallest 3 problem sets. (a) shows the defender’s objective value only.
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Figure 4: Left & Middle: Comparative solution quality and runtimes of Policy Search and SNOPT. Right: Comparative solution
quality of Policy Search on Visible and Tinted formulations, also showing the quality of uniform random defender policy in both
formulations.

Stackelberg view of this problem.

9 Conclusions and future work
We have formulated the tradeoff between the amount of
collected data and the coverage of a surveillance camera,
as a security game between a defender and an (indefinite)
attacker. We have shown that this yields a mixed integer
non-linear program, on which standard MI-NLP solvers are
either prohibitively inefficient or produce poor policies. We
have presented two simple approximate solutions: a lin-
ear approximation based on an existing aproach (ASAP),
and a policy search (hill climbing) approach that leverages
the segregation of the defender’s decision problem from the
attacker’s. We have shown experimentally that the policy
search approach is more scalable and produces higher qual-
ity solutions.

Although we were able to solve instances with up to 10
nodes in the waypoint graph, scaling up to larger and more
complex waypoint graphs remains a challenge. One stan-
dard technique would be to reduce MILPs into linear pro-
grams by assuming that the Boolean variables can be frac-
tional. While this version would be able to scale much bet-
ter than our current POLICYSEARCH algorithm, it would
produce an approximation whose error-bound is unknown
at this time. This is a potential avenue for future explo-

ration.
This article lays the foundation for the development of

more competent solution approaches in the future, partic-
ularly better quality approximations. For instance, a po-
tential avenue for future work is to determine the condi-
tions under which the camera surveillance security game
can be posed as a semi-definite program (SDP). It would
be interesting to investigate whether standard interior point
SDP solvers can produce higher quality solutions more ef-
ficiently than Policy Search.
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