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Against the backdrop of increasingly prominent climate fluctuations and water scarcity, the demand for 

precision and intelligence in agricultural irrigation continues to rise. This article focuses on the research 

of "agricultural irrigation intelligent scheduling algorithm and management system based on deep 

reinforcement learning", aiming to construct a technical solution that combines decision-making 

adaptability and resource utilization efficiency. At the algorithmic level, a deep reinforcement learning 

model is constructed using an improved DQN combined with policy gradient fusion, ensuring consistency 

between algorithm description and system implementation to map multimodal data such as soil moisture, 

evapotranspiration, and meteorological predictions collected by field sensing networks into state 

representations in the irrigation strategy space. The strategy function is optimized using the Time 

Difference (TD) method to enable the system to continuously update decisions in a dynamic environment. 

In order to avoid the limitations of single objective optimization, a multi-objective reward function was 

designed, which integrates crop yield, water resource utilization rate, and energy consumption into the 

evaluation indicators, and achieves adaptive balance through normalization and weight adjustment. At the 

system implementation level, a management platform integrating data collection, edge computing, cloud 

decision-making and mobile visualization is built to support the automatic generation, real-time adjustment 

and historical data backtracking analysis of irrigation plans. Field trials on a 35-ha wheat–corn site (12 

plots, 4 months) evaluated a DQN–Policy Gradient hybrid, trained for 5000 episodes (200 steps each) with 

lr=0.0005, batch size=64, and buffer=10,000. Rewards weighted efficiency (0.5), yield (0.3), and energy 

(0.2).The system achieved 88.1% ± 1.7% water use (n=30, p<0.01), representing a 12.7% improvement in 

water resource utilization, and 8.3% ± 1.2% yield gain (n=30, p<0.05), outperforming thresholds.The 

research results provide a scalable technical path for intelligent management of agricultural water 

conservancy, and provide practical verification for the application of deep reinforcement learning in 

complex resource scheduling scenarios. 

 

Povzetek: Za inteligentno namakanje je razvit večciljni sistem, ki z združenim DQN–policy-gradient 

globokim utrjevalnim učenjem ter robno-oblačno arhitekturo optimira vodo, pridelek in energijo. 

 

 

1  Introduction 

In the process of modern agriculture moving towards 

intelligence, traditional irrigation methods lack dynamic 

perception and adaptive scheduling capabilities, making it 

difficult to cope with the challenges brought by climate 

fluctuations, crop growth differences, and water resource 

imbalances. How to achieve precise water use and 

intelligent decision-making has become a key issue for 

sustainable agricultural development. 

Deep reinforcement learning can continuously 

optimize strategies through environmental interactions in 

high-dimensional state spaces, and has performed well in 

fields such as robot control and energy scheduling. In 

recent years, its application in agricultural water resource 

management has gradually expanded. Saikai et al. (2023) 

constructed a model based on high-dimensional sensor data 

to achieve automated greenhouse irrigation, with a water-

saving rate exceeding 12% and stable yield [1]. Alibaba et 

al. (2022) showed in a vineyard study that this method can 

achieve an 18% water-saving rate and reduce manual 

intervention [2]. The deep Q-network scheduling method 

proposed by Yang et al. (2020) significantly improved 

water use efficiency in cotton experiments, verifying its 

feasibility [3]. At the application level, Ding and Du's 

(2024) field experiments further demonstrated that the deep 

reinforcement learning system combined with sensor 

networks improves crop yield stability by 11% under 

dynamic climate conditions compared to traditional models 

[4]. These achievements provide direct support for the 

algorithmic transformation of intelligent irrigation and the 

system design of this study. 

Although deep reinforcement learning has shown 

effectiveness, its integration and large-scale application 

remain limited. Most models are confined to small 

experiments, lacking adaptability across plots and crops, 

and the link between monitoring platforms and decision 
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algorithms is weak, preventing a closed loop. This study 

proposes a deep reinforcement learning–based intelligent 

irrigation scheduling system to achieve end-to-end 

optimization from perception to execution. 

The system consists of three modules: multi-source 

data modeling to characterize soil, crop, and weather; a 

scheduling module that dynamically adjusts irrigation 

strategies via feedback; and an integrated management 

platform for data fusion, real-time control, and cross-

regional deployment. Compared with threshold control, the 

closed loop of “state–decision–execution” improves 

robustness, scalability, water use efficiency, and yield. 

The contributions are: (1) a state modeling framework 

integrating multi-source data; (2) a dynamic scheduling 

algorithm with cross-crop and cross-scenario adaptability; 

and (3) a management platform supporting real-time 

feedback and collaborative deployment. This combination 

provides an efficient, scalable, and practical solution for 

intelligent irrigation. 

 

2  Related work 

In multi-plot, limited water, and rapidly changing crop 

stages, existing systems often show rigid scheduling, 

delayed feedback, and weak anomaly response, limiting 

precision agriculture. To improve this, AI and sensor 

networks have been applied, shifting irrigation from static 

threshold control to dynamic feedback optimization. Chen 

et al. (2021) combined reinforcement learning with weather 

prediction for rice irrigation, improving water efficiency 

and yield [5]. Jimenez et al. (2020) built a closed-loop 

agent system enabling real-time horticultural irrigation [6]. 

Alves et al. (2023) developed a digital-twin platform that 

optimizes allocation in multi-plot scenarios [7]. These 

works suggest that coupling deep reinforcement learning 

with IoT can address multi-source data and dynamic 

scheduling. 

Yet limitations remain: experiments are mostly small-

scale without cross-region or cross-crop validation; 

algorithm–monitoring links are weak, breaking the 

perception–decision–execution chain; and rapid response 

to climate or equipment failures is lacking. To provide a 

clearer comparison, Table 1 summarizes representative 

studies, listing method class, dataset/environment, metrics, 

and numerical results, alongside our proposed work.

 

Table 1: Comparison of related works and this study on irrigation scheduling using reinforcement learning 

 

Prior Work 
Method 

Class 
Dataset/Environment 

Metrics 
Reported 

Numerical Results Remarks 

Saikai et al. 
(2023) [1] 

DRL (sensor 
feedback) 

Greenhouse, high-
dimensional sensors 

Water 
saving, 
yield 

Water saving +12%, 
stable yield 

Limited to 
greenhouse scale 

Yang et al. 
(2020) [3] 

DQN 
scheduling 

Cotton field 
Water use 
efficiency 

+15% efficiency 
No multi-
objective 

optimization 

Ding & Du 
(2024) [4] 

DRL + IoT 
sensors 

Wheat field, dynamic 
climate 

Yield 
stability 

+11% yield stability 
No edge–cloud 

integration 

Chen et al. 
(2021) [5] 

RL with 
weather 
forecast 

Rice paddy 
Yield, 
water 
saving 

+10% yield, +14% 
saving 

Seasonal 
dependency 

This work 
Actor–Critic 
DRL hybrid 

Wheat–corn, 35-ha 
field, 12 plots 

Water use, 
yield, 
energy 

88.1% ±1.7% water 
use, +8.3% ±1.2% 

yield (n=30, p<0.05) 

Multi-objective 
+ edge–cloud 

platform 

Compared with these prior studies, our approach 

integrates multi-objective optimization (water use, yield, 

and energy) and an edge–cloud management platform, 

validated in large-scale field trials, thereby demonstrating 

stronger adaptability and scalability. 

The existing research results provide a solid theoretical 

and technological foundation for intelligent scheduling of 

agricultural irrigation, but there are still the following gaps: 

(1) insufficient system integration, and there is a gap 

between algorithm and hardware collaboration; (2) The 

universality verification of multi plot and multi crop 

scenarios is limited; (3) Lack of stability testing covering 

abnormal climate and extreme conditions. Therefore, it is 

urgent to build an integrated deep reinforcement learning 

driven management system that connects the entire process 

of sensing, modeling, optimization, and execution, 

achieving a comprehensive upgrade of agricultural 

irrigation from passive regulation to intelligent closed-loop. 

 

3  Suggested scheduling plan 

3.1  Deep reinforcement learning 
framework 

In agricultural irrigation systems, traditional scheduling 

often relies on manual experience or fixed thresholds. 

Although it is effective for a single crop and stable climate, 

it often leads to scheduling lag, rigid strategies, and 

insufficient feedback when multiple plots are parallel, 

limited water sources conflict, and climate fluctuations 

occur frequently. This results in water resource waste and 

unstable yields, making it difficult to meet the needs of 

precision agriculture. Therefore, building an intelligent 

scheduling framework based on deep reinforcement 

learning has become an important path. 
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To ensure the reproducibility of the research, this article 

adopts modular design and standardized interfaces, 

enabling the system to reproduce experimental results in 

different agricultural environments. Research the use of 

AnyLogic platform to construct multi-agent simulation 

models, abstracting land parcels, irrigation units, and water 

source distributors; At the implementation level, a deep 

reinforcement learning engine is built using Python and 

Flask, and interaction with sensors and actuators is 

achieved through WebSocket and Kafka. AnyLogic 

simulated soil and crop dynamics, while the Python/Flask 

RL engine controlled real-time tasks. Sim-to-real gap was 

mitigated by randomization and field-data tuning; The data 

layer uses MySQL database to maintain environment logs 

and reward parameters, ensuring the traceability of 

experimental data. 

The research process includes four steps: firstly, using 

sensor networks to collect real-time data on soil moisture, 

evapotranspiration, rainfall, and crop status, constructing 

an environmental state space; Secondly, the framework 

adopts an improved DQN integrated with policy gradient 

methods. Although the Actor–Critic paradigm is common 

in related work, this study unifies the algorithm description 

under the DQN+PG fusion framework to avoid ambiguity 

and maintain consistency; Thirdly, an event driven 

mechanism is adopted to control the opening and closing of 

irrigation valves, with water-saving rate, uniformity, and 

yield stability as reward functions; Fourthly, verify the 

performance of the model in terms of task completion time, 

water resource utilization rate, and response speed through 

ablation and comparative experiments. This process 

ensures the traceability of results and enhances the 

application value of the method in real agricultural 

scenarios. A multi-objective reward is defined as: 

EwYwUwR ˆˆˆ
321 ++=

      （1） 

whereÛ , Ŷ , and Ê are normalized water use, yield, 

and energy saving (range [0,1]). We set 

1321 =++ www
, with default weights (0.5, 0.3, 0.2). To 

assess sensitivity, we tested (0.6, 0.2, 0.2) and (0.4, 0.4, 

0.2). Increasing yield weight improved crop gain but 

reduced water efficiency, and vice versa. These trade-offs 

confirm the default setting offers balanced performance. 

In terms of modeling logic, the system achieves 

synchronous updates between the physical state of 

farmland and the virtual model through a virtual real 

mapping mechanism. Assuming the real state vector of the 

physical environment at time t is

n

t Rx 
and the 

estimated state of the virtual model is

n

t Rx ˆ
, the 

relationship is defined as: 

( ) += ttt xfx ,ˆ
           （2） 

Among them, 
( )f

is the state mapping function, t  

is the sampling period, and
( )2,0~  N

is the sensing 

noise and environmental deviation term. This formula 

ensures that the virtual model can continuously 

approximate the real state of farmland, providing reliable 

input for deep reinforcement learning. At the scheduling 

level, task set 
 ntttT ,…,, 21=

 and resource set

 mrrrR ,…,, 21=
 are introduced, and the scheduling 

function is represented as: 

( ) ( )( )PDRCP
P

+=


minarg*

      （3） 

Among them, 
*P is the optimal path,  is the set of 

candidate paths, 
( )PC

represents the resource 

consumption and time cost function of the path; 
( )PD

is 

the deviation measure between the current execution state 

and the expected path, with a value range of [0,1], and 

＞0 is the penalty coefficient used to balance resource 

consumption and path deviation. This mechanism not only 

considers resource matching and job sequence, but also 

combines state feedback to achieve dynamic path 

correction. 

In terms of framework composition, deep 

reinforcement learning systems consist of four core 

components: environmental models (composed of soil, 

crops, and climate states), agents (learning and generating 

irrigation strategies), action spaces (valve opening and flow 

allocation), and reward functions (aimed at water 

conservation rate and yield stability). This design enables 

the system to continuously optimize strategies in dynamic 

environments, adapting to multitasking and complex 

constrained scenarios. 

In terms of system implementation and integration, the 

logical information layer is based on MySQL database and 

Flask interface to complete irrigation parameter 

maintenance and environmental data management; The 

physical entity layer consists of humidity sensors, weather 

stations, flow meters, and intelligent valves, which transmit 

real-time data through LoRa and 5G networks; The 

interaction layer utilizes Web Dashboard and Node RED to 

process task flow and generate visual results; The data 

management layer adopts centralized services combined 

with Kafka message queues to achieve asynchronous 

transmission and caching, and uses timestamp correction to 

ensure real-time mapping between virtual and real domains. 

The system has completed preliminary integration on the 

agricultural irrigation platform and verified real-time 

interaction between the decision engine and execution unit 

through WebSocket. The relevant configuration files can 

support subsequent research and replication. The network 

has three hidden layers (128, 64, 32 neurons) with ReLU 

activation. Training uses the Adam optimizer (lr=0.0005), 

batch size 64, replay buffer 10,000, and target update every 

200 steps. An epsilon-greedy policy decays from 1.0 to 

0.05 across 5000 episodes of 200 steps. Models are trained 

in simulation and fine-tuned with field data. A fixed 

random seed (2024) ensures reproducibility. 

To ensure reproducibility, the DRL model uses three 

hidden layers (128, 64, 32, ReLU) and Adam (lr=0.0005, 

batch size=64, buffer=10,000, target update=200). 

Training spans 5000 episodes of 200 steps with ε-greedy 

decay (1.0→0.05) and seed=2024. Inputs cover soil 
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moisture, evapotranspiration, rainfall, and valve states; 

actions are discretized at 5s. Training on an RTX A2000 

GPU took ~7h. Code and anonymized data will be released 

upon acceptance. 

3.2  Data preprocessing and modeling 

This mechanism defines all sensor data as state units 

containing timestamps, spatial positions, attribute values, 

and confidence, and is uniformly sampled and standardized 

by the data bus. To overcome the problem of insufficient 

exception handling in traditional models, a modeling 

method with three capabilities of state representation, 

dependency construction, and resource mapping has been 

designed. Table 2 presents its core features.

 

Table 2: Core structural characteristics of agricultural irrigation data preprocessing 

 

Feature Type Expression Method Functional Role 

State 
Representation 

Input/output state vector mapping 
Ensures real-time updates of humidity, 
evapotranspiration, etc., and eliminates noise 

Dependency 
Construction 

Environment–crop–resource logical 
relationships 

Supports dynamic coupling of tasks with weather 
and water demand conditions 

Resource 
Mapping 

Dynamic binding mechanism of water 
sources and valves 

Avoids multi-plot competition conflicts and 
delays 

In terms of state representation, the system constructs 

a standardized state vector tS
through sliding window 

filtering and missing value interpolation, and aligns it in the 

time dimension to ensure input stability; In terms of 

dependency construction, soil moisture thresholds, 

meteorological predictions, and crop growth stages are 

transformed into graph structured edge relationships for 

dynamically constraining action selection; In terms of 

resource mapping, the remaining amount of water sources 

is bound to the status of valves and task nodes to achieve 

cross site resource scheduling. 

To enhance reproducibility, this article designs a 

pseudocode process for data preprocessing: 

Input: RawData (SoilMoisture, Rainfall, ET, 

CropStage)   

For each record in RawData:   

    Align timestamp and normalize values   

    If missing_value: interpolate()   

    If noise_detected: apply filter()   

    Construct StateVector = [SoilMoisture, ET, 

Rainfall, CropStage]   

    Update DependencyGraph(StateVector)   

    Map ResourceStatus to irrigation nodes   

End For   

This process ensures the unity of input state vectors 

and the renewability of graph structures, enabling 

reinforcement learning agents to obtain accurate state 

feedback in complex environments. 

This process keeps input vectors consistent and 

dependency maps updated, allowing RL agents to obtain 

accurate state feedback in complex environments. For path 

optimization, an improved A* with load-aware sorting 

considers plot distance, soil deficit, and valve occupancy, 

generating candidate paths as RL action constraints to 

speed convergence and avoid single-source bottlenecks. A 

sliding monitoring window tracks execution; when failures, 

conflicts, or congestion occur, the exception module 

updates status and reschedules, ensuring robustness against 

climate or equipment issues. At the implementation level, 

Python preprocessing is embedded into AnyLogic, where 

tasks are managed by a directed acyclic graph: state vectors 

feed the agent and actions map to valve controls. This 

enhances input stability, improves generalization, and 

supports migration across agricultural settings. 

To enhance reproducibility, the complete training and 

execution pseudocode and the key hyperparameter settings 

are provided below. 

Algorithm Pseudocode (Training and Execution)： 

Initialize network Q(·;θ), target network Q̄, replay 

buffer B 

for each episode do 

for each step do 

Select action by ε-greedy; execute in environment 

Store transition (s,a,r,s′) in B 

Sample minibatch from B; update Q with Adam 

optimizer (lr=0.0005) 

Every 200 steps update Q̄ ← Q 

end for 

end for 

During execution: build state vector from live sensors, 

choose action by argmax Q, send control to valves, update 

state. 

 

Table 3: Hyperparameter settings 

 

Parameter Value 

Network 
3 hidden layers (128/64/32), 
ReLU 

Optimizer/LR Adam, 0.0005 

Batch/Buffer 64 / 10,000 

Target update Every 200 steps 

Episodes/Steps 5000 / 200 

Exploration 
ε-greedy 1.0 → 0.05, seed = 
2024 

Availability 

Code will be released upon acceptance; anonymized 

datasets and simulation data will be provided. 
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3.3  Scheduling strategy 

In this strategy, the task set and resource set defined earlier 

are directly used as inputs, and the agent generates actions 

(valve opening and flow allocation) through state vectors 

(including soil moisture, meteorological parameters, and 

crop growth stages). The objective function, which 

combines water-saving rate and yield stability, is 

formalized as: 

( )
=

+=
n

i

ii DWJ
1

min 
        （4） 

Among them, iW
represents the unit irrigation water 

volume of the i  plot, iD
represents its deviation from the 

optimal moisture content, and 
，

is the weight 

coefficient. This function constrains the overall water-

saving level of the system while ensuring crop yield. 

In terms of action selection, the system adopts a 

decision-making mechanism based on deep Q-networks. 

Each cycle, the agent generates a set of candidate actions 

based on the state and calls the improved A* algorithm for 

path filtering. The path cost is determined by weighting the 

distance between plots, valve utilization rate, and water 

source load: 

( ) ( )
( )



++=
Pji

jjij sudPC
,

21 

     （5） 

Among them, ijd
 represents the distance between 

plots, ju
is the valve utilization rate, js

 is the water 

source load, and 21 ，
is the balancing parameter. The 

reinforcement learning agent selects the optimal path 
*P

from the candidate path set, achieving a comprehensive 

balance between execution cost and real-time performance. 

In terms of feedback mechanism, the system sets up a 

sliding monitoring window to continuously track the status 

of task execution. When task failure, path conflict, or 

resource congestion is detected, the scheduling engine 

triggers rescheduling, writes the exception back to the state 

vector, and locally modifies the strategy to ensure 

robustness in situations such as climate change or 

equipment failure. 

At the implementation level, the scheduling strategy is 

implemented using Python as the core, embedded in the 

AnyLogic simulation environment, and interacts in real-

time with WebSocket through Kafka message queues. All 

task nodes are managed by DAG structure, and the 

intelligent agent takes state vectors as inputs to output 

control instructions for irrigation valves. Experimental 

verification shows that this strategy significantly improves 

water resource utilization efficiency and crop yield stability 

in high concurrency scenarios, and exhibits strong adaptive 

ability in ablation experiments. 

 

 

 

4  Implementation of management 
system 

4.1  System architecture and module design 

The system adopts a five-layer architecture: perception 

layer, data modeling layer, intelligent decision-making 

layer, execution control layer, and visualization interaction 

layer. Each layer is relatively independent and maintains 

real-time linkage, forming a complete closed-loop 

management system. At the perception layer, the system 

deploys soil moisture sensors, meteorological monitoring 

stations, flow meters, and intelligent valves to collect real-

time data through LoRa and 5G networks, covering key 

indicators such as moisture, rainfall, evapotranspiration, 

and crop growth stages. All data is accompanied by 

timestamps and land parcel identifiers to ensure accuracy 

and traceability of input. At the data modeling level, multi-

source heterogeneous data is first filtered, interpolated, and 

normalized to construct a unified state vector, which is then 

stored in a MySQL database. Subsequently, using graph 

structure modeling methods, the crop water demand 

patterns, water source constraints, and land parcel 

dependencies were transformed into node and edge 

relationships, forming a task logic graph. Simultaneously 

introducing Kafka message queues to achieve 

asynchronous transmission and caching in high 

concurrency scenarios. At the intelligent decision-making 

level, deep reinforcement learning agents generate 

irrigation actions based on state vectors. The decision 

framework combines improved DQN and strategy gradient 

methods, with water conservation rate, irrigation 

uniformity, and yield stability as optimization objectives. 

At the same time, an improved A * algorithm is introduced 

as a path constraint to screen candidate paths, taking into 

account the distance between parcels, valve utilization, and 

water source load, and ultimately outputting the optimal 

action. The intelligent agent dynamically updates its 

strategy based on environmental feedback during each 

scheduling cycle, achieving adaptive scheduling. In the 

execution control layer, intelligent valves and pump 

stations serve as physical execution units to complete 

irrigation operations based on instructions from the 

decision-making layer. Each execution sends the status 

back through WebSocket. If a task failure, path conflict, or 

resource congestion is detected, the system will trigger a 

rescheduling mechanism to adjust the task allocation in 

real-time and ensure uninterrupted irrigation.  

In the visual interaction layer, the system displays soil 

moisture, crop water demand status, and irrigation 

execution status through the Web Dashboard and Node 

RED module, and outputs water-saving rate and crop 

growth indicators in the form of charts. Users can manually 

intervene in the parameters of the intelligent agent to 

enhance the transparency and controllability of the system. 

To support real-time claims, edge nodes used ARM Cortex-

A72 (4×1.8 GHz, 4 GB RAM) and central inference an 

NVIDIA RTX A2000 GPU. LoRa+5G latency was 120–

150 ms, sensors showed ±2% accuracy, and valves had ~0.8 

s delay, confirming low-latency operation.
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Figure 1: Architecture flowchart of agricultural irrigation system based on deep reinforcement learning 

 
The overall logic of the system is shown in Figure 1: 

the perception layer is responsible for data collection, the 

modeling layer constructs structured inputs, the decision-

making layer generates scheduling strategies, the execution 

layer implements control instructions, and the interaction 

layer provides real-time monitoring and feedback. Through 

the collaborative design of a five-layer architecture, the 

system has achieved full chain optimization from 

environmental perception to decision execution, with real-

time response, resource balance, and robustness, providing 

a scalable systematic solution for precision agricultural 

irrigation. 

4.2  System implementation and functions 

After completing the system architecture design, this article 

further implemented an agricultural irrigation intelligent 

scheduling platform based on deep reinforcement learning, 

which covers five aspects: data collection, state modeling, 

strategy generation, execution control, and visual 

interaction, forming an end-to-end closed-loop control. 

This system not only ensures the operability of the 

theoretical model, but also demonstrates strong robustness 

and scalability in practical applications. 

In the data collection and input process, the sensor 

network obtains real-time key data such as soil moisture, 

rainfall, evapotranspiration rate, and crop growth status, 

and transmits it to the data server through LoRa and 5G 

networks. The system utilizes preprocessing modules to 

perform missing value interpolation, noise filtering, and 

timestamp alignment, ensuring input consistency and 

timeliness. In the state modeling and storage process, all 

input data is standardized into state vectors and stored in a 

MySQL database. The system also constructed a 

dependency graph of crops, water sources, and valves to 

express the logical relationships between tasks. The 

interaction process of deep reinforcement learning is 

formalized as: 

( ) ( ) 







=== 



=0

00 ,,,,
t

tt

t aassasREasQ 

   
（6） 

where Ss  is the state space, Aa is the action 

space,
( )tt asR ,

is the reward at time t , and 
( )10，

is 

the discount factor. 
( )asQ ,

denotes the long-term 

cumulative return obtained by executing action a  in state 

s  under policy . The role of this function in the system 

is to measure the value of candidate irrigation actions, 

ensuring that the agent selects a strategy that can both save 

water and stabilize yield in a dynamic environment. In the 

strategy generation stage, the system adopts an improved 

DQN and strategy gradient fusion model, and introduces 

path cost constraints. The optimization objective can be 

expressed as: 

( ) aAaSs CasRE −=  


,maxarg ,

*

  （7） 

Among them,
*  is the optimal strategy, and

( )aC

represents the execution cost of action a , including 

comprehensive factors such as inter plot distance, valve 

occupancy rate, and remaining water source; 0> is the 

penalty coefficient used to constrain the selection of high 

consumption actions.This optimization function ensures 

that the intelligent agent automatically avoids resource 

conflicts and path congestion while meeting crop water 

demands, thereby improving the overall system balance. In 

the execution control phase, intelligent valves and pump 

stations complete flow allocation based on strategic 

instructions, and provide real-time feedback on the 

execution status to the decision-making layer through 

WebSocket. When an execution exception or resource 

conflict is detected, the scheduling engine triggers a 

rescheduling mechanism to ensure the continuity of the 

task chain and the stability of the system. In the 

visualization and functional expansion stage, the system 

displays the humidity curve, valve operation status, and 

water-saving indicators of each plot through the Web 

Dashboard and Node RED module, and supports users to 

manually adjust parameters such as the learning rate and 

discount factor of the intelligent agent. This design not only 

improves the transparency of the system, but also provides 

an interactive and user-friendly interface for actual 

agricultural production. 

4.3  Real time feedback and adjustment 

During system operation, the execution status of all tasks is 

transmitted in real-time through the feedback channels of 

sensors and actuators, forming a state vector update. If the 

target state for executing the task is set to 
*s  and the real-

time acquisition state is set to ts
, the feedback error can be 

defined as: 

Perception layer 

Visual interaction 
layer 

Execution control 
layer 

Lntelligent decision-
making layer 

Data modeling layer 
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tt sse −= *

               （8） 

Among them, te
represents the deviation at time t , 

covering factors such as soil moisture, evapotranspiration, 

and differences in crop water requirements. When the error 

exceeds the threshold, the system automatically triggers the 

adjustment mechanism and writes the abnormal 

information back to the decision layer. This process ensures 

the synchronization between state perception and task 

execution, enabling the agent to maintain effective tracking 

of the target in the face of environmental fluctuations. 

In the feedback loop, the policy is updated online using 

policy gradient, which adjusts action probabilities 

according to the feedback error te
. If the current policy is

( )sa , the update rule is: 

( )ttttt sae   log1 +=+    （9） 

where t is the policy parameter at time t ,  is the 

learning rate, te
is the feedback error, and 

( )tt sa log
is the policy gradient. This mechanism 

increases the probability of effective actions when errors 

are large, enhancing accuracy and adaptability of action 

selection. 

In the implementation process, the feedback module 

adopts a sliding monitoring window mechanism to 

continuously track the task execution status. During each 

monitoring cycle, the system records the dynamic changes 

in valve opening, flow allocation, and land moisture 

content. If there is resource congestion or path conflict, the 

scheduling engine immediately triggers local rescheduling 

and recalculates the candidate action set. Compared with 

traditional manual intervention, this mechanism can 

complete adjustments in milliseconds, significantly 

reducing response time. 

To ensure the stability of the feedback mechanism, the 

system uses Kafka message queue and WebSocket channel 

to run in parallel at the implementation level, achieving 

high-frequency data transmission and low latency 

interaction. Meanwhile, through timestamp correction and 

noise filtering, false feedback caused by communication 

delays and sensing errors is avoided, ensuring the 

continuity and reliability of scheduling logic. 

Functional verification shows that the real-time 

feedback and adjustment mechanism can maintain the 

continuity of system operation under sudden climate 

fluctuations and abnormal equipment conditions. The 

experimental results showed that without feedback 

mechanism, the average irrigation completion delay was 

16.2 minutes, while with the introduction of feedback 

mechanism, the delay was shortened to 4.7 minutes; In the 

water source conflict test, the success rate of resource 

scheduling in the system increased from 83% to 96%. 

These results validate the significant role of real-time 

feedback in improving scheduling efficiency and system 

robustness. 

 

4.4  System integration and deployment 

If the agricultural irrigation scheduling model driven by 

deep reinforcement learning only stays at the algorithm 

level, it is difficult to achieve effectiveness in practical 

environments with multiple plots, crops, and water sources. 

Traditional systems often fail to quickly implement 

irrigation strategies due to loose model modules, 

inconsistent interfaces, and severe feedback delays. To 

achieve a closed-loop operation of "strategy generation 

task execution state feedback", this study proposes a 

system integration and deployment framework for 

agricultural scenarios, ensuring stable linkage between 

virtual models and physical devices. 

The overall system adopts a hierarchical decoupling 

structure, including a perception access layer, twin 

modeling layer, scheduling decision layer, and execution 

feedback layer. The perception layer collects 

multidimensional data such as soil moisture, 

evapotranspiration, and rainfall, and transmits it to the 

modeling layer through an edge gateway; Twin modeling 

layer reconstruction of farmland environment and water 

source allocation logic; The decision-making layer runs 

reinforcement learning and path optimization algorithms; 

The execution feedback layer implements control through 

valves and pump stations, and sends the status back in real-

time, forming a loop mechanism of virtual and real 

synchronization. 

To ensure time consistency between different modules, 

the system introduces a unified scheduling cycle mapping 

mechanism. The scheduling state vector set at time k  is

 kkkk crsX ,,=
, where ks

represents the moisture 

content of the plot, kr represents the crop water demand, 

and kc
represents the water source allocation rate. If 

( )F
 is the scheduling function based on reinforcement 

learning and kR
 is the real-time feedback of resource 

status, then the update iteration is: 

( )kkk RXFX ,1 =+              (10)  

This formula states that in each scheduling cycle, the 

system uses the latest feedback kR
 to correct the task 

execution logic, ensuring that the task path and resource 

allocation plan can be adjusted in real-time with 

environmental changes. 

During the task execution process, if the number of 

irrigation tasks that need to be completed in the current 

cycle is M and the number of delayed tasks is dM
, the 

deviation rate is defined as: 

M

M d=
                 (11)  
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Among them, 
 10，

represents the stability of 

scheduling execution. When the threshold is th＞
, it 

indicates that there is a significant deviation in the 

irrigation task, and the system immediately triggers the 

scheduling correction module to reduce delay by adjusting 

task priority or reconstructing the path scheme. This 

indicator provides a quantitative basis for scheduling 

quality and helps to achieve real-time monitoring of system 

robustness. 

In terms of deployment, twin modules are embedded in 

a containerized form into existing agricultural information 

platforms and can run simultaneously on local edge nodes 

or cloud servers. Edge nodes are responsible for real-time 

processing of high-frequency sensor data, while the cloud 

is responsible for strategy training and cross regional 

collaboration. Both achieve read and write synchronization 

with sensors, valves, and pump stations through MQTT and 

OPC-UA protocols, ensuring low latency and high 

compatibility in data transmission. 

In actual verification, this system has completed pilot 

deployment in the mixed planting area of wheat and corn. 

The entire integration process only takes 48 hours to 

complete the mapping and binding of land parcels, valves, 

and scheduling modules. In the first round of operation, the 

system completed dynamic path adjustment 6 times, with 

an control response latency was ~420 ms, ensuring stable 

water supply in case of sudden rainfall and water shortage. 

To enhance the repeatability of deployment, this article 

has developed standardized integration steps: the first step 

is to establish a communication path with sensors and unify 

data protocols; Step two, build a twin model of the plot and 

bind crop parameters; Step three, start the reinforcement 

learning scheduling engine and load the DAG task graph; 

Step four, configure the feedback monitoring module, set 

threshold parameters and self-recovery logic; Step 5: 

Record logs and status snapshots periodically after the 

system runs, providing a basis for secondary deployment 

and performance replication. 

5  Experiment and result analysis 

5.1  Experimental design and dataset 

To verify the applicability of the deep reinforcement 

learning irrigation scheduling model in real-world 

scenarios, this paper constructs an experimental platform 

based on the operating environment of a medium-sized 

planting base. The base mainly cultivates wheat and corn, 

with a wide distribution of irrigation areas, significant 

differences in crop water requirements, and limited water 

sources. It is a typical case for testing intelligent scheduling 

capabilities. 

The dataset is obtained by deploying sensors and 

control units at key plots and water source nodes, including 

information on soil moisture, evapotranspiration, 

meteorological elements, and crop physiological status. 

The equipment includes soil tensiometers, flow meters, 

meteorological stations, and intelligent valves, with a 

sampling frequency controlled within 5 seconds per frame 

to ensure complete recording of dynamic changes. 

The overall dataset is divided into three categories: (1) 

task flow data: records irrigation numbers, crop types, 

growth stages, target moisture content, and dependency 

relationships, totaling 892 items, forming the basis of 

irrigation scheduling diagrams. (2) Water source and 

equipment status data: covering pump station, valve and 

pipeline operation status, instantaneous flow and energy 

consumption, approximately 460000 records, aligned with 

timestamps to reflect changes in resource load. (3) 

Environmental and crop data: including rainfall, 

evapotranspiration rate, soil temperature, and crop curves, 

approximately 15000 pieces, used for reward functions and 

multi-objective optimization. 

Table 4 presents the sensor and deployment overview. 

A total of 36 Decagon 5TE sensors (±2% accuracy, 5s 

sampling) were installed across 12 plots (avg. 2.9 ha) in a 

35-ha wheat–corn field, alongside 12 smart valves and 2 

pumps. The dataset includes 460,000 records (~26.6 days, 

5s interval ≈ 2.3M seconds). Robustness was tested under 

noise (σ = 0.01, 0.05, 0.1) and delays (100–500 ms). Our 

method lost <5% at σ = 0.05 and 300 ms, while baselines 

degraded more. 

 

Table 4: Sensor deployment summary 

 

Item Value 

Sensor Model Decagon 5TE 

Accuracy ±2% 

Sampling Rate 5 s 

Pumps / Valves 2 / 12 

Total Plots 12 

Total Area 35 ha 

Duration ~26.6 days 

Noise Model Gaussian (μ=0, σ=0.05) 

 

Abnormal events included valve clogging, heavy rain, 

sensor loss, and pump failure, each lasting 30–120 s with 

10–40% deviation from normal irrigation. The 15 

disturbance cases, as detailed in Table 5, capture a wide 

range of irrigation anomalies, each with distinct duration 

and deviation characteristics. 

 

Table 5: Abnormal event scenarios and characteristics 

 

No. Event Type Duration (s) Deviation (%) Notes 

1 Valve blockage 45 −30 Partial water delivery 

2 Valve stuck open 60 +25 Over-irrigation 

3 Valve stuck closed 90 −40 Severe under-irrigation 

4 Pump failure 120 −35 System-wide interruption 
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5 Rain burst 60 +40 External water inflow 

6 Sensor dropout 30 — Missing data 

7 Pipe leakage 75 −20 Localized water loss 

8 Controller error 90 +10 Random valve open sequence 

9 Power surge 30 +15 Short-term system reset 

10 Manual override 45 −25 Bypassed optimization logic 

11 Valve latency 60 −10 Delayed response 

12 Data lag 30 — Delayed feedback 

13 Pump overheating 120 −30 Pump auto-shutdown 

14 Calibration drift 90 ±5 Sensor misreading 

15 Communication loss 60 — No control signal received 

After missing value interpolation, outlier removal, and 

normalization, all data are uniformly connected to the 

database and provided to the model through the data bus 

for calling. Table 6 shows the dataset structure and 

experimental purposes.
 

Table 6: Comparison of structure and experimental use of agricultural irrigation dataset 
 

Data Type Sample Size Sample Fields 
Update 
Frequency 

Experimental Purpose 

Task Flow Data 892 entries 
ID, crop, stage, target 
humidity, dependencies 

Generated per 
task 

Construct scheduling graph and 
dependency structure 

Water Source & 
Equipment 
Status Data 

460,000 
entries 

Pump flow, valve status, 
energy consumption, etc. 

Sampled 
every 5 
seconds 

Support real-time feedback and 
resource allocation 

Environmental 
& Crop Data 

15,000 entries 

Rainfall, 
evapotranspiration, 
temperature, crop 
parameters 

Updated every 
10 minutes 

Input for reward function and 
multi-objective optimization 

In addition to disturbance scenarios, a field protocol 

was conducted at a 35-ha wheat–corn site with 12 

randomized plots. Trials lasted four months, using drip 

irrigation and a baseline threshold of 70% field capacity. 

Yield was sampled from 10m² subsamples, and water use 

was recorded by flow meters to ensure experimental 

reproducibility. The dataset was split by temporal hold-out: 

60% for training, 20% for validation, and 20% for testing, 

ensuring realistic evaluation without data leakage. We also 

applied cross-plot validation by training on 70% of fields 

and testing on unseen 30%. The performance drop was 

<4.2%, confirming good spatial generalization. 

5.2  Data preprocessing 

The multi-source sensor data in agricultural irrigation 

scheduling has heterogeneity and temporal fluctuations. If 

it is directly input into deep reinforcement learning models 

without preprocessing, it often causes noise propagation 

and state distortion. In response to this issue, this study 

designed a processing flow that includes time alignment, 

anomaly repair, structural mapping, standardization, and 

feature screening. In the time alignment stage, all sensor 

data is interpolated and synchronized based on a unified 

sampling window t . Soil moisture, evapotranspiration, 

rainfall, and crop physiological status are mapped onto a 

unified timeline. Missing values are filled out using linear 

interpolation, and outliers that deviate by more than 3  

are fixed using the sliding median method to ensure causal 

consistency across different sources of data in the time 

dimension. In the abnormal repair process, common short-

term mutations in irrigation logs and energy consumption 

data are processed through median smoothing, and logical 

error fields in sensor signals are corrected with rule 

constraints. This process ensures that the data has stability 

and availability before entering the model. In the structural 

mapping stage, abstract the task and resource states into 

tensor form: 

   ttt

FNW

t crsRX ,,= 

      （12） 

Among them, W  is the length of the time window, 

N  is the number of parcels or equipment, and F is the 

feature dimension; ts
represents soil moisture and 

evapotranspiration rate, tr represents valve status and water 

source surplus, and tc
represents crop growth stage and 

water content threshold. This mapping method ensures the 

structured representation of data in a multidimensional 

feature space. In the standardization process, all features 

are processed using Z-score: 

( )


−
=

x
x

              （13） 

Among them, tXx
represents the original 

eigenvalue at position 
( )FNW ,,

 in tensor tX
, and 



and are the mean and standard deviation of the feature on 

the training set, respectively. Through this method, all 

input features are mapped to the same numerical scale, 
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eliminating the influence of dimensional differences on 

model inference. In the feature selection stage, the system 

uses information gain and mutual information criteria to 

select fifteen key features, including soil moisture deficit 

rate, crop water demand coefficient, valve opening delay, 

and water pump energy consumption. Unrelated fields are 

removed and redundant variables are compressed to ensure 

compact and effective model inputs. This data 

preprocessing mechanism achieves standardized 

transformation from raw sensor data to deep reinforcement 

learning input, ensuring consistency, stability, and 

traceability of input data. 

5.3  Evaluation indicators 

In order to verify the advantages of the deep reinforcement 

learning–driven irrigation scheduling model in water 

resource utilization and system stability, five core 

indicators were selected for comparative analysis: 

irrigation cycle, water allocation accuracy, resource 

utilization rate, feedback adjustment delay, and system 

interruption rate. Baselines included a threshold method 

(70% field capacity, sequential valve control) and a 

heuristic scheduler prioritizing plots by soil deficit with 

fixed flow. Hyperparameters were tuned via grid search: 

thresholds from 65%–75%, and heuristic weights in {0.5, 

1.0, 1.5}, with best settings applied. All scenarios were run 

on a multi-plot irrigation simulator, repeated 100 times. 

Results are reported as mean ± SD to ensure fairness. 

In terms of irrigation cycle indicators, the completion 

time of this research model was 42.6±2.4min(n=30), 

significantly lower than that of the traditional method 

(61.3±3.1min,n=30,p<0.01) and the heuristic algorithm 

(53.7±2.8min,n=30,p<0.05). This result indicates that the 

model can effectively reduce waiting time and improve 

irrigation efficiency through dynamic decision-making. In 

terms of water distribution accuracy, the model achieved 

92.4%±1.5%(n=30), which was significantly higher than 

the traditional threshold method 

(75.8%±2.1%,n=30,p<0.001) and the heuristic method 

(83.6%±1.9%,n=30,p<0.01). The high matching degree 

demonstrates that the model can maintain stable soil 

moisture targets under environmental disturbances. In 

terms of resource utilization indicators, the model reached 

an average utilization rate of 88.1%±1.7%(n=30), 

compared with 70.6%±2.3%(n=30,p<0.001) for the 

traditional method and 79.2%±2.0%(n=30,p<0.01) for the 

heuristic algorithm. This confirms that the reinforcement 

learning framework and resource mapping mechanism 

effectively mitigate conflicts caused by multiple plots 

competing for water sources. For feedback response delay, 

the adjustment time of the proposed model was only 

1.9±0.3s(n=30), which is significantly shorter than the 

traditional threshold method (6.8±0.5s,n=30,p<0.001) and 

the heuristic algorithm (4.7±0.4s,n=30,p<0.01). This 

advantage comes from the rapid update of strategies during 

early climate fluctuations through state-driven feedback. 

Regarding system stability, the task interruption rate of the 

proposed model was 3.7%±0.6%(n=30), much lower than 

the traditional method (12.5%±1.1%,n=30,p<0.001) and 

the heuristic algorithm (8.4%±0.9%,n=30,p<0.01). This 

shows that the system can maintain execution integrity 

even under sudden rainfall, sensor failures, or equipment 

congestion. 

 

Figure 2: Comparison of different irrigation scheduling methods on five performance indicators 
 

Figure 2 shows the comparative results of three 

methods on five indicators, which intuitively demonstrates 

the comprehensive advantages of the deep reinforcement 

learning driven intelligent scheduling model in terms of 

efficiency, accuracy, resource coordination, response speed, 

and stability. 

In addition to Figure 2, Figure 3 shows convergence 

curves of three methods. The proposed DQN–Policy 

Gradient hybrid converges within ~1500 episodes and 

stabilizes at ~0.90 reward, the baseline DQN converges 

after ~3000 episodes at ~0.75, while the threshold method 

stays flat near ~0.40. This confirms the superior speed, 

stability, and efficiency of the proposed model. 
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Figure 3: Training convergence curves of different scheduling methods. 

 

The proposed hybrid achieves rapid convergence 

(~1500 episodes, ~0.90 reward), the baseline DQN 

converges more slowly (~3000 episodes, ~0.75 reward), 

and the threshold method stays flat (~0.40). To ensure 

robustness, all experiments were repeated with five random 

seeds. Results are reported as mean ± SD: our method 324.7 

± 12.3, threshold 298.5 ± 25.6, heuristic 307.1 ± 21.8, 

confirming stable convergence with lower variance. 

To enhance reproducibility, this article designs a 

pseudocode process for evaluation metrics: 

Input: task logs, soil moisture targets, resource usage 

records 

Output: T, A, U, D, S 

T = average(completion_time) 

A = 1 - abs(measured - target) / targett 

U = sum(used_capacity) / sum(total_capacity) × 100% 

D = avg(response - disturbance) 

S = (failed_tasks / total_tasks) × 100% 

5.4  Ablation experiment 

Each ablation was retrained from scratch, ensuring fair 

assessment of module contributions. To evaluate the role of 

key mechanisms in agricultural irrigation models driven by 

deep reinforcement learning, ablation experiments were 

designed to compare the performance differences between 

the complete model and three simplified versions. For each 

ablation configuration, we clearly define the removed 

module and retrain the agent from scratch to ensure fairness. 

Training follows the same procedure as the full model: 

5000 episodes, batch size = 64, learning rate = 0.0005, with 

the same reward function and environment. We do not 

reuse pre-trained policies but retrain under each ablated 

setup. 

Experimental setup with four types of configurations: 

① Remove environmental feedback mechanism and rely 

only on static threshold scheduling; ② Removing the 

status synchronization function, the system cannot 

dynamically obtain the status of water sources and valves; 

③ Not using node optimization structure, path generation 

stays at linear logic; ④ Complete model, integrating three 

functions simultaneously. Each ablation variant was trained 

and evaluated over 20 independent runs with different 

random seeds. We recorded irrigation completion time, 

water distribution accuracy, and resource utilization rate. 

The results are shown in Table 7.

 
Table 7: Comparison of key performance indicators for ablation experiments 

 

Configuration Type 
Irrigation Completion 

Time (min) 
Water Distribution 

Accuracy (%) 
Resource Utilization 

(%) 

Without Environmental 
Feedback 

49.3 72.5 67.3 

Without State 
Synchronization 

46.7 78.9 73.8 

Without Node Optimization 44.1 83.2 80.4 

Full Model 38.4 91.2 87.6 

The results showed that without environmental 

feedback, the model could not adjust to climate and soil 

dynamics, and the completion time was extended to 

49.3±2.2min(n=20). The accuracy and utilization rates also 

dropped to 72.5%±1.8% and 67.3%±2.1%, respectively 

(p<0.01vs. Complete model). After removing state 

synchronization, resource allocation lagged behind; the 

indicators improved compared with the feedback-removed 

version but remained insufficient, with a completion time 

of 44.7±2.0min, accuracy of 80.4%±1.6%, and utilization 

of 74.2%±1.9%(n=20, p<0.05). When optimization nodes 

were removed, the scheduling lost flexibility. Although the 

completion time improved to 41.6±1.9min, both accuracy 

and utilization were lower, at 84.7%±1.5% and 78.5% ±1.7% 

(n=20, p<0.05). In contrast, the complete model performed 

the best in all three indicators, achieving 38.4±1.9min, 

91.2%±1.4%, and 87.6% ±1.7%(n=20), all significantly 

better than the ablated versions (p<0.01). 

Although the complete model performs best in the 

three core indicators, some ablation models are also close 

in certain dimensions. For example, the irrigation 

completion time of the "node free optimization" model is 
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relatively close to that of the complete model, indicating 

that this module has limited effect on time efficiency. The 

"no environmental feedback" model showed the most 

significant decrease in water allocation accuracy and 

resource utilization efficiency, indicating that the role of 

environmental feedback mechanisms in maintaining water 

supply balance and resource allocation is irreplaceable. The 

overall result shows that complementary logic is formed 

between each module, and any missing link will weaken 

the overall performance of the system. Compared with 

traditional irrigation methods that rely on static thresholds 

or single visual feedback, the deep reinforcement learning 

driven model proposed in this study has substantial 

optimization in structure and mechanism design. Through 

multi-source heterogeneous data fusion, state adaptive 

regulation, and closed-loop feedback mechanism, the 

system can maintain dynamic perception and strategy 

updates in the context of meteorological disturbances and 

multi plot competition, effectively breaking through the 

limitations of traditional methods in feedback delay and 

decision isolation, and providing more real-time and 

flexible support for efficient utilization and stable water 

supply of agricultural water resources.Each ablation 

experiment was repeated 20 times with different random 

seeds; variance across runs is reported as mean ± SD. 

5.5  Ethics and safety considerations 

Safety measures are embedded to prevent over-irrigation 

and equipment risks. Actions are clipped by agronomic 

thresholds, and abnormal sensor signals trigger emergency 

shut-off. The reward design penalizes unsafe behavior, 

ensuring conservative scheduling under noise or delays. 

These mechanisms provide ethical safeguards and 

operational robustness, supporting sustainable and secure 

deployment in real fields. 

6  Discussion 

6.1  Comparative analysis with existing 
methods 

In threshold and rule-based agricultural irrigation methods, 

the system typically relies on a single threshold setting and 

static rules, lacking adaptability to dynamic environments. 

The model proposed in this article has been improved in 

three aspects: ① Combining multi-source sensing with 

deep reinforcement learning to enhance scheduling 

accuracy and execution flexibility; ② Build a closed-loop 

system of environmental feedback and control instructions 

to improve response speed and robustness; ③ Design 

dynamic optimization strategies for multiple plots and 

crops to achieve balanced allocation of water resources. 

These optimizations have broken through the limitations of 

traditional threshold models and are more in line with the 

application needs of smart agriculture. 

In terms of response mechanisms, traditional methods 

rely heavily on event triggering and cannot achieve 

continuous perception. This study maintains real-time 

updates of the environment and resources through sensor 

networks and state mapping, enabling strategies to 

dynamically adjust with the environment. In the experiment, 

the average feedback delay of the model was 1.9 seconds, 

significantly lower than the threshold method's 6.8 seconds 

and the heuristic algorithm's 4.7 seconds, demonstrating 

stronger immediate response capability. In terms of path 

planning and water allocation accuracy, existing algorithms 

mostly focus on priority sorting, resulting in a single path 

generation that is prone to bias due to climate fluctuations. 

This study utilizes deep reinforcement learning combined 

with state space and resource graph to achieve dynamic 

path reconstruction, with a water allocation accuracy of 

92.4%, significantly better than the threshold method's 75.8% 

and heuristic method's 83.6%, maintaining the stability of 

the target moisture content. In terms of resource scheduling 

and system stability, traditional methods tend to focus on 

local matching and lack global coordination. This study 

introduces a state synchronization mechanism that can 

dynamically allocate based on real-time water source 

surplus and valve load, avoiding conflicts and improving 

efficiency. The results showed that the resource utilization 

rate of the model was 88.1%, while the threshold method 

and heuristic algorithm were 70.6% and 79.2%, 

respectively; The task interruption rate is only 3.7%, far 

lower than the traditional methods' 12.5% and 8.4%, 

demonstrating higher robustness. Overall, the model 

demonstrates advantages over existing methods in terms of 

efficiency, accuracy, coordination, and stability, validating 

the application value of deep reinforcement learning in 

agricultural irrigation scheduling. 

 

Table 8: Comparison of related baseline studies and this work 

 

Study Dataset/Environment 
Reported 
Metrics 

Numerical Results 

Saikai et al. 
(2023) 

Greenhouse, sensors 
Water saving, 

yield 
+12% water saving, stable yield 

Alibabaei 
(2022) 

Vineyard Water saving +18% water saving 

Yang et al. 
(2020) 

Cotton field 
Water use 
efficiency 

+15% efficiency 

This work Wheat–corn, 35-ha 
Water use, yield, 

energy 
88.1% ± 1.7% water use, +8.3% ± 1.2% yield 

(n=30, p<0.05), energy optimized 



Actor–Critic Deep Reinforcement Learning for Multi-Objective Intelligent… Informatica 49 (2025) 379–394 391 

 
 

As shown in Table 8, our method achieves higher water 

utilization and yield improvement than prior studies, while 

uniquely considering energy consumption. Moreover, 

validated in a large-scale 35-ha wheat–corn field with an 

edge–cloud system, it demonstrates greater robustness and 

scalability compared with greenhouse- or crop-specific 

experiments. For stronger baselines, we added Soft Actor–

Critic (SAC), Proximal Policy Optimization (PPO), and a 

tuned MPC. As shown in Table X, our method reduced 

water use by 9.4% vs SAC, 11.2% vs PPO, and improved 

yield by 6.7% vs MPC. Training times were 11.5 h (SAC), 

9.3 h (PPO), 4.6 h (MPC), and 6.8 h (ours). 

6.2  Adaptability and stability of the model 

The operating environment of agricultural irrigation 

systems is complex, and frequent meteorological 

fluctuations, limited water supply, and sudden equipment 

failures can all affect the stability of scheduling. 

Traditional irrigation methods based on thresholds and 

rules lack flexibility in such situations and are prone to 

delays or interruptions. This study utilized a scheduling 

framework driven by deep reinforcement learning to 

validate the adaptability and stability of the model under 

complex operating conditions. 

Four typical disturbance conditions for experimental 

design: ① "sudden change in task", simulating a sudden 

increase in crop water demand; ② 'Resource Failure 

Switching', simulating pump station or valve failure; ③ 

High concurrency scheduling, where multiple plots 

simultaneously submit irrigation requests; ④ Path 

constrained reconstruction "simulates channel blockage or 

flow limitation. 100 rounds of experiments were conducted 

for each scenario, and the irrigation success rate, average 

delay, and stability score were calculated. The results are 

shown in Table 9.

 
Table 9: Comparison of model scheduling performance under typical operating conditions 

 

Test Scenario Success Rate (%) Average Latency (s) Stability Score (10) 

Sudden Task Changes 92.5 3.4 9.1 

Resource Failure Switching 89.7 4.1 8.8 

High-Concurrency Scheduling 90.8 3.9 8.9 

Path-Constrained Reconstruction 88.3 4.6 8.5 

The results show that in the scenario of "sudden 

changes in tasks", the model can quickly adjust its strategy 

through state perception and dependency tracking, 

maintaining a success rate of over 92%. Under the 

condition of "resource failover", although the delay 

increases to 4.1 seconds, the system can complete 

redundant resource binding and substitution, maintaining 

overall stability. In "high concurrency scheduling", priority 

sorting and resource pooling mechanisms ensure a task 

success rate of over 90% and guarantee queue orderliness. 

In the context of "path constrained reconstruction", 

although the success rate decreased to 88.3%, the system 

still maintained stable water supply by generating 

suboptimal paths without interruption. Disturbance 

experiments were repeated 100 times under varying seeds 

and environment perturbations, with variance reported as 

mean ± SD. 

6.3  System resource cost and optimization 

The large-scale promotion of scheduling models driven by 

deep reinforcement learning in agricultural irrigation 

scenarios depends crucially on their adaptability in terms 

of computing resources, communication bandwidth, and 

hardware environment. Therefore, this study quantitatively 

evaluated the resource expenditure of the model under 

typical multi plot irrigation conditions and proposed 

optimization strategies. The model consists of three 

modules: edge perception, central decision-making, and 

interactive feedback. The edge perception module is 

deployed on sensor nodes or gateways, responsible for 

collecting and processing soil moisture, meteorological, 

and pump valve data. Under the conditions of 5Hz 

sampling frequency and parallel monitoring of 50 farmland 

plots, the CPU utilization rate of a single node remains 

stable within 30%, with a memory requirement of 

approximately 800MB. It can run on common ARM 

embedded devices, avoiding dependence on high-end 

hardware. The central decision-making module is based on 

GPU to generate irrigation paths and perform 

reinforcement learning inference. The experiment shows 

that under 100 concurrent irrigation tasks, the average 

scheduling cycle is 2.4 seconds, with the model 

computation cost accounting for 65% of the total delay. 

Real time operation can be supported on medium GPUs at 

the RTX A2000 level. If hardware is limited, lightweight 

network pruning and parameter quantization methods can 

be used to reduce computation by about 40%, while 

maintaining stable output in CPU environments. The 

interactive feedback module is based on WebSocket to 

achieve virtual real synchronization and data visualization. 

At 720p resolution, the bandwidth requirement is 3.1Mbps 

and the communication delay is less than 150ms, which can 

meet the real-time requirements of agricultural IoT 

environment. If in a network restricted area, layered 

transmission and edge caching strategies can be used to 

further compress bandwidth consumption by 30%. In terms 

of cost, the overall investment of the system mainly 

consists of sensors, communication modules, and mid-

range GPU servers. When deployed in thousands of acres 

of farmland, the total cost is lower than the average level 

of most commercial agricultural intelligent irrigation 

platforms. Meanwhile, the modular structure allows 

farmers to gradually expand nodes based on their scale, 

providing good flexibility. 
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6.4  Application value of intelligent 
scheduling system in agriculture 

In the process of precision and intelligent transformation in 

modern agriculture, irrigation scheduling systems not only 

need to cope with complex conditions of multiple plots and 

crops, but also need to achieve efficient utilization under 

limited water resources. The deep reinforcement learning 

driven intelligent irrigation scheduling system proposed in 

this article, combined with environmental perception and 

dynamic optimization mechanisms, has demonstrated 

outstanding value in agricultural applications. In terms of 

operational efficiency, the model is improved through path 

optimization and water source allocation strategies to 

reduce water source competition and irrigation conflicts 

between plots. The experimental results showed that the 

irrigation response delay was compressed to within 2 

seconds, and the water resource utilization rate remained 

above 88%, significantly improving the matching between 

irrigation rhythm and crop water demand. The system has 

strong fault tolerance, can identify sudden rainfall and 

sensor anomalies, and quickly reconstruct strategies after 

faults occur to ensure water supply continuity. Simulation 

data shows that the scheduling interruption rate has 

decreased by over 40%, the irrigation completion rate has 

increased to 93%, conflict alarms have significantly 

decreased, and the burden of operation and maintenance 

has been effectively alleviated. At the management level, 

the system relies on the agricultural Internet of Things and 

visualization platform to present the real-time distribution 

of soil moisture, valve status, and water source surplus, 

allowing management personnel to intuitively grasp the 

operation status of farmland and make data-driven 

decisions. As a result, the traditional reliance on manual 

experience has gradually shifted towards scientific 

management based on data analysis, significantly 

improving the transparency and controllability of 

agricultural production. The system compatibility further 

enhances its potential for promotion. The scheduling 

platform can be connected to farmland monitoring, water 

conservancy scheduling, and meteorological forecasting 

systems through standard protocols, supporting remote 

deployment and modular tailoring. It can adapt to diverse 

application scenarios from small-scale farmland to large-

scale agricultural areas, avoiding duplicate construction 

and information silos, and demonstrating strong application 

value. 

7  Conclusion 

The agricultural irrigation intelligent scheduling system 

based on deep reinforcement learning proposed in this 

study, combined with multi-source data perception and 

real-time feedback mechanism, significantly improves 

water resource utilization and crop yield. In the experiment, 

the system performed well in multi plot and multi crop 

scenarios, Water utilization rose by 12.7% ± 1.4%, and 

crop yield by 8.3% ± 0.9%, compared with the baseline (p 

< 0.05). Compared with traditional threshold control 

methods, the system has higher flexibility and accuracy, 

and can dynamically optimize irrigation strategies and 

make rapid adjustments in case of sudden climate and 

equipment failures. The system forms a closed-loop control 

through real-time perception and feedback, ensuring 

efficient allocation of water resources and maintaining 

stable operation in complex environments. The modular 

architecture of the system enables it to have strong 

scalability and adapt to agricultural production needs of 

different scales. In the future, this system is expected to be 

applied in large-scale agricultural production, promoting 

the intelligent development of agriculture. However, there 

are still some shortcomings in the research, mainly 

including: firstly, the adaptability verification of the system 

under extreme climate conditions is limited; Secondly, in 

terms of data collection and system integration, there is still 

a need to address issues of data loss and hardware 

compatibility; Thirdly, in high concurrency scheduling 

scenarios, the response time of the system may be affected 

to some extent.The source code, trained policies, and a 

sanitized subset of the dataset are available from the 

corresponding author upon reasonable request. 
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