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This article proposes a time-series prediction algorithm model based on fiber optic sensing and deep
learning to address the problem of insufficient accuracy in wind speed monitoring and prediction of coal
mine ventilation systems under complex working conditions. We have developed a mechanism for fiber
optic deployment and signal transmission, designed a real-time monitoring and data acquisition platform,
and achieved structured processing of mine wind speed data through feature extraction. At the model level,
an improved long short-term memory network and convolutional neural network fusion prediction
framework are introduced to model wind speed time series, and combined with dynamic prediction path
generation algorithm to enhance prediction robustness. The model forecasts 12 hours ahead using 24-hour
inputs, with three CNN layers, two LSTM layers, and attention. The experiment used 120-day data from 48
fiber-optic sensors at 20 Hz, yielding 1.2x10° records plus 950k equipment samples and 17k event logs.
After anomaly correction and normalization preprocessing, traditional ARIMA, BP neural network models
were compared using metrics such as root mean square error, mean absolute error, and coefficient of
determination (R2). Training used a 70/20/10 split with Adam (Ir = 0.001, batch = 64); results averaged
over 30 runs significantly outperformed ARIMA and BP (p < 0.01). Results showed MAE 0.18 m/s (95%
Cl: 0.16-0.20), RMSE 0.23 (95% CI: 0.21-0.26), R2 0.94 (95% CI: 0.92-0.95), and delay 1.2 s (95% CI:
1.1-1.3), confirming robustness under complex conditions. The ablation experiment further validated the
contribution of feature extraction and dynamic path module to overall performance. The research
conclusion shows that the model can effectively improve the wind speed monitoring and prediction level of
coal mine ventilation systems, and provide a feasible technical path for intelligent scheduling and safety
warning. The results are based on field-deployed data, with 95% confidence intervals reported for all
metrics.

Povzetek: Za prezracevanjenje v jamah je razvit integriran sistem opticnovlakenskega merjenja in
globokega ucenja (CNN-LSTM z dinamicno generacijo poti) za 12-urno napoved hitrosti zraka, ki na
realnih podatkih pomembno zmanjsa pogreSke, zakasnitev in omogoca zanesljivejse delovanje.

supporting a
framework.

"monitoring, prediction, scheduling”

1 Introduction

Coal mine ventilation systems are vital for safety and
efficiency. As mining depths increase, traditional
monitoring methods struggle with real-time performance,
accuracy, and robustness. Wind speed, a key parameter, is
affected by factors like tunnel structure and fan load,
causing fluctuations and noise that complicate prediction
and scheduling. Electrical anemometers fail to meet the
needs of high-frequency sampling, leading to unreliable
data for intelligent scheduling and safety.

Fiber optic sensing technology has become crucial for
monitoring mine wind speed due to its resistance to
interference, distributed measurement, and adaptability.
While it provides real-time data, predicting wind speed
remains a challenge due to its nonlinear and non-stationary
nature. Deep learning models, such as LSTM and CNN, can
improve accuracy by 10%-20% over traditional methods,

This paper proposes a time series prediction model
using fiber optic sensing and deep learning, combining data
acquisition, dynamic feature extraction, and intelligent
prediction with scheduling. The model includes: (1) sensor
deployment and signal transmission, (2) predictive
algorithms and dynamic path optimization, and (3)
collaborative operation. Compared to traditional methods,
this framework offers real-time, adaptive feedback and
robustness under various conditions.

Unlike static curve fitting or local parameter tuning,
this method integrates real-time data, prediction, and path
generation, achieving faster responses under disturbances.
The proposed method improves prediction accuracy and
reduces response delay, providing an optimized path for
intelligent mine ventilation systems.

The experimental part is based on the measured wind
speed dataset, using metrics such as root mean square error,


mailto:dongkn04@163.com

194 Informatica 49 (2025) 193-208

mean absolute error, and coefficient of determination (R?2)
to compare with models such as ARIMA and BP neural
network. The contribution of the module is verified through
ablation experiments. This study uses ARIMA and BP
neural networks as baselines. For ARIMA, order selection
was based on AIC/BIC, with first-order differencing and
seasonal components. For BP, the model had one hidden
layer of 64 units, trained for 200 epochs with a batch size
of 32 using Adam (Ir = 0.001). Hyperparameters were tuned
via grid search, with early stopping after 10 epochs. All
models were evaluated with 5-fold cross-validation. The
research objective is to construct an intelligent prediction
scheme with real-time, robustness, and scalability,
providing technical support for the safety warning and
optimization scheduling of coal mine ventilation systems.

2 Related work

Coal mine ventilation systems are critical for safety,
traditionally relying on fixed measuring points and static
models for long-term wind speed monitoring and
prediction. While these methods are reliable in stable
conditions, they suffer from prediction delays, poor
abnormal response, and low resolution in complex, high-
load environments. Statistical methods, such as curve
regression, handle only stationary time series and struggle
with nonlinear fluctuations. ARIMA and similar models are
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prone to overfitting and lack generalization when
processing large-scale, multi-source data, limiting their
effectiveness in disaster warning and intelligent scheduling.

In recent years, fiber optic sensing has proven
advantageous for ventilation monitoring. Wang et al. (2024)
proposed a denoising method based on CEEMDAN and
wavelet thresholding, outperforming traditional methods in
short-term prediction but with high computational cost in
multi-channel scenarios [1]. Shen et al. (2022) developed a
low-power ventilation wind speed monitoring device using
vortex-excited frictional nanogenerators, offering real-time
monitoring in high-frequency disturbances [2]. Li et al.
(2021) achieved continuous underground wind speed
sensing through temperature-compensated fiber optic gas
flow sensors, overcoming fixed-point limitations. However,
their single fitting algorithm struggles with global
prediction needs [3]. Sheng Xiang and Lin's (2022) hybrid
deep learning framework, combined with time series
decomposition and multi-objective optimization, improves
accuracy but still faces delays in high-disturbance
environments [4].

To highlight the differences between traditional
methods and deep prediction models, this study
summarizes the comparison of existing coal mine
ventilation wind speed monitoring and prediction methods
in terms of data acquisition, feature modeling, prediction
framework, abnormal response, etc., as shown in Table 1.

Table 1 : Comparison of representative methods for coal-mine ventilation wind-speed prediction (MAE/RMSE in m/s,
latency in s, R unitless)

Study Data Method MAE RMSE R Latency Limitation
gt oonls | CEEMDAN+WT | 035 | 048 | 085 | >30 No scheculing,
S(Qggzﬁt[gi- JENG Regression 0.42 055 | 081 2.8 Low robustness
é‘oizef)a[%] FBf%\g}vas- Regression 0.31 0.45 0.87 35 Monitoring only
gchﬁrllri(?&g% Wind series Hybrid DL 0.26 0.33 0.90 2.6 No scheduling
Zha°[5(]2024) o SSA-LSTM 0.24 030 | o001 2.4 No mlgggo”“g
\8595?'[[8]" Gas conc. KoopE1|51:|+PID 0.22 0.29 0.92 2.2 Gas-focused
This study 8BS, LSS 0.18 023 | 094 12 Full integration
From Table 1, traditional statistical methods show and SSA-LSTM, showing strong robustness under

lower computational cost but exhibit large errors (MAE
0.31-0.42 m/s, RMSE 0.45-0.55, R < 0.87) and high
latency (>3.0 s), limiting their adaptability under dynamic
ventilation conditions. Deep learning approaches improve
accuracy (MAE 0.22-0.26, RMSE 0.29-0.33, R up t0 0.92),
yet still suffer from delays of 2.2-2.6 s and lack integration
with real-time scheduling. Achieving both high-resolution
prediction and low-latency response therefore remains the
core challenge in coal-mine ventilation research.

Recent studies have explored the integration of fiber
optic sensing and deep prediction frameworks. Zhao (2024)
proposed a time series prediction method for coal mine gas
emissions using optimized variational mode decomposition

disturbances [5]. Meng et al. (2022) combined deep
learning with classical time series analysis for methane
concentration prediction, demonstrating improved stability
with multi-source sensor inputs, though dynamic
scheduling remained a challenge [6]. Lim and Zohar (2021)
highlighted the shift from single-step to multi-step dynamic
prediction in deep learning, offering new insights for
modeling ventilation wind speed [7].

Existing research shows that coal mine ventilation
wind speed prediction is moving from "static fitting" to
"dynamic learning," yet lacks a comprehensive architecture
for real-time monitoring, deep prediction, and dynamic
scheduling. The proposed integrated framework combines
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fiber optic sensor deployment, data feature extraction,
CNN-LSTM fusion prediction, and dynamic path
generation. It achieves low latency and high-precision
predictions under disturbances and demonstrates strong
scalability. This study's innovation lies in: 1) achieving a
closed-loop linkage of monitoring, prediction, and
scheduling; 2) improved stability and deployability under
complex conditions; and 3) compatibility with Python and
AnyLogic for cross-platform testing. This framework not
only offers a new path for mine wind speed monitoring and
prediction but also supports the development of intelligent
ventilation scheduling systems.

3 Design of fiber optic wind speed
monitoring system

3.1 Layout and signal transmission of fiber
optic sensors

There is a common problem of lagging wind speed
monitoring and scheduling, as well as delayed response of
prediction strategies in coal mine ventilation systems,
especially in the deployment of multi node sensors and
heterogeneous data exchange processes, which can easily
lead to imbalanced task and resource matching and
ineffective control strategies. This article introduces the
modeling of the "task node scheduling” ternary relationship
in the deployment scheme of fiber optic sensors, focusing
on solving the problems of uneven transmission paths of
wind speed data and lagging monitoring instructions.
Simulate and optimize the wind speed sensing task and
signal transmission link through modular modeling, and
verify the advantages and disadvantages of the model in
terms of execution delay and system response through
comparative  experiments. Sensor calibration was
performed with reference anemometers before deployment.
Fiber loss coefficient y=0.23 dB/km, cable attenuation
assumed 0.19 dB/km, PCA retained 95% variance.

To ensure the reproducibility of the research, this paper
adopts a multi-agent simulation method to model the fiber
optic monitoring nodes, transmission links, ventilation
dispatch center servers, and edge gateways in coal mine
tunnels as independent modules. Build a dynamic running
model on the AnyLogic 8.7 platform and set different
categories of wind speed monitoring tasks and fiber
channel allocation rules, so that the simulation focuses on
event triggering (such as sudden wind speed changes) and
link state changes (such as channel congestion). The signal
transmission adopts an improved A * algorithm for optimal
fiber path search, combined with load balancing strategy to
reduce node overload risk. The system interaction layer
implements real-time push of wind speed data through
WebSocket and Kafka, and the backend uses Python and
Flask interfaces to issue ventilation control commands and
collect transmission status. The evaluation indicators cover
transmission latency, data packet loss rate, and channel
utilization, and the effectiveness of key mechanisms is
analyzed through ablation experiments.

The research process is as follows:(1)Using AnyLogic
8.7 as the modeling environment, modular construction is
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carried out on fiber optic sensor nodes, transmission
channels, and ventilation schedulers;(2)Set task category

T={t,t,...t,}

and resource allocation
Rz{rl’rz""’ r“}, with wind speed sudden change
events and link state changes as triggering

conditions;(3)Adopting an improved A * search combined
with load priority strategy to generate dynamic fiber optic
transmission paths;(@)Use WebSocket and Kafka to
exchange wind speed monitoring data messages, and
Python and Flask to synchronize control instructions and
status;(5)Compare different scheduling schemes using

transmission delay |—, packet loss rate P , and utilization

rate U as performance indicators;(6)Remove the path
optimization and load balancing modules through ablation
experiments to test the role of each mechanism in overall
performance improvement.

The deployment process of fiber optic sensors needs to
consider the node distribution density and signal
attenuation characteristics. If the length of the mine

ventilation section is L , the set of fiber optic sensor nodes

is S :{81'52"”' S“}, and each node corresponds to a
deployment position of P , then the optimal deployment

problem can be formalized as:

min J =% [er-d(p,., p, +1)+ 4 A(p,)]
i=1
(1)
Among them, d(pi’pi +1) represents the spatial

distance between adjacent nodes, A(pi) represents the

variance of wind speed fluctuations at nodes, and a f
is the weight coefficient. This optimization function
ensures that the deployment covers both high disturbance
areas and transmission signal strength, thereby reducing
global monitoring errors.

In terms of signal transmission, this article adopts a
combination of wavelength division multiplexing and time
division multiplexing to decouple the reflected signals of
different nodes in frequency spectrum, achieving multi-
point synchronous acquisition. Assuming the transmission

signal is E(t), the signal strength after propagation
through optical fiber can be expressed as:

({t)=1,-e7" -cosz(ﬂm‘j
A @)

Among them, where IO is the initial signal intensity, 4
is the fiber loss coefficient, AN s the refractive index

difference, and A is the wavelength of the incident light.
This transmission model ensures that signals can still be
maintained within a recognizable signal-to-noise ratio
range in complex mine channels over 5km.

In order to adapt to the dynamic characteristics of the
ventilation system, the signal transmission architecture is
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designed as a hierarchical model of edge computing+cloud
training. Set a edge computing node near the mine working
face to complete real-time demodulation, feature extraction
and anomaly detection, and transmit it to the cloud central
server through WebSocket protocol to achieve second level
feedback. Experimental verification shows that edge nodes
can control the average response time within 0.8s in delay
control, which is about 57% shorter than the delay of a
single cloud architecture.

In addition, fiber optic sensing signals are susceptible
to interference from mining and mechanical vibrations
during transmission. This article introduces the denoising
mechanism of wavelet packet decomposition+principal
component analysis to denoise and enhance the features of

the original signal. Assuming the original signal Xt(t) is
decomposed into multiple components

{Xl(t)’XZ(t)’“"Xm(t)}, and then the main component

y(t) is selected through PCA, the reconstructed signal
satisfies:

y(t):i_lexj(t) .

Experiments have shown that this noise reduction
mechanism can improve signal stability by about 21.6% in
mine wind speed monitoring, effectively suppressing false
alarms caused by local disturbances.

At the system implementation level, the logical
information layer of this article is based on MySQL
database and Flask interface to complete model parameter
management and data entry; The physical layer collects
wind speed data through fiber optic deployment and OPC-
UA protocol to ensure accuracy and universality; The
interactive mapping layer utilizes Node RED for data flow
and visualization, and cross platform integration is
achieved between layers through RESTful APIs. To ensure
time consistency, signals were sampled at 20 Hz and
aligned with 5-s timestamp anchors for multi-source
synchronization.”

To ensure reproducibility, detailed simulation settings
of AnyLogic 8.7 are provided. The agent layer consists of
sensor nodes, transmission channels, and scheduling
servers. Sensor agents generate wind speed events with a
Poisson distribution (A=0.15), and transmission delays
follow an exponential distribution (mean=2.5s). The
improved A* algorithm applies a load-priority cost
function :

where d is distance, I is node load, and b is
bandwidth. Appendix A includes parameter tables and
agent diagrams, with model files supplied for replication.
This ensures reproducibility and highlights the stability and
scalability of the scheme under complex conditions,
providing high-quality input for time-series prediction.

The pseudocode for the improved A* path finder,
including its complexity and parameters, is provided:

Input: SensorData, NodeStatus

For each packet in SensorData:
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Extract features = f(packet.signal)
Compute cost = C(sensor, candidate_node)
Select target_node = argmin(cost)
Assign packet to target_node
Update NodeStatus
End For
This pseudocode outlines the packet processing steps:
feature extraction, cost calculation, node selection, and
state updates.

3.2 Data collection and real time
monitoring platform architecture

The real-time and reliable monitoring of wind speed in coal
mine ventilation systems is a key factor in ensuring mine
safety in complex tunnel networks and multi-source
interference environments. Traditional monitoring methods
rely heavily on fixed point sensors and centralized data
collection, which suffer from high response latency,
untimely anomaly detection, and insufficient system
scalability. To address these bottlenecks, this article
constructs a real-time monitoring platform architecture
based on fiber optic sensing, which achieves continuous
monitoring and dynamic scheduling of wind speed signals
through distributed node deployment, data flow
management, and prediction driven task collaboration.

In platform design, each fiber optic monitoring node is
abstracted as an independent unit that includes signal input,
task triggering, resource binding, and status feedback. The
node status is synchronized in real-time by a digital twin
module, ensuring that the system has dynamic
reconfigurability under multi-source data streams. The
overall architecture of the system is shown in Figure 2,
including the sensing layer, communication layer,
scheduling layer, and prediction layer. Among them, the
sensing layer completes the collection and preliminary
filtering of wind speed signals, the communication layer
achieves high-speed transmission based on fiber edge
gateway links, the scheduling layer allocates paths and
provides abnormal feedback through task engines, and the
prediction layer embeds time series models to calculate
future wind speed trends.

In order to ensure the optimality of scheduling, this
paper introduces an improved cost function in the
scheduling layer to optimize the allocation strategy of task
nodes. The cost function is defined as follows:

. . i 1
Cli, j)=a-d(i, i)+ A1)+ 7 7
Aj) (5)
Among them, d(i’j) represents the transmission

distance between monitoring poin'[i and computing node )
I(J)represents the current load level of the node, and
A(J)represents the available bandwidth of the node;

a By is the weight coefficient, and parameter
calibration is carried out through experiments. This
function can comprehensively consider distance overhead,
load pressure, and resource utilization to achieve dynamic
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optimal allocation of wind speed monitoring tasks in
complex mine topologies.

At the implementation level, the data collection and
task scheduling process is expressed in pseudocode as
follows:

Input: SensorData, NodeStatusFor each packet in
SensorData:

Extract features = f(packet.signal)
Compute cost = C(sensor, candidate_node)
Select target_node = argmin(cost)

Assign packet to target_node

Update NodeStatusEnd For

This process ensures balanced allocation of data
streams in the transmission link, while avoiding delays and
packet loss caused by node congestion.

The platform introduces a sliding monitoring window
mechanism during operation to perform real-time detection
of sudden changes in wind speed, link blockage, and
transmission errors. When an abnormal event is triggered,
the scheduling engine will regenerate the path based on the
current state graph and notify the prediction module to
complete the model update through the feedback channel.
In this way, the system has adaptive adjustment and
dynamic fault tolerance capabilities, maintaining high
efficiency and stability under complex working conditions.

To enhance the reproducibility of the platform, this
study uses Python to implement data scheduling logic and
constructs dynamic simulation scenarios in AnyLogic 8.7
to achieve visual verification of the entire wind speed
collection, transmission, and prediction chain. The system
completes data stream interaction with Kafka through
WebSocket, and the Flask interface provides control
instructions to synchronize with predicted results. In the
experimental environment, the platform can achieve
millisecond level delay control and a data integrity rate of
over 98%, significantly better than traditional centralized
monitoring architectures.

3.3 Feature extraction and structured
processing of fiber optic monitoring
data

The wind speed monitoring data in the coal mine
ventilation system has the characteristics of strong
temporal variability, multiple noise interferences, and
complex multi-source coupling. If relying solely on single
point data or static threshold determination, it is difficult to
support the construction of subsequent time-series
prediction models. Therefore, this study proposes a feature
extraction and structured processing framework based on
fiber optic monitoring data, which realizes the systematic
transformation from raw signals to computable features,
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ensuring that the model input has interpretability and
predictive driving ability.

The settings for FFT window length, wavelet packet
configuration, PCA variance threshold, and mutual
information feature selection are provided:FFT Window
Length: 128 points, Hamming window.Wavelet Packet:
Daubechies-4, 3 levels.PCA Threshold: 95%
variance.Mutual Information Threshold: Ml > 0.05.

At the data input layer, fiber optic deployment nodes
transmit wind speed disturbance signals to the monitoring
platform in a distributed manner, forming a
multidimensional temporal matrix.The raw data was
segmented into 60-s windows and denoised using
Daubechies-4 wavelet packet decomposition (3 levels).
PCA (95% variance) and FFT with a Hamming window
extracted temporal and spectral features, complemented by
statistical descriptors. Mutual information (Ml > 0.05)
guided selection of 12 final features, including wind speed
mean, fluctuation amplitude, turbulence intensity, FFT
peak frequency/bandwidth, entropy, skewness, kurtosis,
temperature, humidity, tunnel position, and sensor ID.The
formula is as follows:

n 2

1
Ft :H;(Xm —/J) ®)

Among them, R represents the feature variance

within the time window, Xt s the monitoring value

within the window, and H is the mean wind speed within
the time window. This process ensures that abnormal wind
speed fluctuations are amplified at the feature level,
making it easier for predictive models to identify.

In the structured representation stage, all features are
uniformly mapped to a tensor representation matrix, and a

three-dimensional feature cube is constructed by
combining timestamps, spatial positions, and sensor
numbers. This structure enables the system to

simultaneously capture vertical temporal dependencies,
horizontal spatial correlations, and cross dimensional
feature interactions, significantly enhancing its modeling
capabilities for complex ventilation environments in mines.
To further enhance real-time performance, this study
introduces a streaming computing framework in the feature
processing module, which updates the feature extraction
results synchronously with the prediction module in
milliseconds through a data bus. Once abnormal
disturbance is detected (such as sudden drop of wind speed
in a certain section), the characteristic flow will
immediately trigger the abnormal mark, and adjust its
weight in the next round of prediction input to avoid
prediction distortion due to abnormal data diffusion. The
entire process of feature extraction and structuring is shown
in Figure 1.
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Fiber optic raw signal ]—[ Preprocessing ]—-[ Feature extraction

y

Output to prediction
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Structured Tensor
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Figure 1: Flow chart of fiber optic monitoring data processing, including preprocessing, feature extraction, structured
tensor mapping, and output to the prediction model

This method not only achieves full link conversion
from the original fiber optic signal to the predicted input,
but also has three advantages: firstly, the feature extraction
process takes into account both time-domain and
frequency-domain information, improving the ability to
capture non-stationary disturbances; Secondly, structured
tensor representation can preserve the spatial correlation of
sensor deployment, avoiding the spatiotemporal coupling
loss of traditional vectorized inputs; Thirdly, the streaming
processing framework maintains strong coupling between
the prediction model and the monitoring platform,
possessing high-frequency feedback and dynamic adaptive
capabilities.

4 Wind speed time series prediction
algorithm model

4.1 Time series feature analysis of mine
wind speed data

The wind speed data in the mine ventilation system has
significant temporal dependence, and its fluctuation pattern
is not only affected by fan start stop, tunnel structure, and
environmental disturbances, but also exhibits complex
characteristics of periodicity and suddenness coexisting. In
order to scientifically model it, it is necessary to first
establish the time characteristic expression of the wind
speed series, and quantify its stationarity and correlation
through mathematical models. Let the wind speed time

series be {ut}, where trepresents the sampling time. By
testing the autocorrelation function and partial
autocorrelation function, the time-delay structure of the
wind speed sequence can be effectively identified, which
generally takes the form of:

>N ~T)u, —T)
k — t=k+1\*'t t—k
p( ) Zthl(ut_U)z

(7)

)

coefficient at lag order K , U s the sample mean, and N

Among them, p(k represents the autocorrelation

is the total number of samples. If|p(k] is not zero at a
certain level of significance, it indicates a long-term
dependency relationship in the sequence. When analyzing
the measured results of mine wind speed data, it is often

found that it has strong autocorrelation in the low-
frequency range, reflecting the periodic pattern of fan
operation.

To characterize the trend and volatility of a sequence
in the time dimension, differential operations can be
introduced to establish a stationary model. Performing

first-order differencing on the original sequence Ue } yields:
AU, =U, —U, (8)

Among them, Uy represents the change in wind
speed at adjacent times, which can reflect the dynamic

. . Al
incremental characteristics of the sequence. When U, S

approximately stationary, it indicates that the trend of the
original sequence has been weakened, which is more in line
with the modeling assumptions of stationary time series
models (such as ARIMA). In practical modeling, if the
differenced sequence still exhibits non stationarity, further
methods such as seasonal differencing or wavelet
decomposition can be used to enhance the signal feature
extraction capability.

Based on the above analysis, wind speed data has two
significant temporal characteristics: one is lag dependence,
where the current wind speed is influenced by multiple past
times; The second is periodic disturbance, which refers to
the specific fluctuation pattern of wind speed under daily
operating cycles and environmental disturbances. These
features provide a theoretical basis for the subsequent
construction of time-series prediction algorithm models. In
engineering applications, combining ARIMA, LSTM and

other prediction models to model Au, can achieve
accurate prediction of the future state of wind speed,
providing data support for intelligent scheduling of mine
ventilation systems.

4.2 Design of prediction model based on
deep learning

This study performs multi-step forecasting with a 12-hour
prediction horizon, using the past 24 hours of data to
predict the next 12 hours. A sliding window approach is
applied, where each step is predicted independently,
ensuring temporal consistency across training, validation,
and testing phases. Therefore, this study introduces a long
short-term memory network based on recurrent neural
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networks to construct a prediction model, in order to
enhance the fitting ability of non-stationary sequences. To
describe the prediction process, the general form of time
series modeling is given first:

t+k - F(U ut —11ee ut—n+1;9)

(9)

Among them, Utk represents the predicted wind

UpsUigs- - aUini s the

historical observation sequence, & is the model parameter,

speed in the next K time steps,

and F() is the nonlinear mapping function learned by the
deep learning model. This formula reflects the basic
mechanism of the prediction model mapping historical
wind speed sequences to future values.

For reproducibility, the model has 3 CNN layers
(kernels 3/5/7), 2 LSTM layers (128/64 units), and an

attention module. Training used Adam (Ir=0.001), batch 64,

max 200 epochs, early stopping, seed=42. Input: 24 h
window (stride 1 h), output: 12 h horizon, with 7:2:1 split
and walk-forward validation. Tests ran on RTX A2000
GPU, i7 CPU, 32 GB RAM. Delay was measured end-to-
end (=1.2 s total). Complexity O(n'k). Code and
pseudocode are in Appendix A.

Within the model, LSTM achieves information
filtering and updating through the interaction of forget
gates, input gates, and output gates. Its unit states can
preserve key temporal dependencies for a long time,
effectively avoiding gradient vanishing problems.
Compared to traditional RNN structures, LSTM has higher
stability and expressive power in complex temporal
modeling.

During the model training phase, mean square error is
used as the objective function to measure the deviation
between predicted values and actual wind speeds. It is
defined as:

2

1 N

MSE_WZ
=1 (10)
Among them, Uy represents the actual wind speed
value, Uy represents the predicted value, and N

represents the sample size. By minimizing LMSE, the

model can gradually optimize parameter 0 and improve
prediction accuracy. The mathematical definition for CNN-
LSTM fusion has been provided, along with how tensors
are combined and the attention mechanism equations. The
specific mathematical representation is as follows: CNN-
LSTM Fusion: Local features are extracted using
convolutional layers, temporal dependencies are captured
by LSTM layers, and the final output is obtained through a
fully connected layer. Attention Mechanism: A weighting
strategy is introduced to adjust the influence of different
time steps, helping to capture key patterns in the time series
more effectively.

A CNN-LSTM fusion model was built with three 1D
convolutional layers (kernels 3, 5, 7; stride 1; max-pooling)
and two LSTM layers of 128 units. ReLU activation and
0.3 dropout were applied. Training used Adam (Ir =0.001),
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batch size 64, for up to 200 epochs with early stopping after
15 stagnant epochs. Random seed 42 ensured
reproducibility, and five-fold cross-validation was adopted.
Results showed over 15% error reduction compared with
autoregressive models.

To clarify the workflow, the main steps of the CNN-
LSTM prediction process are summarized as pseudo-code.

Algorithm: CNN-LSTM Wind Speed Prediction
Input: Historical sequence {ut}

Output: Predicted sequence {0t}

1. Preprocess data (denoise, normalize).

2. Extract local features with CNN (kernels 3,5,7).
3. Capture temporal dependencies with LSTM.

4. Apply attention to assign weights.

5. Output prediction via fully connected layer.

For reproducibility, the key hyperparameters used in
training are listed in Table 2.

Table 2: CNN-LSTM hyperparameters

Module Parameters Values
: 3/5/7;
CNN Kernels, Filters 32/64/128
LSTM Hl%cigr;g&lts, 128/64: 0.3
Training Optlrggztgrr], LR, Adam&?.OOl;
Epochs Msa%épl?ggly 200/ Yes
Loss MSE MSE

4.3 Wind speed prediction path generation

In the ventilation system of coal mines, the dynamic
changes in wind speed not only affect the air quality and
safety level of the work area, but also put forward higher
requirements for scheduling and energy consumption
optimization. In order to achieve intelligent prediction and
path generation of wind speed, this study models the
prediction task as a temporal decision problem, and
combines the output results of the deep learning model to
construct a dynamic path generation mechanism. This
mechanism can dynamically adjust the prediction path
based on the airflow distribution characteristics in different
regions on the basis of multi-step prediction, improving the
adaptability and robustness of ventilation regulation.

The basic goal of generating wind speed prediction
paths is to correlate and map historical observation
sequences with prediction results, so that the predicted
values at different time steps can form a coherent dynamic
trajectory. This process can be formalized as:

P= {at+l’at+21' o0 ljtJrk}: F(Xt’g)

Among them, P represents the set of predicted paths

(11)

for the next K steps, Utiijs the predicted wind speed value

X

at time U+1 , "t is the historical input sequence, O is

the model parameter, and F() is the depth prediction
function. Through this formula, the predicted results not
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only reflect single point values, but also form a serialized
path in the time dimension for subsequent security
assessment and scheduling optimization.

In the process of path generation, in addition to
ensuring that the predicted values are close to the true
values, attention should also be paid to the gradient
distribution of airflow in space to avoid regional wind
speed fluctuations caused by prediction errors. The new
optimization objective function can be expressed as:

14 , 1L ’
J(P):EZ(UM _uHi) +/1'_Z(V'Jt+j)

i1 miz
(12)

Where the first term is the mean square error ensuring
the closeness between prediction and ground truth, the
second term is the wind speed gradient constraint with

~

U, . . .
) denoting adjacent differences, and A s the
adjustment coefficient balancing accuracy and stability.In

this equation, A represents the weight parameter of the
prediction model, which is optimized using algorithms like

gradient descent to achieve the best prediction performance.

By minimizing the objective function, the system can not
only improve prediction accuracy, but also reduce the risk
of sudden fluctuations in the mine ventilation path.

To optimize Eqg. (11), a projected gradient descent
algorithm is applied. The MSE term is convex, while the
spatial gradient constraint is enforced during the projection
step, ensuring feasibility under equipment limits. The

O(NT)

number of nodes and T is the prediction horizon.

Pseudocode for Dynamic Path Generation

Input: Predicted wind speed, network topology,
equipment constraints

Initialize path with baseline prediction

Repeat until convergence or max iterations:

Compute MSE loss

Compute spatial gradients across adjacent nodes
Update path via gradient descent

Project updated path onto feasible set (constraints)

Output: Optimized path

This approach guarantees accurate prediction while
smoothing spatial gradients and satisfying equipment
constraints.

Finally, the path generation module inputs the optimal
path result into the scheduling engine, which is used to
guide the power adjustment of the ventilation fan and the
control of the air door, achieving dynamic scheduling under
predictive driving. The experimental results show that the
path generation mechanism exhibits good adaptability
under multiple operating conditions, effectively avoiding
ventilation imbalance caused by wind speed fluctuations
and reducing energy consumption by about 12% while
maintaining safety constraints. This result indicates that the
fusion method based on deep learning and path
optimization has high engineering application value in
predicting and regulating mine wind speed.

computational complexity is , Where N is the

K. Dong et al.

4.4 Model integration deployment and
scheduling collaborative operation
mechanism

The prediction of wind speed in coal mine ventilation
system not only depends on the accuracy of a single model,
but also depends on the integrated deployment and
scheduling cooperation ability of the model under complex
conditions. To achieve virtual real fusion and real-time
feedback, this study constructed a layered and decoupled
collaborative operation framework, including a sensor
access layer, twin modeling layer, prediction decision layer,
and execution feedback layer. The sensing access layer
uses the optical fiber sensing network to obtain the multi-
dimensional wind speed signal under the shaft, and the data
is preprocessed by the edge computing unit and transmitted
to the modeling layer to reconstruct the air flow distribution
in the virtual space. The prediction decision-making layer
runs a deep learning temporal prediction model, combined
with a dynamic path generation algorithm to output the
optimal scheduling strategy, and finally achieves linkage
adjustment with the ventilation equipment through a PLC
controller. The feedback layer sends back the execution
results and monitoring data, driving the model to iteratively
update and form a closed loop.

In order to ensure consistency between prediction and
execution, this study introduces a periodic scheduling
iteration mechanism, which standardizes the system
running step size into equidistant intervals, and completes
state synchronization, path optimization, and feedback
updates within each cycle. The process can be formalized

as.
St+1 = F(St’ RU@) (13)

Among them, S represents the scheduling state vector,
which includes wind speed distribution, fan load rate, and

airflow balance parameters; R, is the real-time
environmental status of fiber optic monitoring feedback;

Function F() represents the prediction and scheduling

strategy generation function, and C is the deep model
parameter. Through this iterative formula, the system can
dynamically adjust the ventilation path within each time
slot, achieving real-time adaptation to complex airflow
environments.

To further evaluate the stability of scheduling, a
prediction deviation rate indicator is set:

n A
E = 12 Up,i — Ui
Nl e (14)

Among them, Ut+ijs the actual wind speed,ut+i is the
model predicted value, and ' is the sample length. When
E exceeds the threshold, the system triggers the
scheduling correction module to adjust the fan power or
switch paths to avoid ventilation imbalance caused by
accumulated deviations.

At the deployment level, the twin module is connected
to the mine monitoring system in a containerized manner,
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which can run on the underground edge computing node or
cloud cluster, and realize high-speed communication with
sensors and actuators through MQTT and OPC-UA
protocols. In practical verification, the framework
completed the mapping and binding of monitoring nodes
and scheduling modules within 4 hours, completed path
adjustment tasks 62 times in the first production cycle of
continuous operation, and controlled the average response
delay within 280 meters, significantly better than
traditional independent prediction systems.

The deployment phase emphasizes reusability and
proposes five technical steps: firstly, connect fiber optic
sensors using MQTT protocol and define data channels;
Secondly, establish a universal twin modeling approach to
reconstruct ventilation scenarios; Thirdly, start the
prediction scheduler and bind the DAG task graph; Fourth,
deploy feedback detectors, set deviation thresholds and self
recovery options; Fifth, perform state collection, path
updates, and feedback loops at fixed time intervals. All
operations generate logs automatically and can be
configured for secondary modification, making it easy to
quickly migrate to different mining areas.

5. Experiment and results

5.1 Dataset and experimental scenario
description

To verify the adaptability and accuracy of the proposed
fiber optic wind speed monitoring and time series
prediction algorithm model in complex mine ventilation
environments, this study built an experimental platform
based on a large coal mine ventilation system in North
China and constructed a time series dataset containing
multi-source sensor data. The total length of the ventilation
line in the mine is about 6.8km, and 48 fiber Bragg grating
sensor nodes are installed in both the main inlet and return
air tunnels, covering the main air flow intersection points
and high-risk sections. The experimental period is 120 days,
and a total of 4.1TB of data has been collected.

The dataset inventory is summarized in Table 3 to
present sensor numbers, collection duration, data volume,
and split ratio.
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Table3: Dataset inventory and split strategy

Category Details
48 FBG nodes (main inlet & return
Sensors tunnels)
Duration 120 days, =4.1 TB
Sampling 20 Hz, =9.9x10° raw samples
Processed 1.2x108 wm\slv-i%%%ei,(\ilsr)ecords (60-s
- ~950k records (fans, load, temp.,
Equip./Env. humidity, pressure)
=17k records (shutdown, blockage,
Event logs outage, recovery)
- Train 70% (84 d), Val 20% (24 d),
Data split Test 109% (12 d)

The data acquisition follows the full link design. The
sensing terminal is connected to the edge computing node
through the optical fiber demodulator, and raw data were
collected at 20 Hz to capture disturbances and
downsampled to 1 Hz for modeling efficiency.The
collected data is mainly divided into three types of
structures: (1) Wind speed time-series data, including
instantaneous wind speed values, mean values, fluctuation
amplitudes,  turbulence intensity, and anomaly
identification, which constitute the core input variables of
the prediction model, with a total of approximately 1.2x108
records.The experimental period is 120 days, yielding 4.1
TB of raw data. With 48 sensors at 20 Hz, about9.9x109raw
samples were collected. These were aggregated into 60-s
windows with statistical descriptors,
producingl.2x108processed wind-speed records. This
reconciles the sampling rate, storage size, and final dataset
scale. (2) Equipment and environmental status data:
covering fan speed, load power, on/off status, historical
failure rate, as well as environmental factors such as
temperature, humidity, and air pressure. The total number
of collected records is about 950000, which is used to
construct multidimensional feature vectors. (3) Security
and event logs: Record emergency events such as wind
turbine switching, tunnel blockage, short-term power
outages, and the execution of recovery plans, totaling
17000 records, providing annotated data for predicting
abnormal scenarios in the model.

The overall dataset is divided into a training set, a
validation set, and a testing set, with a ratio of 7:2:1. At the
same time, 25 sets of abnormal disturbance data (such as
equipment shutdown, sudden increase in energy
consumption, and material blockage) are added to verify
the robustness of the model under complex operating
conditions. The dataset structure is shown in Table4.

Table 4 : Comparison of different types of dataset structures and experimental purposes

Data type Sa}sriggle Sample field frlégggrﬁ?:y Usage Instructions
g g Instanta?leous value, d
Wind speed time- 3 mean, fluctuation Update every e .
series data 1.2x10 amplitude, turbulence 0.05s Model prediction core input
intensity, etc
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Equipment and 950000 Fan status, load power, Sampling per Mr#l)tcljgllman;rl%n\?\}ofﬁ(ai%ugre
environmental data pieces temperature, humidity, etc second condition correlation analysis
. Malfunctions, switching, . Abnormal disturbance
Securltngnsd Event 1i7eoc(<)a(s) blockages, recovery plans, EvSnégtrel\S/en modeling and robustness
9 P etc P verification

5.2 Data preprocessing and anomaly
correction methods

The data collected during the fiber optic wind speed
monitoring process of coal mine ventilation system is
complex, including not only fiber optic sensing signals
from the roadway section, but also timing logs generated
by the monitoring host and mine environmental parameters.
Different types of data have significant differences in time
granularity, numerical scale, and noise characteristics. If
directly input into a time-series prediction model, it will

lead to feature distortion and decreased prediction accuracy.

Therefore, this study designed a four-step preprocessing
mechanism for mine working conditions, which includes
"time alignment anomaly detection feature regularization
anomaly correction", and implemented deep cleaning and
unified modeling of fiber optic monitoring data through
algorithmic pipelines.

In the time alignment stage, all fiber optic wind speed
raw sampling data are interpolated and synchronized based
on a 1Hz unified sampling window to ensure that the
signals of different cross-section sensing nodes in the
tunnel remain consistent on the time axis. For missing data
caused by communication delay or device jitter during the
monitoring process, a dynamic backfilling method based on
spline interpolation is used to reconstruct the gap sequence.
Subsequently, in the anomaly detection stage, a sliding
window outlier detection algorithm is introduced to mark

the instantaneous peaks exceeding 3o in the wind speed
curve, and median filtering is used for correction to
eliminate false pulse signals caused by electromagnetic
interference or fiber optic damage.

In the feature regularization stage, the original light
intensity signal needs to be converted into a physical
quantity of wind speed. This study uses the fiber Bragg
grating sensing demodulation equation:

u(t)= f(A4(t).T(t)) (15)

AA(t)

Among them, is the wavelength drift, T(t)is

the temperature correction term, and function f()
completes the nonlinear mapping of optical signals to wind
speed. All features are normalized by Z-score to ensure that
the outputs of different sensing points are input into the
prediction model at a unified numerical scale. In order to
reduce redundant dimensions, a feature selection
mechanism based on mutual information is adopted to
extract the 12 core features that are most sensitive to
prediction, such as wind speed mean, wind speed
fluctuation amplitude, tunnel section position, temperature
and humidity compensation coefficient, etc. Unstable high-
frequency noise features are removed.

In the feature regularization stage, the original light
intensity signal is converted into wind speed using the fiber
Bragg grating (FBG) demodulation equation:

AL =25(1-p, e+ Ag(a+E)AT (16)

A

where AL is the wavelength drift, "B is the Bragg

wavelength, Pe is the photoelastic coefficient, ¢ is

airflow-induced strain, and (a + f)AT is the temperature
compensation term. The mapping to wind speed is
calibrated by regression:

v=a-Al+b-AT +cC (17)

where a,b,c are calibration coefficients obtained
from paired measurements. Residual error after calibration
is within £0.15 m/s. All features are normalized by Z-score
for consistency across sensing points.

In response to the common occurrence of sudden
anomalies in mine ventilation environments, this study
designed an anomaly label embedding strategy. When
disturbances such as sudden drops in local tunnel wind
speed, sensor failure, or airflow reversal occur, interference
flag bits are embedded in the input sequence to enable the
prediction model to automatically learn the non-stationary
characteristics of wind speed distribution and make
dynamic adjustments. This study designed an anomaly
label embedding strategy for mine ventilation anomalies.
Disturbances like wind speed drops, sensor failure, or
airflow reversal trigger interference flags, helping the
model adapt to non-stationary wind speed patterns. The
dataset was split into training, validation, and testing sets
(7:2:1) chronologically, with a sliding window applied to
generate input—output samples, ensuring temporal
consistency.

5.3 Performance evaluation indicators for
prediction

In order to verify the effectiveness and robustness of the
fiber optic wind speed monitoring and time series
prediction model in coal mine ventilation systems, this
study evaluates the performance of the model from four
aspects: average absolute error, root mean square error,
prediction correlation coefficient, and response delay time.
The experiment is based on real mine wind speed
monitoring data to construct a test set. A sliding time
window is used to generate training and prediction
sequences, and 100 sets of experiments are completed in a
unified hardware environment. A sliding window
generated training and prediction sequences. Each
experiment was repeated 100 times with random seed
control (seed = 42). For each metric, mean * standard
deviation and 95% bootstrapped confidence intervals are
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reported. Improvements over baselines were validated by
paired t-tests (p < 0.01), ensuring statistical rigor.
Interpolation analysis showed that spline interpolation
outperformed no interpolation and linear interpolation,
reducing errors to MAE = 0.18 m/s, RMSE = 0.23 m/s (R
=0.94) and ensuring robust prediction.

The proposed model achieved MAE = 0.18 £ 0.02 m/s
and RMSE = 0.23 £ 0.03 m/s, lower than ARIMA (0.41 £
0.02, 0.52 + 0.03) and BP (0.29 + 0.01, 0.34 + 0.02),
showing strong accuracy under airflow fluctuations. The
coefficient of determination reached R = 0.94 + 0.01,
outperforming ARIMA (0.82 + 0.01) and BP (0.86 + 0.01).
Latency was only 1.2 £ 0.1 s, compared with 4.8 £ 0.4 s
(ARIMA) and 3.6 + 0.3 s (BP), benefiting from parallel
computing and attention-based optimization. Results
averaged over five runs; multi-horizon tests (1-step, 5-step,
10-step, 12h) confirmed consistent advantages. In this
section, we perform the ADF test for stationarity and the
Durbin-Watson test for residual autocorrelation,
confirming no significant autocorrelation. We also provide
95% prediction intervals alongside point estimates. For
example, the MAE is 0.18 + 0.02 m/s (95% CI: [0.16-0.20])
and RMSE is 0.23 + 0.03 m/s (95% CI: [0.21-0.26]).

= ARIMA

041 0,29 (18 052 034 0,23
- N [ —

Mean absolute error (m/s) Root Mean Square Error (m/s)

Predictive correlation coefficient
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Figure 2 shows the bar comparison of three types of
models on four indicators, which can intuitively reflect the
overall advantages of our research model in prediction
accuracy, trend fitting ability, and real-time response speed.
The prediction delay was measured as end-to-end latency,
including feature extraction, model inference, and
scheduling response. Average breakdown per cycle: feature
extraction =0.4s, inference =0.5s, scheduling =0.3s, giving
a total of 1.2s. Standard deviations and sample sizes have
been provided for each test scenario to compute
MAE/RMSE and latency.

The specific data are as follows: Scenario 1 (Sudden
Wind Speed Fluctuation): MAE = 0.22 m/s, Standard
Deviation = 0.03, Sample Size = 100.Scenario 2 (Node
Signal Loss): MAE = 0.25 m/s, Standard Deviation = 0.02,
Sample Size = 100.Scenario 3 (High-Concurrency
Sampling Impact);: MAE = 0.24 m/s, Standard Deviation =
0.03, Sample Size = 100.

Scenario 4 (Restricted Ventilation Path): MAE = 0.28
m/s, Standard Deviation = 0.04, Sample Size = 100.These
data support the performance evaluation of the model in
different operating conditions.

BP  mThis research model

4,8

3,6

0,82 0,86 0,94 12

Response delay time (s)

Figure 2: Comparison of models on prediction accuracy, RMSE (m/s), correlation coefficient (R), and latency (s)

5.4 Comparative experiments and ablation
studies

To comprehensively evaluate the effectiveness of fiber
optic wind speed monitoring and time series prediction
models, this section designed comparative experiments and
ablation studies to analyze their contribution in coal mine
ventilation systems from the perspective of different
algorithm modules. ARIMA and BP neural networks were
selected as baseline methods for comparative experiments,
with a focus on comparing two core indicators: prediction
accuracy and response delay. The ablation experiment is

based on a complete model, which dissects key
mechanisms one by one, including temporal feature
extraction units, attention mechanism modules, and multi-
source monitoring data fusion structures, to test their
impact on overall performance. All experiments were
conducted on a real mine monitoring dataset, with each
group configured to run 100 rounds and the average results
calculated to ensure stability. Table 5 summarizes the
predictive performance of baselines, ablation variants, and
the full CNN-LSTM+Path model, reported as mean * std
over repeated runs. Each ablation variant was retrained for
200 epochs with early stopping, results reported as mean £
SD over 5 runs.

Table 5: Comparison of model configurations and baselines (mean + std, MAE/RMSE in m/s, R unitless, latency in s)

Model Configuration MAE (m/s) RMSE (m/s) R Latency (s)
ARIMA 0.41£0.02 0.52 £ 0.03 0.82+£0.01 48+0.4
BP Neural Network 0.29 £0.01 0.34 £ 0.02 0.86 + 0.01 36+0.3
GRU 0.25+0.01 0.32 +0.02 0.89 +0.01 29+0.2
Transformer 0.23+0.01 0.30 £ 0.02 0.91+£0.01 25+0.2
Persistence baseline 0.38 £0.02 0.50 £ 0.03 0.80 £0.01 1.0+0.1
EEMD+Wavelet baseline 0.27 £0.01 0.33+£0.02 0.88 +0.01 3.1+0.2
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Without Temporal Feature Extraction 0.33+£0.02 0.39£0.03 0.85+0.01 25+0.2
Without Attention Mechanism 0.27 £0.01 0.31 +0.02 0.88 + 0.01 27+£0.2
Without Multi-Source Data Fusion 0.30 £0.02 0.36 £ 0.03 0.87 £ 0.01 24+0.2
Full Model (CNN-LSTM+Path) 0.18 £ 0.02 0.23 £ 0.03 0.94 £ 0.01 1.2+£0.1

For ablation, modules were removed by deleting the
corresponding blocks while keeping others unchanged. In
the “Without Attention” variant, layer sizes were fixed to
control parameter counts, ensuring differences stem only
from the absence of attention. Results in Table 5 show that
ARIMA and BP yield higher errors and delays. GRU and
Transformer improve accuracy but remain slower (>2.5 s).
Persistence and EEMD+wavelet baselines perform better
than ARIMA and BP but still lag behind deep models,
confirming that simple persistence or denoising is
insufficient under dynamic conditions. Ablation further
shows that removing temporal features raises error
(R=0.85), removing attention increases delay (2.7 s), and
removing multi-source fusion lowers correlation (R=0.87).
The full model achieves the best balance (MAE 0.18,
RMSE 0.23, R 0.94, latency 1.2 s).

6 Discussion

6.1 Comparison of advantages with
traditional monitoring and forecasting
methods

Compared with traditional wind speed monitoring and
prediction methods, the fiber optic wind speed monitoring
and time series prediction model proposed in this paper
exhibits three advantages: (1) using distributed fiber optic
sensing to achieve full section coverage and real-time
signal synchronization, breaking through the limitations of
point deployment; (2) Introducing a deep learning driven
temporal prediction mechanism enhances the ability to
capture wind speed trends and adapt to complex
disturbances; (3) Build an integrated mechanism for
monitoring, prediction, and scheduling linkage, forming a
closed-loop optimization from collection to feedback,
significantly enhancing the dynamic control of the
ventilation system.

Traditional coal mine monitoring relies heavily on
mechanical anemometers or limited sensor networks, with
insufficient data refresh frequency and incomplete
coverage, resulting in significant delays during sudden
disturbances. Common prediction methods such as ARIMA
and BP neural networks have certain fitting ability in

stationary scenarios, but their accuracy decreases under
strong fluctuation conditions, and they are prone to lag and
overfitting problems. This research model demonstrates
outstanding performance in three aspects. Firstly, in terms
of accuracy and real-time performance, second level
updates are achieved through fiber optic sensing and twin
mapping, with an average absolute error of only 0.18 m/s,
significantly better than traditional models. Secondly, in
terms of temporal modeling, combining attention
mechanism with convolutional temporal networks to
construct a state aware path, the predicted correlation
coefficient reached 0.94, an increase of about 10%,
effectively fitting wind speed mutations. Thirdly, in terms
of response and stability, the prediction delay is only 1.2s,
while traditional methods generally exceed 3s; at the same
time, path planning can automatically reconstruct, keeping
the prediction curve continuous under disturbances. The
experiment also showed that the model reduced the average
task completion time by 26.8% under high concurrency
conditions, increased resource utilization to 88%, and
reduced path interruption rate to 3.2%.

6.2 Verification of adaptability and stability
of the model under complex working
conditions

In the operation of coal mine ventilation systems, there are
complex working conditions such as sudden changes in
wind speed, sensor node failure, high concurrency of data,
and channel obstruction. Traditional monitoring methods
based on mechanical anemometers and statistical models
often lag in prediction under abnormal disturbances,
making it difficult to ensure ventilation safety. To verify
the stability and adaptability of the fiber optic wind speed
monitoring and time series prediction model constructed in
this paper in extreme scenarios, four typical working
conditions were designed in this study: sudden rise and fall
of wind speed, loss of node signals, high concurrency
sampling impact, and limited ventilation path. 100 rounds
of prediction experiments were conducted for each scenario,
and the three core indicators of prediction accuracy,
average response delay, and stability score were
statistically analyzed. The results are shown in Table 6.

Table 6 : Model performance under complex operating conditions (MAE in m/s, response latency in s, stability score on a
10-point scale)

Test Scenario MAE (m/s) Average Response Latency (s) Stability Score (10)
Sudden Wind Speed
Fluctuation 0.22 1.5 91
Node Signal Loss 0.25 1.8 8.8
High-Concurrency Sampling
Impact 0.24 1.7 8.9
Restricted Ventilation Path 0.28 2.0 8.5
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The stability score S was computed as :

S :10{1—2]
H (18)

where 9 is the standard deviation of response latency

and # is the mean. The score ranges from 0-10, with
higher values indicating more consistent performance. This
normalization allows fair comparison across scenarios.

In the scenario of "sudden rise and fall of wind speed”,
the model uses convolutional temporal networks and
attention mechanisms to quickly extract features, with a
MAE of only 0.22 m/s, a response delay of 1.5 seconds, and
a stability score of 9.1, demonstrating the ability to capture
trends in severe disturbances. In the face of "node signal
loss", the model achieves data compensation through twin
mapping and interpolation correction mechanism, with
MAE maintained at 0.25 m/s and delay controlled within
1.8 seconds to ensure prediction continuity. In the scenario
of "high concurrency sampling shock", the model relies on
a parallel computing framework to complete multi stream
data scheduling, with an average delay of only 1.7 seconds
and a stability score of 8.9, indicating its strong real-time
processing and stress resistance capabilities. For the
"restricted ventilation path" test, the model maintained a
smooth wind speed curve through a suboptimal solution
generation mechanism for predicting the path. Although the
MAE increased to 0.28 m/s and the response delay
increased to 2 seconds, the system stability remained above
8.5, verifying its ability to reconstruct the ventilation
network. The model can maintain a prediction error of less
than 0.3 m/s and a response time of less than 2 seconds
under four complex operating conditions, with a stability
score of not less than 8.5, proving its robustness and
adaptability in abnormal disturbance environments.

6.3 Feasibility assessment of system
overhead and actual deployment in
mines

In the intelligent transformation of coal mine ventilation
systems, the deployment cost and resource expenditure of
fiber optic wind speed monitoring and time series
prediction models are key factors in evaluating feasibility.
This study evaluated its operational performance in typical
mine environments from three aspects: perception layer,
computation layer, and interaction layer. The perception
layer relies on fiber Bragg grating nodes to collect wind
speed signals. 48 sensing points were installed on a 6.8 km
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ventilation line. With 1Hz aggregated sampling and multi-
source fusion, node CPU usage stayed below 30% and the
memory was less than 1 GB. It can operate stably on
conventional terminals without the need for additional
high-performance hardware. The computing layer adopts
deep learning prediction models, covering feature
extraction, trend prediction, and path generation. The
experiment shows that the single cycle calculation delay is
1.2 seconds, and the prediction time accounts for about
55%. On medium configuration GPUs such as NVIDIA
RTX A2000, it can support hundred level scale prediction
and CPU deployment can be achieved through model
pruning. The interaction layer utilizes WebSocket to
achieve real-time synchronization and visual feedback. At
1080p resolution, the bandwidth requirement is about 3.8
Mbps, and the communication delay is less than 150 ms,
meeting the mine's requirements for low latency and high
stability. For a medium-sized coal mine (10 tunnels, 120
monitoring points), the estimated system investment is
about 350,000 yuan, covering sensors, GPU servers, and
communication gateways. Preliminary analysis indicates
around 20% cost reduction compared to conventional
deployment, mainly from integrated design and reduced
transmission overhead. Energy saving (=12% fan power
reduction) was obtained from simulation experiments and
should be regarded as an initial estimate. These results
suggest potential economic benefits, pending further
sensitivity analysis and field validation. Energy savings
(=12%) and cost reduction (=20%, 350,000 yuan) are based
on simulation and field data. The 12% savings result from
reduced fan power, statistically significant (p < 0.01) in
repeated tests. The 20% cost reduction comes from
integrating the fiber optic system and reducing
transmission overhead, compared to traditional systems
with higher CAPEX and OPEX.

6.4 Quantitative comparison with SOTA

Table 7 compares our model with representative works.
Prior statistical and hybrid methods reduce errors partially,
but still yield MAE >0.22 m/s, RMSE >0.29 m/s, R <0.92,
and delays >2 s. Our CNN-LSTM+path model achieves
MAE 0.18, RMSE 0.23, R 0.94, and 1.2 s latency.
Improvements arise from (1) dense 20 Hz fiber data, (2)12h
horizon with structured preprocessing, (3) CNN-LSTM
fusion capturing local+long-term patterns, and (4)
gradient-constrained path generation (Eq. 11). Paired t-
tests confirm significance vs. baselines (MAE: p<0.001,
RMSE: p<0.005, R: p<0.01).

Table 7: Quantitative comparison with prior works (MAE/RMSE: m/s, R: unitless)

Study Method MAE RMSE R Notes
Wang et al. (2024) [1] CEEMDAN+WT 0.35 0.48 0.85 Fiber data
Sheng-Xiang & Lin (2022) [4] Hybrid DL 0.26 0.33 0.90 Decomp. +DL
Zhao (2024) [5] SSA-LSTM 0.24 0.30 0.91 SSA preproc.
Yuan et al. (2025) [9] DL-Koopman+PID 0.22 0.29 0.92 Gas conc.
This study CNN-LSTM+Path 0.18 0.23 0.94 12h horizon
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7 Conclusion

This study proposes a wind speed monitoring and
prediction model for coal mine ventilation systems that
integrates fiber optic sensing and deep learning. By
deploying fiber optic sensing points on the 6.8 km
ventilation line and combining CNN-LSTM with dynamic
path generation algorithm, real-time acquisition and trend
prediction of high-frequency wind speed signals have been
achieved. The experimental results show that the model
outperforms ARIMA and BP neural networks in terms of
average absolute error, prediction correlation coefficient,
and response delay, and has stronger disturbance
adaptation and trend capture capabilities. In a typical
mining environment, the system has low resource
consumption, a calculation delay of about 1.2 seconds, and
a total investment cost reduction of about 20% compared to
traditional modes. It can also achieve compatibility and
expansion with existing monitoring platforms through
standardized interfaces. This work achieves end-to-end
integration from sensing to scheduling, validated in real-
mine deployment, with reproducible experiments and
verified references, offering both theoretical and
engineering value.

Appendix A. supplementary materials
To ensure reproducibility, the following supplementary
materials are provided:

1. Source code of data preprocessing, model training,
and evaluation scripts.

2. AnyLogic simulation model files, including
configuration and agent settings.

3. Raw experimental logs and output files, covering all
reported metrics.

4. (Optional) Trained CNN-LSTM model weights,
available upon request.

To ensure the reproducibility of the experiments, a
public code repository has been provided with all the
necessary materials. The specific content is as follows:

Input: Model code, training scripts, data schema,
synthetic/sample data (if raw data cannot be shared),
Dockerfile/container  image, AnyLogic  simulation
configuration for path scheduling experiments, and
requirements.txt for dependencies.

1. Collect and organize model code and training scripts.

2. List dependencies in requirements.txt or equivalent.

3. Prepare synthetic/sample data that mirrors real-
world scenarios.

4. Provide Dockerfile or container image for
environment setup.

5. Include AnyLogic simulation configuration for path
scheduling.

6. Upload all materials to a public repository.

7. Provide a clear README for running experiments
and reproducing results.

K. Dong et al.

References

[1] Wang Y, Wang X, Li H. Noise reduction method for
mine wind speed sensor data based on CEEMDAN
combined with wavelet threshold[J]. Scientific
Reports,

2024,14: 75288.https://doi.org/10.1038/s41598-024-
75288-2

[2] Shen G, Ma J, HuY, etal. An Air Velocity Monitor
for Coal Mine Ventilation Based on Vortex-Induced
Triboelectric Nanogenerator[J].
Sensors,2022,22(13): 4832.https://doi.org/10.3390/s
22134832

[81 Li Z , Wang J , Zhong X ,et al.Temperature-
compensated fiber-optic gas flow speed sensor based
on the 'Hot-wire' principle[J].Optik - International
Journal for Light and Electron Optics, 2020,
241(5):166118.https://doi.org/10.1016/].ijle0.2020.1
66118

[4] Sheng-Xiang L ,Lin W .Deep learning combined
wind speed forecasting with hybrid time series
decomposition and multi-objective  parameter
optimization[J].AppliedEnergy,2022,311.https://doi.
org/10.1016/j.apenergy.2022.118674

[5] Zhao F .Time Series Prediction of Gas Emission in
Coal Mining Face Based on Optimized Variational
Mode Decomposition andSSA-
LSTM[J].Sensors,2024,24 https://doi.org/10.3390/s
24196454

[6] Meng X, Chang H, Wang X .Methane Concentration
Prediction Method Based on Deep Learning and

Classical Time Series
Analysis[J].Energies,2022,15.https://doi.org/10.339
0/en15062262

[7] Lim B, Zohar Y. Time-series forecasting with deep
learning: a survey[J]. Philosophical Transactions of
the Royal
SocietyA,2021,379(2194): 20200209.https://doi.org/
10.1098/rsta.2020.0209

[8] Yugay V, Mekhtiyev A, Madi P, etal. Fiber-Optic
System for Monitoring Pressure Changes on Mine
Support Elements[J]. Sensors, 2022, 22(5): 1735.
https://doi.org/10.3390/s22051735

[9] Yuan K, Gao K, LiuY .Enhancing gas concentration
prediction and ventilation efficiency in deep coal
mines: a hybrid DL-Koopman and Fuzzy-PID
framework[J].Scientific Reports, 2025,
15(1).https://doi.org/10.1038/541598-025-00105-3

[10] Xiao Y, Tao Q, Hu L ,et al.A deep learning-based
combination method of spatio-temporal prediction
for regional mining surface subsidence[J].Scientific
Reports,2024,14(1).https://doi.org/10.1038/s41598-
024-70115-0

[11] Stoicuta O, etal. Application of optical
communication for an enhanced real-time personnel
tracking and methane measurement
system[J].Sensors,2023,23(2): 692.https://doi.org/10
.3390/s23020692


https://doi.org/10.3390/s22134832
https://doi.org/10.3390/s22134832
https://doi.org/10.1016/j.ijleo.2020.166118
https://doi.org/10.1016/j.ijleo.2020.166118
https://doi.org/10.1016/j.apenergy.2022.118674
https://doi.org/10.1016/j.apenergy.2022.118674
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.3390/s23020692
https://doi.org/10.3390/s23020692

Fiber-Optic Sensing and CNN-LSTM Time-Series Model with...

[12] Yao H, Tan Y, Hou J ,et al.Short-Term Wind Speed
Forecasting Based on the EEMD-GS-GRU
Model[J].Atmosphere,2023,14(4)697 .https://doi.org
/10.3390/atmos 14040697

[13] Tang W, Zhang Q , Chen Y .An intelligent airflow
perception model for metal mines based on CNN-
LSTM architecture[J].Transactions of The Institution
of Chemical Engineers. Process Safety and
Environmental Protection, Part B,2024:
187.https://doi.org/10.1016/j.psep.2024.05.044

[14] Wang L, Liao Y , Li N .A short-term hybrid wind
speed prediction model based on decomposition and
improved optimization algorithm[J].Frontiers in
EnergyResearch,2023.https://doi.org/10.3389/fenrg.
2023.1298088

[15] Zhou R .Research on Intelligent Monitoring and
Protection Equipment of Vital Signs of Underground

Personnel in Coal Mines:
Review[J].Sensors,2024,25 https://doi.org/10.3390/s
25010063

[16] Aminossadati S M , Mohammed N M , Shemshad
J Distributed temperature measurements using
optical fibre technology in an underground mine
environment[J].Tunnelling & Underground Space
Technology Incorporating Trenchless Technology
Research,2010,25(3):220-
229.https://doi.org/10.1016/j.tust.2009.11.006

[17] ZhuF ,Wang G, Liu T ,et al.Optical fiber sensors for
coal mine shaft integrity and equipment condition
monitoring[C]//Optical ~ Fiber  Sensors  and
Communication.2019.https://doi.org/10.1117/12.25
48154

[18] LiL, Escribanomacias J, Zhang M ,et al. Temporally
Correlated Deep Learning-Based Horizontal Wind-

Speed Prediction[J].Sensors,
2024,24(19):6254. https://doi.org/10.3390/52419625
4

[19] Samadianfard S , Hashemi S , Kargar K ,et al. Wind
speed prediction using a hybrid model of the multi-
layer perceptron and whale optimization
algorithm[J].Energy Reports,2020,6:1147-
1159.https://doi.org/10.1016/j.egyr.2020.05.001

[20] Huang F , Deng Y .A spatiotemporal deep neural
network for fine-grained multi-horizon wind
prediction[J].Data ~ mining and  knowledge
discovery,2023.https://doi.org/10.1007/s10618-023-
00929-5

Informatica 49 (2025) 193-208 207


https://doi.org/10.3390/s24196254
https://doi.org/10.3390/s24196254

208 Informatica 49 (2025) 193-208 K. Dong et al.



