
https://doi.org/10.31449/inf.v49i14.11138 Informatica 49 (2025) 379–394 379

Actor–Critic Deep Reinforcement Learning for Multi-Objective

Intelligent Irrigation Scheduling: Algorithm and Edge-Cloud

Management System

Peng Huang

City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China

E-mail: hxjhjt@126.com

Keywords: Deep reinforcement learning, agricultural irrigation, intelligent scheduling, multi-objective optimization

Received: August 26, 2025

Against the backdrop of increasingly prominent climate fluctuations and water scarcity, the demand for

precision and intelligence in agricultural irrigation continues to rise. This article focuses on the research

of "agricultural irrigation intelligent scheduling algorithm and management system based on deep

reinforcement learning", aiming to construct a technical solution that combines decision-making

adaptability and resource utilization efficiency. At the algorithmic level, a deep reinforcement learning

model is constructed using an improved DQN combined with policy gradient fusion, ensuring consistency

between algorithm description and system implementation to map multimodal data such as soil moisture,

evapotranspiration, and meteorological predictions collected by field sensing networks into state

representations in the irrigation strategy space. The strategy function is optimized using the Time

Difference (TD) method to enable the system to continuously update decisions in a dynamic environment.

In order to avoid the limitations of single objective optimization, a multi-objective reward function was

designed, which integrates crop yield, water resource utilization rate, and energy consumption into the

evaluation indicators, and achieves adaptive balance through normalization and weight adjustment. At the

system implementation level, a management platform integrating data collection, edge computing, cloud

decision-making and mobile visualization is built to support the automatic generation, real-time adjustment

and historical data backtracking analysis of irrigation plans. Field trials on a 35-ha wheat–corn site (12

plots, 4 months) evaluated a DQN–Policy Gradient hybrid, trained for 5000 episodes (200 steps each) with

lr=0.0005, batch size=64, and buffer=10,000. Rewards weighted efficiency (0.5), yield (0.3), and energy

(0.2).The system achieved 88.1% ± 1.7% water use (n=30, p<0.01), representing a 12.7% improvement in

water resource utilization, and 8.3% ± 1.2% yield gain (n=30, p<0.05), outperforming thresholds.The

research results provide a scalable technical path for intelligent management of agricultural water

conservancy, and provide practical verification for the application of deep reinforcement learning in

complex resource scheduling scenarios.

Povzetek: Za inteligentno namakanje je razvit večciljni sistem, ki z združenim DQN–policy-gradient

globokim utrjevalnim učenjem ter robno-oblačno arhitekturo optimira vodo, pridelek in energijo.

1 Introduction

In the process of modern agriculture moving towards

intelligence, traditional irrigation methods lack dynamic

perception and adaptive scheduling capabilities, making it

difficult to cope with the challenges brought by climate

fluctuations, crop growth differences, and water resource

imbalances. How to achieve precise water use and

intelligent decision-making has become a key issue for

sustainable agricultural development.

Deep reinforcement learning can continuously

optimize strategies through environmental interactions in

high-dimensional state spaces, and has performed well in

fields such as robot control and energy scheduling. In

recent years, its application in agricultural water resource

management has gradually expanded. Saikai et al. (2023)

constructed a model based on high-dimensional sensor data

to achieve automated greenhouse irrigation, with a water-

saving rate exceeding 12% and stable yield [1]. Alibaba et

al. (2022) showed in a vineyard study that this method can

achieve an 18% water-saving rate and reduce manual

intervention [2]. The deep Q-network scheduling method

proposed by Yang et al. (2020) significantly improved

water use efficiency in cotton experiments, verifying its

feasibility [3]. At the application level, Ding and Du's

(2024) field experiments further demonstrated that the deep

reinforcement learning system combined with sensor

networks improves crop yield stability by 11% under

dynamic climate conditions compared to traditional models

[4]. These achievements provide direct support for the

algorithmic transformation of intelligent irrigation and the

system design of this study.

Although deep reinforcement learning has shown

effectiveness, its integration and large-scale application

remain limited. Most models are confined to small

experiments, lacking adaptability across plots and crops,

and the link between monitoring platforms and decision

380 Informatica 49 (2025) 379–394 P. Huang

algorithms is weak, preventing a closed loop. This study

proposes a deep reinforcement learning–based intelligent

irrigation scheduling system to achieve end-to-end

optimization from perception to execution.

The system consists of three modules: multi-source

data modeling to characterize soil, crop, and weather; a

scheduling module that dynamically adjusts irrigation

strategies via feedback; and an integrated management

platform for data fusion, real-time control, and cross-

regional deployment. Compared with threshold control, the

closed loop of “state–decision–execution” improves

robustness, scalability, water use efficiency, and yield.

The contributions are: (1) a state modeling framework

integrating multi-source data; (2) a dynamic scheduling

algorithm with cross-crop and cross-scenario adaptability;

and (3) a management platform supporting real-time

feedback and collaborative deployment. This combination

provides an efficient, scalable, and practical solution for

intelligent irrigation.

2 Related work

In multi-plot, limited water, and rapidly changing crop

stages, existing systems often show rigid scheduling,

delayed feedback, and weak anomaly response, limiting

precision agriculture. To improve this, AI and sensor

networks have been applied, shifting irrigation from static

threshold control to dynamic feedback optimization. Chen

et al. (2021) combined reinforcement learning with weather

prediction for rice irrigation, improving water efficiency

and yield [5]. Jimenez et al. (2020) built a closed-loop

agent system enabling real-time horticultural irrigation [6].

Alves et al. (2023) developed a digital-twin platform that

optimizes allocation in multi-plot scenarios [7]. These

works suggest that coupling deep reinforcement learning

with IoT can address multi-source data and dynamic

scheduling.

Yet limitations remain: experiments are mostly small-

scale without cross-region or cross-crop validation;

algorithm–monitoring links are weak, breaking the

perception–decision–execution chain; and rapid response

to climate or equipment failures is lacking. To provide a

clearer comparison, Table 1 summarizes representative

studies, listing method class, dataset/environment, metrics,

and numerical results, alongside our proposed work.

Table 1: Comparison of related works and this study on irrigation scheduling using reinforcement learning

Prior Work
Method

Class
Dataset/Environment

Metrics
Reported

Numerical Results Remarks

Saikai et al.
(2023) [1]

DRL (sensor
feedback)

Greenhouse, high-
dimensional sensors

Water
saving,
yield

Water saving +12%,
stable yield

Limited to
greenhouse scale

Yang et al.
(2020) [3]

DQN
scheduling

Cotton field
Water use
efficiency

+15% efficiency
No multi-
objective

optimization

Ding & Du
(2024) [4]

DRL + IoT
sensors

Wheat field, dynamic
climate

Yield
stability

+11% yield stability
No edge–cloud

integration

Chen et al.
(2021) [5]

RL with
weather
forecast

Rice paddy
Yield,
water
saving

+10% yield, +14%
saving

Seasonal
dependency

This work
Actor–Critic
DRL hybrid

Wheat–corn, 35-ha
field, 12 plots

Water use,
yield,
energy

88.1% ±1.7% water
use, +8.3% ±1.2%

yield (n=30, p<0.05)

Multi-objective
+ edge–cloud

platform

Compared with these prior studies, our approach

integrates multi-objective optimization (water use, yield,

and energy) and an edge–cloud management platform,

validated in large-scale field trials, thereby demonstrating

stronger adaptability and scalability.

The existing research results provide a solid theoretical

and technological foundation for intelligent scheduling of

agricultural irrigation, but there are still the following gaps:

(1) insufficient system integration, and there is a gap

between algorithm and hardware collaboration; (2) The

universality verification of multi plot and multi crop

scenarios is limited; (3) Lack of stability testing covering

abnormal climate and extreme conditions. Therefore, it is

urgent to build an integrated deep reinforcement learning

driven management system that connects the entire process

of sensing, modeling, optimization, and execution,

achieving a comprehensive upgrade of agricultural

irrigation from passive regulation to intelligent closed-loop.

3 Suggested scheduling plan

3.1 Deep reinforcement learning
framework

In agricultural irrigation systems, traditional scheduling

often relies on manual experience or fixed thresholds.

Although it is effective for a single crop and stable climate,

it often leads to scheduling lag, rigid strategies, and

insufficient feedback when multiple plots are parallel,

limited water sources conflict, and climate fluctuations

occur frequently. This results in water resource waste and

unstable yields, making it difficult to meet the needs of

precision agriculture. Therefore, building an intelligent

scheduling framework based on deep reinforcement

learning has become an important path.

Actor–Critic Deep Reinforcement Learning for Multi-Objective Intelligent… Informatica 49 (2025) 379–394 381

To ensure the reproducibility of the research, this article

adopts modular design and standardized interfaces,

enabling the system to reproduce experimental results in

different agricultural environments. Research the use of

AnyLogic platform to construct multi-agent simulation

models, abstracting land parcels, irrigation units, and water

source distributors; At the implementation level, a deep

reinforcement learning engine is built using Python and

Flask, and interaction with sensors and actuators is

achieved through WebSocket and Kafka. AnyLogic

simulated soil and crop dynamics, while the Python/Flask

RL engine controlled real-time tasks. Sim-to-real gap was

mitigated by randomization and field-data tuning; The data

layer uses MySQL database to maintain environment logs

and reward parameters, ensuring the traceability of

experimental data.

The research process includes four steps: firstly, using

sensor networks to collect real-time data on soil moisture,

evapotranspiration, rainfall, and crop status, constructing

an environmental state space; Secondly, the framework

adopts an improved DQN integrated with policy gradient

methods. Although the Actor–Critic paradigm is common

in related work, this study unifies the algorithm description

under the DQN+PG fusion framework to avoid ambiguity

and maintain consistency; Thirdly, an event driven

mechanism is adopted to control the opening and closing of

irrigation valves, with water-saving rate, uniformity, and

yield stability as reward functions; Fourthly, verify the

performance of the model in terms of task completion time,

water resource utilization rate, and response speed through

ablation and comparative experiments. This process

ensures the traceability of results and enhances the

application value of the method in real agricultural

scenarios. A multi-objective reward is defined as:

EwYwUwR ˆˆˆ
321 ++=

 （1）

whereÛ , Ŷ , and Ê are normalized water use, yield,

and energy saving (range [0,1]). We set

1321 =++ www
, with default weights (0.5, 0.3, 0.2). To

assess sensitivity, we tested (0.6, 0.2, 0.2) and (0.4, 0.4,

0.2). Increasing yield weight improved crop gain but

reduced water efficiency, and vice versa. These trade-offs

confirm the default setting offers balanced performance.

In terms of modeling logic, the system achieves

synchronous updates between the physical state of

farmland and the virtual model through a virtual real

mapping mechanism. Assuming the real state vector of the

physical environment at time t is

n

t Rx 
and the

estimated state of the virtual model is

n

t Rx ˆ
, the

relationship is defined as:

() += ttt xfx ,ˆ
 （2）

Among them,
()f

is the state mapping function, t

is the sampling period, and
()2,0~  N

is the sensing

noise and environmental deviation term. This formula

ensures that the virtual model can continuously

approximate the real state of farmland, providing reliable

input for deep reinforcement learning. At the scheduling

level, task set
 ntttT ,…,, 21=

 and resource set

 mrrrR ,…,, 21=
 are introduced, and the scheduling

function is represented as:

() ()()PDRCP
P

+=


minarg*

 （3）

Among them,
*P is the optimal path,  is the set of

candidate paths,
()PC

represents the resource

consumption and time cost function of the path;
()PD

is

the deviation measure between the current execution state

and the expected path, with a value range of [0,1], and

＞0 is the penalty coefficient used to balance resource

consumption and path deviation. This mechanism not only

considers resource matching and job sequence, but also

combines state feedback to achieve dynamic path

correction.

In terms of framework composition, deep

reinforcement learning systems consist of four core

components: environmental models (composed of soil,

crops, and climate states), agents (learning and generating

irrigation strategies), action spaces (valve opening and flow

allocation), and reward functions (aimed at water

conservation rate and yield stability). This design enables

the system to continuously optimize strategies in dynamic

environments, adapting to multitasking and complex

constrained scenarios.

In terms of system implementation and integration, the

logical information layer is based on MySQL database and

Flask interface to complete irrigation parameter

maintenance and environmental data management; The

physical entity layer consists of humidity sensors, weather

stations, flow meters, and intelligent valves, which transmit

real-time data through LoRa and 5G networks; The

interaction layer utilizes Web Dashboard and Node RED to

process task flow and generate visual results; The data

management layer adopts centralized services combined

with Kafka message queues to achieve asynchronous

transmission and caching, and uses timestamp correction to

ensure real-time mapping between virtual and real domains.

The system has completed preliminary integration on the

agricultural irrigation platform and verified real-time

interaction between the decision engine and execution unit

through WebSocket. The relevant configuration files can

support subsequent research and replication. The network

has three hidden layers (128, 64, 32 neurons) with ReLU

activation. Training uses the Adam optimizer (lr=0.0005),

batch size 64, replay buffer 10,000, and target update every

200 steps. An epsilon-greedy policy decays from 1.0 to

0.05 across 5000 episodes of 200 steps. Models are trained

in simulation and fine-tuned with field data. A fixed

random seed (2024) ensures reproducibility.

To ensure reproducibility, the DRL model uses three

hidden layers (128, 64, 32, ReLU) and Adam (lr=0.0005,

batch size=64, buffer=10,000, target update=200).

Training spans 5000 episodes of 200 steps with ε-greedy

decay (1.0→0.05) and seed=2024. Inputs cover soil

382 Informatica 49 (2025) 379–394 P. Huang

moisture, evapotranspiration, rainfall, and valve states;

actions are discretized at 5s. Training on an RTX A2000

GPU took ~7h. Code and anonymized data will be released

upon acceptance.

3.2 Data preprocessing and modeling

This mechanism defines all sensor data as state units

containing timestamps, spatial positions, attribute values,

and confidence, and is uniformly sampled and standardized

by the data bus. To overcome the problem of insufficient

exception handling in traditional models, a modeling

method with three capabilities of state representation,

dependency construction, and resource mapping has been

designed. Table 2 presents its core features.

Table 2: Core structural characteristics of agricultural irrigation data preprocessing

Feature Type Expression Method Functional Role

State
Representation

Input/output state vector mapping
Ensures real-time updates of humidity,
evapotranspiration, etc., and eliminates noise

Dependency
Construction

Environment–crop–resource logical
relationships

Supports dynamic coupling of tasks with weather
and water demand conditions

Resource
Mapping

Dynamic binding mechanism of water
sources and valves

Avoids multi-plot competition conflicts and
delays

In terms of state representation, the system constructs

a standardized state vector tS
through sliding window

filtering and missing value interpolation, and aligns it in the

time dimension to ensure input stability; In terms of

dependency construction, soil moisture thresholds,

meteorological predictions, and crop growth stages are

transformed into graph structured edge relationships for

dynamically constraining action selection; In terms of

resource mapping, the remaining amount of water sources

is bound to the status of valves and task nodes to achieve

cross site resource scheduling.

To enhance reproducibility, this article designs a

pseudocode process for data preprocessing:

Input: RawData (SoilMoisture, Rainfall, ET,

CropStage)

For each record in RawData:

 Align timestamp and normalize values

 If missing_value: interpolate()

 If noise_detected: apply filter()

 Construct StateVector = [SoilMoisture, ET,

Rainfall, CropStage]

 Update DependencyGraph(StateVector)

 Map ResourceStatus to irrigation nodes

End For

This process ensures the unity of input state vectors

and the renewability of graph structures, enabling

reinforcement learning agents to obtain accurate state

feedback in complex environments.

This process keeps input vectors consistent and

dependency maps updated, allowing RL agents to obtain

accurate state feedback in complex environments. For path

optimization, an improved A* with load-aware sorting

considers plot distance, soil deficit, and valve occupancy,

generating candidate paths as RL action constraints to

speed convergence and avoid single-source bottlenecks. A

sliding monitoring window tracks execution; when failures,

conflicts, or congestion occur, the exception module

updates status and reschedules, ensuring robustness against

climate or equipment issues. At the implementation level,

Python preprocessing is embedded into AnyLogic, where

tasks are managed by a directed acyclic graph: state vectors

feed the agent and actions map to valve controls. This

enhances input stability, improves generalization, and

supports migration across agricultural settings.

To enhance reproducibility, the complete training and

execution pseudocode and the key hyperparameter settings

are provided below.

Algorithm Pseudocode (Training and Execution)：

Initialize network Q(·;θ), target network Q̄, replay

buffer B

for each episode do

for each step do

Select action by ε-greedy; execute in environment

Store transition (s,a,r,s′) in B

Sample minibatch from B; update Q with Adam

optimizer (lr=0.0005)

Every 200 steps update Q̄ ← Q

end for

end for

During execution: build state vector from live sensors,

choose action by argmax Q, send control to valves, update

state.

Table 3: Hyperparameter settings

Parameter Value

Network
3 hidden layers (128/64/32),
ReLU

Optimizer/LR Adam, 0.0005

Batch/Buffer 64 / 10,000

Target update Every 200 steps

Episodes/Steps 5000 / 200

Exploration
ε-greedy 1.0 → 0.05, seed =
2024

Availability

Code will be released upon acceptance; anonymized

datasets and simulation data will be provided.

Actor–Critic Deep Reinforcement Learning for Multi-Objective Intelligent… Informatica 49 (2025) 379–394 383

3.3 Scheduling strategy

In this strategy, the task set and resource set defined earlier

are directly used as inputs, and the agent generates actions

(valve opening and flow allocation) through state vectors

(including soil moisture, meteorological parameters, and

crop growth stages). The objective function, which

combines water-saving rate and yield stability, is

formalized as:

()
=

+=
n

i

ii DWJ
1

min 
 （4）

Among them, iW
represents the unit irrigation water

volume of the i plot, iD
represents its deviation from the

optimal moisture content, and
，

is the weight

coefficient. This function constrains the overall water-

saving level of the system while ensuring crop yield.

In terms of action selection, the system adopts a

decision-making mechanism based on deep Q-networks.

Each cycle, the agent generates a set of candidate actions

based on the state and calls the improved A* algorithm for

path filtering. The path cost is determined by weighting the

distance between plots, valve utilization rate, and water

source load:

() ()
()



++=
Pji

jjij sudPC
,

21 

 （5）

Among them, ijd
 represents the distance between

plots, ju
is the valve utilization rate, js

 is the water

source load, and 21 ，
is the balancing parameter. The

reinforcement learning agent selects the optimal path
*P

from the candidate path set, achieving a comprehensive

balance between execution cost and real-time performance.

In terms of feedback mechanism, the system sets up a

sliding monitoring window to continuously track the status

of task execution. When task failure, path conflict, or

resource congestion is detected, the scheduling engine

triggers rescheduling, writes the exception back to the state

vector, and locally modifies the strategy to ensure

robustness in situations such as climate change or

equipment failure.

At the implementation level, the scheduling strategy is

implemented using Python as the core, embedded in the

AnyLogic simulation environment, and interacts in real-

time with WebSocket through Kafka message queues. All

task nodes are managed by DAG structure, and the

intelligent agent takes state vectors as inputs to output

control instructions for irrigation valves. Experimental

verification shows that this strategy significantly improves

water resource utilization efficiency and crop yield stability

in high concurrency scenarios, and exhibits strong adaptive

ability in ablation experiments.

4 Implementation of management
system

4.1 System architecture and module design

The system adopts a five-layer architecture: perception

layer, data modeling layer, intelligent decision-making

layer, execution control layer, and visualization interaction

layer. Each layer is relatively independent and maintains

real-time linkage, forming a complete closed-loop

management system. At the perception layer, the system

deploys soil moisture sensors, meteorological monitoring

stations, flow meters, and intelligent valves to collect real-

time data through LoRa and 5G networks, covering key

indicators such as moisture, rainfall, evapotranspiration,

and crop growth stages. All data is accompanied by

timestamps and land parcel identifiers to ensure accuracy

and traceability of input. At the data modeling level, multi-

source heterogeneous data is first filtered, interpolated, and

normalized to construct a unified state vector, which is then

stored in a MySQL database. Subsequently, using graph

structure modeling methods, the crop water demand

patterns, water source constraints, and land parcel

dependencies were transformed into node and edge

relationships, forming a task logic graph. Simultaneously

introducing Kafka message queues to achieve

asynchronous transmission and caching in high

concurrency scenarios. At the intelligent decision-making

level, deep reinforcement learning agents generate

irrigation actions based on state vectors. The decision

framework combines improved DQN and strategy gradient

methods, with water conservation rate, irrigation

uniformity, and yield stability as optimization objectives.

At the same time, an improved A * algorithm is introduced

as a path constraint to screen candidate paths, taking into

account the distance between parcels, valve utilization, and

water source load, and ultimately outputting the optimal

action. The intelligent agent dynamically updates its

strategy based on environmental feedback during each

scheduling cycle, achieving adaptive scheduling. In the

execution control layer, intelligent valves and pump

stations serve as physical execution units to complete

irrigation operations based on instructions from the

decision-making layer. Each execution sends the status

back through WebSocket. If a task failure, path conflict, or

resource congestion is detected, the system will trigger a

rescheduling mechanism to adjust the task allocation in

real-time and ensure uninterrupted irrigation.

In the visual interaction layer, the system displays soil

moisture, crop water demand status, and irrigation

execution status through the Web Dashboard and Node

RED module, and outputs water-saving rate and crop

growth indicators in the form of charts. Users can manually

intervene in the parameters of the intelligent agent to

enhance the transparency and controllability of the system.

To support real-time claims, edge nodes used ARM Cortex-

A72 (4×1.8 GHz, 4 GB RAM) and central inference an

NVIDIA RTX A2000 GPU. LoRa+5G latency was 120–

150 ms, sensors showed ±2% accuracy, and valves had ~0.8

s delay, confirming low-latency operation.

384 Informatica 49 (2025) 379–394 P. Huang

Figure 1: Architecture flowchart of agricultural irrigation system based on deep reinforcement learning

The overall logic of the system is shown in Figure 1:

the perception layer is responsible for data collection, the

modeling layer constructs structured inputs, the decision-

making layer generates scheduling strategies, the execution

layer implements control instructions, and the interaction

layer provides real-time monitoring and feedback. Through

the collaborative design of a five-layer architecture, the

system has achieved full chain optimization from

environmental perception to decision execution, with real-

time response, resource balance, and robustness, providing

a scalable systematic solution for precision agricultural

irrigation.

4.2 System implementation and functions

After completing the system architecture design, this article

further implemented an agricultural irrigation intelligent

scheduling platform based on deep reinforcement learning,

which covers five aspects: data collection, state modeling,

strategy generation, execution control, and visual

interaction, forming an end-to-end closed-loop control.

This system not only ensures the operability of the

theoretical model, but also demonstrates strong robustness

and scalability in practical applications.

In the data collection and input process, the sensor

network obtains real-time key data such as soil moisture,

rainfall, evapotranspiration rate, and crop growth status,

and transmits it to the data server through LoRa and 5G

networks. The system utilizes preprocessing modules to

perform missing value interpolation, noise filtering, and

timestamp alignment, ensuring input consistency and

timeliness. In the state modeling and storage process, all

input data is standardized into state vectors and stored in a

MySQL database. The system also constructed a

dependency graph of crops, water sources, and valves to

express the logical relationships between tasks. The

interaction process of deep reinforcement learning is

formalized as:

() () 







=== 



=0

00 ,,,,
t

tt

t aassasREasQ 

（6）

where Ss is the state space, Aa is the action

space,
()tt asR ,

is the reward at time t , and
()10，

is

the discount factor.
()asQ ,

denotes the long-term

cumulative return obtained by executing action a in state

s under policy . The role of this function in the system

is to measure the value of candidate irrigation actions,

ensuring that the agent selects a strategy that can both save

water and stabilize yield in a dynamic environment. In the

strategy generation stage, the system adopts an improved

DQN and strategy gradient fusion model, and introduces

path cost constraints. The optimization objective can be

expressed as:

() aAaSs CasRE −=  


,maxarg ,

*

 （7）

Among them,
* is the optimal strategy, and

()aC

represents the execution cost of action a , including

comprehensive factors such as inter plot distance, valve

occupancy rate, and remaining water source; 0> is the

penalty coefficient used to constrain the selection of high

consumption actions.This optimization function ensures

that the intelligent agent automatically avoids resource

conflicts and path congestion while meeting crop water

demands, thereby improving the overall system balance. In

the execution control phase, intelligent valves and pump

stations complete flow allocation based on strategic

instructions, and provide real-time feedback on the

execution status to the decision-making layer through

WebSocket. When an execution exception or resource

conflict is detected, the scheduling engine triggers a

rescheduling mechanism to ensure the continuity of the

task chain and the stability of the system. In the

visualization and functional expansion stage, the system

displays the humidity curve, valve operation status, and

water-saving indicators of each plot through the Web

Dashboard and Node RED module, and supports users to

manually adjust parameters such as the learning rate and

discount factor of the intelligent agent. This design not only

improves the transparency of the system, but also provides

an interactive and user-friendly interface for actual

agricultural production.

4.3 Real time feedback and adjustment

During system operation, the execution status of all tasks is

transmitted in real-time through the feedback channels of

sensors and actuators, forming a state vector update. If the

target state for executing the task is set to
*s and the real-

time acquisition state is set to ts
, the feedback error can be

defined as:

Perception layer

Visual interaction
layer

Execution control
layer

Lntelligent decision-
making layer

Data modeling layer

Actor–Critic Deep Reinforcement Learning for Multi-Objective Intelligent… Informatica 49 (2025) 379–394 385

tt sse −= *

 （8）

Among them, te
represents the deviation at time t ,

covering factors such as soil moisture, evapotranspiration,

and differences in crop water requirements. When the error

exceeds the threshold, the system automatically triggers the

adjustment mechanism and writes the abnormal

information back to the decision layer. This process ensures

the synchronization between state perception and task

execution, enabling the agent to maintain effective tracking

of the target in the face of environmental fluctuations.

In the feedback loop, the policy is updated online using

policy gradient, which adjusts action probabilities

according to the feedback error te
. If the current policy is

()sa , the update rule is:

()ttttt sae   log1 +=+ （9）

where t is the policy parameter at time t ,  is the

learning rate, te
is the feedback error, and

()tt sa log
is the policy gradient. This mechanism

increases the probability of effective actions when errors

are large, enhancing accuracy and adaptability of action

selection.

In the implementation process, the feedback module

adopts a sliding monitoring window mechanism to

continuously track the task execution status. During each

monitoring cycle, the system records the dynamic changes

in valve opening, flow allocation, and land moisture

content. If there is resource congestion or path conflict, the

scheduling engine immediately triggers local rescheduling

and recalculates the candidate action set. Compared with

traditional manual intervention, this mechanism can

complete adjustments in milliseconds, significantly

reducing response time.

To ensure the stability of the feedback mechanism, the

system uses Kafka message queue and WebSocket channel

to run in parallel at the implementation level, achieving

high-frequency data transmission and low latency

interaction. Meanwhile, through timestamp correction and

noise filtering, false feedback caused by communication

delays and sensing errors is avoided, ensuring the

continuity and reliability of scheduling logic.

Functional verification shows that the real-time

feedback and adjustment mechanism can maintain the

continuity of system operation under sudden climate

fluctuations and abnormal equipment conditions. The

experimental results showed that without feedback

mechanism, the average irrigation completion delay was

16.2 minutes, while with the introduction of feedback

mechanism, the delay was shortened to 4.7 minutes; In the

water source conflict test, the success rate of resource

scheduling in the system increased from 83% to 96%.

These results validate the significant role of real-time

feedback in improving scheduling efficiency and system

robustness.

4.4 System integration and deployment

If the agricultural irrigation scheduling model driven by

deep reinforcement learning only stays at the algorithm

level, it is difficult to achieve effectiveness in practical

environments with multiple plots, crops, and water sources.

Traditional systems often fail to quickly implement

irrigation strategies due to loose model modules,

inconsistent interfaces, and severe feedback delays. To

achieve a closed-loop operation of "strategy generation

task execution state feedback", this study proposes a

system integration and deployment framework for

agricultural scenarios, ensuring stable linkage between

virtual models and physical devices.

The overall system adopts a hierarchical decoupling

structure, including a perception access layer, twin

modeling layer, scheduling decision layer, and execution

feedback layer. The perception layer collects

multidimensional data such as soil moisture,

evapotranspiration, and rainfall, and transmits it to the

modeling layer through an edge gateway; Twin modeling

layer reconstruction of farmland environment and water

source allocation logic; The decision-making layer runs

reinforcement learning and path optimization algorithms;

The execution feedback layer implements control through

valves and pump stations, and sends the status back in real-

time, forming a loop mechanism of virtual and real

synchronization.

To ensure time consistency between different modules,

the system introduces a unified scheduling cycle mapping

mechanism. The scheduling state vector set at time k is

 kkkk crsX ,,=
, where ks

represents the moisture

content of the plot, kr represents the crop water demand,

and kc
represents the water source allocation rate. If

()F
 is the scheduling function based on reinforcement

learning and kR
 is the real-time feedback of resource

status, then the update iteration is:

()kkk RXFX ,1 =+ (10)

This formula states that in each scheduling cycle, the

system uses the latest feedback kR
 to correct the task

execution logic, ensuring that the task path and resource

allocation plan can be adjusted in real-time with

environmental changes.

During the task execution process, if the number of

irrigation tasks that need to be completed in the current

cycle is M and the number of delayed tasks is dM
, the

deviation rate is defined as:

M

M d=
 (11)

386 Informatica 49 (2025) 379–394 P. Huang

Among them,
 10，

represents the stability of

scheduling execution. When the threshold is th＞
, it

indicates that there is a significant deviation in the

irrigation task, and the system immediately triggers the

scheduling correction module to reduce delay by adjusting

task priority or reconstructing the path scheme. This

indicator provides a quantitative basis for scheduling

quality and helps to achieve real-time monitoring of system

robustness.

In terms of deployment, twin modules are embedded in

a containerized form into existing agricultural information

platforms and can run simultaneously on local edge nodes

or cloud servers. Edge nodes are responsible for real-time

processing of high-frequency sensor data, while the cloud

is responsible for strategy training and cross regional

collaboration. Both achieve read and write synchronization

with sensors, valves, and pump stations through MQTT and

OPC-UA protocols, ensuring low latency and high

compatibility in data transmission.

In actual verification, this system has completed pilot

deployment in the mixed planting area of wheat and corn.

The entire integration process only takes 48 hours to

complete the mapping and binding of land parcels, valves,

and scheduling modules. In the first round of operation, the

system completed dynamic path adjustment 6 times, with

an control response latency was ~420 ms, ensuring stable

water supply in case of sudden rainfall and water shortage.

To enhance the repeatability of deployment, this article

has developed standardized integration steps: the first step

is to establish a communication path with sensors and unify

data protocols; Step two, build a twin model of the plot and

bind crop parameters; Step three, start the reinforcement

learning scheduling engine and load the DAG task graph;

Step four, configure the feedback monitoring module, set

threshold parameters and self-recovery logic; Step 5:

Record logs and status snapshots periodically after the

system runs, providing a basis for secondary deployment

and performance replication.

5 Experiment and result analysis

5.1 Experimental design and dataset

To verify the applicability of the deep reinforcement

learning irrigation scheduling model in real-world

scenarios, this paper constructs an experimental platform

based on the operating environment of a medium-sized

planting base. The base mainly cultivates wheat and corn,

with a wide distribution of irrigation areas, significant

differences in crop water requirements, and limited water

sources. It is a typical case for testing intelligent scheduling

capabilities.

The dataset is obtained by deploying sensors and

control units at key plots and water source nodes, including

information on soil moisture, evapotranspiration,

meteorological elements, and crop physiological status.

The equipment includes soil tensiometers, flow meters,

meteorological stations, and intelligent valves, with a

sampling frequency controlled within 5 seconds per frame

to ensure complete recording of dynamic changes.

The overall dataset is divided into three categories: (1)

task flow data: records irrigation numbers, crop types,

growth stages, target moisture content, and dependency

relationships, totaling 892 items, forming the basis of

irrigation scheduling diagrams. (2) Water source and

equipment status data: covering pump station, valve and

pipeline operation status, instantaneous flow and energy

consumption, approximately 460000 records, aligned with

timestamps to reflect changes in resource load. (3)

Environmental and crop data: including rainfall,

evapotranspiration rate, soil temperature, and crop curves,

approximately 15000 pieces, used for reward functions and

multi-objective optimization.

Table 4 presents the sensor and deployment overview.

A total of 36 Decagon 5TE sensors (±2% accuracy, 5s

sampling) were installed across 12 plots (avg. 2.9 ha) in a

35-ha wheat–corn field, alongside 12 smart valves and 2

pumps. The dataset includes 460,000 records (~26.6 days,

5s interval ≈ 2.3M seconds). Robustness was tested under

noise (σ = 0.01, 0.05, 0.1) and delays (100–500 ms). Our

method lost <5% at σ = 0.05 and 300 ms, while baselines

degraded more.

Table 4: Sensor deployment summary

Item Value

Sensor Model Decagon 5TE

Accuracy ±2%

Sampling Rate 5 s

Pumps / Valves 2 / 12

Total Plots 12

Total Area 35 ha

Duration ~26.6 days

Noise Model Gaussian (μ=0, σ=0.05)

Abnormal events included valve clogging, heavy rain,

sensor loss, and pump failure, each lasting 30–120 s with

10–40% deviation from normal irrigation. The 15

disturbance cases, as detailed in Table 5, capture a wide

range of irrigation anomalies, each with distinct duration

and deviation characteristics.

Table 5: Abnormal event scenarios and characteristics

No. Event Type Duration (s) Deviation (%) Notes

1 Valve blockage 45 −30 Partial water delivery

2 Valve stuck open 60 +25 Over-irrigation

3 Valve stuck closed 90 −40 Severe under-irrigation

4 Pump failure 120 −35 System-wide interruption

Actor–Critic Deep Reinforcement Learning for Multi-Objective Intelligent… Informatica 49 (2025) 379–394 387

5 Rain burst 60 +40 External water inflow

6 Sensor dropout 30 — Missing data

7 Pipe leakage 75 −20 Localized water loss

8 Controller error 90 +10 Random valve open sequence

9 Power surge 30 +15 Short-term system reset

10 Manual override 45 −25 Bypassed optimization logic

11 Valve latency 60 −10 Delayed response

12 Data lag 30 — Delayed feedback

13 Pump overheating 120 −30 Pump auto-shutdown

14 Calibration drift 90 ±5 Sensor misreading

15 Communication loss 60 — No control signal received

After missing value interpolation, outlier removal, and

normalization, all data are uniformly connected to the

database and provided to the model through the data bus

for calling. Table 6 shows the dataset structure and

experimental purposes.

Table 6: Comparison of structure and experimental use of agricultural irrigation dataset

Data Type Sample Size Sample Fields
Update
Frequency

Experimental Purpose

Task Flow Data 892 entries
ID, crop, stage, target
humidity, dependencies

Generated per
task

Construct scheduling graph and
dependency structure

Water Source &
Equipment
Status Data

460,000
entries

Pump flow, valve status,
energy consumption, etc.

Sampled
every 5
seconds

Support real-time feedback and
resource allocation

Environmental
& Crop Data

15,000 entries

Rainfall,
evapotranspiration,
temperature, crop
parameters

Updated every
10 minutes

Input for reward function and
multi-objective optimization

In addition to disturbance scenarios, a field protocol

was conducted at a 35-ha wheat–corn site with 12

randomized plots. Trials lasted four months, using drip

irrigation and a baseline threshold of 70% field capacity.

Yield was sampled from 10m² subsamples, and water use

was recorded by flow meters to ensure experimental

reproducibility. The dataset was split by temporal hold-out:

60% for training, 20% for validation, and 20% for testing,

ensuring realistic evaluation without data leakage. We also

applied cross-plot validation by training on 70% of fields

and testing on unseen 30%. The performance drop was

<4.2%, confirming good spatial generalization.

5.2 Data preprocessing

The multi-source sensor data in agricultural irrigation

scheduling has heterogeneity and temporal fluctuations. If

it is directly input into deep reinforcement learning models

without preprocessing, it often causes noise propagation

and state distortion. In response to this issue, this study

designed a processing flow that includes time alignment,

anomaly repair, structural mapping, standardization, and

feature screening. In the time alignment stage, all sensor

data is interpolated and synchronized based on a unified

sampling window t . Soil moisture, evapotranspiration,

rainfall, and crop physiological status are mapped onto a

unified timeline. Missing values are filled out using linear

interpolation, and outliers that deviate by more than 3

are fixed using the sliding median method to ensure causal

consistency across different sources of data in the time

dimension. In the abnormal repair process, common short-

term mutations in irrigation logs and energy consumption

data are processed through median smoothing, and logical

error fields in sensor signals are corrected with rule

constraints. This process ensures that the data has stability

and availability before entering the model. In the structural

mapping stage, abstract the task and resource states into

tensor form:

   ttt

FNW

t crsRX ,,= 

 （12）

Among them, W is the length of the time window,

N is the number of parcels or equipment, and F is the

feature dimension; ts
represents soil moisture and

evapotranspiration rate, tr represents valve status and water

source surplus, and tc
represents crop growth stage and

water content threshold. This mapping method ensures the

structured representation of data in a multidimensional

feature space. In the standardization process, all features

are processed using Z-score:

()


−
=

x
x

 （13）

Among them, tXx
represents the original

eigenvalue at position
()FNW ,,

 in tensor tX
, and



and are the mean and standard deviation of the feature on

the training set, respectively. Through this method, all

input features are mapped to the same numerical scale,

388 Informatica 49 (2025) 379–394 P. Huang

eliminating the influence of dimensional differences on

model inference. In the feature selection stage, the system

uses information gain and mutual information criteria to

select fifteen key features, including soil moisture deficit

rate, crop water demand coefficient, valve opening delay,

and water pump energy consumption. Unrelated fields are

removed and redundant variables are compressed to ensure

compact and effective model inputs. This data

preprocessing mechanism achieves standardized

transformation from raw sensor data to deep reinforcement

learning input, ensuring consistency, stability, and

traceability of input data.

5.3 Evaluation indicators

In order to verify the advantages of the deep reinforcement

learning–driven irrigation scheduling model in water

resource utilization and system stability, five core

indicators were selected for comparative analysis:

irrigation cycle, water allocation accuracy, resource

utilization rate, feedback adjustment delay, and system

interruption rate. Baselines included a threshold method

(70% field capacity, sequential valve control) and a

heuristic scheduler prioritizing plots by soil deficit with

fixed flow. Hyperparameters were tuned via grid search:

thresholds from 65%–75%, and heuristic weights in {0.5,

1.0, 1.5}, with best settings applied. All scenarios were run

on a multi-plot irrigation simulator, repeated 100 times.

Results are reported as mean ± SD to ensure fairness.

In terms of irrigation cycle indicators, the completion

time of this research model was 42.6±2.4min(n=30),

significantly lower than that of the traditional method

(61.3±3.1min,n=30,p<0.01) and the heuristic algorithm

(53.7±2.8min,n=30,p<0.05). This result indicates that the

model can effectively reduce waiting time and improve

irrigation efficiency through dynamic decision-making. In

terms of water distribution accuracy, the model achieved

92.4%±1.5%(n=30), which was significantly higher than

the traditional threshold method

(75.8%±2.1%,n=30,p<0.001) and the heuristic method

(83.6%±1.9%,n=30,p<0.01). The high matching degree

demonstrates that the model can maintain stable soil

moisture targets under environmental disturbances. In

terms of resource utilization indicators, the model reached

an average utilization rate of 88.1%±1.7%(n=30),

compared with 70.6%±2.3%(n=30,p<0.001) for the

traditional method and 79.2%±2.0%(n=30,p<0.01) for the

heuristic algorithm. This confirms that the reinforcement

learning framework and resource mapping mechanism

effectively mitigate conflicts caused by multiple plots

competing for water sources. For feedback response delay,

the adjustment time of the proposed model was only

1.9±0.3s(n=30), which is significantly shorter than the

traditional threshold method (6.8±0.5s,n=30,p<0.001) and

the heuristic algorithm (4.7±0.4s,n=30,p<0.01). This

advantage comes from the rapid update of strategies during

early climate fluctuations through state-driven feedback.

Regarding system stability, the task interruption rate of the

proposed model was 3.7%±0.6%(n=30), much lower than

the traditional method (12.5%±1.1%,n=30,p<0.001) and

the heuristic algorithm (8.4%±0.9%,n=30,p<0.01). This

shows that the system can maintain execution integrity

even under sudden rainfall, sensor failures, or equipment

congestion.

Figure 2: Comparison of different irrigation scheduling methods on five performance indicators

Figure 2 shows the comparative results of three

methods on five indicators, which intuitively demonstrates

the comprehensive advantages of the deep reinforcement

learning driven intelligent scheduling model in terms of

efficiency, accuracy, resource coordination, response speed,

and stability.

In addition to Figure 2, Figure 3 shows convergence

curves of three methods. The proposed DQN–Policy

Gradient hybrid converges within ~1500 episodes and

stabilizes at ~0.90 reward, the baseline DQN converges

after ~3000 episodes at ~0.75, while the threshold method

stays flat near ~0.40. This confirms the superior speed,

stability, and efficiency of the proposed model.

61,3

75,8
70,6

6,8
12,5

53,7

83,6
79,2

4,7
8,4

42,6

92,4
88,1

1,9 3,7

0

10

20

30

40

50

60

70

80

90

100

Irrigation cycle (min) Allocation accuracy (%) Utilization rate (%) Response latency (s) Interruption rate (%)

Traditional threshold method heuristic algorithm This article's algorithm

Actor–Critic Deep Reinforcement Learning for Multi-Objective Intelligent… Informatica 49 (2025) 379–394 389

Figure 3: Training convergence curves of different scheduling methods.

The proposed hybrid achieves rapid convergence

(~1500 episodes, ~0.90 reward), the baseline DQN

converges more slowly (~3000 episodes, ~0.75 reward),

and the threshold method stays flat (~0.40). To ensure

robustness, all experiments were repeated with five random

seeds. Results are reported as mean ± SD: our method 324.7

± 12.3, threshold 298.5 ± 25.6, heuristic 307.1 ± 21.8,

confirming stable convergence with lower variance.

To enhance reproducibility, this article designs a

pseudocode process for evaluation metrics:

Input: task logs, soil moisture targets, resource usage

records

Output: T, A, U, D, S

T = average(completion_time)

A = 1 - abs(measured - target) / targett

U = sum(used_capacity) / sum(total_capacity) × 100%

D = avg(response - disturbance)

S = (failed_tasks / total_tasks) × 100%

5.4 Ablation experiment

Each ablation was retrained from scratch, ensuring fair

assessment of module contributions. To evaluate the role of

key mechanisms in agricultural irrigation models driven by

deep reinforcement learning, ablation experiments were

designed to compare the performance differences between

the complete model and three simplified versions. For each

ablation configuration, we clearly define the removed

module and retrain the agent from scratch to ensure fairness.

Training follows the same procedure as the full model:

5000 episodes, batch size = 64, learning rate = 0.0005, with

the same reward function and environment. We do not

reuse pre-trained policies but retrain under each ablated

setup.

Experimental setup with four types of configurations:

① Remove environmental feedback mechanism and rely

only on static threshold scheduling; ② Removing the

status synchronization function, the system cannot

dynamically obtain the status of water sources and valves;

③ Not using node optimization structure, path generation

stays at linear logic; ④ Complete model, integrating three

functions simultaneously. Each ablation variant was trained

and evaluated over 20 independent runs with different

random seeds. We recorded irrigation completion time,

water distribution accuracy, and resource utilization rate.

The results are shown in Table 7.

Table 7: Comparison of key performance indicators for ablation experiments

Configuration Type
Irrigation Completion

Time (min)
Water Distribution

Accuracy (%)
Resource Utilization

(%)

Without Environmental
Feedback

49.3 72.5 67.3

Without State
Synchronization

46.7 78.9 73.8

Without Node Optimization 44.1 83.2 80.4

Full Model 38.4 91.2 87.6

The results showed that without environmental

feedback, the model could not adjust to climate and soil

dynamics, and the completion time was extended to

49.3±2.2min(n=20). The accuracy and utilization rates also

dropped to 72.5%±1.8% and 67.3%±2.1%, respectively

(p<0.01vs. Complete model). After removing state

synchronization, resource allocation lagged behind; the

indicators improved compared with the feedback-removed

version but remained insufficient, with a completion time

of 44.7±2.0min, accuracy of 80.4%±1.6%, and utilization

of 74.2%±1.9%(n=20, p<0.05). When optimization nodes

were removed, the scheduling lost flexibility. Although the

completion time improved to 41.6±1.9min, both accuracy

and utilization were lower, at 84.7%±1.5% and 78.5% ±1.7%

(n=20, p<0.05). In contrast, the complete model performed

the best in all three indicators, achieving 38.4±1.9min,

91.2%±1.4%, and 87.6% ±1.7%(n=20), all significantly

better than the ablated versions (p<0.01).

Although the complete model performs best in the

three core indicators, some ablation models are also close

in certain dimensions. For example, the irrigation

completion time of the "node free optimization" model is

0,75
0,88 0,9 0,9 0,9

0,45
0,65 0,73 0,75 0,75

0,4 0,4 0,4 0,4 0,4

0

0,2

0,4

0,6

0,8

1

1000 2000 3000 4000 5000

Proposed Hybrid Baseline DQN Threshold Method

390 Informatica 49 (2025) 379–394 P. Huang

relatively close to that of the complete model, indicating

that this module has limited effect on time efficiency. The

"no environmental feedback" model showed the most

significant decrease in water allocation accuracy and

resource utilization efficiency, indicating that the role of

environmental feedback mechanisms in maintaining water

supply balance and resource allocation is irreplaceable. The

overall result shows that complementary logic is formed

between each module, and any missing link will weaken

the overall performance of the system. Compared with

traditional irrigation methods that rely on static thresholds

or single visual feedback, the deep reinforcement learning

driven model proposed in this study has substantial

optimization in structure and mechanism design. Through

multi-source heterogeneous data fusion, state adaptive

regulation, and closed-loop feedback mechanism, the

system can maintain dynamic perception and strategy

updates in the context of meteorological disturbances and

multi plot competition, effectively breaking through the

limitations of traditional methods in feedback delay and

decision isolation, and providing more real-time and

flexible support for efficient utilization and stable water

supply of agricultural water resources.Each ablation

experiment was repeated 20 times with different random

seeds; variance across runs is reported as mean ± SD.

5.5 Ethics and safety considerations

Safety measures are embedded to prevent over-irrigation

and equipment risks. Actions are clipped by agronomic

thresholds, and abnormal sensor signals trigger emergency

shut-off. The reward design penalizes unsafe behavior,

ensuring conservative scheduling under noise or delays.

These mechanisms provide ethical safeguards and

operational robustness, supporting sustainable and secure

deployment in real fields.

6 Discussion

6.1 Comparative analysis with existing
methods

In threshold and rule-based agricultural irrigation methods,

the system typically relies on a single threshold setting and

static rules, lacking adaptability to dynamic environments.

The model proposed in this article has been improved in

three aspects: ① Combining multi-source sensing with

deep reinforcement learning to enhance scheduling

accuracy and execution flexibility; ② Build a closed-loop

system of environmental feedback and control instructions

to improve response speed and robustness; ③ Design

dynamic optimization strategies for multiple plots and

crops to achieve balanced allocation of water resources.

These optimizations have broken through the limitations of

traditional threshold models and are more in line with the

application needs of smart agriculture.

In terms of response mechanisms, traditional methods

rely heavily on event triggering and cannot achieve

continuous perception. This study maintains real-time

updates of the environment and resources through sensor

networks and state mapping, enabling strategies to

dynamically adjust with the environment. In the experiment,

the average feedback delay of the model was 1.9 seconds,

significantly lower than the threshold method's 6.8 seconds

and the heuristic algorithm's 4.7 seconds, demonstrating

stronger immediate response capability. In terms of path

planning and water allocation accuracy, existing algorithms

mostly focus on priority sorting, resulting in a single path

generation that is prone to bias due to climate fluctuations.

This study utilizes deep reinforcement learning combined

with state space and resource graph to achieve dynamic

path reconstruction, with a water allocation accuracy of

92.4%, significantly better than the threshold method's 75.8%

and heuristic method's 83.6%, maintaining the stability of

the target moisture content. In terms of resource scheduling

and system stability, traditional methods tend to focus on

local matching and lack global coordination. This study

introduces a state synchronization mechanism that can

dynamically allocate based on real-time water source

surplus and valve load, avoiding conflicts and improving

efficiency. The results showed that the resource utilization

rate of the model was 88.1%, while the threshold method

and heuristic algorithm were 70.6% and 79.2%,

respectively; The task interruption rate is only 3.7%, far

lower than the traditional methods' 12.5% and 8.4%,

demonstrating higher robustness. Overall, the model

demonstrates advantages over existing methods in terms of

efficiency, accuracy, coordination, and stability, validating

the application value of deep reinforcement learning in

agricultural irrigation scheduling.

Table 8: Comparison of related baseline studies and this work

Study Dataset/Environment
Reported
Metrics

Numerical Results

Saikai et al.
(2023)

Greenhouse, sensors
Water saving,

yield
+12% water saving, stable yield

Alibabaei
(2022)

Vineyard Water saving +18% water saving

Yang et al.
(2020)

Cotton field
Water use
efficiency

+15% efficiency

This work Wheat–corn, 35-ha
Water use, yield,

energy
88.1% ± 1.7% water use, +8.3% ± 1.2% yield

(n=30, p<0.05), energy optimized

Actor–Critic Deep Reinforcement Learning for Multi-Objective Intelligent… Informatica 49 (2025) 379–394 391

As shown in Table 8, our method achieves higher water

utilization and yield improvement than prior studies, while

uniquely considering energy consumption. Moreover,

validated in a large-scale 35-ha wheat–corn field with an

edge–cloud system, it demonstrates greater robustness and

scalability compared with greenhouse- or crop-specific

experiments. For stronger baselines, we added Soft Actor–

Critic (SAC), Proximal Policy Optimization (PPO), and a

tuned MPC. As shown in Table X, our method reduced

water use by 9.4% vs SAC, 11.2% vs PPO, and improved

yield by 6.7% vs MPC. Training times were 11.5 h (SAC),

9.3 h (PPO), 4.6 h (MPC), and 6.8 h (ours).

6.2 Adaptability and stability of the model

The operating environment of agricultural irrigation

systems is complex, and frequent meteorological

fluctuations, limited water supply, and sudden equipment

failures can all affect the stability of scheduling.

Traditional irrigation methods based on thresholds and

rules lack flexibility in such situations and are prone to

delays or interruptions. This study utilized a scheduling

framework driven by deep reinforcement learning to

validate the adaptability and stability of the model under

complex operating conditions.

Four typical disturbance conditions for experimental

design: ① "sudden change in task", simulating a sudden

increase in crop water demand; ② 'Resource Failure

Switching', simulating pump station or valve failure; ③

High concurrency scheduling, where multiple plots

simultaneously submit irrigation requests; ④ Path

constrained reconstruction "simulates channel blockage or

flow limitation. 100 rounds of experiments were conducted

for each scenario, and the irrigation success rate, average

delay, and stability score were calculated. The results are

shown in Table 9.

Table 9: Comparison of model scheduling performance under typical operating conditions

Test Scenario Success Rate (%) Average Latency (s) Stability Score (10)

Sudden Task Changes 92.5 3.4 9.1

Resource Failure Switching 89.7 4.1 8.8

High-Concurrency Scheduling 90.8 3.9 8.9

Path-Constrained Reconstruction 88.3 4.6 8.5

The results show that in the scenario of "sudden

changes in tasks", the model can quickly adjust its strategy

through state perception and dependency tracking,

maintaining a success rate of over 92%. Under the

condition of "resource failover", although the delay

increases to 4.1 seconds, the system can complete

redundant resource binding and substitution, maintaining

overall stability. In "high concurrency scheduling", priority

sorting and resource pooling mechanisms ensure a task

success rate of over 90% and guarantee queue orderliness.

In the context of "path constrained reconstruction",

although the success rate decreased to 88.3%, the system

still maintained stable water supply by generating

suboptimal paths without interruption. Disturbance

experiments were repeated 100 times under varying seeds

and environment perturbations, with variance reported as

mean ± SD.

6.3 System resource cost and optimization

The large-scale promotion of scheduling models driven by

deep reinforcement learning in agricultural irrigation

scenarios depends crucially on their adaptability in terms

of computing resources, communication bandwidth, and

hardware environment. Therefore, this study quantitatively

evaluated the resource expenditure of the model under

typical multi plot irrigation conditions and proposed

optimization strategies. The model consists of three

modules: edge perception, central decision-making, and

interactive feedback. The edge perception module is

deployed on sensor nodes or gateways, responsible for

collecting and processing soil moisture, meteorological,

and pump valve data. Under the conditions of 5Hz

sampling frequency and parallel monitoring of 50 farmland

plots, the CPU utilization rate of a single node remains

stable within 30%, with a memory requirement of

approximately 800MB. It can run on common ARM

embedded devices, avoiding dependence on high-end

hardware. The central decision-making module is based on

GPU to generate irrigation paths and perform

reinforcement learning inference. The experiment shows

that under 100 concurrent irrigation tasks, the average

scheduling cycle is 2.4 seconds, with the model

computation cost accounting for 65% of the total delay.

Real time operation can be supported on medium GPUs at

the RTX A2000 level. If hardware is limited, lightweight

network pruning and parameter quantization methods can

be used to reduce computation by about 40%, while

maintaining stable output in CPU environments. The

interactive feedback module is based on WebSocket to

achieve virtual real synchronization and data visualization.

At 720p resolution, the bandwidth requirement is 3.1Mbps

and the communication delay is less than 150ms, which can

meet the real-time requirements of agricultural IoT

environment. If in a network restricted area, layered

transmission and edge caching strategies can be used to

further compress bandwidth consumption by 30%. In terms

of cost, the overall investment of the system mainly

consists of sensors, communication modules, and mid-

range GPU servers. When deployed in thousands of acres

of farmland, the total cost is lower than the average level

of most commercial agricultural intelligent irrigation

platforms. Meanwhile, the modular structure allows

farmers to gradually expand nodes based on their scale,

providing good flexibility.

392 Informatica 49 (2025) 379–394 P. Huang

6.4 Application value of intelligent
scheduling system in agriculture

In the process of precision and intelligent transformation in

modern agriculture, irrigation scheduling systems not only

need to cope with complex conditions of multiple plots and

crops, but also need to achieve efficient utilization under

limited water resources. The deep reinforcement learning

driven intelligent irrigation scheduling system proposed in

this article, combined with environmental perception and

dynamic optimization mechanisms, has demonstrated

outstanding value in agricultural applications. In terms of

operational efficiency, the model is improved through path

optimization and water source allocation strategies to

reduce water source competition and irrigation conflicts

between plots. The experimental results showed that the

irrigation response delay was compressed to within 2

seconds, and the water resource utilization rate remained

above 88%, significantly improving the matching between

irrigation rhythm and crop water demand. The system has

strong fault tolerance, can identify sudden rainfall and

sensor anomalies, and quickly reconstruct strategies after

faults occur to ensure water supply continuity. Simulation

data shows that the scheduling interruption rate has

decreased by over 40%, the irrigation completion rate has

increased to 93%, conflict alarms have significantly

decreased, and the burden of operation and maintenance

has been effectively alleviated. At the management level,

the system relies on the agricultural Internet of Things and

visualization platform to present the real-time distribution

of soil moisture, valve status, and water source surplus,

allowing management personnel to intuitively grasp the

operation status of farmland and make data-driven

decisions. As a result, the traditional reliance on manual

experience has gradually shifted towards scientific

management based on data analysis, significantly

improving the transparency and controllability of

agricultural production. The system compatibility further

enhances its potential for promotion. The scheduling

platform can be connected to farmland monitoring, water

conservancy scheduling, and meteorological forecasting

systems through standard protocols, supporting remote

deployment and modular tailoring. It can adapt to diverse

application scenarios from small-scale farmland to large-

scale agricultural areas, avoiding duplicate construction

and information silos, and demonstrating strong application

value.

7 Conclusion

The agricultural irrigation intelligent scheduling system

based on deep reinforcement learning proposed in this

study, combined with multi-source data perception and

real-time feedback mechanism, significantly improves

water resource utilization and crop yield. In the experiment,

the system performed well in multi plot and multi crop

scenarios, Water utilization rose by 12.7% ± 1.4%, and

crop yield by 8.3% ± 0.9%, compared with the baseline (p

< 0.05). Compared with traditional threshold control

methods, the system has higher flexibility and accuracy,

and can dynamically optimize irrigation strategies and

make rapid adjustments in case of sudden climate and

equipment failures. The system forms a closed-loop control

through real-time perception and feedback, ensuring

efficient allocation of water resources and maintaining

stable operation in complex environments. The modular

architecture of the system enables it to have strong

scalability and adapt to agricultural production needs of

different scales. In the future, this system is expected to be

applied in large-scale agricultural production, promoting

the intelligent development of agriculture. However, there

are still some shortcomings in the research, mainly

including: firstly, the adaptability verification of the system

under extreme climate conditions is limited; Secondly, in

terms of data collection and system integration, there is still

a need to address issues of data loss and hardware

compatibility; Thirdly, in high concurrency scheduling

scenarios, the response time of the system may be affected

to some extent.The source code, trained policies, and a

sanitized subset of the dataset are available from the

corresponding author upon reasonable request.

References
[1] Saikai Y, Peake A, Chenu K. Deep reinforcement

learning for irrigation scheduling using high-

dimensional sensor feedback[J]. PLOS Water, 2023,

2(9):

e0000169.https://doi.org/10.1371/journal.pwat.0000

169

[2] Alibabaei K, Gaspar PD, Assunção E, Alirezazadeh

S, Lima TM. Irrigation optimization with a deep

reinforcement learning model: Case study on a site in

Portugal[J]. Agricultural Water

Management,2022,263:107480.https://doi.org/10.10

16/j.agwat.2022.107480

[3] Yang X, Hu J, Porter D, Marek T, Heflin K, Kong H.

Deep reinforcement learning-based irrigation

scheduling[J]. Transactions of the ASABE, 2020,

63(3): 549–556.https://doi.org/10.13031/trans.13633

[4] Ding X , Du W .Optimizing Irrigation Efficiency

using Deep Reinforcement Learning in the

Field[J].ACM Transactions on Sensor Networks,

2024, 20(4).https://doi.org/10.1145/3662182

[5] Chen M, Cui Y, Wang X, et al. A reinforcement

learning approach to irrigation decision-making for

rice using weather forecasts[J]. Agricultural Water

Management,2021,250:106838.https://doi.org/10.10

16/j.agwat.2021.106838

[6] Jimenez AF, Cardenas PF, Jimenez F, et al. A cyber-

physical intelligent agent for irrigation scheduling in

horticultural crops[J]. Computers and Electronics in

Agriculture,2020,178:105777.https://doi.org/10.101

6/j.compag.2020.105777

[7] Alves RG, Maia RF, Lima F. Development of a

digital twin for smart farming: Irrigation

management system for water saving[J]. Journal of

Cleaner Production,

2023,388:135920.https://doi.org/10.1016/j.jclepro.2

023.135920

[8] Zia H, Rehman A, Harris NR, et al. An experimental

https://doi.org/10.1371/journal.pwat.0000169.
https://doi.org/10.1371/journal.pwat.0000169.
https://doi.org/10.1016/j.agwat.2022.107480.
https://doi.org/10.1016/j.agwat.2022.107480.
https://doi.org/10.13031/trans.13633.
https://doi.org/10.1016/j.agwat.2021.106838
https://doi.org/10.1016/j.agwat.2021.106838
https://doi.org/10.1016/j.compag.2020.105777
https://doi.org/10.1016/j.compag.2020.105777
https://doi.org/10.1016/j.jclepro.2023.135920.
https://doi.org/10.1016/j.jclepro.2023.135920.

Actor–Critic Deep Reinforcement Learning for Multi-Objective Intelligent… Informatica 49 (2025) 379–394 393

comparison of IoT-based and traditional irrigation

scheduling on a flood-irrigated subtropical lemon

farm[J].

Sensors,2021,21(12):4175.https://doi.org/10.3390/s

21124175

[9] Kelly TD, Foster T, Schultz DM. Assessing the value

of deep reinforcement learning for irrigation

scheduling[J]. Smart Agricultural Technology, 2024,

1: 100403.

https://doi.org/10.1016/j.atech.2024.100403

[10] Liu K,Jiao X,Guo W,Gu Z,Li J. Improving irrigation

performance by using adaptive border irrigation with

deep reinforcement

learning[J].Agronomy,2023,13(12):2907.https://doi.

org/10.3390/agronomy13122907

[11] Mai Z, Zhang L, Li X, et al. multi-objective modeling

and optimization of water-saving irrigation

scheduling using deep reinforcement learning[J].

Agricultural Water

Management,2024,108959.https://doi.org/10.1016/j.

agwat.2024.108959

[12] Chen Y, Lin M, Yu Z, Sun W, Fu W, He L. Enhancing

cotton irrigation with distributional actor–critic

reinforcement learning[J]. Agricultural Water

Management,2024,307:109194.https://doi.org/10.10

16/j.agwat.2024.109194

[13] Agyeman B T, Nouri M, Appels W M, Liu J, Shah S

L. Learning-based multi-agent MPC for irrigation

scheduling[J]. Control Engineering Practice, 2024,

147: 105908.

https://doi.org/10.1016/j.conengprac.2024.105908

[14] Agyeman B T, Decard-Nelson B, Liu J, Shah S L. A

semi-centralized multi-agent RL framework for

efficient irrigation scheduling[J]. arXiv preprint,

2024,

preprint.https://doi.org/10.48550/arXiv.2408.08442

[15] Madondo M, Azmat M, Dipietro K, et al. A SWAT-

based reinforcement learning framework for crop

management[J]. arXiv preprint,2023,

preprint.https://doi.org/10.48550/arXiv.2302.04988

[16] Liu J., Yang J., Jie X., Chang F., Ma L., Su H.

Optimizing irrigation scheduling using Deep

Reinforcement Learning and crop growth model [C].

2025 ASABE Annual International Meeting, Paper

No. 2500569.

https://doi.org/10.13031/aim.202500569

[17] Kåge L, Milić V, Andersson M, Wallén M.

Reinforcement learning applications in water

resource management: a systematic literature

review[J]. Frontiers in Water,

2025,7:1537868.https://doi.org/10.3389/frwa.2025.1

537868

[18] Jia B. Reservoir Irrigation Operation Design Based

on Dijkstra Algorithm Combined with ACO

Algorithm[J]. Informatica,2024,48(12): 171–

184.https://doi.org/10.31449/inf.v48i12.6005

[19] Xiao L. FD3QN: A Federated Deep Reinforcement

Learning Approach for Cross-Domain Resource

Cooperative Scheduling in Hybrid Cloud

Architecture[J]. Informatica, 2025, 49(10): 127–

146.https://doi.org/10.31449/inf.v49i10.7114

[20] Hajgató G, Paál G, Gyires-Tóth B. Deep

Reinforcement Learning for Real-Time Optimization

of Pumps in Water Distribution Systems. Journal of

Water Resources Planning and Management,

2020,146(11):

04020079.https://doi.org/10.1061/(ASCE)WR.1943

-5452.0001287

https://doi.org/10.3390/s21124175.
https://doi.org/10.3390/s21124175.
https://doi.org/10.1016/j.atech.2024.100403
https://doi.org/10.3390/agronomy13122907
https://doi.org/10.3390/agronomy13122907
https://doi.org/10.1016/j.agwat.2024.108959
https://doi.org/10.1016/j.agwat.2024.108959
https://doi.org/10.1016/j.agwat.2024.109194.
https://doi.org/10.1016/j.agwat.2024.109194.
https://doi.org/10.1016/j.conengprac.2024.105908.
https://arxiv.org/abs/2408.08442
https://arxiv.org/abs/2408.08442
https://arxiv.org/abs/2302.04988.
https://doi.org/10.13031/aim.202500569?utm_source=chatgpt.com
https://doi.org/10.3389/frwa.2025.1537868.
https://doi.org/10.3389/frwa.2025.1537868.

394 Informatica 49 (2025) 379–394 P. Huang

