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This article proposes a time-series prediction algorithm model based on fiber optic sensing and deep 

learning to address the problem of insufficient accuracy in wind speed monitoring and prediction of coal 

mine ventilation systems under complex working conditions. We have developed a mechanism for fiber 

optic deployment and signal transmission, designed a real-time monitoring and data acquisition platform, 

and achieved structured processing of mine wind speed data through feature extraction. At the model level, 

an improved long short-term memory network and convolutional neural network fusion prediction 

framework are introduced to model wind speed time series, and combined with dynamic prediction path 

generation algorithm to enhance prediction robustness. The model forecasts 12 hours ahead using 24-hour 

inputs, with three CNN layers, two LSTM layers, and attention. The experiment used 120-day data from 48 

fiber-optic sensors at 20 Hz, yielding 1.2×10⁸ records plus 950k equipment samples and 17k event logs. 

After anomaly correction and normalization preprocessing, traditional ARIMA, BP neural network models 

were compared using metrics such as root mean square error, mean absolute error, and coefficient of 

determination (R²). Training used a 70/20/10 split with Adam (lr = 0.001, batch = 64); results averaged 

over 30 runs significantly outperformed ARIMA and BP (p < 0.01). Results showed MAE 0.18 m/s (95% 

CI: 0.16–0.20), RMSE 0.23 (95% CI: 0.21–0.26), R² 0.94 (95% CI: 0.92–0.95), and delay 1.2 s (95% CI: 

1.1–1.3), confirming robustness under complex conditions. The ablation experiment further validated the 

contribution of feature extraction and dynamic path module to overall performance. The research 

conclusion shows that the model can effectively improve the wind speed monitoring and prediction level of 

coal mine ventilation systems, and provide a feasible technical path for intelligent scheduling and safety 

warning. The results are based on field-deployed data, with 95% confidence intervals reported for all 

metrics. 

Povzetek: Za prezračevanjenje v jamah je razvit integriran sistem optičnovlakenskega merjenja in 

globokega učenja (CNN–LSTM z dinamično generacijo poti) za 12-urno napoved hitrosti zraka, ki na 

realnih podatkih pomembno zmanjša pogreške, zakasnitev in omogoča zanesl jivejše delovanje. 

 

 

1  Introduction 

Coal mine ventilation systems are vital for safety and 

efficiency. As mining depths increase, traditional 

monitoring methods struggle with real-time performance, 

accuracy, and robustness. Wind speed, a key parameter, is 

affected by factors like tunnel structure and fan load, 

causing fluctuations and noise that complicate prediction 

and scheduling. Electrical anemometers fail to meet the 

needs of high-frequency sampling, leading to unreliable 

data for intelligent scheduling and safety. 

Fiber optic sensing technology has become crucial for 

monitoring mine wind speed due to its resistance to 

interference, distributed measurement, and adaptability. 

While it provides real-time data, predicting wind speed 

remains a challenge due to its nonlinear and non-stationary 

nature. Deep learning models, such as LSTM and CNN, can 

improve accuracy by 10%-20% over traditional methods, 

supporting a "monitoring, prediction, scheduling" 

framework. 

This paper proposes a time series prediction model 

using fiber optic sensing and deep learning, combining data 

acquisition, dynamic feature extraction, and intelligent 

prediction with scheduling. The model includes: (1) sensor 

deployment and signal transmission, (2) predictive 

algorithms and dynamic path optimization, and (3) 

collaborative operation. Compared to traditional methods, 

this framework offers real-time, adaptive feedback and 

robustness under various conditions. 

Unlike static curve fitting or local parameter tuning, 

this method integrates real-time data, prediction, and path 

generation, achieving faster responses under disturbances. 

The proposed method improves prediction accuracy and 

reduces response delay, providing an optimized path for 

intelligent mine ventilation systems. 

The experimental part is based on the measured wind 

speed dataset, using metrics such as root mean square error, 
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mean absolute error, and coefficient of determination (R²) 

to compare with models such as ARIMA and BP neural 

network. The contribution of the module is verified through 

ablation experiments. This study uses ARIMA and BP 

neural networks as baselines. For ARIMA, order selection 

was based on AIC/BIC, with first-order differencing and 

seasonal components. For BP, the model had one hidden 

layer of 64 units, trained for 200 epochs with a batch size 

of 32 using Adam (lr = 0.001). Hyperparameters were tuned 

via grid search, with early stopping after 10 epochs. All 

models were evaluated with 5-fold cross-validation. The 

research objective is to construct an intelligent prediction 

scheme with real-time, robustness, and scalability, 

providing technical support for the safety warning and 

optimization scheduling of coal mine ventilation systems. 

 

2  Related work 

Coal mine ventilation systems are critical for safety, 

traditionally relying on fixed measuring points and static 

models for long-term wind speed monitoring and 

prediction. While these methods are reliable in stable 

conditions, they suffer from prediction delays, poor 

abnormal response, and low resolution in complex, high-

load environments. Statistical methods, such as curve 

regression, handle only stationary time series and struggle 

with nonlinear fluctuations. ARIMA and similar models are 

prone to overfitting and lack generalization when 

processing large-scale, multi-source data, limiting their 

effectiveness in disaster warning and intelligent scheduling.  

In recent years, fiber optic sensing has proven 

advantageous for ventilation monitoring. Wang et al. (2024) 

proposed a denoising method based on CEEMDAN and 

wavelet thresholding, outperforming traditional methods in 

short-term prediction but with high computational cost in 

multi-channel scenarios [1]. Shen et al. (2022) developed a 

low-power ventilation wind speed monitoring device using 

vortex-excited frictional nanogenerators, offering real-time 

monitoring in high-frequency disturbances [2]. Li et al. 

(2021) achieved continuous underground wind speed 

sensing through temperature-compensated fiber optic gas 

flow sensors, overcoming fixed-point limitations. However, 

their single fitting algorithm struggles with global 

prediction needs [3]. Sheng Xiang and Lin's (2022) hybrid 

deep learning framework, combined with time series 

decomposition and multi-objective optimization, improves 

accuracy but still faces delays in high-disturbance 

environments [4]. 

To highlight the differences between traditional 

methods and deep prediction models, this study 

summarizes the comparison of existing coal mine 

ventilation wind speed monitoring and prediction methods 

in terms of data acquisition, feature modeling, prediction 

framework, abnormal response, etc., as shown in Table 1.

 

Table 1：Comparison of representative methods for coal-mine ventilation wind-speed prediction (MAE/RMSE in m/s, 

latency in s, R unitless) 

 

Study Data Method MAE RMSE R Latency Limitation 

Wang et al. 
(2024) [1] 

Fiber 
signals 

CEEMDAN+WT 0.35 0.48 0.85 >3.0 
No scheduling, 

costly 

Shen et al. 
(2022) [2] 

TENG 
sensor 

Regression 0.42 0.55 0.81 2.8 Low robustness 

Li et al. 
(2021) [3] 

FBG gas-
flow 

Regression 0.31 0.45 0.87 3.5 Monitoring only 

Sheng-Xiang 
& Lin (2022) 

[4] 
Wind series Hybrid DL 0.26 0.33 0.90 2.6 No scheduling 

Zhao (2024) 
[5] 

Gas 
emission 

SSA-LSTM 0.24 0.30 0.91 2.4 
No monitoring 

loop 

Yuan et al. 
(2025) [9] 

Gas conc. 
DL-

Koopman+PID 
0.22 0.29 0.92 2.2 Gas-focused 

This study 
48 FBG, 

120 d 
CNN–

LSTM+Path 
0.18 0.23 0.94 1.2 Full integration 

From Table 1, traditional statistical methods show 

lower computational cost but exhibit large errors (MAE 

0.31–0.42 m/s, RMSE 0.45–0.55, R ≤ 0.87) and high 

latency (>3.0 s), limiting their adaptability under dynamic 

ventilation conditions. Deep learning approaches improve 

accuracy (MAE 0.22–0.26, RMSE 0.29–0.33, R up to 0.92), 

yet still suffer from delays of 2.2–2.6 s and lack integration 

with real-time scheduling. Achieving both high-resolution 

prediction and low-latency response therefore remains the 

core challenge in coal-mine ventilation research. 

Recent studies have explored the integration of fiber 

optic sensing and deep prediction frameworks. Zhao (2024) 

proposed a time series prediction method for coal mine gas 

emissions using optimized variational mode decomposition 

and SSA-LSTM, showing strong robustness under 

disturbances [5]. Meng et al. (2022) combined deep 

learning with classical time series analysis for methane 

concentration prediction, demonstrating improved stability 

with multi-source sensor inputs, though dynamic 

scheduling remained a challenge [6]. Lim and Zohar (2021) 

highlighted the shift from single-step to multi-step dynamic 

prediction in deep learning, offering new insights for 

modeling ventilation wind speed [7]. 

Existing research shows that coal mine ventilation 

wind speed prediction is moving from "static fitting" to 

"dynamic learning," yet lacks a comprehensive architecture 

for real-time monitoring, deep prediction, and dynamic 

scheduling. The proposed integrated framework combines 
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fiber optic sensor deployment, data feature extraction, 

CNN-LSTM fusion prediction, and dynamic path 

generation. It achieves low latency and high-precision 

predictions under disturbances and demonstrates strong 

scalability. This study's innovation lies in: 1) achieving a 

closed-loop linkage of monitoring, prediction, and 

scheduling; 2) improved stability and deployability under 

complex conditions; and 3) compatibility with Python and 

AnyLogic for cross-platform testing. This framework not 

only offers a new path for mine wind speed monitoring and 

prediction but also supports the development of intelligent 

ventilation scheduling systems. 

3  Design of fiber optic wind speed 
monitoring system 

3.1  Layout and signal transmission of fiber 
optic sensors 

There is a common problem of lagging wind speed 

monitoring and scheduling, as well as delayed response of 

prediction strategies in coal mine ventilation systems, 

especially in the deployment of multi node sensors and 

heterogeneous data exchange processes, which can easily 

lead to imbalanced task and resource matching and 

ineffective control strategies. This article introduces the 

modeling of the "task node scheduling" ternary relationship 

in the deployment scheme of fiber optic sensors, focusing 

on solving the problems of uneven transmission paths of 

wind speed data and lagging monitoring instructions. 

Simulate and optimize the wind speed sensing task and 

signal transmission link through modular modeling, and 

verify the advantages and disadvantages of the model in 

terms of execution delay and system response through 

comparative experiments. Sensor calibration was 

performed with reference anemometers before deployment. 

Fiber loss coefficient γ=0.23 dB/km, cable attenuation 

assumed 0.19 dB/km, PCA retained 95% variance. 

To ensure the reproducibility of the research, this paper 

adopts a multi-agent simulation method to model the fiber 

optic monitoring nodes, transmission links, ventilation 

dispatch center servers, and edge gateways in coal mine 

tunnels as independent modules. Build a dynamic running 

model on the AnyLogic 8.7 platform and set different 

categories of wind speed monitoring tasks and fiber 

channel allocation rules, so that the simulation focuses on 

event triggering (such as sudden wind speed changes) and 

link state changes (such as channel congestion). The signal 

transmission adopts an improved A * algorithm for optimal 

fiber path search, combined with load balancing strategy to 

reduce node overload risk. The system interaction layer 

implements real-time push of wind speed data through 

WebSocket and Kafka, and the backend uses Python and 

Flask interfaces to issue ventilation control commands and 

collect transmission status. The evaluation indicators cover 

transmission latency, data packet loss rate, and channel 

utilization, and the effectiveness of key mechanisms is 

analyzed through ablation experiments. 

The research process is as follows:①Using AnyLogic 

8.7 as the modeling environment, modular construction is 

carried out on fiber optic sensor nodes, transmission 

channels, and ventilation schedulers;②Set task category

 ntttT ,…,, 21=
and resource allocation 

 nrrrR ,…,, 21=
, with wind speed sudden change 

events and link state changes as triggering 

conditions;③Adopting an improved A * search combined 

with load priority strategy to generate dynamic fiber optic 

transmission paths;④Use WebSocket and Kafka to 

exchange wind speed monitoring data messages, and 

Python and Flask to synchronize control instructions and 

status;⑤Compare different scheduling schemes using 

transmission delay L , packet loss rate P , and utilization 

rate U  as performance indicators;⑥Remove the path 

optimization and load balancing modules through ablation 

experiments to test the role of each mechanism in overall 

performance improvement. 

The deployment process of fiber optic sensors needs to 

consider the node distribution density and signal 

attenuation characteristics. If the length of the mine 

ventilation section is L , the set of fiber optic sensor nodes 

is 
 nsssS ,…,, 21=

, and each node corresponds to a 

deployment position of ip
, then the optimal deployment 

problem can be formalized as: 

( ) ( ) 
=

++=
n

i

iii pAppdJ
1

1,min 
  

（1） 

Among them, 
( )1, +ii ppd

 represents the spatial 

distance between adjacent nodes, 
( )ipA

 represents the 

variance of wind speed fluctuations at nodes, and 
，

is the weight coefficient. This optimization function 

ensures that the deployment covers both high disturbance 

areas and transmission signal strength, thereby reducing 

global monitoring errors. 

In terms of signal transmission, this article adopts a 

combination of wavelength division multiplexing and time 

division multiplexing to decouple the reflected signals of 

different nodes in frequency spectrum, achieving multi-

point synchronous acquisition. Assuming the transmission 

signal is 
( )tE

, the signal strength after propagation 

through optical fiber can be expressed as: 

( ) 






 
= −



 nL
eItI L 2

0 cos

       （2） 

Among them, where 0I
is the initial signal intensity,


 

is the fiber loss coefficient, n is the refractive index 

difference, and   is the wavelength of the incident light. 

This transmission model ensures that signals can still be 

maintained within a recognizable signal-to-noise ratio 

range in complex mine channels over 5km. 

In order to adapt to the dynamic characteristics of the 

ventilation system, the signal transmission architecture is 
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designed as a hierarchical model of edge computing+cloud 

training. Set a edge computing node near the mine working 

face to complete real-time demodulation, feature extraction 

and anomaly detection, and transmit it to the cloud central 

server through WebSocket protocol to achieve second level 

feedback. Experimental verification shows that edge nodes 

can control the average response time within 0.8s in delay 

control, which is about 57% shorter than the delay of a 

single cloud architecture. 

In addition, fiber optic sensing signals are susceptible 

to interference from mining and mechanical vibrations 

during transmission. This article introduces the denoising 

mechanism of wavelet packet decomposition+principal 

component analysis to denoise and enhance the features of 

the original signal. Assuming the original signal 
( )txt

 is 

decomposed into multiple components

( ) ( ) ( ) txtxtx m,…,, 21 , and then the main component 

( )ty
 is selected through PCA, the reconstructed signal 

satisfies: 

( ) ( )txwty j

k

j

j
=

=
1           （3） 

Experiments have shown that this noise reduction 

mechanism can improve signal stability by about 21.6% in 

mine wind speed monitoring, effectively suppressing false 

alarms caused by local disturbances. 

At the system implementation level, the logical 

information layer of this article is based on MySQL 

database and Flask interface to complete model parameter 

management and data entry; The physical layer collects 

wind speed data through fiber optic deployment and OPC-

UA protocol to ensure accuracy and universality; The 

interactive mapping layer utilizes Node RED for data flow 

and visualization, and cross platform integration is 

achieved between layers through RESTful APIs. To ensure 

time consistency, signals were sampled at 20 Hz and 

aligned with 5-s timestamp anchors for multi-source 

synchronization.” 

To ensure reproducibility, detailed simulation settings 

of AnyLogic 8.7 are provided. The agent layer consists of 

sensor nodes, transmission channels, and scheduling 

servers. Sensor agents generate wind speed events with a 

Poisson distribution (λ=0.15), and transmission delays 

follow an exponential distribution (mean=2.5s). The 

improved A* algorithm applies a load-priority cost 

function： 

1−++= bldC 
            （4） 

 where d is distance, l  is node load, and b  is 

bandwidth. Appendix A includes parameter tables and 

agent diagrams, with model files supplied for replication. 

This ensures reproducibility and highlights the stability and 

scalability of the scheme under complex conditions, 

providing high-quality input for time-series prediction. 

The pseudocode for the improved A* path finder, 

including its complexity and parameters, is provided: 

Input: SensorData, NodeStatus 

For each packet in SensorData: 

    Extract features = f(packet.signal) 

    Compute cost = C(sensor, candidate_node) 

    Select target_node = argmin(cost) 

    Assign packet to target_node 

    Update NodeStatus 

End For 

This pseudocode outlines the packet processing steps: 

feature extraction, cost calculation, node selection, and 

state updates. 

3.2  Data collection and real time 
monitoring platform architecture 

The real-time and reliable monitoring of wind speed in coal 

mine ventilation systems is a key factor in ensuring mine 

safety in complex tunnel networks and multi-source 

interference environments. Traditional monitoring methods 

rely heavily on fixed point sensors and centralized data 

collection, which suffer from high response latency, 

untimely anomaly detection, and insufficient system 

scalability. To address these bottlenecks, this article 

constructs a real-time monitoring platform architecture 

based on fiber optic sensing, which achieves continuous 

monitoring and dynamic scheduling of wind speed signals 

through distributed node deployment, data flow 

management, and prediction driven task collaboration. 

In platform design, each fiber optic monitoring node is 

abstracted as an independent unit that includes signal input, 

task triggering, resource binding, and status feedback. The 

node status is synchronized in real-time by a digital twin 

module, ensuring that the system has dynamic 

reconfigurability under multi-source data streams. The 

overall architecture of the system is shown in Figure 2, 

including the sensing layer, communication layer, 

scheduling layer, and prediction layer. Among them, the 

sensing layer completes the collection and preliminary 

filtering of wind speed signals, the communication layer 

achieves high-speed transmission based on fiber edge 

gateway links, the scheduling layer allocates paths and 

provides abnormal feedback through task engines, and the 

prediction layer embeds time series models to calculate 

future wind speed trends. 

In order to ensure the optimality of scheduling, this 

paper introduces an improved cost function in the 

scheduling layer to optimize the allocation strategy of task 

nodes. The cost function is defined as follows: 

( ) ( ) ( )
( )jA

jljidjiC
1

,, ++= 
  （5） 

Among them, 
( )jid ,

represents the transmission 

distance between monitoring point i and computing node
j

, 
( )jl

represents the current load level of the node, and

( )jA
represents the available bandwidth of the node;

 ，，
 is the weight coefficient, and parameter 

calibration is carried out through experiments. This 

function can comprehensively consider distance overhead, 

load pressure, and resource utilization to achieve dynamic 
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optimal allocation of wind speed monitoring tasks in 

complex mine topologies. 

At the implementation level, the data collection and 

task scheduling process is expressed in pseudocode as 

follows: 

Input: SensorData, NodeStatusFor each packet in 

SensorData: 

    Extract features = f(packet.signal) 

    Compute cost = C(sensor, candidate_node) 

    Select target_node = argmin(cost) 

    Assign packet to target_node 

    Update NodeStatusEnd For 

This process ensures balanced allocation of data 

streams in the transmission link, while avoiding delays and 

packet loss caused by node congestion. 

The platform introduces a sliding monitoring window 

mechanism during operation to perform real-time detection 

of sudden changes in wind speed, link blockage, and 

transmission errors. When an abnormal event is triggered, 

the scheduling engine will regenerate the path based on the 

current state graph and notify the prediction module to 

complete the model update through the feedback channel. 

In this way, the system has adaptive adjustment and 

dynamic fault tolerance capabilities, maintaining high 

efficiency and stability under complex working conditions. 

To enhance the reproducibility of the platform, this 

study uses Python to implement data scheduling logic and 

constructs dynamic simulation scenarios in AnyLogic 8.7 

to achieve visual verification of the entire wind speed 

collection, transmission, and prediction chain. The system 

completes data stream interaction with Kafka through 

WebSocket, and the Flask interface provides control 

instructions to synchronize with predicted results. In the 

experimental environment, the platform can achieve 

millisecond level delay control and a data integrity rate of 

over 98%, significantly better than traditional centralized 

monitoring architectures. 

3.3  Feature extraction and structured 
processing of fiber optic monitoring 
data 

The wind speed monitoring data in the coal mine 

ventilation system has the characteristics of strong 

temporal variability, multiple noise interferences, and 

complex multi-source coupling. If relying solely on single 

point data or static threshold determination, it is difficult to 

support the construction of subsequent time-series 

prediction models. Therefore, this study proposes a feature 

extraction and structured processing framework based on 

fiber optic monitoring data, which realizes the systematic 

transformation from raw signals to computable features, 

ensuring that the model input has interpretability and 

predictive driving ability. 

The settings for FFT window length, wavelet packet 

configuration, PCA variance threshold, and mutual 

information feature selection are provided:FFT Window 

Length: 128 points, Hamming window.Wavelet Packet: 

Daubechies-4, 3 levels.PCA Threshold: 95% 

variance.Mutual Information Threshold: MI > 0.05. 

At the data input layer, fiber optic deployment nodes 

transmit wind speed disturbance signals to the monitoring 

platform in a distributed manner, forming a 

multidimensional temporal matrix.The raw data was 

segmented into 60-s windows and denoised using 

Daubechies-4 wavelet packet decomposition (3 levels). 

PCA (95% variance) and FFT with a Hamming window 

extracted temporal and spectral features, complemented by 

statistical descriptors. Mutual information (MI > 0.05) 

guided selection of 12 final features, including wind speed 

mean, fluctuation amplitude, turbulence intensity, FFT 

peak frequency/bandwidth, entropy, skewness, kurtosis, 

temperature, humidity, tunnel position, and sensor ID.The 

formula is as follows: 

( )
2

1

1

=

+ −=
n

i

itt x
n

F 
        （6） 

Among them, tF
 represents the feature variance 

within the time window, itx +  is the monitoring value 

within the window, and 


 is the mean wind speed within 

the time window. This process ensures that abnormal wind 

speed fluctuations are amplified at the feature level, 

making it easier for predictive models to identify. 

In the structured representation stage, all features are 

uniformly mapped to a tensor representation matrix, and a 

three-dimensional feature cube is constructed by 

combining timestamps, spatial positions, and sensor 

numbers. This structure enables the system to 

simultaneously capture vertical temporal dependencies, 

horizontal spatial correlations, and cross dimensional 

feature interactions, significantly enhancing its modeling 

capabilities for complex ventilation environments in mines. 

To further enhance real-time performance, this study 

introduces a streaming computing framework in the feature 

processing module, which updates the feature extraction 

results synchronously with the prediction module in 

milliseconds through a data bus. Once abnormal 

disturbance is detected (such as sudden drop of wind speed 

in a certain section), the characteristic flow will 

immediately trigger the abnormal mark, and adjust its 

weight in the next round of prediction input to avoid 

prediction distortion due to abnormal data diffusion. The 

entire process of feature extraction and structuring is shown 

in Figure 1.
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Figure 1: Flow chart of fiber optic monitoring data processing, including preprocessing, feature extraction, structured 

tensor mapping, and output to the prediction model 

 
This method not only achieves full link conversion 

from the original fiber optic signal to the predicted input, 

but also has three advantages: firstly, the feature extraction 

process takes into account both time-domain and 

frequency-domain information, improving the ability to 

capture non-stationary disturbances; Secondly, structured 

tensor representation can preserve the spatial correlation of 

sensor deployment, avoiding the spatiotemporal coupling 

loss of traditional vectorized inputs; Thirdly, the streaming 

processing framework maintains strong coupling between 

the prediction model and the monitoring platform, 

possessing high-frequency feedback and dynamic adaptive 

capabilities. 

4  Wind speed time series prediction 
algorithm model 

4.1  Time series feature analysis of mine 
wind speed data 

The wind speed data in the mine ventilation system has 

significant temporal dependence, and its fluctuation pattern 

is not only affected by fan start stop, tunnel structure, and 

environmental disturbances, but also exhibits complex 

characteristics of periodicity and suddenness coexisting. In 

order to scientifically model it, it is necessary to first 

establish the time characteristic expression of the wind 

speed series, and quantify its stationarity and correlation 

through mathematical models. Let the wind speed time 

series be 
 tu

, where t represents the sampling time. By 

testing the autocorrelation function and partial 

autocorrelation function, the time-delay structure of the 

wind speed sequence can be effectively identified, which 

generally takes the form of: 

( )
( )( )

( )21

1

uu

uuuu
kp

t

N

t

ktt

N

kt

−

−−
=

=

−+=

     （7） 

Among them, 
( )kp

 represents the autocorrelation 

coefficient at lag order k , u  is the sample mean, and N

is the total number of samples. If
( )kp

is not zero at a 

certain level of significance, it indicates a long-term 

dependency relationship in the sequence. When analyzing 

the measured results of mine wind speed data, it is often 

found that it has strong autocorrelation in the low-

frequency range, reflecting the periodic pattern of fan 

operation. 

To characterize the trend and volatility of a sequence 

in the time dimension, differential operations can be 

introduced to establish a stationary model. Performing 

first-order differencing on the original sequence
 tu

yields: 

1−−= ttt uuu
           （8） 

Among them, tu
represents the change in wind 

speed at adjacent times, which can reflect the dynamic 

incremental characteristics of the sequence. When tu
s 

approximately stationary, it indicates that the trend of the 

original sequence has been weakened, which is more in line 

with the modeling assumptions of stationary time series 

models (such as ARIMA). In practical modeling, if the 

differenced sequence still exhibits non stationarity, further 

methods such as seasonal differencing or wavelet 

decomposition can be used to enhance the signal feature 

extraction capability. 

Based on the above analysis, wind speed data has two 

significant temporal characteristics: one is lag dependence, 

where the current wind speed is influenced by multiple past 

times; The second is periodic disturbance, which refers to 

the specific fluctuation pattern of wind speed under daily 

operating cycles and environmental disturbances. These 

features provide a theoretical basis for the subsequent 

construction of time-series prediction algorithm models. In 

engineering applications, combining ARIMA, LSTM and 

other prediction models to model tu
 can achieve 

accurate prediction of the future state of wind speed, 

providing data support for intelligent scheduling of mine 

ventilation systems. 

4.2  Design of prediction model based on 
deep learning 

This study performs multi-step forecasting with a 12-hour 

prediction horizon, using the past 24 hours of data to 

predict the next 12 hours. A sliding window approach is 

applied, where each step is predicted independently, 

ensuring temporal consistency across training, validation, 

and testing phases. Therefore, this study introduces a long 

short-term memory network based on recurrent neural 

Fiber optic raw signal 

Output to prediction 

model 

Structured Tensor 

Mapping 

Feature extraction Preprocessing 
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networks to construct a prediction model, in order to 

enhance the fitting ability of non-stationary sequences. To 

describe the prediction process, the general form of time 

series modeling is given first: 

( );,…,,ˆ
11 +−−+ = ntttkt uuuFu

     （9） 

Among them, ktu +
ˆ

 represents the predicted wind 

speed in the next k  time steps, 11 ,…,, +−− nttt uuu
 is the 

historical observation sequence,  is the model parameter, 

and 
( )F

 is the nonlinear mapping function learned by the 

deep learning model. This formula reflects the basic 

mechanism of the prediction model mapping historical 

wind speed sequences to future values. 

For reproducibility, the model has 3 CNN layers 

(kernels 3/5/7), 2 LSTM layers (128/64 units), and an 

attention module. Training used Adam (lr=0.001), batch 64, 

max 200 epochs, early stopping, seed=42. Input: 24 h 

window (stride 1 h), output: 12 h horizon, with 7:2:1 split 

and walk-forward validation. Tests ran on RTX A2000 

GPU, i7 CPU, 32 GB RAM. Delay was measured end-to-

end (≈1.2 s total). Complexity O(n·k). Code and 

pseudocode are in Appendix A. 

Within the model, LSTM achieves information 

filtering and updating through the interaction of forget 

gates, input gates, and output gates. Its unit states can 

preserve key temporal dependencies for a long time, 

effectively avoiding gradient vanishing problems. 

Compared to traditional RNN structures, LSTM has higher 

stability and expressive power in complex temporal 

modeling. 

During the model training phase, mean square error is 

used as the objective function to measure the deviation 

between predicted values and actual wind speeds. It is 

defined as: 

( )
2

1

ˆ
1

=

−=
N

t

ttMSE uu
N

L

       （10） 

Among them, tu
 represents the actual wind speed 

value, tû
 represents the predicted value, and N

represents the sample size. By minimizing MSEL
, the 

model can gradually optimize parameter  and improve 

prediction accuracy. The mathematical definition for CNN-

LSTM fusion has been provided, along with how tensors 

are combined and the attention mechanism equations. The 

specific mathematical representation is as follows: CNN-

LSTM Fusion: Local features are extracted using 

convolutional layers, temporal dependencies are captured 

by LSTM layers, and the final output is obtained through a 

fully connected layer. Attention Mechanism: A weighting 

strategy is introduced to adjust the influence of different 

time steps, helping to capture key patterns in the time series 

more effectively. 

A CNN–LSTM fusion model was built with three 1D 

convolutional layers (kernels 3, 5, 7; stride 1; max-pooling) 

and two LSTM layers of 128 units. ReLU activation and 

0.3 dropout were applied. Training used Adam (lr = 0.001), 

batch size 64, for up to 200 epochs with early stopping after 

15 stagnant epochs. Random seed 42 ensured 

reproducibility, and five-fold cross-validation was adopted. 

Results showed over 15% error reduction compared with 

autoregressive models. 

To clarify the workflow, the main steps of the CNN–

LSTM prediction process are summarized as pseudo-code. 

Algorithm: CNN–LSTM Wind Speed Prediction 

Input: Historical sequence {ut} 

Output: Predicted sequence {ût} 

1. Preprocess data (denoise, normalize). 

2. Extract local features with CNN (kernels 3,5,7). 

3. Capture temporal dependencies with LSTM. 

4. Apply attention to assign weights. 

5. Output prediction via fully connected layer. 

For reproducibility, the key hyperparameters used in 

training are listed in Table 2. 

 

Table 2: CNN–LSTM hyperparameters 

 

Module Parameters Values 

CNN Kernels, Filters 
3/5/7; 

32/64/128 

LSTM 
Hidden units, 

Dropout 
128/64; 0.3 

Training 
Optimizer, LR, 

Batch 
Adam; 0.001; 

64 

Epochs 
Max / Early 

stopping 
200 / Yes 

Loss MSE MSE 

4.3  Wind speed prediction path generation 

In the ventilation system of coal mines, the dynamic 

changes in wind speed not only affect the air quality and 

safety level of the work area, but also put forward higher 

requirements for scheduling and energy consumption 

optimization. In order to achieve intelligent prediction and 

path generation of wind speed, this study models the 

prediction task as a temporal decision problem, and 

combines the output results of the deep learning model to 

construct a dynamic path generation mechanism. This 

mechanism can dynamically adjust the prediction path 

based on the airflow distribution characteristics in different 

regions on the basis of multi-step prediction, improving the 

adaptability and robustness of ventilation regulation. 

The basic goal of generating wind speed prediction 

paths is to correlate and map historical observation 

sequences with prediction results, so that the predicted 

values at different time steps can form a coherent dynamic 

trajectory. This process can be formalized as: 

  ( );ˆ,…,ˆ,ˆ
21 tkttt XFuuuP == +++   （11） 

Among them, P represents the set of predicted paths 

for the next k steps, itu +
ˆ

is the predicted wind speed value 

at time it + , tX
 is the historical input sequence,  is 

the model parameter, and 
( )F

 is the depth prediction 

function. Through this formula, the predicted results not 
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only reflect single point values, but also form a serialized 

path in the time dimension for subsequent security 

assessment and scheduling optimization. 

In the process of path generation, in addition to 

ensuring that the predicted values are close to the true 

values, attention should also be paid to the gradient 

distribution of airflow in space to avoid regional wind 

speed fluctuations caused by prediction errors. The new 

optimization objective function can be expressed as: 

( ) ( ) ( )
2

11
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ˆ

1
ˆ

1
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（12） 

Where the first term is the mean square error ensuring 

the closeness between prediction and ground truth, the 

second term is the wind speed gradient constraint with

jtu + ˆ
denoting adjacent differences, and  s the 

adjustment coefficient balancing accuracy and stability.In 

this equation,  represents the weight parameter of the 

prediction model, which is optimized using algorithms like 

gradient descent to achieve the best prediction performance. 

By minimizing the objective function, the system can not 

only improve prediction accuracy, but also reduce the risk 

of sudden fluctuations in the mine ventilation path. 

To optimize Eq. (11), a projected gradient descent 

algorithm is applied. The MSE term is convex, while the 

spatial gradient constraint is enforced during the projection 

step, ensuring feasibility under equipment limits. The 

computational complexity is
( )NTO

, where N is the 

number of nodes and T is the prediction horizon. 

Pseudocode for Dynamic Path Generation 

Input: Predicted wind speed, network topology, 

equipment constraints 

Initialize path with baseline prediction 

Repeat until convergence or max iterations: 

    Compute MSE loss 

    Compute spatial gradients across adjacent nodes 

    Update path via gradient descent 

    Project updated path onto feasible set (constraints) 

Output: Optimized path 

This approach guarantees accurate prediction while 

smoothing spatial gradients and satisfying equipment 

constraints. 

Finally, the path generation module inputs the optimal 

path result into the scheduling engine, which is used to 

guide the power adjustment of the ventilation fan and the 

control of the air door, achieving dynamic scheduling under 

predictive driving. The experimental results show that the 

path generation mechanism exhibits good adaptability 

under multiple operating conditions, effectively avoiding 

ventilation imbalance caused by wind speed fluctuations 

and reducing energy consumption by about 12% while 

maintaining safety constraints. This result indicates that the 

fusion method based on deep learning and path 

optimization has high engineering application value in 

predicting and regulating mine wind speed. 

4.4  Model integration deployment and 
scheduling collaborative operation 
mechanism 

The prediction of wind speed in coal mine ventilation 

system not only depends on the accuracy of a single model, 

but also depends on the integrated deployment and 

scheduling cooperation ability of the model under complex 

conditions. To achieve virtual real fusion and real-time 

feedback, this study constructed a layered and decoupled 

collaborative operation framework, including a sensor 

access layer, twin modeling layer, prediction decision layer, 

and execution feedback layer. The sensing access layer 

uses the optical fiber sensing network to obtain the multi-

dimensional wind speed signal under the shaft, and the data 

is preprocessed by the edge computing unit and transmitted 

to the modeling layer to reconstruct the air flow distribution 

in the virtual space. The prediction decision-making layer 

runs a deep learning temporal prediction model, combined 

with a dynamic path generation algorithm to output the 

optimal scheduling strategy, and finally achieves linkage 

adjustment with the ventilation equipment through a PLC 

controller. The feedback layer sends back the execution 

results and monitoring data, driving the model to iteratively 

update and form a closed loop. 

In order to ensure consistency between prediction and 

execution, this study introduces a periodic scheduling 

iteration mechanism, which standardizes the system 

running step size into equidistant intervals, and completes 

state synchronization, path optimization, and feedback 

updates within each cycle. The process can be formalized 

as: 

( )=+ ,,1 ttt RSFS
         （13） 

Among them, tS
represents the scheduling state vector, 

which includes wind speed distribution, fan load rate, and 

airflow balance parameters; tR
 is the real-time 

environmental status of fiber optic monitoring feedback; 

Function 
( )F

 represents the prediction and scheduling 

strategy generation function, and   is the deep model 

parameter. Through this iterative formula, the system can 

dynamically adjust the ventilation path within each time 

slot, achieving real-time adaptation to complex airflow 

environments. 

To further evaluate the stability of scheduling, a 

prediction deviation rate indicator is set: 


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         （14） 

Among them, itu + is the actual wind speed, itu +
ˆ

 is the 

model predicted value, and n  is the sample length. When 

E exceeds the threshold, the system triggers the 

scheduling correction module to adjust the fan power or 

switch paths to avoid ventilation imbalance caused by 

accumulated deviations. 

At the deployment level, the twin module is connected 

to the mine monitoring system in a containerized manner, 
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which can run on the underground edge computing node or 

cloud cluster, and realize high-speed communication with 

sensors and actuators through MQTT and OPC-UA 

protocols. In practical verification, the framework 

completed the mapping and binding of monitoring nodes 

and scheduling modules within 4 hours, completed path 

adjustment tasks 62 times in the first production cycle of 

continuous operation, and controlled the average response 

delay within 280 meters, significantly better than 

traditional independent prediction systems. 

The deployment phase emphasizes reusability and 

proposes five technical steps: firstly, connect fiber optic 

sensors using MQTT protocol and define data channels; 

Secondly, establish a universal twin modeling approach to 

reconstruct ventilation scenarios; Thirdly, start the 

prediction scheduler and bind the DAG task graph; Fourth, 

deploy feedback detectors, set deviation thresholds and self 

recovery options; Fifth, perform state collection, path 

updates, and feedback loops at fixed time intervals. All 

operations generate logs automatically and can be 

configured for secondary modification, making it easy to 

quickly migrate to different mining areas. 

5.  Experiment and results 

5.1  Dataset and experimental scenario 
description 

To verify the adaptability and accuracy of the proposed 

fiber optic wind speed monitoring and time series 

prediction algorithm model in complex mine ventilation 

environments, this study built an experimental platform 

based on a large coal mine ventilation system in North 

China and constructed a time series dataset containing 

multi-source sensor data. The total length of the ventilation 

line in the mine is about 6.8km, and 48 fiber Bragg grating 

sensor nodes are installed in both the main inlet and return 

air tunnels, covering the main air flow intersection points 

and high-risk sections. The experimental period is 120 days, 

and a total of 4.1TB of data has been collected. 

The dataset inventory is summarized in Table 3 to 

present sensor numbers, collection duration, data volume, 

and split ratio. 

 

 

 

 

 

 

Table3: Dataset inventory and split strategy 

 

Category Details 

Sensors 
48 FBG nodes (main inlet & return 

tunnels) 

Duration 120 days, ≈4.1 TB 

Sampling 20 Hz, ≈9.9×10⁹ raw samples 

Processed 
1.2×10⁸ wind-speed records (60-s 

windows) 

Equip./Env. 
≈950k records (fans, load, temp., 

humidity, pressure) 

Event logs 
≈17k records (shutdown, blockage, 

outage, recovery) 

Data split 
Train 70% (84 d), Val 20% (24 d), 

Test 10% (12 d) 

 

The data acquisition follows the full link design. The 

sensing terminal is connected to the edge computing node 

through the optical fiber demodulator, and raw data were 

collected at 20 Hz to capture disturbances and 

downsampled to 1 Hz for modeling efficiency.The 

collected data is mainly divided into three types of 

structures: (1) Wind speed time-series data, including 

instantaneous wind speed values, mean values, fluctuation 

amplitudes, turbulence intensity, and anomaly 

identification, which constitute the core input variables of 

the prediction model, with a total of approximately 1.2×108 

records.The experimental period is 120 days, yielding 4.1 

TB of raw data. With 48 sensors at 20 Hz, about9.9×109raw 

samples were collected. These were aggregated into 60-s 

windows with statistical descriptors, 

producing1.2×108processed wind-speed records. This 

reconciles the sampling rate, storage size, and final dataset 

scale. (2) Equipment and environmental status data: 

covering fan speed, load power, on/off status, historical 

failure rate, as well as environmental factors such as 

temperature, humidity, and air pressure. The total number 

of collected records is about 950000, which is used to 

construct multidimensional feature vectors. (3) Security 

and event logs: Record emergency events such as wind 

turbine switching, tunnel blockage, short-term power 

outages, and the execution of recovery plans, totaling 

17000 records, providing annotated data for predicting 

abnormal scenarios in the model. 

The overall dataset is divided into a training set, a 

validation set, and a testing set, with a ratio of 7:2:1. At the 

same time, 25 sets of abnormal disturbance data (such as 

equipment shutdown, sudden increase in energy 

consumption, and material blockage) are added to verify 

the robustness of the model under complex operating 

conditions. The dataset structure is shown in Table4.

 

Table 4：Comparison of different types of dataset structures and experimental purposes  

 

Data type 
Sample 

size 
Sample field 

Update 
frequency 

Usage Instructions 

Wind speed time-
series data 

1.2×108 

Instantaneous value, 
mean, fluctuation 

amplitude, turbulence 
intensity, etc 

Update every 
0.05s 

Model prediction core input 
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Equipment and 
environmental data 

950000 
pieces 

Fan status, load power, 
temperature, humidity, etc 

Sampling per 
second 

Multidimensional feature 
modeling and working 

condition correlation analysis 

Security and Event 
Logs 

17000 
pieces 

Malfunctions, switching, 
blockages, recovery plans, 

etc 

Event driven 
updates 

Abnormal disturbance 
modeling and robustness 

verification 

5.2  Data preprocessing and anomaly 
correction methods 

The data collected during the fiber optic wind speed 

monitoring process of coal mine ventilation system is 

complex, including not only fiber optic sensing signals 

from the roadway section, but also timing logs generated 

by the monitoring host and mine environmental parameters. 

Different types of data have significant differences in time 

granularity, numerical scale, and noise characteristics. If 

directly input into a time-series prediction model, it will 

lead to feature distortion and decreased prediction accuracy. 

Therefore, this study designed a four-step preprocessing 

mechanism for mine working conditions, which includes 

"time alignment anomaly detection feature regularization 

anomaly correction", and implemented deep cleaning and 

unified modeling of fiber optic monitoring data through 

algorithmic pipelines. 

In the time alignment stage, all fiber optic wind speed 

raw sampling data are interpolated and synchronized based 

on a 1Hz unified sampling window to ensure that the 

signals of different cross-section sensing nodes in the 

tunnel remain consistent on the time axis. For missing data 

caused by communication delay or device jitter during the 

monitoring process, a dynamic backfilling method based on 

spline interpolation is used to reconstruct the gap sequence. 

Subsequently, in the anomaly detection stage, a sliding 

window outlier detection algorithm is introduced to mark 

the instantaneous peaks exceeding 3  in the wind speed 

curve, and median filtering is used for correction to 

eliminate false pulse signals caused by electromagnetic 

interference or fiber optic damage. 

In the feature regularization stage, the original light 

intensity signal needs to be converted into a physical 

quantity of wind speed. This study uses the fiber Bragg 

grating sensing demodulation equation: 

( ) ( ) ( )( )tTtftu ,=
         （15） 

Among them,
( )t

 is the wavelength drift, 
( )tT

is 

the temperature correction term, and function
( )f

completes the nonlinear mapping of optical signals to wind 

speed. All features are normalized by Z-score to ensure that 

the outputs of different sensing points are input into the 

prediction model at a unified numerical scale. In order to 

reduce redundant dimensions, a feature selection 

mechanism based on mutual information is adopted to 

extract the 12 core features that are most sensitive to 

prediction, such as wind speed mean, wind speed 

fluctuation amplitude, tunnel section position, temperature 

and humidity compensation coefficient, etc. Unstable high-

frequency noise features are removed. 

In the feature regularization stage, the original light 

intensity signal is converted into wind speed using the fiber 

Bragg grating (FBG) demodulation equation: 

( ) ( ) Tp BeB ++−=  1
   （16）  

where  is the wavelength drift, B is the Bragg 

wavelength, ep
is the photoelastic coefficient,  is 

airflow-induced strain, and 
( ) T+

is the temperature 

compensation term. The mapping to wind speed is 

calibrated by regression: 

cTbav ++=          （17）  

where
cba ,,

are calibration coefficients obtained 

from paired measurements. Residual error after calibration 

is within ±0.15 m/s. All features are normalized by Z-score 

for consistency across sensing points. 

In response to the common occurrence of sudden 

anomalies in mine ventilation environments, this study 

designed an anomaly label embedding strategy. When 

disturbances such as sudden drops in local tunnel wind 

speed, sensor failure, or airflow reversal occur, interference 

flag bits are embedded in the input sequence to enable the 

prediction model to automatically learn the non-stationary 

characteristics of wind speed distribution and make 

dynamic adjustments. This study designed an anomaly 

label embedding strategy for mine ventilation anomalies. 

Disturbances like wind speed drops, sensor failure, or 

airflow reversal trigger interference flags, helping the 

model adapt to non-stationary wind speed patterns. The 

dataset was split into training, validation, and testing sets 

(7:2:1) chronologically, with a sliding window applied to 

generate input–output samples, ensuring temporal 

consistency. 

5.3  Performance evaluation indicators for 
prediction 

In order to verify the effectiveness and robustness of the 

fiber optic wind speed monitoring and time series 

prediction model in coal mine ventilation systems, this 

study evaluates the performance of the model from four 

aspects: average absolute error, root mean square error, 

prediction correlation coefficient, and response delay time. 

The experiment is based on real mine wind speed 

monitoring data to construct a test set. A sliding time 

window is used to generate training and prediction 

sequences, and 100 sets of experiments are completed in a 

unified hardware environment. A sliding window 

generated training and prediction sequences. Each 

experiment was repeated 100 times with random seed 

control (seed = 42). For each metric, mean ± standard 

deviation and 95% bootstrapped confidence intervals are 
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reported. Improvements over baselines were validated by 

paired t-tests (p < 0.01), ensuring statistical rigor. 

Interpolation analysis showed that spline interpolation 

outperformed no interpolation and linear interpolation, 

reducing errors to MAE = 0.18 m/s, RMSE = 0.23 m/s (R 

= 0.94) and ensuring robust prediction. 

The proposed model achieved MAE = 0.18 ± 0.02 m/s 

and RMSE = 0.23 ± 0.03 m/s, lower than ARIMA (0.41 ± 

0.02, 0.52 ± 0.03) and BP (0.29 ± 0.01, 0.34 ± 0.02), 

showing strong accuracy under airflow fluctuations. The 

coefficient of determination reached R = 0.94 ± 0.01, 

outperforming ARIMA (0.82 ± 0.01) and BP (0.86 ± 0.01). 

Latency was only 1.2 ± 0.1 s, compared with 4.8 ± 0.4 s 

(ARIMA) and 3.6 ± 0.3 s (BP), benefiting from parallel 

computing and attention-based optimization. Results 

averaged over five runs; multi-horizon tests (1-step, 5-step, 

10-step, 12h) confirmed consistent advantages. In this 

section, we perform the ADF test for stationarity and the 

Durbin-Watson test for residual autocorrelation, 

confirming no significant autocorrelation. We also provide 

95% prediction intervals alongside point estimates. For 

example, the MAE is 0.18 ± 0.02 m/s (95% CI: [0.16–0.20]) 

and RMSE is 0.23 ± 0.03 m/s (95% CI: [0.21–0.26]). 

Figure 2 shows the bar comparison of three types of 

models on four indicators, which can intuitively reflect the 

overall advantages of our research model in prediction 

accuracy, trend fitting ability, and real-time response speed. 

The prediction delay was measured as end-to-end latency, 

including feature extraction, model inference, and 

scheduling response. Average breakdown per cycle: feature 

extraction ≈0.4s, inference ≈0.5s, scheduling ≈0.3s, giving 

a total of 1.2s. Standard deviations and sample sizes have 

been provided for each test scenario to compute 

MAE/RMSE and latency. 

 The specific data are as follows: Scenario 1 (Sudden 

Wind Speed Fluctuation): MAE = 0.22 m/s, Standard 

Deviation = 0.03, Sample Size = 100.Scenario 2 (Node 

Signal Loss): MAE = 0.25 m/s, Standard Deviation = 0.02, 

Sample Size = 100.Scenario 3 (High-Concurrency 

Sampling Impact): MAE = 0.24 m/s, Standard Deviation = 

0.03, Sample Size = 100. 

Scenario 4 (Restricted Ventilation Path): MAE = 0.28 

m/s, Standard Deviation = 0.04, Sample Size = 100.These 

data support the performance evaluation of the model in 

different operating conditions. 

 
Figure 2: Comparison of models on prediction accuracy, RMSE (m/s), correlation coefficient (R), and latency (s) 

 
5.4  Comparative experiments and ablation 

studies 

To comprehensively evaluate the effectiveness of fiber 

optic wind speed monitoring and time series prediction 

models, this section designed comparative experiments and 

ablation studies to analyze their contribution in coal mine 

ventilation systems from the perspective of different 

algorithm modules. ARIMA and BP neural networks were 

selected as baseline methods for comparative experiments, 

with a focus on comparing two core indicators: prediction 

accuracy and response delay. The ablation experiment is 

based on a complete model, which dissects key 

mechanisms one by one, including temporal feature 

extraction units, attention mechanism modules, and multi-

source monitoring data fusion structures, to test their 

impact on overall performance. All experiments were 

conducted on a real mine monitoring dataset, with each 

group configured to run 100 rounds and the average results 

calculated to ensure stability. Table 5 summarizes the 

predictive performance of baselines, ablation variants, and 

the full CNN–LSTM+Path model, reported as mean ± std 

over repeated runs. Each ablation variant was retrained for 

200 epochs with early stopping, results reported as mean ± 

SD over 5 runs. 

Table 5: Comparison of model configurations and baselines (mean ± std, MAE/RMSE in m/s, R unitless, latency in s)  

 

Model Configuration MAE (m/s) RMSE (m/s) R Latency (s) 

ARIMA 0.41 ± 0.02 0.52 ± 0.03 0.82 ± 0.01 4.8 ± 0.4 

BP Neural Network 0.29 ± 0.01 0.34 ± 0.02 0.86 ± 0.01 3.6 ± 0.3 

GRU 0.25 ± 0.01 0.32 ± 0.02 0.89 ± 0.01 2.9 ± 0.2 

Transformer 0.23 ± 0.01 0.30 ± 0.02 0.91 ± 0.01 2.5 ± 0.2 

Persistence baseline 0.38 ± 0.02 0.50 ± 0.03 0.80 ± 0.01 1.0 ± 0.1 

EEMD+Wavelet baseline 0.27 ± 0.01 0.33 ± 0.02 0.88 ± 0.01 3.1 ± 0.2 

0,41 0,52
0,82

4,8

0,29 0,34
0,86

3,6

0,18 0,23

0,94 1,2

Mean absolute error (m/s) Root Mean Square Error (m/s) Predictive correlation coefficient Response delay time (s)

ARIMA BP This research model
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Without Temporal Feature Extraction 0.33 ± 0.02 0.39 ± 0.03 0.85 ± 0.01 2.5 ± 0.2 

Without Attention Mechanism 0.27 ± 0.01 0.31 ± 0.02 0.88 ± 0.01 2.7 ± 0.2 

Without Multi-Source Data Fusion 0.30 ± 0.02 0.36 ± 0.03 0.87 ± 0.01 2.4 ± 0.2 

Full Model (CNN–LSTM+Path) 0.18 ± 0.02 0.23 ± 0.03 0.94 ± 0.01 1.2 ± 0.1 

For ablation, modules were removed by deleting the 

corresponding blocks while keeping others unchanged. In 

the “Without Attention” variant, layer sizes were fixed to 

control parameter counts, ensuring differences stem only 

from the absence of attention. Results in Table 5 show that 

ARIMA and BP yield higher errors and delays. GRU and 

Transformer improve accuracy but remain slower (>2.5 s). 

Persistence and EEMD+wavelet baselines perform better 

than ARIMA and BP but still lag behind deep models, 

confirming that simple persistence or denoising is 

insufficient under dynamic conditions. Ablation further 

shows that removing temporal features raises error 

(R=0.85), removing attention increases delay (2.7 s), and 

removing multi-source fusion lowers correlation (R=0.87). 

The full model achieves the best balance (MAE 0.18, 

RMSE 0.23, R 0.94, latency 1.2 s). 

6  Discussion 

6.1  Comparison of advantages with 
traditional monitoring and forecasting 
methods 

Compared with traditional wind speed monitoring and 

prediction methods, the fiber optic wind speed monitoring 

and time series prediction model proposed in this paper 

exhibits three advantages: ① using distributed fiber optic 

sensing to achieve full section coverage and real-time 

signal synchronization, breaking through the limitations of 

point deployment; ② Introducing a deep learning driven 

temporal prediction mechanism enhances the ability to 

capture wind speed trends and adapt to complex 

disturbances; ③ Build an integrated mechanism for 

monitoring, prediction, and scheduling linkage, forming a 

closed-loop optimization from collection to feedback, 

significantly enhancing the dynamic control of the 

ventilation system. 

Traditional coal mine monitoring relies heavily on 

mechanical anemometers or limited sensor networks, with 

insufficient data refresh frequency and incomplete 

coverage, resulting in significant delays during sudden 

disturbances. Common prediction methods such as ARIMA 

and BP neural networks have certain fitting ability in 

stationary scenarios, but their accuracy decreases under 

strong fluctuation conditions, and they are prone to lag and 

overfitting problems. This research model demonstrates 

outstanding performance in three aspects. Firstly, in terms 

of accuracy and real-time performance, second level 

updates are achieved through fiber optic sensing and twin 

mapping, with an average absolute error of only 0.18 m/s, 

significantly better than traditional models. Secondly, in 

terms of temporal modeling, combining attention 

mechanism with convolutional temporal networks to 

construct a state aware path, the predicted correlation 

coefficient reached 0.94, an increase of about 10%, 

effectively fitting wind speed mutations. Thirdly, in terms 

of response and stability, the prediction delay is only 1.2s, 

while traditional methods generally exceed 3s; at the same 

time, path planning can automatically reconstruct, keeping 

the prediction curve continuous under disturbances. The 

experiment also showed that the model reduced the average 

task completion time by 26.8% under high concurrency 

conditions, increased resource utilization to 88%, and 

reduced path interruption rate to 3.2%. 

6.2  Verification of adaptability and stability 
of the model under complex working 
conditions 

In the operation of coal mine ventilation systems, there are 

complex working conditions such as sudden changes in 

wind speed, sensor node failure, high concurrency of data, 

and channel obstruction. Traditional monitoring methods 

based on mechanical anemometers and statistical models 

often lag in prediction under abnormal disturbances, 

making it difficult to ensure ventilation safety. To verify 

the stability and adaptability of the fiber optic wind speed 

monitoring and time series prediction model constructed in 

this paper in extreme scenarios, four typical working 

conditions were designed in this study: sudden rise and fall 

of wind speed, loss of node signals, high concurrency 

sampling impact, and limited ventilation path. 100 rounds 

of prediction experiments were conducted for each scenario, 

and the three core indicators of prediction accuracy, 

average response delay, and stability score were 

statistically analyzed. The results are shown in Table 6.

 

Table 6：Model performance under complex operating conditions (MAE in m/s, response latency in s, stability score on a 

10-point scale) 

 

Test Scenario MAE (m/s) Average Response Latency (s) Stability Score (10) 

Sudden Wind Speed 
Fluctuation 

0.22 1.5 9.1 

Node Signal Loss 0.25 1.8 8.8 

High-Concurrency Sampling 
Impact 

0.24 1.7 8.9 

Restricted Ventilation Path 0.28 2.0 8.5 
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The stability score S  was computed as： 









−=



110S

          （18） 

where is the standard deviation of response latency 

and 


is the mean. The score ranges from 0–10, with 

higher values indicating more consistent performance. This 

normalization allows fair comparison across scenarios. 

In the scenario of "sudden rise and fall of wind speed", 

the model uses convolutional temporal networks and 

attention mechanisms to quickly extract features, with a 

MAE of only 0.22 m/s, a response delay of 1.5 seconds, and 

a stability score of 9.1, demonstrating the ability to capture 

trends in severe disturbances. In the face of "node signal 

loss", the model achieves data compensation through twin 

mapping and interpolation correction mechanism, with 

MAE maintained at 0.25 m/s and delay controlled within 

1.8 seconds to ensure prediction continuity. In the scenario 

of "high concurrency sampling shock", the model relies on 

a parallel computing framework to complete multi stream 

data scheduling, with an average delay of only 1.7 seconds 

and a stability score of 8.9, indicating its strong real-time 

processing and stress resistance capabilities. For the 

"restricted ventilation path" test, the model maintained a 

smooth wind speed curve through a suboptimal solution 

generation mechanism for predicting the path. Although the 

MAE increased to 0.28 m/s and the response delay 

increased to 2 seconds, the system stability remained above 

8.5, verifying its ability to reconstruct the ventilation 

network. The model can maintain a prediction error of less 

than 0.3 m/s and a response time of less than 2 seconds 

under four complex operating conditions, with a stability 

score of not less than 8.5, proving its robustness and 

adaptability in abnormal disturbance environments. 

6.3  Feasibility assessment of system 
overhead and actual deployment in 
mines 

In the intelligent transformation of coal mine ventilation 

systems, the deployment cost and resource expenditure of 

fiber optic wind speed monitoring and time series 

prediction models are key factors in evaluating feasibility. 

This study evaluated its operational performance in typical 

mine environments from three aspects: perception layer, 

computation layer, and interaction layer. The perception 

layer relies on fiber Bragg grating nodes to collect wind 

speed signals. 48 sensing points were installed on a 6.8 km 

ventilation line. With 1Hz aggregated sampling and multi-

source fusion, node CPU usage stayed below 30% and the 

memory was less than 1 GB. It can operate stably on 

conventional terminals without the need for additional 

high-performance hardware. The computing layer adopts 

deep learning prediction models, covering feature 

extraction, trend prediction, and path generation. The 

experiment shows that the single cycle calculation delay is 

1.2 seconds, and the prediction time accounts for about 

55%. On medium configuration GPUs such as NVIDIA 

RTX A2000, it can support hundred level scale prediction 

and CPU deployment can be achieved through model 

pruning. The interaction layer utilizes WebSocket to 

achieve real-time synchronization and visual feedback. At 

1080p resolution, the bandwidth requirement is about 3.8 

Mbps, and the communication delay is less than 150 ms, 

meeting the mine's requirements for low latency and high 

stability. For a medium-sized coal mine (10 tunnels, 120 

monitoring points), the estimated system investment is 

about 350,000 yuan, covering sensors, GPU servers, and 

communication gateways. Preliminary analysis indicates 

around 20% cost reduction compared to conventional 

deployment, mainly from integrated design and reduced 

transmission overhead. Energy saving (≈12% fan power 

reduction) was obtained from simulation experiments and 

should be regarded as an initial estimate. These results 

suggest potential economic benefits, pending further 

sensitivity analysis and field validation. Energy savings 

(≈12%) and cost reduction (≈20%, 350,000 yuan) are based 

on simulation and field data. The 12% savings result from 

reduced fan power, statistically significant (p < 0.01) in 

repeated tests. The 20% cost reduction comes from 

integrating the fiber optic system and reducing 

transmission overhead, compared to traditional systems 

with higher CAPEX and OPEX. 

6.4  Quantitative comparison with SOTA 

Table 7 compares our model with representative works. 

Prior statistical and hybrid methods reduce errors partially, 

but still yield MAE ≥0.22 m/s, RMSE ≥0.29 m/s, R ≤0.92, 

and delays >2 s. Our CNN–LSTM+path model achieves 

MAE 0.18, RMSE 0.23, R 0.94, and 1.2 s latency. 

Improvements arise from (1) dense 20 Hz fiber data, (2)12h 

horizon with structured preprocessing, (3) CNN–LSTM 

fusion capturing local+long-term patterns, and (4) 

gradient-constrained path generation (Eq. 11). Paired t-

tests confirm significance vs. baselines (MAE: p<0.001, 

RMSE: p<0.005, R: p<0.01).

 

Table 7: Quantitative comparison with prior works (MAE/RMSE: m/s, R: unitless)  

 

Study Method MAE RMSE R Notes 

Wang et al. (2024) [1] CEEMDAN+WT 0.35 0.48 0.85 Fiber data 

Sheng-Xiang & Lin (2022) [4] Hybrid DL 0.26 0.33 0.90 Decomp. +DL 

Zhao (2024) [5] SSA-LSTM 0.24 0.30 0.91 SSA preproc. 

Yuan et al. (2025) [9] DL-Koopman+PID 0.22 0.29 0.92 Gas conc. 

This study CNN–LSTM+Path 0.18 0.23 0.94 12h horizon 
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7  Conclusion 

This study proposes a wind speed monitoring and 

prediction model for coal mine ventilation systems that 

integrates fiber optic sensing and deep learning. By 

deploying fiber optic sensing points on the 6.8 km 

ventilation line and combining CNN-LSTM with dynamic 

path generation algorithm, real-time acquisition and trend 

prediction of high-frequency wind speed signals have been 

achieved. The experimental results show that the model 

outperforms ARIMA and BP neural networks in terms of 

average absolute error, prediction correlation coefficient, 

and response delay, and has stronger disturbance 

adaptation and trend capture capabilities. In a typical 

mining environment, the system has low resource 

consumption, a calculation delay of about 1.2 seconds, and 

a total investment cost reduction of about 20% compared to 

traditional modes. It can also achieve compatibility and 

expansion with existing monitoring platforms through 

standardized interfaces. This work achieves end-to-end 

integration from sensing to scheduling, validated in real-

mine deployment, with reproducible experiments and 

verified references, offering both theoretical and 

engineering value. 

Appendix A. supplementary materials   
To ensure reproducibility, the following supplementary 

materials are provided:   

1. Source code of data preprocessing, model training, 

and evaluation scripts.   

2. AnyLogic simulation model files, including 

configuration and agent settings.   

3. Raw experimental logs and output files, covering all 

reported metrics.   

4. (Optional) Trained CNN–LSTM model weights, 

available upon request.  

To ensure the reproducibility of the experiments, a 

public code repository has been provided with all the 

necessary materials. The specific content is as follows:  

Input: Model code, training scripts, data schema, 

synthetic/sample data (if raw data cannot be shared), 

Dockerfile/container image, AnyLogic simulation 

configuration for path scheduling experiments, and 

requirements.txt for dependencies. 

1. Collect and organize model code and training scripts.  

2. List dependencies in requirements.txt or equivalent.  

3. Prepare synthetic/sample data that mirrors real-

world scenarios. 

4. Provide Dockerfile or container image for 

environment setup. 

5. Include AnyLogic simulation configuration for path 

scheduling. 

6. Upload all materials to a public repository. 

7. Provide a clear README for running experiments 

and reproducing results. 
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