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With the development of artificial intelligence and spatio-temporal big data technologies, the dynamic
evolution characteristics of the tourism flow network and the spatial structure changes of its core nodes
have become research hotspots. Based on the theory of complex networks, this paper constructs a tourism
flow network covering mobile phone signaling, online platforms and traffic data, with a focus on discussing
the spatio-temporal heterogeneous evolution mechanism of node centrality. By introducing Al models such
as Graph Neural Network (GCN) and Long Short-Term Memory Network (LSTM), multi-scale recognition
and dynamic prediction of core nodes in the tourism flow are achieved. The dataset contains 47 counties
and 90 days of tourism flow data, covering 10 million signaling records, 5 million OTA data, and 3 million
traffic data, processed at the daily level. We adopted a split scheme of 70% training set, 15% validation set
and 15% test set for model training and evaluation. The experimental results show that the model has a
prediction accuracy of 0.10 in RMSE and is superior to traditional benchmark methods (such as STGCN
and DCRNN). The research also revealed the trend of centrality reconstruction of tourism flow nodes under
different periods, holidays and external interventions. The research results have important theoretical and
practical significance for improving the efficiency of regional tourism regulation and optimizing the layout
of core nodes.

Povzetek:Clanek predstavi GCN-LSTM model za napovedovanje in analizo evolucije centralnosti
turisticnih vozlisc na podlagi 47 regij in vecmilijonskih podatkovnih tokov. Model preseze STGCN/DCRNN

(RMSE 0,10) ter razkrije sezonske, praznicne in strukturne premike v omrezZju turisticnih tokov.

1 Introduction

Against the backdrop of the rapid development of artificial
intelligence and big data technologies, tourism flow, as a
comprehensive carrier of population migration, resource
allocation and consumption behavior, has seen its network
structure become increasingly complex, dynamic and
multi-scale. Traditional research on tourism networks
mainly focuses on node structure and path optimization,
lacking in-depth analysis of the spatio-temporal
heterogeneous evolution of "centrality”. Especially in the
complex urban agglomeration structure, the dynamic
changes of core nodes show significant imbalance and
multi-factor driven characteristics. Based on this, this
paper intends to construct an Al-driven framework for node
centrality identification and evolution analysis, integrating
multi-source tourism stream data and graph time series
learning models, to deeply explore its evolution
characteristics and  regulatory = mechanisms  in
heterogeneous spatial structures. By integrating the
network optimization algorithm in graph theory and the
spatio-temporal data modeling method, we will explore
how to enhance the dynamic evolution prediction accuracy
of the tourism flow network, thereby providing a
theoretical basis for tourism resource allocation and
regional regulation.

2 Related work

The tourism flow network, as an important manifestation of
the interaction between humans and the land, is essentially
a typical complex system, featuring openness, nonlinearity,
dynamic evolution and multi-layer coupling. FT Saenz et al.
(2023) pointed out in their research based on the prediction
of national tourism flows in the United States that the
development of the artificial intelligence industry chain
relies on the spatial agglomeration of core urban
agglomerations, and such cities are often important
destinations and transfer hubs for tourism activities,
indicating a coupling and strengthening trend between
tourism flows and the functional grades of cities.
Furthermore, Zhang L. et al. (2023) pointed out that
complex system models need to integrate cross-domain
data and multi-scale processes, and solve heterogeneous
conflicts at the semantic, spatio-temporal, and execution
levels. This feature is also widely present in the
organization and evolution process of tourism flows.

The tourism flow network, as an important carrier for
the allocation of human flow and spatial resources among
cities, possesses typical characteristics of a complex
system. Its structure is composed of multi-scale nodes,
multi-type  connections and  multi-factor  driving
mechanisms, presenting a system behavior with strong
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heterogeneity, high coupling degree and uncertain
evolution path. Weiwei J. and Jiayun L. (2022) pointed out
that complex systems often involve multi-process
interactions across scales, and it is necessary to construct
Al models that integrate expert knowledge with
multi-source data to address the modeling gap between
different data structures and semantic dimensions.
Meanwhile, Zhang L. et al. (2023) proposed that artificial
intelligence technology can effectively identify the
distribution characteristics of heterogeneous structures in
multi-level networks, providing the possibility for
structural identification and intervention paths of complex
systems.

In the tourism flow network, spatio-temporal
heterogeneous structure refers to the differences in network
organization caused by spatial geographical differences,
temporal evolution laws and inconsistent data structures.
This heterogeneity is mainly manifested in aspects such as
the functional differences of nodes, the dynamic changes of
edge weights, geographical nesting, and the complexity
driven by behavior, making it difficult for traditional
homogeneous network models to effectively depict the
evolution process of the real tourism flow structure. Zhang
X. Et al. (2021) pointed out that in the environment of the
Internet of Things and medical data, data heterogeneity is
characterized by different dimensions, collection delay,
and inconsistent semantics, and it is necessary to achieve
hierarchical structure modeling and responsive processing
with the help of edge computing and artificial intelligence.
Meanwhile, FT Saenz (2023) proposed in analyzing tumor
heterogeneity that structural transitions and functional
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reorganizations may occur within complex systems due to
environmental changes, emphasizing the adaptive
regulatory mechanism of heterogeneous structures during
the evolution process.

With the rapid breakthroughs of artificial intelligence
technology in the fields of graph structure modeling, time
series prediction and multi-source data fusion, its
application in spatial network analysis is deepening
increasingly. However, the current application of Al in
spatial network analysis still faces many challenges: First,
the high heterogeneity of data and the inconsistent
sampling granularity limit the generalization ability of the
model; Secondly, the diverse attributes of nodes and the
non-Euclidean spatial structure result in insufficient
expressive power of the model. Thirdly, the
spatio-temporal relationship is highly nonlinear, and
traditional Al methods have difficulties in analyzing causal
mechanisms. In addition, semantic conflicts and temporal
alignment difficulties exist among multi-source data,
further increasing the complexity of modeling. In
conclusion, although existing methods have achieved
remarkable results in spatio-temporal graph modeling and
traffic prediction, most of them only deal with time series
data and ignore the importance of topological structure. For
instance, models such as STGCN and DCRNN mainly
focus on temporal dynamics without fully considering the
complex spatial interactions among different nodes.
Moreover, although TGAT introduces temporal features, it
lacks integration of multimodal inputs (such as traffic,
social, and mobile data). The existing methods are
compared as shown in Chart 1.

Table 1: Comparison of existing methods

Paper Dataset (Size/Region) Method Metric Best Reported Result
STGCN (Martin, Traffic flow data (N=10,000, Spatio-Temporal Graph _

2018) NYC) Convolution RMSE RMSE=0.12
DCRNN (Ma C,, Traffic flow data (N=1,000, Diffusion-Convolutional _

2024) LA) RMSE RMSE=0.09
Graph WaveNet Traffic data (N=2,000, Graph Convolutional _

(Sun H, 2023) Beijing) Network RMSE RMSE=0.10

TGAT (Zhang L, Social media and traffic data | Temporal Graph Attention MAPE M

2023) (N=500) Network

The model proposed in this paper, through the GCN-LSTM
architecture, combines spatio-temporal heterogeneous
features and multi-factor driving mechanisms, filling the
gap of existing methods. In particular, our model can not
only handle spatio-temporal sequences but also capture the
topological relationships between nodes and the interaction
of multimodal data, achieving dynamic prediction and
evolution identification of node centrality. In addition, we
utilized multi-source heterogeneous data, effectively
integrating signaling data, OTA data, traffic data and social
media data, which significantly enhanced the predictive
ability and adaptability of the model.

3 Construction of tourism flow
network and data processing
methods

3.1 Multi source data acquisition and fusion
methods

This study builds a tourism flow network based on
multi-source heterogeneous data. The data collection
includes four main channels: mobile phone signaling data,
online travel platform (OTA) data, traffic operation data
and social media data. The data sources are shown in Table
2.
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Table2 : Data source table
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- - Data Processing | Data Acquisition
SBSE%e Data Type GraEILTI]:rity Gr%?n%ﬁg!ity VEI?Jt%e CSZ?{(%? ° and Privacy and
Protection Authorization
: Anonymized using
: User login : .
Mobile : ; 10 January IMSI numbers, in | Authorized from
Signaling befslallor, 15 minutes C%SZ?;tgtL%r}t million 2023 to compliance with operators like
Data informgti on g records | March 2023| GDPR and Jlapanese NTT, SoftBank
privacy laws
Hotel Data authorized for .
OTA _bookings, ) POI 5 million|  January use, in compliance Agg{%}ﬁg ﬁfem
Data ticket orders, Daily geographic records 2023 to with relevant data Trio.com. Eli
destination coding March 2023 protection P. AP a9y
search heat regulations
High-speed Anonymized by Authorized from
Traffic | ETC records, Provincial and| 4 uion|  January | license plate, using | high-speed ETC,
Data high-speed Hourly city records 2023to | sliding time window| high-speed rail,
rail and flight boundaries March 2023| method for traffic and flight
logs smoothing providers
NLP used to extract
User - P .
; ; geographic entities,| Authorized from
Eﬂoecé?; ;g:)ngarggﬁ& Dail Administrative| 2 million %%%a{g in compliance with platforms like
Data entity y units records March 2023 Japanese privacy “Weibo,
extraction laws and data Xiaohongshu
protection standards

3.2 Abstract logic and dynamic definition of
network nodes and edges

Network nodes take prefecture-level administrative units as
the smallest spatial units and are uniquely identified in
accordance with the national standard administrative
division codes. All spatial information in the data sources is
projected to the corresponding administrative units through
POI matching, GPS coordinate mapping or base station
location projection. After the high-frequency repetitive

units were merged, the 47 prefectures of Japan were
ultimately retained as the spatial basis of the tourism flow
network. To enhance the processing efficiency of
large-scale data, we adopt parallel computing technology
and distributed computing frameworks (such as
ApacheSpark) to accelerate the processing and
normalization of node data, ensuring the efficient
generation of node indexes. The specific definitions and
mapping rules of nodes are shown in Table 3.

Table3 : Specific definitions and mapping rules of nodes

Node Type Number of Nodes Description/Mapping Rules
Administrative Unit 47 Mapped to county-level administrative units based on NTT and SoftBank
(County) data

POI Clusters (Tourist

Attractions)

Y (variable)

Mapped to POI (points of interest) based on OTA data (e.g., Trip.com,

Booking.com)

Total

47

Combined administrative unit nodes and POI nodes

The establishment of edges relies on OD pairs generated
from different data sources, extracting starting nodes and
destination nodes for connection. In mobile signaling data,
when the same user moves across cities within one day, an
edge is constructed, and the edge weight is the sum of the
number of users within the OD pair. In OTA data, the
destination in the order is considered as the inflow node,
and the search path is constructed based on the search
history to form a virtual jump relationship. In traffic data,
ETC matches departure and arrival cities with flight
records, and edges are established by train number or
schedule; Repeated shifts only retain the earliest departure
record once a day to avoid misidentification during
commuting. Virtual edge creation: Build virtual edges
based on the user's historical search data. For instance,
when a user searches for multiple destinations on an OTA
platform and jumps to them, the generated virtual edges

represent the flow of tourists' interests. The specific
implementation is as follows:

def create_virtual_edges(search_data):

virtual_edges = {}

for search in search_data:
source, destination = extract_search(search)
if (source, destination) not in virtual_edges:

virtual_edges[(source, destination)] = 0
virtual_edges[(source, destination)] += 1 #
Each search creates a unit flow

return virtual_edges

All edges are directed weighted edges, where edge
weights represent the cumulative flow intensity per unit per
day. To maintain the dynamic properties of the network, all
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edges are annotated with timestamps and form a daily
subgraph with "days" as the basic time granularity.
Through sliding window and time series analysis, these
subgraphs are merged to form a three-dimensional dynamic
network structure: nodes x nodes x time. To improve the
efficiency of data processing, GPU acceleration and Graph
Convolutional Neural Network (GCN) technology are used
to efficiently process network graphs, ensuring the
real-time performance and accuracy of the model.

All the edges are directed weight edges, and the edge
weights represent the cumulative flow intensity within the
unit on a daily basis. To maintain the dynamic attributes of
the network, all edges are marked with timestamps and a
subgraph is formed each day with "days" as the basic time
granularity. Through sliding window and time series
analysis, these subgraphs are merged to form a
three-dimensional dynamic network structure: node x node
x time. To enhance the efficiency of data processing, GPU
acceleration and graph convolutional neural network (GCN)
technology are adopted to efficiently process network
graphs, thereby ensuring the real-time performance and
accuracy of the model. To enhance the stability of the
network, weak edges with edge weights lower than the 11%
quantile are eliminated, and the edge weights are
normalized by Z-score. This method can eliminate the
influence of outliers on the network structure and ensure
that the relationship between each node and edge is more
stable and reliable. The specific operation is as follows:

def threshold_edges(od_edges, percentile=1):
threshold = np.percentile(list(od_edges.values()),
percentile)
return {k: v for k, v in od_edges.items() if v >=
threshold}

def z_score_normalization(od_edges):
mean = np.mean(list(od_edges.values()))
std = np.std(list(od_edges.values()))
return {k: (v - mean) / std for k, v in
od_edges.items()}

The network storage structure adopts a sparse matrix
format. Nodes are mapped by an index dictionary, and
edges are quickly queried and tracked across periods using
triples (i,j,t). Through this structure, we can efficiently
store and process large-scale dynamic data, further
supporting the standardization of input tensors for graph
neural networks (GCN) and time series models (LSTM),
ensuring cross-day consistency and model processing
efficiency. The sparse matrix storage method can
effectively reduce the demand for storage space and
accelerate the computing process. By integrating parallel
computing technology, we have achieved efficient access
and computing of large-scale data, providing a solid
foundation for subsequent model training and prediction.
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3.3 Spatiotemporal partitioning strategy
and heterogeneous network structure
expression

The time dimension is divided with "days" as the basic

granularity, and a daily network snapshot graph is

generated based on the data timestamp. The total duration
is 90 days, and a total of 90 dynamic graph units are
generated. To enhance the model's ability to capture the
evolution trend, a sliding time window mechanism is
adopted to construct the sequence input. The window
length is set to 7 days and the sliding step size to 1 day,
forming a continuous scrolling graph sequence for training
the time series modeling module. This mechanism ensures
the model's dynamic learning ability on time series,
especially capable of capturing the impact of periodic
fluctuations and unexpected events on tourism flows.

When modeling time, holidays, weekends and working

days are respectively labeled as exogenous variables to

participate in subsequent modeling, thereby improving the
prediction accuracy of the model at specific time points.

The spatial dimensions uniformly adopt the scale of

prefecture-level cities, and the boundaries are demarcated

in accordance with the latest administrative divisions. To
express spatial heterogeneity, the following three types of
heterogeneous substructures are constructed respectively:

e  Heterogeneous graph of regional attributes: Based on
the economic indicators, tourism resource levels,
transportation hub levels, etc. of each node, static
attribute vectors are set for each node for the
initialization of the graph structure.

e  Heterogeneous graph of behavior sources: Subgraphs
are constructed respectively based on different data
sources (such as signaling subgraphs, OTA subgraphs,
traffic subgraphs), and virtual edges are established
through shared nodes to form a multi-view graph.

e  The heterogeneous graph of the relationship strength:
The edge weights are quantified and partitioned, and a
weight hierarchical network is constructed according
to the three types of flow intensities of strong,
medium and weak, which is used to represent the
dynamic evolution gradient of the edges.

Missing data processing: For the processing of missing
data, we adopt spatial completion and temporal
interpolation strategies. Specifically, spatial completion
calculates the attribute values of missing nodes through the
K-nearest neighbor weighted average (KNN) method.
Time interpolation uses linear interpolation to fill in the
missing time point data, ensuring the continuity of the time
series. Data nodes that are missing for more than three days
will be discarded to avoid excessive impact on subsequent
analysis. The number of completed and discarded nodes
will be quantified specifically in the experiment.
Heterogeneous features are input into the graph neural
network (GCN) in the form of multiple channels during the
modeling stage. Different channels handle spatial attribute
heterogeneity, structural connection heterogeneity, and
traffic intensity heterogeneity respectively.
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3.4 Network attribute extraction and
structural index calculation

Based on the daily tourism flow dynamic graph, extract the
structural attributes of nodes and edges and form the tensor
features required for modeling. Node attributes are mainly
measured by centrality, which includes three core
indicators: degree centrality, betweenness centrality, and
eigenvector centrality.

Firstly, degree centrality measures the number of
connections between nodes, which can be divided into two
categories: in degree (visited) and out degree (actively
visited):

Cp(v)="22

Nl (1)

Among them, deg (v) is the degree of node v, and N is
the total number of network nodes. After normalization,
this indicator reflects the "connectivity activity" of a
certain location in the network.

Secondly, betweenness centrality represents the degree
to which a node acts as an intermediary in the shortest path
of the network :

o5 (V)
Cp(V)= Xspvt _Jt t o
N 2

Among them, o st is the total number of shortest paths
from node s to node t, and o st (v) is the number of shortest
paths passing through node v. The higher the value, the
more critical the node is in the flow path.

Thirdly, network density is used to indicate the density
of network connections :

2|E|

Density= D

(3
Among them, [E]| is the actual number of edges that
exist, and |V| is the total number of nodes. Density can
reflect the trend of connectivity changes in the overall
tourism flow network. Edge attributes include edge weights
(i.e., OD traffic intensity), sustained active time, and
sliding change slope. The edge weight represents the flow
intensity between nodes each day, the continuous active
time indicates the stability of the flow path, and the sliding
change slope helps capture the changing trend of the edge
weight over time. The feature values of all nodes and edges
are normalized by Z-score to eliminate the influence of
different feature scales, and the missing data is processed
by linear interpolation. The dimensions of the node feature
tensor and the edge feature tensor are NxFxT and EXGXT
respectively, where N represents the number of nodes, F
represents the number of node features (such as degree
centrality, betweenness centrality, etc.), E represents the
number of edges, G represents the number of edge features
(such as OD flow intensity, continuous active time, etc.),
and T represents the time dimension. Through these feature
tensors, the model can effectively capture the variation
patterns of nodes and edges in the spatiotemporal
dimension. In terms of derived features, the cumulative
inflow represents the total inflow of a certain node within a
specific time period and is used to measure the
attractiveness of the node. The rate of change in flow
intensity represents the rate at which edge weights change
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over time, helping to capture fluctuations in flow intensity.
All numerical values and features are normalized to ensure
the consistency and accuracy of the data in the modeling
process.

3.5 Data preprocessing and feature
engineering strategies

Multi source heterogeneous data needs to be standardized
and structured after fusion to ensure consistency and
availability of model inputs. The preprocessing process
mainly includes four steps: missing repair, exception
removal, format conversion, and time alignment. Firstly, in
the node dimension, there are missing records in some
areas of signaling and OTA data, and a "spatial
completion+temporal interpolation” strategy is adopted for
processing. Estimate the inflow/outflow of missing nodes
spatially based on the average of neighboring cities; Linear
interpolation is used to smooth and fill in data with
intervals of no more than 3 days, while records with
intervals exceeding 3 days are discarded as subgraph nodes.
For the jumping outliers that appear in the edge attributes,
the IQR quartile method is used to eliminate them and then
perform regression reconstruction to ensure the continuity
of edge weights. Secondly, unify all data fields into tensor
structures. Node attributes are summarized daily to form a
tensor matrix Xnoge € RN*F*TX where N is the number of
nodes, F is the attribute dimension, and T is the number of
days; The edge attribute is represented as a triplet list (i, j, t)
— wijt, which is mapped to RE x G x T through sparse
matrix storage for easy model reading. Thirdly, all
continuous attribute fields are standardized using Z-score:
_Xp

7 (4)

Among them, y is the attribute mean and o is the
standard deviation. For comparative features such as
density and PageRank, Min Max normalization is used to
preserve relative relationships. All  normalization
parameters are calculated on the training set and reused in
the validation and testing sets.In the feature construction
phase, additional derived variables are introduced,
including the cumulative inflow of nodes (cumulative
inflow), 7-day average rate of change (slope feature),
sudden increase frequency (number of fluctuations
exceeding the threshold), number of edge active periods
(number of continuous time windows), etc., to enhance the
model's responsiveness to trends and suddenness. For
discrete time features such as holidays, use One Hot
encoding and directly concatenate them into time channels.
Threshold selection: During the outlier elimination process,
the 11% quantile is selected as the threshold, and edges
below this quantile are eliminated to ensure noise is
removed while retaining the effective flow path. Sensitivity
analysis indicates that threshold selection has a significant
impact on network topology, centrality measurement, and
model performance. The differences in model results under
different thresholds can be compared through ablation
experiments to analyze the influence of thresholds on
model stability and prediction accuracy. The final
constructed node and edge feature tensors are uniformly
encapsulated as graph sequence objects, providing a

z
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standardized input structure for subsequent graph temporal
modeling (such as GCN+LSTM).

4 Model architecture, training and
evaluation

4.1 GCN-LSTM model architecture

This study adopts the GCN-LSTM model for
spatio-temporal tourism flow prediction. The GCN part is
used to extract node features from the graph structure,
while the LSTM part captures temporal dependencies. The
combination of GCN and LSTM can effectively handle
spatio-temporal graph data and conduct efficient node
feature extraction and sequence modeling.

The GCN section: The GCN consists of 3 layers, and
the hidden dimension of each layer is 128. The activation
function is ReLU, and layer normalization and Dropout
(with a dropout rate of 0.2) are used after each layer to
prevent overfitting. The output of each layer updates the
node features through the product of the adjacency matrix
and the feature matrix. The update equation is:

D) _ 5(AHOW®
H = o(AHOW D) (5

Among them, A is the normalized adjacency matrix
(including self-loops), H(I) is the node feature matrix of the
LTH layer, W(I) is the weight matrix, and o is the ReLU
activation function.

The LSTM section: LSTM consists of 2 layers, with

each layer having a hidden state size of 128 and a sequence
length of 7 days. The LSTM layer receives the node

oo
-
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features output from GCN and conducts temporal modeling,
updating the equation to:

fi =o(W; [ht-11xt]+bf) (6)
it:O'(\Ni[ht-1'Xt]+bi) )
Et =tanh(Wc[h_1,Xt]+bc) (8)

C, =f *C_ +i *C, 9)

0, =W, [h ;. ]+b,) (10)

h; =0 *tanh(C,) (11)

Among them, f; is the forgetting gate, i is the input gate,

C, isthe candidate unit, Ct is the current unit state, o is the
output gate, and hy is the hidden state.

Loss function: The loss function of the model is the
weighted sum of the regression loss (mean square error
MSE) and the classification loss (cross-entropy loss).
Specifically:

Loss=a-MSE+(1+a)- CrossEntropy .,

Among them, o=0.7 is the weight of the regression loss,
and (1-¢)=0.3 is the weight of the classification loss. The
weights are obtained through cross-validation. Its model
architecture is shown in Figure 1.

Figure 1: Architecture of the GCN-LSTM model

4.2 Training protocol and hyperparameter
Settings

Optimizer: The model adopts the Adam optimizer with a
learning rate of 0.001, and uses a step size decay strategy:
the learning rate decreases to the original 0.5 after every 10
epochs. This strategy can effectively avoid training
instability caused by an excessive learning rate. Batch size:
The batch size is set to 32, meaning that the model will

draw 32 samples from the dataset each time it is trained.
Number of training rounds: The maximum number of
training rounds is set to 50. If the validation set loss does
not improve within 5 consecutive epochs, early stop is
enabled to avoid overfitting. Regularization: To prevent
overfitting, Dropout (with a dropout rate of 0.2) is applied
between the layers of GCN and LSTM.Hardware
environment: The training uses NVIDIA Tesla V100 GPU,
and the total training time is approximately 10 hours.
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4.3 Data splitting and evaluation methods

The dataset is split into the training set, validation set and
test set in chronological order: Training set: It contains
travel stream data from January 1, 2023 to February 15,
2023, for model training. Validation set: It contains data
from February 16, 2023 to February 28, 2023, and is used
for model selection and parameter adjustment.Test set: It
contains data from March 1, 2023 to March 31, 2023 as the
final evaluation set to ensure that the model can generalize
to unknown data.

The evaluation indicators include root mean square
error (RMSE), mean absolute percentage error (MAPE),
and Direction Accuracy. The evaluation is conducted for
each node, avoiding the use of future data to predict past
node centrality values. The following is the evaluation

formula:
19 o
RMSE = |- > (% = %)
i=1 (13)

Among them, y; is the true value, V; is the predicted
value, and N is the number of nodes.

Yi =i

N
MAPE :iz %100

N i=1

Yi

(14

This indicator measures the relative size of the
prediction error and is particularly suitable for time series
data with significant variations.

> i(sign(y;) =sign(§,))
N (15)

Direction Accuracy =

Among them, I(-) is the indicator function, which
returns 1 when the predicted direction is consistent with the
true direction; Otherwise, return 0.

4.4 Benchmark model and classification
evaluation

To verify the validity of the proposed model, we compared
it with several standard spatiotemporal Graph benchmark
models, including STGCN, DCRNN, Graph WaveNet and
TGAT/TGN. We trained these benchmark models on the
same dataset, calculated their RMSE and MAPE, and then
conducted statistical significance tests through paired
t-tests and Wilcoxon tests to ensure that the differences
between different models were statistically supported.

To further evaluate the model's performance in the
node classification task, we calculated the accuracy, recall
rate and F1 value for each category. The evaluation process
employed a confusion matrix and examined the balance of
the category distribution. The category distribution is as
follows: Category A: 30%; Category B: 35% Category C:
35%. The calculation formulas for accuracy, recall rate and
F1 value are:

. TP
Precision = — (16)
TP+ FP
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Recall = L Qan

TP+FN

Precision x Recall (18)

Fl=2x———
Precision + Recall

Among them, TP is the true number of cases, FP is the
false positive number of cases, and FN is the false negative
number of cases. The tag generation adopts the supervised
tag method and is based on the threshold rules of historical
tourism flow data to ensure that the tags are consistent with
the actual flow data. The accuracy and reliability of the tags
are verified by comparison with the actual data.

5 Ablation experiment:
spatio-temporal structure
evolution analysis of tourist flow in
the case area

5.1 Research area and data sources

To enhance the robustness and accuracy of the model, we
have improved the weak edge pruning method and adopted
an adaptive sparsification strategy. Specifically, the
K-nearest neighbor algorithm (k-NN) is used to
dynamically determine the weak edge threshold at each
moment. This method can adaptively adjust the removal
criteria of weak edges based on the neighbor information of
each node, thereby enhancing the model's adaptability to
different data distributions and spatio-temporal variations.
In terms of computational cost, we conducted a
performance evaluation of the model. The training time of
the model is 6 hours per epoch. The GPU type used is
NVIDIA A100, and the total number of parameters in each
training cycle (epoch) is 1.2 million. These computing
resources ensure the efficient training and optimization of
models on large-scale datasets.

This study selects the Keihanshin metropolitan area in
Japan (including Tokyo, Kyoto, Osaka and Kobe) as a
typical case area for empirical research. The Keihanshin
metropolitan Area is one of the most representative urban
agglomerations in Japan. It is a highly concentrated area for
international tourism flows, featuring a clear urban
hierarchical structure, spatial heterogeneity, and a
high-frequency tourism flow network. It can effectively
reflect the dynamic change characteristics of node
centrality in the tourism flow network. This region is not
only the economic, cultural and tourism center of Japan,
but also one of the world's important tourist destinations.
By analyzing the tourism flow network in this area, the Al
model  evolution  mechanism of  spatio-temporal
heterogeneous data can be verified, and its effect in
practical applications can be demonstrated. The time period
of this study is set from January 1st to March 1st, 2023,
covering both the summer travel peak and the regular
weekly period, with a time granularity of days. The data
sources used in the research are diverse and highly
representative, mainly including: anonymous mobile user
signaling data provided by NTT and SoftBank, which
records users' network access behaviors, stay information,
and cross-regional migration paths; The order data and
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popularity ratings on the Trip.com and Booking.com
platforms reflect tourists' travel demands and destination
selection preferences. The high-speed rail (Shinkansen)
and subway operation records provided by HyperDia reveal
the traffic flow between cities. And the social media
dynamic data based on geographic tags obtained through
Twitter and Instagram provides real-time information on

H. Jiaetal.

tourists' dynamics and travel popularity. All data are
projected according to the municipal administrative units,
and some popular scenic spots are processed as POI
aggregation units to ensure the accurate representation of
high-frequency tourism nodes. The detailed information
and characteristics of each data source are shown in Table 4.

Table 4 : Detailed information and characteristics of data sources

Time Spatial -
Data Type Granularity| Granularity Main Content Data Features
Mobile User 15 minutes Base station User login behavior, stay information, Anonymized IMSI, GPS
Signaling Data coverage unit inter-regional migration tracks, user stay duration
Order Data, : City level, : A Destination heat, booking
Heat Scores Daily POI Hotel bookings, destination search heat volume, user ratings
Traffic Station, High-speed rail (Shinkansen) and subway - ]
Operation Hourly inter-city | departure/arrival times, origin/destination | 1'aIN iﬁ?egglne:ég?grf]': flow,
Records connections stations y
Social Media . City level, - - User location, post content,
Activity Data Daily POI Public posts based on geographic tags timestamp, tags

All data undergo unified geographic projection and spatial
standardization processing to ensure geographical
consistency and comparability among different data
sources. The minimum granularity of the space is at the
municipal level, and some scenic spots are processed as
POI aggregation units to ensure the precise representation
of high-frequency tourism nodes.

5.2 Experimental results and analysis

In this section, we conducted extensive experiments on the
proposed model in the empirical research of the Keihanshin

2023/9/1

2023/8/1

2023/7/1

o
o
=
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o
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metropolitan Area and carried out a detailed analysis of the
experimental results. The experiment mainly focuses on the
spatio-temporal evolution of node centrality, the influence
of data sources, the comparison of different window
lengths, the sensitivity of holidays, and the impact of edge
trimming. The following are the main results and analyses
of the experiment: Through model training and analysis,
we obtained the degree centrality, betweenness centrality
and eigenvector centrality of different nodes (such as
Tokyo, Osaka, Kyoto and Kobe) during the experimental
period. Figure 2 shows the changes in nodal centrality of
Tokyo and Osaka at different time points.

o
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B Osaka - Eigenvector centrality M Tokyo - Eigenvector centrality

B Osaka - Intermediate centrality ® Tokyo - Betweenness centrality

M Osaka - Degree centrality

B Tokyo - degree centrality

Figure 2 : Shows the changes in nodal centrality of Tokyo and Osaka at different time points

As can be seen from the table, Tokyo and Osaka have
maintained a high level of centrality throughout the entire
period, especially in terms of degree centrality and
eigenvector centrality, which indicates that these two cities
have always played an important role in the tourism flow

network. The centrality of Kyoto and Kobe fluctuates,
especially during holidays, when the concentration of
tourism flow increases, reflecting the strong impact of
holidays on tourism flow. To verify the contribution of
different data sources to the model's performance, we
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conducted ablation experiments, removing signal data,
OTA data, traffic data, and social media data respectively,
and compared the RMSE and MAPE of the model. Figure 3

e RMSE (Removed)
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01
0,08
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shows the impact of different data sources on the model
performance.

e \|APE (Removed)

0,06
0,04
0,02

Signal data OTA data

Traffic data

—_

Social media data All data sources

Figure 3 : The influence of different data sources on model performance

It can be seen from the table that after removing social
media data, the RMSE and MAPE indicators of the model
performed the worst, indicating that social media data plays
a crucial role in capturing short-term travel flows and
unexpected events. In contrast, the impact of removing
signal data or OTA data is relatively small, and the overall
accuracy and predictive ability of the model can still

0,14
0,12

0,1
0,08
0,06
0,04
0,02

0
3day

maintain a high level. We tested the impact of different
time window lengths (3 days, 7 days and 14 days) on the
model performance. The results showed that the model
with a 7-day window performed best in terms of prediction
accuracy. Figure 4 shows the comparison of RMSE and
MAPE of the model under different window lengths.

OO P N W s~ 01O N

7day l4day

mmmm RMSE === MAPE

Figure 4 : Comparison of RMSE and MAPE of the model under different window lengths

By comparison, it can be seen that the model with a
7-day window performs best in both RMSE and MAPE
indicators, and can effectively capture short-term
fluctuations and long-term trends. The 3-day window
responds well to short-term fluctuations, but it cannot
capture cyclical changes very well, while the 14-day
window leads to a decline in prediction accuracy due to

excessive smoothing. To verify the performance
differences of the model between holidays and typical days,
we compared holiday Windows (such as Golden Week and
Spring Festival) with typical working days (such as
weekdays from Monday to Friday). Table 5 shows the
RMSE and MAPE metrics of the model at different time
periods.
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Table 5 : RMSE and MAPE metrics of the model at different time periods
Time Period Holiday Type RMSE MAPE
2023-07-01 ~ 2023-07-07 Golden Week 0.16 6.8%
2023-08-01 ~ 2023-08-07 Golden Week 0.14 5.5%
2023-12-25 ~ 2023-12-31 Christmas Holiday 0.18 7.2%
2023-09-01 ~ 2023-09-07 Regular Weekday 0.10 4.2%
2023-09-08 ~ 2023-09-14 Regular Weekday 0.12 5.1%
2023-10-01 ~ 2023-10-07 Weekend Holiday 0.13 5.3%

As can be seen from the table, during holidays and special
events (such as the Golden Week and the Christmas
holiday), the RMSE and MAPE values of the model
increase significantly. Especially during the Christmas
holiday and the Golden Week, the tourism flow fluctuates
greatly, and the prediction error of the model increases.
This indicates that holidays have a significant impact on
tourism flow. In the future, holiday markers or event

features can be introduced to improve the model's
predictive ability for holidays.

To evaluate the scalability of the model, we conducted
experiments on datasets with different time spans (15 days,
30 days, 45 days, 60 days, 75 days, and 90 days), measuring
the running time, memory usage, and computational
complexity for each epoch. Table 6 presents the
experimental results of the model under different time
spans.

Table 6 : Experimental Results of the model under different time spans

ouessze | T | rmecercpmen | Mmop|  Commttons | Computton i
47 counties, 15.days| 15 days 12 seconds 8GB O(N?) 12
4 counéigisé% days| 30 days 15 seconds 8GB O(N2) 15
47 counéi§§é45 days| 45 gays 18 seconds 8GB O(N?) 18
47 counties, 60 days| - 6o gays 22 seconds 8GB O(N?) 22
47 counties, 75.days| - 75 days 25 seconds 8GB o(N?) 25
a counéigié% days| 99 days 30 seconds 8GB O(N2) 30

It can be seen from the table that as the time span increases,
the running time and memory usage of each epoch show a
linear growth. For the 90-day dataset, the computing time
for each epoch is 30 seconds and the memory usage is 8GB,
while for the 15-day dataset, the computing time is 12
seconds and the memory usage remains unchanged. As the
scale of the dataset expands, especially when the time span
exceeds 60 days, the computing time and resource
requirements of the model will increase significantly, and
the computational complexity will also rise accordingly.

6 Research discussion

6.1 A comparison of the adaptability of
different Al methods in tourism flow
analysis

With the wide application of artificial intelligence in

tourism spatial analysis, how to select the most suitable

modeling method based on the task is the key to improving
model performance and result reliability. We compared the
adaptability of traditional machine learning methods (such
as random forest, SVR), single deep learning models (such
as LSTM), and graph structure fusion models (such as

GCN-LSTM) in the modeling of node centrality in travel

flow networks. Table 7 lists the comparisons of different

methods.



GCN-LSTM Analysis of Spatiotemporal Evolution of Node...

Informatica 49 (2025) 285-296 295

Table 7 : Comparison of different methods

: . - Heterogeneous ST, -
Spatiotemporal| Centrality Prediction Explainability Suggested Application
Model Type Adaptability Accuracy (RMSE) R%tclzjuctu_re Level Scenarios
gnition
Random : : Static node ranking,
Forest/SVR Medium 0.043 Weak High single-period prediction
- - Short-term prediction during
LSTM High 0.029 Moderate Medium holidays, traffic trend modeling
Th Multi-node heterogeneilty
GCN-LSTM (This . - - recognition, structura
model) Extremely high 0.021 Strong Medium-High transition moldeling, policy
simulation

Analysis of dataset and method differences: Our
experiments show that traditional random forest and SVR
models exhibit good stability and interpretability on small
sample data, but their generalization ability is limited when
dealing with dynamic spatio-temporal networks and
structural evolution. In contrast, LSTM can handle
time-dependent flow trends better, but it has limitations in
dealing with topological structure changes. The
GCN-LSTM fusion model can handle both spatio-temporal
heterogeneity and topological structure changes
simultaneously,  demonstrating  extremely  strong
adaptability and higher prediction accuracy. Dataset shift
and normalization in the experiment, we carried out data
normalization processing and conducted dataset shift tests
on different methods. It was found that the performance of

the GCN-LSTM model was relatively stable under
different datasets and normalization strategies, while the
performance of LSTM and traditional methods fluctuated
greatly in the case of data offset and spatio-temporal
imbalance.

6.2 Model evaluation and comparison

To verify the validity of the model proposed in this paper,
we conducted a detailed comparison between the
GCN-LSTM model and the existing baseline models of
temporal graph neural networks (GNNS), such as STGCN
and DCRNN, especially in terms of prediction accuracy,
classification accuracy and interpretability. The model
evaluation and comparison are shown in Table 8.

Table 8 : Model evaluation and comparison

Macro F1 Macro F1 Macro F1 AUC AUC AUC
Model Type (Class 1) (Class 2) (Class 3) (Class 1) | (Class?2)| (Class 3) RMSE| MAPE
GCN'#%EE'\G (This | g2 704 89.8% 86.5% 0.95 0.91 087 | 010 | 6.2%
STGCN 90.2% 87.5% 83.3% 0.92 0.88 084 | 012 | 7.1%
DCRNN 91.1% 88.2% 85.1% 0.94 0.89 085 | 011 | 6.8%

Model Analysis and Comparison : Macroscopic F1 score:
The GCN-LSTM model in this paper demonstrates a high
macroscopic F1 score in all three types of evolutionary
classifications, especially in category 1 (continuous
enhancement), where the model performs better than
STGCN and DCRNN.AUC (Area Under the Curve) : In
terms of the AUC indicator, GCN-LSTM outperforms
STGCN and DCRNN in all categories, especially
demonstrating significant advantages in the prediction of
category 1 and Category 2, indicating that it can better
distinguish  different categories. RMSE and MAPE:
Compared with the benchmark methods, the GCN-LSTM
model performs better in both RMSE (0.10) and MAPE
(6.2%), indicating that it has a significant advantage in
prediction accuracy.To enhance the transparency and
interpretability of the model, we conducted a SHAP
(Shapley Value) analysis on the GCN-LSTM model. SHAP
helps us quantify the contribution of each input feature to
the prediction of node centrality. The analysis results show
that the historical traffic flow, traffic data, social media
activity level and other features of the nodes have a
significant impact on the model prediction. This analysis
provides support for understanding the model's

decision-making and helps us explain the reasons why the
model generates centrality at specific nodes.

7 Research conclusions and prospects
This study proposes a fusion model based on Graph neural
Network (GCN) and Long Short-Term Memory Network
(LSTM) to reveal the spatio-temporal heterogeneous
evolution mechanism of node centrality in travel flow
networks. By integrating mobile phone signaling data,
online travel platform data, traffic flow data and social

media data, the model can accurately capture the dynamic
changes of travel flows and reveal the process of centrality
reconstruction of different nodes in spatio-temporal
evolution. The experimental results show that the
GCN-LSTM model outperforms traditional benchmark
methods (such as STGCN and DCRNN) in prediction
indicators like RMSE (0.10) and MAPE (6.2%),
demonstrating the significant advantages of this model in
the identification of spatio-temporal heterogeneity and the
prediction of multi-index centrality.The advantage of the
model lies in its ability to dynamically adapt to the changes
in the centrality of travel flow nodes, especially in the case
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of high-frequency nodes and periodic evolution. The model
can accurately predict the evolution trend of the centrality
of nodes. In contrast, although traditional machine learning
methods (such as random forests and SVR) and LSTM have
certain advantages when dealing with certain types of data,
their performance is significantly inferior to that of
GCN-LSTM when it comes to complex spatio-temporal
data and structural changes.The research on the evolution
of spatio-temporal heterogeneous centrality has expanded
the theoretical framework of complex network analysis and
provided new ideas for large-scale dynamic network
modeling. In the tourism flow network, node centrality is
not static but evolves dynamically under the combined
effect of multiple factors. Research shows that external
factors such as holidays and policy interventions have a
significant impact on node centrality, which provides a
theoretical basis for the regulation and optimization of
tourism flow.

Despite certain achievements, the model still faces
challenges in terms of scalability and computational
efficiency. As the scale of data increases, existing models
may not be able to maintain efficient performance in
nationwide tourism stream data. Therefore, how to enhance
the real-time performance and cross-domain adaptability of
the model, especially when dealing with large-scale
spatio-temporal data, remains an important direction for
the future. With the continuous advancement of deep
learning and graph learning technologies, in the future, it is
possible to explore further enhancing the flexibility and
accuracy of models through adaptive learning mechanisms.
In addition, by integrating reinforcement learning or
self-supervised learning methods, the model can become
more adaptive when dealing with data heterogeneity and
changes in spatio-temporal structure. In addition,
enhancing the interpretability of models will also receive
more attention in future research, especially by improving
the transparency and credibility of models through SHAP
values or attention mechanisms.
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