
Informatica 39 (2015) 355–363 355

A Churn Resilience Technique on P2P Sensor Data Stream Delivery System
Using Distributed Hashing

Tomoya Kawakami
Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
E-mail: kawakami@is.naist.jp

Tomoya Kawakami, Yoshimasa Ishi, Tomoki Yoshihisa and Yuuichi Teranishi
Cybermedia Center, Osaka University, Ibaraki, Osaka, Japan
E-mail: ishi.yoshimasa@ais.cmc.osaka-u.ac.jp, yoshihisa@cmc.osaka-u.ac.jp

Yuuichi Teranishi
National Institute of Information and Communications Technology, Koganei, Tokyo, Japan
E-mail: teranisi@cmc.osaka-u.ac.jp

Keywords: sensor data, data stream, delivery cycle, distributed processing, churn resilience

Received: July 16, 2015

Recently, sensor data stream delivery system that collects sensor data periodically and delivers succes-
sively has been attracting great attention. As for this sensor data stream delivery, receivers are possible to
require the same sensor data stream with different delivery cycles. Our research team proposed methods to
distribute communication loads by relay nodes in the case of delivering the sensor data streams that have
different data delivery cycles. However, in the previous methods, since the specific node builds delivery
paths and notifies related nodes, the assigned node is required to be updated when the related nodes churn.
Therefore, in this paper, we propose a churn resilience technique that enhances the robustness of delivery
system. We confirmed in simulations that the proposed technique improves the reliability of the delivery
system.

Povzetek: Razvita in stestirana je nova metoda za asinhrono pošiljanje in zbiranje toka podatkov.

1 Introduction

In recent years, various types of applications such as video
delivery and environmental monitoring have been possi-
ble, and therefore, sensor data stream delivery where sen-
sor data is periodically collected and delivered successively
has been attracting great attention. As for this sensor data
stream delivery, it is possible for the same sensor data
stream to have different collection periods depending on
the receivers. In the case where a live video of a solar
eclipse taken from a camera is delivered, for example, the
video is delivered at 30 fps to personal computers con-
nected to the Internet through a wire and is delivered at 10
fps to mobile computers connected to the Internet through
a 3G channel while moving.

It is general in sensor data stream delivery that sensor
data gained by one sensor is shared by a large number of
users. Currently, various P2P-based techniques for dispers-
ing the communication load of the deliverer (source) have
been proposed in the data streaming [1–10]. In these re-
searches, the same sensor data stream is delivered to a num-
ber of terminals (destinations), the communication load of
the source is dispersed by sending the received data to other

destinations. When the delivery cycle is different, the sen-
sor data stream whose delivery cycle is a common divisor
of required cycles can be delivered to all of the destinations
if the delivery cycles are in a multiple relationship or can
be approximated as having a multiple relationship. How-
ever, the destinations receive redundant data which are not
included to the times of each required cycle.

We have proposed techniques for sensor data stream de-
livery system in P2P model [11, 12]. In our previous tech-
niques, destinations having a long delivery cycle transmit
the sensor data stream to other destinations so that the load
of the source is dispersed. However, in the previous meth-
ods, since the specific node builds delivery paths and noti-
fies related nodes, the assigned node is required to be up-
dated when the related nodes churn.

Therefore, in this paper, we propose a churn resilience
technique that enhances the robustness of delivery sys-
tem. The proposed technique uses a successor list used in
Chord [13]. We confirmed in simulations that the proposed
technique improves the reliability of the delivery system.



356 Informatica 39 (2015) 355–363 T. Kawakami et al.

2 Addressed problems

2.1 Assumptions

We assume that computers (nodes) to relay sensor data
streams constructs P2P overlay network in the sensor data
stream delivery system. The sensor data stream deliv-
ery system distributes the delivery loads to the nodes
and keeps high scalability in an environment where there
are a huge number of sensor data streams and destina-
tions. Sensor data streams are periodically sent from their
sources through the Internet and delivered to destinations
by the hops among nodes. Destinations request sensor data
streams with those delivery cycles to a specific node also
through the Internet. We assume that selectable delivery
cycles for each sensor data stream are given. Nodes are
able to send sensor data to other nodes anytime, and sensor
data are distributed for each sensor data stream and time.

The sensor data streams are denoted by Si (i =
1, · · · , l), destinations are denoted by Di (i = 1, · · · ,m),
and nodes are Ni (i = 1, · · · , n). Figure 1 shows a model
of delivery system. In Figure 1, the number of sensor data
streams is l = 2, the number of destinations is m = 4 and
the number of nodes is n = 3. The ‘a’ represents the sen-
sor data stream S1, and the ‘b’ represents the sensor data
stream S2. The delivery cycles are shown near sources,
nodes and destinations in Figure 1. The ‘s’ represents the
source of sensor data stream, and the numbers near desti-
nations are requested delivery cycles from each destination.
In the case where the delivery cycle is 0, it means that the
destination does not request the sensor data stream. This
corresponds to case where a live camera acquires an im-
age once every second, and D1 does not view the image,
D2 and D3 view the image once every second, and D4

views the image once every three seconds, for example.
In this paper, we assume that selectable delivery cycles for
each sensor data stream are given and are represented byCi
(i = 1, 2, · · · ). The sensor data delivery system assigns de-
livery cycles or times to relay sensor data streams to nodes.
The nodes send and receive various sensor data each other
on specific times.

2.2 Objective function

In sensor data stream delivery, it is important to avoid con-
centrating of processes and loads to a specific computer or
network because the processing time affects and accumu-
lates a delay of delivery. Therefore, in this paper, we aim
to distribute communication loads to relay nodes on sensor
data stream delivery system.

The communication load of the node Ni is given as the
total of the load due to the reception of the sensor data
stream and the load due to the transmission. The communi-
cation load due to the reception is referred to as a reception
load, and the reception load of Ni is Ii. The communica-
tion load due to the transmission is referred to as transmis-
sion load, and the transmission load of Ni is Oi.

D1 D2 
D3 

D4 

S1 

S2 

N2 

N1 

N3 

a: 1 
b: 0

a: 2 
b: 2

a: 2 
b: 1

a: 3 
b: 3

a: … 
b: …

a: … 
b: …

a: … 
b: …

a: s 
b: 0 

a: 0 
b: s

Sensor data stream Si is 
delivered by its source 

Overlay network

Relay node Ni 

- Constructs overlay network 

- Relays data at any time 

Destination Di 

- Specifies streams with cycles 

- Only receives data

Figure 1: System model.

In many cases, the reception load and the transmission
load are proportional to the number of sensor data pieces
per unit hour of the sensor data stream to be sent and re-
ceived. The number of pieces of sensor data per unit hour
of the sensor data stream that is to be received by Ni from
Nj or Sk (i 6= j; i, j = 1, · · · , n; k = 1, · · · , l) is
R(Nj , Ni) orR(Sk, Ni). In addition, the number of pieces
of sensor data per unit hour of the sensor data stream that
is to be sent by Ni to Nj or Dk (i 6= j; i, j = 1, · · · , n;
k = 1, · · · ,m) is R(Ni, Nj) or R(Ni, Dk). The loads Li,
Ii and Oi of Ni are given in the following equations:

Li = Ii +Oi (1)

Ii = α

n∑
j=1

R(Nj , Ni) + α

l∑
k=1

R(Sk, Ni) (2)

Oi = β

n∑
j=1

R(Ni, Nj) + β

m∑
k=1

R(Ni, Dk) (3)

where α and β are loads with which one piece of sensor
data is received and sent, respectively.

The communication load SL of the entirety of the system
is given by the following equation:

SL =

n∑
i=1

Li (4)

In addition, the following fairness index (FI) is often used
as an index for load dispersion:

FI =
(
∑n
i=1 Li)

2

n
∑n
i=1 L

2
i

(5)

where 0 ≤ FI ≤ 1, and when FI = 1, L0 = · · · = Ln.
It is indicated that the closer FI is to 1, the more the load
is dispersed. Another purpose of this study is to disperse
the communication load to the destination nodes while sup-
pressing the communication load of the entirety of the sys-
tem. Therefore, the objective function is SL and 1 − FI ,
and the delivery path is determined to make these values
minimum.



A Churn Resilience Technique on. . . Informatica 39 (2015) 355–363 357

3 Robustness enhancement
technique

3.1 Previous methods
We have proposed techniques for a P2P model where such
an environment that a number of destinations collect the
sensor data stream during different cycle is assumed so
that the load of the source is dispersed [11]. In addition,
we have proposed a method which determines relay nodes
based on distributed hashing and constructs delivery paths
autonomously by each node [12].

The previous method using distributed hashing devides
nodes into groups represented by the combination of sen-
sor data stream and delivery cycle. In addition, the previous
method assigns delivery times to nodes for each group of
delivery cycle. The previous method distributes processes
by assigning a node based on delivery time. In addition,
the previous method avoids concentrating loads to a spe-
cific node and time by assigning a node for each group of
delivery cycle. However, in the previous methods, since
the specific node builds delivery paths and notifies to re-
lated nodes, the assigned node is required to be updated
when the related nodes churn.

3.2 Redundancy of node assignment by
successor list

In the sensor data stream delivery, the number of data to
send/receive varies among different delivery cycles. The
shorter the delivery cycle is, the larger the number of data
and the load are. Therefore, the previous method using
distributed hashing first generates circular hash spaces for
each sensor data stream and puts nodes on hash spaces
based on the distributed hashing of the combination of
sensor data stream and node ID. After that, the previous
method divides each hash space into partial hash spaces as
groups for each delivery cycle. By this process, partial hash
spaces of the shorter cycle have the more nodes. The size
of each partial hash space is determined based on its cycle.
For example, in the case where the selectable delivery cy-
cles are Ci = i (i = 1, 2, 3), the ratio of the sizes of partial
hash spaces is 1/C1 : 1/C2 : 1/C3 = 1/1 : 1/2 : 1/3 =
6 : 3 : 2. The previous method treats each partial hash
space as circular and assigns related times for each cycle
to nodes on its partial hash space. In the case where there
are no nodes on the partial hash space, the previous method
assigns the partial hash space to the nearest neighbor node
on the next partial hash space. In addition, the previous
method determines the root node on the partial hash space
of the shortest cycle based on distributed hashing such as
the least common multiple of cycles. The root node first
receives data from the source of sensor data stream.

In this paper, we propose a churn resilience technique
that enhances the robustness of delivery system by a suc-
cessor list used in Chord [13]. Figure 2 shows an example
of the case where the number of nodes is n = 8, cycles are

Figure 2: Assignment to a group of cycle.

Require:
cycles: Arrangement of delivery cycles of the nodes sorted in ascending order
(cycle of source node is−1 and at index 0)
ownId : An identification of own (node)
assignedCycleIndex : An index of own assigned delivery cycle in cycles
succCount : The length of a successor list

1: cycleLcm ← calculateLCM (cycles);
2: if assignedCycleIndex 6= 0

or searchNode(0, cycleLcm, 0) 6= ownId then
3: time ← 0;
4: while time < cycleLcm do
5: assignedNode

← searchNode(assignedCycleIndex , time, 0);
6: if assignedNode = ownId then
7: longCycleIndex

← calculateLongestCycleIndex(cycles, time, 0);
8: relayNode;
9: if longCycleIndex = assignedCycleIndex then

10: relayNode ← searchNode(0, cycleLcm, 0);
11: succList ;
12: succNode ← ownId ;
13: for i← 0 to succCount do
14: succNode ← successor(succNode);
15: succList.add(succNode);
16: end for
17: else
18: succNodeIndex

← random(0, succCount + 1);
19: relayNode ← searchNode(

longCycleIndex , time, succNodeIndex);
20: end if
21: requestToSend(relayNode, ownId, time);
22: end if
23: time ← time + cycles[assignedCycleIndex ];
24: end while
25: end if

Figure 3: Pseudocode to construct delivery paths by nodes.

Ci = i (i = 1, 2, 3), the size of a hash space is 2p, and the
length of the successor list is 2. In Figure 2, the beginning
values of each partial hash space are 2p× 0/11, 2p× 6/11,
and 2p × 9/11.

To construct delivery paths, nodes first calculate the least
common multiple of selectable delivery cycles for each
sensor data stream. After that, the nodes search the sender
nodes for each related time that the same time is assigned
to in the other cycle groups. The nodes determine the cy-
cle groups to search for each time based on the approach
such as the LCF method [11], and the node that belongs



358 Informatica 39 (2015) 355–363 T. Kawakami et al.

Require:
cycles: Arrangement of delivery cycles of the nodes sorted in ascending order
(cycle of source node is−1 and at index 0)
ownId : An identification of own (destination)
requestCycleIndex : An index of request delivery cycle in cycles
succCount : The length of a successor list

1: cycleLcm ← calculateLCM (cycles);
2: time ← 0;
3: while time < cycleLcm do
4: targetCycleIndex

← getRandomCycleIndex(cycles, time);
5: succNodeIndex

← random(0, succCount + 1);
6: relayNode ← searchNode(

targetCycleIndex , time, succNodeIndex);
7: requestToSend(relayNode, ownId, time);
8: time ← time + cycles[requestCycleIndex ];
9: end while

Figure 4: Pseudocode to construct delivery paths by desti-
nations.

to the longest cycle on each time receives data from root
node and sends to the nodes that belong to the other cy-
cle groups. The node that does not belong to the longest
cycle group on each time searches the node on the longest
cycle group and requests to send data. On the other hand,
the node that belongs to the longest cycle group on each
time searches the root node of the sensor data stream and
requests to send data. Figure 3 shows the pseudocode to
construct delivery paths by a node.

In the the pseudocode on the Figure 3, the least common
multiple of the selectable delivery cycles is calculated in
the line 1. The case shown in the line 2 is a case where
this node does not belong to the shortest cycle group or is
not the root node. The case shown in the line 6 is a case
where time in the cycle group is assigned to this node, and
the case shown in the line 9 is a case where the cycle group
of this node is the longest cycle at time. In the line 10,
the root node is searched as a sender to this node at time.
Successor node is searched in the line 14, and the searched
node is added to the successor list in the line 15. Successor
node that receives data is selected at random in the line 18,
and the node that belongs to the longest cycle group and
succNodeIndex is searched as a sender to this node at time
in the line 19. Finally, delivery path from the relay node at
time is constructed in the line 21.

Similarly destinations first calculate the least common
multiple of selectable delivery cycles for each sensor data
stream. After that, the destinations determine the cycle
group for each time at random among the related cycles.
The destinations search the senders in the determined cy-
cle groups for each time and request to send data. Figure 4
shows the pseudocode to construct delivery paths by a des-
tination.

In the the pseudocode on the Figure 4, the least common
multiple of the selectable delivery cycles is calculated in
the line 1. The cycle group able to send at time and suc-
cessor node that receives data are selected at random in the
line 5. After that, the node that belongs to the selected cy-
cle group and succNodeIndex is searched as a sender to this
destination at time in the line 6. Finally, delivery path from

Figure 5: The number of desitinations for the longest cycle
group at each time.

the relay node at time is constructed in the line 7.

4 Evaluation

4.1 Simulation environment
In this section, we evaluate the proposed technique using
distributed hashing in Section 3 by simulation. In the simu-
lation environment, the number of nodes is n = 27 = 128,
the number of sensor data streams is l = 27 = 128, and
the number of destinations is m = 1000. The delivery cy-
cles that destinations request are Ci = i (i = 1, · · · , 10)
and determined at random from 1 to 10 for each sensor
data stream. In this environment, the maximum of the least
common multiple of delivery cycles is 2520, and then the
timetable for delivery is from time 0 to time 2519.

As an evaluated value, we calculated the load of each
node, system total loads (SL), and fairness index (FI)
among the time of the least common multiple of selectable
delivery cycles. We executed this simulation 10 times for
each method and environments described later. We calcu-
lated the average of the results.

4.2 Number of influenced destinations
Figure 5 shows the number of destinations that cannot re-
ceive the data stream in the case where the assigned node
of the longest cycle group on each time churns.

In the proposed technique, the assigned node of the
longest cycle group on each time relays to the assigned
nodes of the other cycle groups on that time. Since a spe-
cific node of the longest cycle group is assigned each time,
nodes of the other cycle groups and their destinations can-
not receive the data stream in the case where the assigned
node of the longest cycle group churns. In Figure 5, the as-
signed nodes of all cycle groups deliver to their destinations
at time 0. The longest cycle group at time 0 is 10. There-
fore, all of the one thousand destinations cannot receive the



A Churn Resilience Technique on. . . Informatica 39 (2015) 355–363 359

Figure 6: Maximum instantaneous number of destinations
for each cycle group.

Figure 7: Total number of destinations for each cycle
group.

data stream in the case where the assigned node of the cy-
cle group 10 at time 0 churns. Similarly, the longest cycle
group and the number of destinations are different among
times, and the number of influenced destinations changes
as shown in Figure 5. However, the successor list in our
proposal makes this influence of node changes reduced.

Figure 6 shows the maximum instantaneous number of
destinations for each cycle group and time. In addition,
Figure 7 shows the total number of destinations for each
cycle group.

In our assumptions, the longer cycle groups such as over
6 have the higher probability to become the longest cy-
cle for each time. Therefore, the longer cycle groups have
the larger number of influenced destinations per unit time
shown in Figure 6. On the other hand, the shorter cycle
groups such as 1 deliver to destinations for more times.
Therefore, the shorter cycle groups have the larger num-
ber of the total influenced destinations between time 0 to
2519 as shown in the Figure 7.

4.3 Results by the length of successor list
Figure 8, Figure 9 and Figure 10 show the minimum of
the instantaneous system reliability in the proposed tech-

Figure 8: The minimum of instantaneous system reliability
in the constant scenario.

Figure 9: The minimum of instantaneous system reliability
in the Gaussian scenario.

nique and an environment where the number of successors
is 0, · · · , 4. The instantaneous system reliability shows the
rate of destinations each time that receive data successfully.
Figure 8 is the result in the case where the churn rate of
nodes is constant to the value on the lateral axis. Figure 9
is the result in the case where the churn rate of nodes is
individually determined based on the Gaussian distribution
with the mean being the value on the lateral axis and the
dispersion being 1. Figure 10 is the result in the case where
the churn rate of nodes is individually determined at ran-
dom from 0 to 1. The longitudinal axis is the minimum of
the instantaneous system reliability.

Figure 11, Figure 12 and Figure 13 show the average of
the instantaneous system reliability in the proposed tech-
nique and same environment. The longitudinal axis is the
average of the instantaneous system reliability.

In these results, the instantaneous system reliability ba-
sically becomes higher by the number of successors. The
increment from the case that has no successors is especially



360 Informatica 39 (2015) 355–363 T. Kawakami et al.

Figure 10: The minimum of instantaneous system reliabil-
ity in the random scenario.

Figure 11: The average of instantaneous system reliability
in the constant scenario.

large even if there are a few successors. Therefore, the suc-
cessor list is effective to enhance the robustness and relia-
bility of the delivery system.

Figure 14 shows the maximum instantaneous load in an
environment where the number of successors is 0, · · · , 4.
The maximum instantaneous load is the maximum load for
each node and time. The longitudinal axis is the maximum
instantaneous load, and the lateral axis is the number of
successors. In Figure 14, the difference of the maximum
instantaneous load is small in this simulation environment.
In the same environment, Figure 15 shows the maximum
load of node, Figure 16 shows SL, and Figure 17 shows FI .
Also the differences in those results are small in this simu-
lation environment. Therefore, the maintenance cost of the
successors is not influenced largely in the case where the
number of destinations is especially higer than the number
nodes.

Figure 18 shows the rate of the number of hops to each
node at time 0 in an environment where the number of suc-
cessors is 0, · · · , 4. The lateral axis is the number of hops,
and the longitudinal axis is the rate of the nodes that re-
ceive data under the number of hops. The nodes shown as

Figure 12: The average of instantaneous system reliability
in the Gaussian scenario.

Figure 13: The average of instantaneous system reliability
in the random scenario.

“N/A” do not receive data at time 0 because other nodes in
the same cycle group are assigned to time 0. In Figure 18,
the nodes shown as “N/A” are reduced in the longer suc-
cessor list because the nodes that receive data at time 0 are
increased. Although the rate of the number of the higher
hops are increased in the longer successor list, all of the
nodes receive data under four hops.

Figure 19 shows the rate of the number of hops to each
destination at time 0 in the same environment. The longi-
tudinal axis is the rate of the destinations that receive data
under the number of hops. Although the rate of the number
of the higher hops are increased in the longer successor list,
all of the nodes receive data within five hops.

5 Related work
Various techniques for dispersing the communication load
in the delivery of streams have been proposed [14].

A P2P stream delivery technique using a P2P technol-
ogy for sending and receiving data has been proposed in
order to disperse the communication load among the ter-
minals [1–5]. The P2P stream delivery technique is di-



A Churn Resilience Technique on. . . Informatica 39 (2015) 355–363 361

Figure 14: Maximum instantaneous load by the number of
successors.

Figure 15: Maximum load by the number of successors.

vided into a pull type technique and a push type technique.
In a pull type technique, such as PPLive1, DONet [1], and
SopCast2, the reception terminal that receives data requests
data from another terminal and acquires it. Although the
reception terminal find terminals that have not yet been re-
ceived the requested data, no redundant communications
are carried out. In a push type technique, such as AnySee,
data is sent from the transmission terminal that sends data
to another terminal [2]. Although the transmission termi-
nal find terminals that have not yet received the requested
data, no such redundant communications are carried out. A
technique combining a pull type and a push type, such as
PRIME, has been proposed [3].

In P2P stream delivery techniques, a case where the
same data stream is delivered to a number of terminals is
assumed. In the delivery of the sensor data streams, how-
ever, there are cases where a data stream of the same sensor
having different delivery cycles is delivered. In this case,

1http://www.pplive.com/
2http://www.sopcast.com/

Figure 16: Total sytem loads by the number of successors.

Figure 17: Load balance by the number of successors.

sensor data streams having different delivery cycles are de-
livered as different data streams.

Several techniques for preventing the communication
load from being concentrated on a particular terminal by
constructing a data delivery path, which is referred to as
a multicast tree, in advance so that a data stream is deliv-
ered have been proposed [6–10]. In the ZIGZAG method,
a multicast tree is constructed by clusters that are collec-
tions of terminals [7]. The number of clusters included in
each depth of a multicast tree is made the same, and thus,
the load is dispersed. Multicast trees are constructed only
of information gained in the application layer, and it is not
necessary to understand the physical network structure.

In the MSMT/MBST method, the communication load
can be prevented from concentrating on a particular ter-
minal as compared to ZIGZAG by taking the communica-
tion delay between terminals into consideration in the case
where the physical network structure can be understood [8].
The implementability of the MSMT/MBST method was
poor because it is necessary to understand all the network
structures between the terminals concerning stream deliv-
ery. In LAC (locality aware clustering), a load dispersion
higher than that in ZIGZAG is achieved by taking into con-



362 Informatica 39 (2015) 355–363 T. Kawakami et al.

Figure 18: Rate of nodes by the number of hops to delivery.

Figure 19: Rate of destinations by the number of hops to
delivery.

sideration the communication delay between only some ter-
minals, though the physical network structure cannot be
understood [9].

P2P sensor data stream delivery systems must be ro-
bust and resilient against node churn because P2P net-
works have high flexibility and always variable. Currently,
techniques related to the churn resilience have been pro-
posed [15–17], and also an analytical framework that al-
lows to model retrieval times has been proposed [18]. In
this paper, we applied a successor list to P2P sensor data
stream delivery system to accommodate heterogeneous cy-
cles, and we can also apply these related works, e.g., a logic
layer named Dechurn that uses the complementary nature
of node joining and leaving [16].

6 Conclusion
In this paper, we proposed a churn resilience technique that
enhances the robustness of delivery system by a successor
list in Chord. Validated through evaluation, the reliability
of the delivery system is improved.

In the future, we will study an algorithm to calculate the
appropriate length of the successor list each time because
the required system reliability changes by applications, sit-
uations, and so on.

Acknowledgement
This research was partly supported by the collaborative re-
search of National Institute of Information and Commu-
nications Technology (NICT) and Osaka University (Re-
search on high functional network platform technology
for large-scale distributed computing). This research was
partly supported by the Strategic Information and Com-
munications R&D Promotion Programme (SCOPE) of the
Ministry of Internal Affairs and Communications.

References
[1] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Cool-

Streaming/DONet: A data-driven overlay network
for peer-to-peer live media streaming,” in Proceed-
ings of the 24th Annual Joint Conference of the
IEEE Computer and Communications Societies (IN-
FOCOM 2005), Mar. 2005, pp. 2102–2111.

[2] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “Any-
see: Peer-to-peer live streaming,” in Proceedings of
the 25th IEEE International Conference on Computer
Communications (INFOCOM 2006), Apr. 2006, pp.
1–10.

[3] N. Magharei and R. Rejaie, “PRIME: Peer-to-peer
receiver-driven mesh-based streaming,” in Proceed-
ings of the 26th IEEE International Conference on
Computer Communications (INFOCOM 2007), May
2007, pp. 1415–1423.

[4] L. Yu, X. Liao, H. Jin, and W. Jiang, “Integrated
buffering schemes for P2P VoD services,” Peer-to-
Peer Networking and Applications, vol. 4, no. 1, pp.
63–74, 2011.

[5] S. Sakashita, T. Yoshihisa, T. Hara, and S. Nishio, “A
data reception method to reduce interruption time in
P2P streaming environments,” in Proceedings of the
13th International Conference on Network-Based In-
formation Systems (NBiS), Sep. 2010, pp. 166–172.

[6] S. Banerjee, B. Bhattacharjee, and C. Kommareddy,
“Scalable application layer multicast,” in Proceedings
of the ACM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM 2002), Aug. 2002, pp. 205–
217.

[7] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: An
efficient peer-to-peer scheme for media streaming,”
in Proceedings of the 22nd Annual Joint Conference



A Churn Resilience Technique on. . . Informatica 39 (2015) 355–363 363

of the IEEE Computer and Communications Societies
(INFOCOM 2003), vol. 2, Mar. 2003, pp. 1283–1292.

[8] X. Jin, W.-P. K. Yiu, S.-H. G. Chan, and Y. Wang,
“On maximizing tree bandwidth for topology-aware
peer-to-peer streaming,” IEEE Transactions on Mul-
timedia, vol. 9, no. 8, pp. 1580–1592, Dec. 2007.

[9] K. Silawarawet and N. Nupairoj, “Locality-aware
clustering application level multicast for live stream-
ing services on the Internet,” Journal of Information
Science and Engineering, vol. 27, no. 1, pp. 319–336,
2011.

[10] T. A. Le and H. Nguyen, “Application-aware cost
function and its performance evaluation over scalable
video conferencing services on heterogeneous net-
works,” in Proceedings of the IEEE Wireless Commu-
nications and Networking Conference: Mobile and
Wireless Networks (WCNC 2012 Track 3 Mobile and
Wireless), Apr. 2012, pp. 2185–2190.

[11] T. Kawakami, Y. Ishi, T. Yoshihisa, and Y. Teranishi,
“A P2P-based sensor data stream delivery method to
accommodate heterogeneous cycles,” Journal of In-
formation Processing (JIP), vol. 22, no. 3, pp. 455–
463, Jul. 2014.

[12] ——, “A load distribution method based on dis-
tributed hashing for P2P sensor data stream deliv-
ery system,” in Proceedings of the 3rd IEEE In-
ternational Workshop on Modeling and Verifying of
Distributed Applications (MVDA 2014) in Conjunc-
tion with the 38th Annual International Computer,
Software and Applications Conference (COMPSAC
2014), Jul. 2014, pp. 716–721.

[13] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup protocol for
internet applications,” IEEE/ACM Transactions on
Networking, vol. 11, no. 1, pp. 17–32, Feb. 2003.

[14] Z. Shen, J. Luo, R. Zimmermann, and A. V. Vasi-
lakos, “Peer-to-peer media streaming: Insights and
new developments,” Proceedings of the IEEE, vol. 99,
no. 12, pp. 2089–2109, Oct. 2011.

[15] S. Legtchenko, S. Monnet, P. Sens, and G. Muller,
“RelaxDHT: A churn-resilient replication strategy for
peer-to-peer distributed hash-tables,” ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS),
vol. 7, no. 2, Article 28, Jul. 2012.

[16] X. Meng, X. Chen, and Y. Ding, “Using the comple-
mentary nature of node joining and leaving to han-
dle churn problem in P2P networks,” Computers and
Electrical Engineering, vol. 39, no. 2, pp. 326–337,
Feb. 2013.

[17] C. Hu, M. Chen, C. Xing, and G. Zhang, “Explor-
ing the optimal substream scheduling and distribu-
tion mechanism for data-driven P2P media stream-
ing,” vol. 44, pp. 14–25, May 2014.

[18] L. Pamies-Juarez, M. Sanchez-Artigas, P. García-
López, R. Mondéjar, and R. Chaabouni, “On the in-
terplay between data redundancy and retrieval times
in P2P storage systems,” Computer Networks: The
International Journal of Computer and Telecommu-
nications Networking, vol. 59, pp. 1–16, Feb. 2014.



364 Informatica 39 (2015) 355–363 T. Kawakami et al.


