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Against the backdrop of increasingly prominent climate fluctuations and water scarcity, the demand for
precision and intelligence in agricultural irrigation continues to rise. This article focuses on the research
of "agricultural irrigation intelligent scheduling algorithm and management system based on deep
reinforcement learning”, aiming to construct a technical solution that combines decision-making
adaptability and resource utilization efficiency. At the algorithmic level, a deep reinforcement learning
model is constructed using an improved DQN combined with policy gradient fusion, ensuring consistency
between algorithm description and system implementation to map multimodal data such as soil moisture,
evapotranspiration, and meteorological predictions collected by field sensing networks into state
representations in the irrigation strategy space. The strategy function is optimized using the Time
Difference (TD) method to enable the system to continuously update decisions in a dynamic environment.
In order to avoid the limitations of single objective optimization, a multi-objective reward function was
designed, which integrates crop yield, water resource utilization rate, and energy consumption into the
evaluation indicators, and achieves adaptive balance through normalization and weight adjustment. At the
system implementation level, a management platform integrating data collection, edge computing, cloud
decision-making and mobile visualization is built to support the automatic generation, real-time adjustment
and historical data backtracking analysis of irrigation plans. Field trials on a 35-ha wheat—corn site (12
plots, 4 months) evaluated a DQN—Policy Gradient hybrid, trained for 5000 episodes (200 steps each) with
Ir=0.0005, batch size=64, and buffer=10,000. Rewards weighted efficiency (0.5), yield (0.3), and energy
(0.2).The system achieved 88.1% + 1.7% water use (n=30, p<0.01), representing a 12.7% improvement in
water resource utilization, and 8.3% = 1.2% yield gain (n=30, p<0.05), outperforming thresholds.The
research results provide a scalable technical path for intelligent management of agricultural water
conservancy, and provide practical verification for the application of deep reinforcement learning in
complex resource scheduling scenarios.

Povzetek: Za inteligentno namakanje je razvit vecciljni sistem, ki z zdruzenim DQN-policy-gradient
globokim utrjevalnim ucenjem ter robno-oblacno arhitekturo optimira vodo, pridelek in energijo.

saving rate exceeding 12% and stable yield [1]. Alibaba et
al. (2022) showed in a vineyard study that this method can
achieve an 18% water-saving rate and reduce manual
intervention [2]. The deep Q-network scheduling method
proposed by Yang et al. (2020) significantly improved
water use efficiency in cotton experiments, verifying its

1 Introduction

In the process of modern agriculture moving towards
intelligence, traditional irrigation methods lack dynamic
perception and adaptive scheduling capabilities, making it
difficult to cope with the challenges brought by climate

fluctuations, crop growth differences, and water resource
imbalances. How to achieve precise water use and
intelligent decision-making has become a key issue for
sustainable agricultural development.

Deep reinforcement learning can continuously
optimize strategies through environmental interactions in
high-dimensional state spaces, and has performed well in
fields such as robot control and energy scheduling. In
recent years, its application in agricultural water resource
management has gradually expanded. Saikai et al. (2023)
constructed a model based on high-dimensional sensor data
to achieve automated greenhouse irrigation, with a water-

feasibility [3]. At the application level, Ding and Du's
(2024) field experiments further demonstrated that the deep
reinforcement learning system combined with sensor
networks improves crop yield stability by 11% under
dynamic climate conditions compared to traditional models
[4]. These achievements provide direct support for the
algorithmic transformation of intelligent irrigation and the
system design of this study.

Although deep reinforcement learning has shown
effectiveness, its integration and large-scale application
remain limited. Most models are confined to small
experiments, lacking adaptability across plots and crops,
and the link between monitoring platforms and decision
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algorithms is weak, preventing a closed loop. This study
proposes a deep reinforcement learning—based intelligent
irrigation scheduling system to achieve end-to-end
optimization from perception to execution.

The system consists of three modules: multi-source
data modeling to characterize soil, crop, and weather; a
scheduling module that dynamically adjusts irrigation
strategies via feedback; and an integrated management
platform for data fusion, real-time control, and cross-
regional deployment. Compared with threshold control, the
closed loop of “state—decision—execution” improves
robustness, scalability, water use efficiency, and yield.

The contributions are: (1) a state modeling framework
integrating multi-source data; (2) a dynamic scheduling
algorithm with cross-crop and cross-scenario adaptability;
and (3) a management platform supporting real-time
feedback and collaborative deployment. This combination
provides an efficient, scalable, and practical solution for
intelligent irrigation.

2 Related work

Table 1: Comparison of related works and this study on
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In multi-plot, limited water, and rapidly changing crop
stages, existing systems often show rigid scheduling,
delayed feedback, and weak anomaly response, limiting
precision agriculture. To improve this, Al and sensor
networks have been applied, shifting irrigation from static
threshold control to dynamic feedback optimization. Chen
etal. (2021) combined reinforcement learning with weather
prediction for rice irrigation, improving water efficiency
and yield [5]. Jimenez et al. (2020) built a closed-loop
agent system enabling real-time horticultural irrigation [6].
Alves et al. (2023) developed a digital-twin platform that
optimizes allocation in multi-plot scenarios [7]. These
works suggest that coupling deep reinforcement learning
with 10T can address multi-source data and dynamic
scheduling.

Yet limitations remain: experiments are mostly small-
scale without cross-region or cross-crop validation;
algorithm-monitoring links are weak, breaking the
perception—decision—execution chain; and rapid response
to climate or equipment failures is lacking. To provide a
clearer comparison, Table 1 summarizes representative
studies, listing method class, dataset/environment, metrics,
and numerical results, alongside our proposed work.

irrigation scheduling using reinforcement learning

: Method . Metrics :
Prior Work Class Dataset/Environment Reported Numerical Results Remarks
Saikai et al. DRL (sensor Greenhouse, high- s\é\(/a}';er Water saving +12%, Limited to
(2023) [1] feedback) dimensional sensors yielo(IL stable yield greenhouse scale
No multi-
Yang etal. DON Cotton field Water use +15% efficienc objective
(2020) [3] scheduling ! efficiency o Efficiency optirJnizzil\t/ion
Ding & Du DRL + loT Wheat field, dynamic Yield - ., No edge—cloud
(2024) [4] Sensors climate stability +11% yield stability integration
RL with Yield -
Chen et al. - ! +10% vyield, +14% Seasonal
weather Rice paddy water oy
(2021) [5] forecast saving saving dependency
. Water use, 88.1% +1.7% water Multi-objective
This work g%ﬁrﬂcé'rt.'g Wf;ie:}td—c&rn,lg?gha yield, use, +8.3% +1.2% + edge—cloud
y 1ep energy yield (n=30, p<0.05) platform

Compared with these prior studies, our approach
integrates multi-objective optimization (water use, yield,
and energy) and an edge—cloud management platform,
validated in large-scale field trials, thereby demonstrating
stronger adaptability and scalability.

The existing research results provide a solid theoretical
and technological foundation for intelligent scheduling of
agricultural irrigation, but there are still the following gaps:
(1) insufficient system integration, and there is a gap
between algorithm and hardware collaboration; (2) The
universality verification of multi plot and multi crop
scenarios is limited; (3) Lack of stability testing covering
abnormal climate and extreme conditions. Therefore, it is
urgent to build an integrated deep reinforcement learning
driven management system that connects the entire process
of sensing, modeling, optimization, and execution,
achieving a comprehensive upgrade of agricultural
irrigation from passive regulation to intelligent closed-loop.

3 Suggested scheduling plan

3.1 Deep reinforcement learning
framework

In agricultural irrigation systems, traditional scheduling
often relies on manual experience or fixed thresholds.
Although it is effective for a single crop and stable climate,
it often leads to scheduling lag, rigid strategies, and
insufficient feedback when multiple plots are parallel,
limited water sources conflict, and climate fluctuations
occur frequently. This results in water resource waste and
unstable yields, making it difficult to meet the needs of
precision agriculture. Therefore, building an intelligent
scheduling framework based on deep reinforcement
learning has become an important path.
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To ensure the reproducibility of the research, this article

adopts modular design and standardized interfaces,
enabling the system to reproduce experimental results in
different agricultural environments. Research the use of
AnyLogic platform to construct multi-agent simulation
models, abstracting land parcels, irrigation units, and water
source distributors; At the implementation level, a deep
reinforcement learning engine is built using Python and
Flask, and interaction with sensors and actuators is
achieved through WebSocket and Kafka. AnyLogic
simulated soil and crop dynamics, while the Python/Flask
RL engine controlled real-time tasks. Sim-to-real gap was
mitigated by randomization and field-data tuning; The data
layer uses MySQL database to maintain environment logs
and reward parameters, ensuring the traceability of
experimental data.
The research process includes four steps: firstly, using
sensor networks to collect real-time data on soil moisture,
evapotranspiration, rainfall, and crop status, constructing
an environmental state space; Secondly, the framework
adopts an improved DQN integrated with policy gradient
methods. Although the Actor—Critic paradigm is common
in related work, this study unifies the algorithm description
under the DQN+PG fusion framework to avoid ambiguity
and maintain consistency; Thirdly, an event driven
mechanism is adopted to control the opening and closing of
irrigation valves, with water-saving rate, uniformity, and
yield stability as reward functions; Fourthly, verify the
performance of the model in terms of task completion time,
water resource utilization rate, and response speed through
ablation and comparative experiments. This process
ensures the traceability of results and enhances the
application value of the method in real agricultural
scenarios. A multi-objective reward is defined as:

R=w,-U+w,-Y+w,-E "

whereU , Y , and E are normalized water use, yield,
and energy saving (range [0,1]). We  set

Wy + W, + Wy _1, with default weights (0.5, 0.3, 0.2). To
assess sensitivity, we tested (0.6, 0.2, 0.2) and (0.4, 0.4,
0.2). Increasing yield weight improved crop gain but
reduced water efficiency, and vice versa. These trade-offs
confirm the default setting offers balanced performance.

In terms of modeling logic, the system achieves
synchronous updates between the physical state of
farmland and the virtual model through a virtual real

mapping mechanism. Assuming the real state vector of the
n

physical environment at time t s * and the
I n
estimated state of the virtual model is * eR , the
relationship is defined as:
% = f(x.A)+e (2)

Among them, f(')is the state mapping function, At

2
is the sampling period, and ¢~ N0, is the sensing
noise and environmental deviation term. This formula
ensures that the virtual model can continuously
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approximate the real state of farmland, providing reliable
input for deep reinforcement learning. At the scheduling

T={t,t,,...t

level, task set o7 “} and resource set

R={I’1,I’2,..., rm} are introduced, and the scheduling
function is represented as:
P" =argmin (C(R)+ AD(P
gmnC(R)+0()

Among them, P is the optimal path, Qs the set of
candidate  paths, C(P) represents the resource

consumption and time cost function of the path; D(P)is
the deviation measure between the current execution state
and the expected path, with a value range of [0,1], and

A>0s the penalty coefficient used to balance resource
consumption and path deviation. This mechanism not only
considers resource matching and job sequence, but also
combines state feedback to achieve dynamic path
correction.

In terms of framework composition, deep
reinforcement learning systems consist of four core
components: environmental models (composed of sail,
crops, and climate states), agents (learning and generating
irrigation strategies), action spaces (valve opening and flow
allocation), and reward functions (aimed at water
conservation rate and yield stability). This design enables
the system to continuously optimize strategies in dynamic
environments, adapting to multitasking and complex
constrained scenarios.

In terms of system implementation and integration, the
logical information layer is based on MySQL database and
Flask interface to complete irrigation parameter
maintenance and environmental data management; The
physical entity layer consists of humidity sensors, weather
stations, flow meters, and intelligent valves, which transmit
real-time data through LoRa and 5G networks; The
interaction layer utilizes Web Dashboard and Node RED to
process task flow and generate visual results; The data
management layer adopts centralized services combined
with Kafka message queues to achieve asynchronous
transmission and caching, and uses timestamp correction to
ensure real-time mapping between virtual and real domains.
The system has completed preliminary integration on the
agricultural irrigation platform and verified real-time
interaction between the decision engine and execution unit
through WebSocket. The relevant configuration files can
support subsequent research and replication. The network
has three hidden layers (128, 64, 32 neurons) with ReLU
activation. Training uses the Adam optimizer (Ir=0.0005),
batch size 64, replay buffer 10,000, and target update every
200 steps. An epsilon-greedy policy decays from 1.0 to
0.05 across 5000 episodes of 200 steps. Models are trained
in simulation and fine-tuned with field data. A fixed
random seed (2024) ensures reproducibility.

To ensure reproducibility, the DRL model uses three
hidden layers (128, 64, 32, ReLU) and Adam (Ir=0.0005,
batch size=64, buffer=10,000, target update=200).
Training spans 5000 episodes of 200 steps with g-greedy
decay (1.0—0.05) and seed=2024. Inputs cover soil
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moisture, evapotranspiration, rainfall, and valve states;
actions are discretized at 5s. Training on an RTX A2000
GPU took ~7h. Code and anonymized data will be released
upon acceptance.

3.2 Data preprocessing and modeling

P. Huang

This mechanism defines all sensor data as state units
containing timestamps, spatial positions, attribute values,
and confidence, and is uniformly sampled and standardized
by the data bus. To overcome the problem of insufficient
exception handling in traditional models, a modeling
method with three capabilities of state representation,
dependency construction, and resource mapping has been
designed. Table 2 presents its core features.

Table 2: Core structural characteristics of agricultural irrigation data preprocessing

Feature Type Expression Method Functional Role

State - Ensures real-time updates of humidity,
Representation Input/output state vector mapping evapotranspiration, etc., and eliminates noise
Dependency Environment—crop-resource logical Supports dynamic coupling of tasks with weather
Construction relationships and water demand conditions

Resource Dynamic binding mechanism of water Avoids multi-plot competition conflicts and
Mapping sources and valves delays

In terms of state representation, the system constructs

a standardized state vector St through sliding window
filtering and missing value interpolation, and aligns it in the
time dimension to ensure input stability; In terms of
dependency construction, soil moisture thresholds,
meteorological predictions, and crop growth stages are
transformed into graph structured edge relationships for
dynamically constraining action selection; In terms of
resource mapping, the remaining amount of water sources
is bound to the status of valves and task nodes to achieve
cross site resource scheduling.

To enhance reproducibility, this article designs a
pseudocode process for data preprocessing:

Input: RawData (SoilMoisture, Rainfall, ET,
CropStage)

For each record in RawData:

Align timestamp and normalize values

If missing_value: interpolate()

If noise_detected: apply filter()

Construct StateVector = [SoilMoisture, ET,
Rainfall, CropStage]

Update DependencyGraph(StateVector)

Map ResourceStatus to irrigation nodes

End For

This process ensures the unity of input state vectors
and the renewability of graph structures, enabling
reinforcement learning agents to obtain accurate state
feedback in complex environments.

This process keeps input vectors consistent and
dependency maps updated, allowing RL agents to obtain
accurate state feedback in complex environments. For path
optimization, an improved A* with load-aware sorting
considers plot distance, soil deficit, and valve occupancy,
generating candidate paths as RL action constraints to
speed convergence and avoid single-source bottlenecks. A
sliding monitoring window tracks execution; when failures,
conflicts, or congestion occur, the exception module
updates status and reschedules, ensuring robustness against
climate or equipment issues. At the implementation level,

Python preprocessing is embedded into AnyLogic, where
tasks are managed by a directed acyclic graph: state vectors
feed the agent and actions map to valve controls. This
enhances input stability, improves generalization, and
supports migration across agricultural settings.

To enhance reproducibility, the complete training and
execution pseudocode and the key hyperparameter settings
are provided below.

Algorithm Pseudocode (Training and Execution) :

Initialize network Q(-;0), target network Q, replay
buffer B

for each episode do

for each step do

Select action by e-greedy; execute in environment

Store transition (s,a,r,s’) in B

Sample minibatch from B; update Q with Adam
optimizer (Ir=0.0005)

Every 200 steps update Q « Q

end for

end for

During execution: build state vector from live sensors,
choose action by argmax Q, send control to valves, update
state.

Table 3: Hyperparameter settings

Parameter Value

3 hidden layers (128/64/32),
Network Rel U
Optimizer/LR Adam, 0.0005
Batch/Buffer 64 /10,000
Target update Every 200 steps

Episodes/Steps 5000/ 200

. g-greedy 1.0 — 0.05, seed =
Exploration 2024

Availability
Code will be released upon acceptance; anonymized
datasets and simulation data will be provided.
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3.3 Scheduling strategy

In this strategy, the task set and resource set defined earlier
are directly used as inputs, and the agent generates actions
(valve opening and flow allocation) through state vectors
(including soil moisture, meteorological parameters, and
crop growth stages). The objective function, which
combines water-saving rate and vyield stability, is
formalized as:

min J =i(a-Wi +B-D,)
i=L (4)

Among them, * 1 represents the unit irrigation water

volume of the ! plot, Di represents its deviation from the

optimal moisture content, and @ 'B is the weight
coefficient. This function constrains the overall water-
saving level of the system while ensuring crop yield.

In terms of action selection, the system adopts a
decision-making mechanism based on deep Q-networks.
Each cycle, the agent generates a set of candidate actions
based on the state and calls the improved A* algorithm for
path filtering. The path cost is determined by weighting the
distance between plots, valve utilization rate, and water
source load:

C(P)= Y (dy+4-u,+4-s,)
(i.3)eP (5)

Among them, 1 represents the distance between

u. . L S. .
plots, ! is the valve utilization rate, ! is the water
source load, and ﬂ“l’ /1? is the balancing parameter. The

reinforcement learning agent selects the optimal path P
from the candidate path set, achieving a comprehensive
balance between execution cost and real-time performance.

In terms of feedback mechanism, the system sets up a
sliding monitoring window to continuously track the status
of task execution. When task failure, path conflict, or
resource congestion is detected, the scheduling engine
triggers rescheduling, writes the exception back to the state
vector, and locally modifies the strategy to ensure
robustness in situations such as climate change or
equipment failure.

At the implementation level, the scheduling strategy is
implemented using Python as the core, embedded in the
AnyLogic simulation environment, and interacts in real-
time with WebSocket through Kafka message queues. All
task nodes are managed by DAG structure, and the
intelligent agent takes state vectors as inputs to output
control instructions for irrigation valves. Experimental
verification shows that this strategy significantly improves
water resource utilization efficiency and crop yield stability
in high concurrency scenarios, and exhibits strong adaptive
ability in ablation experiments.
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4 Implementation of management
system

4.1 System architecture and module design

The system adopts a five-layer architecture: perception
layer, data modeling layer, intelligent decision-making
layer, execution control layer, and visualization interaction
layer. Each layer is relatively independent and maintains
real-time linkage, forming a complete closed-loop
management system. At the perception layer, the system
deploys soil moisture sensors, meteorological monitoring
stations, flow meters, and intelligent valves to collect real-
time data through LoRa and 5G networks, covering key
indicators such as moisture, rainfall, evapotranspiration,
and crop growth stages. All data is accompanied by
timestamps and land parcel identifiers to ensure accuracy
and traceability of input. At the data modeling level, multi-
source heterogeneous data is first filtered, interpolated, and
normalized to construct a unified state vector, which is then
stored in a MySQL database. Subsequently, using graph
structure modeling methods, the crop water demand
patterns, water source constraints, and land parcel
dependencies were transformed into node and edge
relationships, forming a task logic graph. Simultaneously
introducing Kafka message queues to achieve
asynchronous transmission and caching in high
concurrency scenarios. At the intelligent decision-making
level, deep reinforcement learning agents generate
irrigation actions based on state vectors. The decision
framework combines improved DQN and strategy gradient
methods, with water conservation rate, irrigation
uniformity, and yield stability as optimization objectives.
At the same time, an improved A * algorithm is introduced
as a path constraint to screen candidate paths, taking into
account the distance between parcels, valve utilization, and
water source load, and ultimately outputting the optimal
action. The intelligent agent dynamically updates its
strategy based on environmental feedback during each
scheduling cycle, achieving adaptive scheduling. In the
execution control layer, intelligent valves and pump
stations serve as physical execution units to complete
irrigation operations based on instructions from the
decision-making layer. Each execution sends the status
back through WebSocket. If a task failure, path conflict, or
resource congestion is detected, the system will trigger a
rescheduling mechanism to adjust the task allocation in
real-time and ensure uninterrupted irrigation.

In the visual interaction layer, the system displays soil
moisture, crop water demand status, and irrigation
execution status through the Web Dashboard and Node
RED module, and outputs water-saving rate and crop
growth indicators in the form of charts. Users can manually
intervene in the parameters of the intelligent agent to
enhance the transparency and controllability of the system.
To support real-time claims, edge nodes used ARM Cortex-
A72 (4x1.8 GHz, 4 GB RAM) and central inference an
NVIDIA RTX A2000 GPU. LoRa+5G latency was 120-
150 ms, sensors showed +2% accuracy, and valves had ~0.8
s delay, confirming low-latency operation.
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Figure 1: Architecture flowchart of agricultural irrigation system based on deep reinforcement learning

The overall logic of the system is shown in Figure 1:
the perception layer is responsible for data collection, the
modeling layer constructs structured inputs, the decision-
making layer generates scheduling strategies, the execution
layer implements control instructions, and the interaction
layer provides real-time monitoring and feedback. Through
the collaborative design of a five-layer architecture, the
system has achieved full chain optimization from
environmental perception to decision execution, with real -
time response, resource balance, and robustness, providing
a scalable systematic solution for precision agricultural
irrigation.

4.2 System implementation and functions

After completing the system architecture design, this article
further implemented an agricultural irrigation intelligent
scheduling platform based on deep reinforcement learning,
which covers five aspects: data collection, state modeling,
strategy generation, execution control, and visual
interaction, forming an end-to-end closed-loop control.
This system not only ensures the operability of the
theoretical model, but also demonstrates strong robustness
and scalability in practical applications.

In the data collection and input process, the sensor
network obtains real-time key data such as soil moisture,
rainfall, evapotranspiration rate, and crop growth status,
and transmits it to the data server through LoRa and 5G
networks. The system utilizes preprocessing modules to
perform missing value interpolation, noise filtering, and
timestamp alignment, ensuring input consistency and
timeliness. In the state modeling and storage process, all
input data is standardized into state vectors and stored in a
MySQL database. The system also constructed a
dependency graph of crops, water sources, and valves to
express the logical relationships between tasks. The
interaction process of deep reinforcement learning is
formalized as:

Q*(s,a)= E[iy‘R(st,at}so =s,a,=a, n}
(6)

where S€ S s the state space, &€ A'is the action

space, R(St’a‘t)is the reward at timet, and Ve (0’1)is
V4

the discount factor. Q (S’a) denotes the long-term

cumulative return obtained by executing action @ in state

S under policy 7 . The role of this function in the system
is to measure the value of candidate irrigation actions,
ensuring that the agent selects a strategy that can both save
water and stabilize yield in a dynamic environment. In the
strategy generation stage, the system adopts an improved
DQN and strategy gradient fusion model, and introduces
path cost constraints. The optimization objective can be
expressed as:

w = arg max ESES,&EA[R(S’ a)_ﬂ“'ca] 7
z 7

Among them, 77 is the optimal strategy, and C(a)

represents the execution cost of action a including
comprehensive factors such as inter plot distance, valve

occupancy rate, and remaining water source; A >0js the
penalty coefficient used to constrain the selection of high
consumption actions.This optimization function ensures
that the intelligent agent automatically avoids resource
conflicts and path congestion while meeting crop water
demands, thereby improving the overall system balance. In
the execution control phase, intelligent valves and pump
stations complete flow allocation based on strategic
instructions, and provide real-time feedback on the
execution status to the decision-making layer through
WebSocket. When an execution exception or resource
conflict is detected, the scheduling engine triggers a
rescheduling mechanism to ensure the continuity of the
task chain and the stability of the system. In the
visualization and functional expansion stage, the system
displays the humidity curve, valve operation status, and
water-saving indicators of each plot through the Web
Dashboard and Node RED module, and supports users to
manually adjust parameters such as the learning rate and
discount factor of the intelligent agent. This design not only
improves the transparency of the system, but also provides
an interactive and user-friendly interface for actual
agricultural production.

4.3 Real time feedback and adjustment

During system operation, the execution status of all tasks is
transmitted in real-time through the feedback channels of
sensors and actuators, forming a state vector update. If the

target state for executing the task is set to S and the real-

time acquisition state is set to St , the feedback error can be
defined as:
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& =HS _SIH (8)

Among them, & represents the deviation at time t,
covering factors such as soil moisture, evapotranspiration,
and differences in crop water requirements. When the error
exceeds the threshold, the system automatically triggers the
adjustment mechanism and writes the abnormal
information back to the decision layer. This process ensures
the synchronization between state perception and task
execution, enabling the agent to maintain effective tracking
of the target in the face of environmental fluctuations.

In the feedback loop, the policy is updated online using
policy gradient, which adjusts action probabilities

according to the feedback error & . If the current policy is

7[9(8‘|S)1 the update rule is:

0t+1:9t+a'et.v6 Iog ﬂH(a1|st) (9)

where et is the policy parameter at timet, s the

learning rate, & is the feedback error, and
v, log EG(a‘|St)is the policy gradient. This mechanism
increases the probability of effective actions when errors
are large, enhancing accuracy and adaptability of action
selection.

In the implementation process, the feedback module
adopts a sliding monitoring window mechanism to
continuously track the task execution status. During each
monitoring cycle, the system records the dynamic changes
in valve opening, flow allocation, and land moisture
content. If there is resource congestion or path conflict, the
scheduling engine immediately triggers local rescheduling
and recalculates the candidate action set. Compared with
traditional manual intervention, this mechanism can
complete adjustments in milliseconds, significantly
reducing response time.

To ensure the stability of the feedback mechanism, the
system uses Kafka message queue and WebSocket channel
to run in parallel at the implementation level, achieving
high-frequency data transmission and low latency
interaction. Meanwhile, through timestamp correction and
noise filtering, false feedback caused by communication
delays and sensing errors is avoided, ensuring the
continuity and reliability of scheduling logic.

Functional verification shows that the real-time
feedback and adjustment mechanism can maintain the
continuity of system operation under sudden climate
fluctuations and abnormal equipment conditions. The
experimental results showed that without feedback
mechanism, the average irrigation completion delay was
16.2 minutes, while with the introduction of feedback
mechanism, the delay was shortened to 4.7 minutes; In the
water source conflict test, the success rate of resource
scheduling in the system increased from 83% to 96%.
These results validate the significant role of real-time
feedback in improving scheduling efficiency and system
robustness.
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4.4 System integration and deployment

If the agricultural irrigation scheduling model driven by
deep reinforcement learning only stays at the algorithm
level, it is difficult to achieve effectiveness in practical
environments with multiple plots, crops, and water sources.
Traditional systems often fail to quickly implement
irrigation strategies due to loose model modules,
inconsistent interfaces, and severe feedback delays. To
achieve a closed-loop operation of "strategy generation
task execution state feedback", this study proposes a
system integration and deployment framework for
agricultural scenarios, ensuring stable linkage between
virtual models and physical devices.

The overall system adopts a hierarchical decoupling
structure, including a perception access layer, twin
modeling layer, scheduling decision layer, and execution
feedback layer. The perception layer collects
multidimensional data such as soil  moisture,
evapotranspiration, and rainfall, and transmits it to the
modeling layer through an edge gateway; Twin modeling
layer reconstruction of farmland environment and water
source allocation logic; The decision-making layer runs
reinforcement learning and path optimization algorithms;
The execution feedback layer implements control through
valves and pump stations, and sends the status back in real-
time, forming a loop mechanism of virtual and real
synchronization.

To ensure time consistency between different modules,
the system introduces a unified scheduling cycle mapping

mechanism. The scheduling state vector set at time k is
Xy :{Sk’rk’ck} , where S represents the moisture
content of the plot, T represents the crop water demand,
and Ck represents the water source allocation rate. If
F() is the scheduling function based on reinforcement

learning and Rk is the real-time feedback of resource
status, then the update iteration is:

Xk+1=F(Xk’Rk) (10)

This formula states that in each scheduling cycle, the

system uses the latest feedback Rk to correct the task
execution logic, ensuring that the task path and resource
allocation plan can be adjusted in real-time with
environmental changes.

During the task execution process, if the number of
irrigation tasks that need to be completed in the current

cycle is M and the number of delayed tasks is Md , the
deviation rate is defined as:
5=My
M (11)
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s e[04]

Among them, represents the stability of

scheduling execution. When the threshold is 5>5th, it
indicates that there is a significant deviation in the
irrigation task, and the system immediately triggers the
scheduling correction module to reduce delay by adjusting
task priority or reconstructing the path scheme. This
indicator provides a quantitative basis for scheduling
quality and helps to achieve real-time monitoring of system
robustness.

In terms of deployment, twin modules are embedded in
a containerized form into existing agricultural information
platforms and can run simultaneously on local edge nodes
or cloud servers. Edge nodes are responsible for real-time
processing of high-frequency sensor data, while the cloud
is responsible for strategy training and cross regional
collaboration. Both achieve read and write synchronization
with sensors, valves, and pump stations through MQTT and
OPC-UA protocols, ensuring low latency and high
compatibility in data transmission.

In actual verification, this system has completed pilot
deployment in the mixed planting area of wheat and corn.
The entire integration process only takes 48 hours to
complete the mapping and binding of land parcels, valves,
and scheduling modules. In the first round of operation, the
system completed dynamic path adjustment 6 times, with
an control response latency was ~420 ms, ensuring stable
water supply in case of sudden rainfall and water shortage.

To enhance the repeatability of deployment, this article
has developed standardized integration steps: the first step
is to establish a communication path with sensors and unify
data protocols; Step two, build a twin model of the plot and
bind crop parameters; Step three, start the reinforcement
learning scheduling engine and load the DAG task graph;
Step four, configure the feedback monitoring module, set
threshold parameters and self-recovery logic; Step 5:
Record logs and status snapshots periodically after the
system runs, providing a basis for secondary deployment
and performance replication.

5 Experiment and result analysis

5.1 Experimental design and dataset

To verify the applicability of the deep reinforcement
learning irrigation scheduling model in real-world
scenarios, this paper constructs an experimental platform
based on the operating environment of a medium-sized
planting base. The base mainly cultivates wheat and corn,
with a wide distribution of irrigation areas, significant
differences in crop water requirements, and limited water
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sources. It is a typical case for testing intelligent scheduling
capabilities.

The dataset is obtained by deploying sensors and
control units at key plots and water source nodes, including
information on soil moisture, evapotranspiration,
meteorological elements, and crop physiological status.
The equipment includes soil tensiometers, flow meters,
meteorological stations, and intelligent valves, with a
sampling frequency controlled within 5 seconds per frame
to ensure complete recording of dynamic changes.

The overall dataset is divided into three categories: (1)
task flow data: records irrigation numbers, crop types,
growth stages, target moisture content, and dependency
relationships, totaling 892 items, forming the basis of
irrigation scheduling diagrams. (2) Water source and
equipment status data: covering pump station, valve and
pipeline operation status, instantaneous flow and energy
consumption, approximately 460000 records, aligned with
timestamps to reflect changes in resource load. (3)
Environmental and crop data: including rainfall,
evapotranspiration rate, soil temperature, and crop curves,
approximately 15000 pieces, used for reward functions and
multi-objective optimization.

Table 4 presents the sensor and deployment overview.
A total of 36 Decagon 5TE sensors (£2% accuracy, 5s
sampling) were installed across 12 plots (avg. 2.9 ha) in a
35-ha wheat—corn field, alongside 12 smart valves and 2
pumps. The dataset includes 460,000 records (~26.6 days,
5s interval = 2.3M seconds). Robustness was tested under
noise (¢ = 0.01, 0.05, 0.1) and delays (100-500 ms). Our
method lost <5% at o = 0.05 and 300 ms, while baselines
degraded more.

Table 4: Sensor deployment summary

Item Value
Sensor Model Decagon 5TE
Accuracy +2%
Sampling Rate 5s
Pumps / Valves 2/12
Total Plots 12
Total Area 35 ha
Duration ~26.6 days
Noise Model Gaussian (u=0, 6=0.05)

Abnormal events included valve clogging, heavy rain,
sensor loss, and pump failure, each lasting 30-120 s with
10-40% deviation from normal irrigation. The 15
disturbance cases, as detailed in Table 5, capture a wide
range of irrigation anomalies, each with distinct duration
and deviation characteristics.

Table 5: Abnormal event scenarios and characteristics

No. Event Type Duration (s) Deviation (%0) Notes
1 Valve blockage 45 =30 Partial water delivery
2 Valve stuck open 60 +25 Over-irrigation
3 Valve stuck closed 90 =40 Severe under-irrigation
4 Pump failure 120 -35 System-wide interruption
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5 Rain burst 60 +40 External water inflow

6 Sensor dropout 30 — Missing data

7 Pipe leakage 75 =20 Localized water loss

8 Controller error 90 +10 Random valve open sequence
9 Power surge 30 +15 Short-term system reset
10 Manual override 45 -25 Bypassed optimization logic
11 Valve latency 60 -10 Delayed response

12 Data lag 30 — Delayed feedback

13 Pump overheating 120 =30 Pump auto-shutdown

14 Calibration drift 90 +5 Sensor misreading

15 Communication loss 60 — No control signal received

After missing value interpolation, outlier removal, and
normalization, all data are uniformly connected to the

database and provided to the model through the data bus
for calling. Table 6 shows the dataset structure and
experimental purposes.

Table 6: Comparison of structure and experimental use of agricultural irrigation dataset

- - Update :
Data Type Sample Size Sample Fields Frequency Experimental Purpose
. ID, crop, stage, target Generated per Construct scheduling graph and

Task Flow Data 892 entries humidity, dependencies task dependency structure
\é\/aJierrﬁg#trce & 460,000 Pump flow, valve status, g\e/xg:plgd Support real-time feedback and
Stcjaltug Data entries energy consumption, etc. seco%ds resource allocation

Rainfall,
Environmental 15.000 entries evapotranspiration, Updated every Input for reward function and
& Crop Data ' temperature, crop 10 minutes multi-objective optimization

parameters

In addition to disturbance scenarios, a field protocol
was conducted at a 35-ha wheat—corn site with 12
randomized plots. Trials lasted four months, using drip
irrigation and a baseline threshold of 70% field capacity.
Yield was sampled from 10m2 subsamples, and water use
was recorded by flow meters to ensure experimental
reproducibility. The dataset was split by temporal hold-out:
60% for training, 20% for validation, and 20% for testing,
ensuring realistic evaluation without data leakage. We also
applied cross-plot validation by training on 70% of fields
and testing on unseen 30%. The performance drop was
<4.2%, confirming good spatial generalization.

5.2 Data preprocessing

The multi-source sensor data in agricultural irrigation
scheduling has heterogeneity and temporal fluctuations. If
it is directly input into deep reinforcement learning models
without preprocessing, it often causes noise propagation
and state distortion. In response to this issue, this study
designed a processing flow that includes time alignment,
anomaly repair, structural mapping, standardization, and
feature screening. In the time alignment stage, all sensor
data is interpolated and synchronized based on a unified

sampling window At goj| moisture, evapotranspiration,
rainfall, and crop physiological status are mapped onto a
unified timeline. Missing values are filled out using linear

interpolation, and outliers that deviate by more than 3o
are fixed using the sliding median method to ensure causal
consistency across different sources of data in the time
dimension. In the abnormal repair process, common short-

term mutations in irrigation logs and energy consumption
data are processed through median smoothing, and logical
error fields in sensor signals are corrected with rule
constraints. This process ensures that the data has stability
and availability before entering the model. In the structural
mapping stage, abstract the task and resource states into
tensor form:

X, € RMF = [St’ rt'Ct] (12)

Among them, W s the length of the time window,
N s the number of parcels or equipment, and F is the

. . S ) .
feature dimension; ~t represents soil moisture and

N r
evapotranspiration rate, t represents valve status and water

source surplus, and G represents crop growth stage and
water content threshold. This mapping method ensures the
structured representation of data in a multidimensional
feature space. In the standardization process, all features
are processed using Z-score:

(x—u)

X'=+——
o (13)
Among them, Xe xt represents the original
eigenvalue at position (W’ N, F) in tensor Xt , and H

and O are the mean and standard deviation of the feature on
the training set, respectively. Through this method, all
input features are mapped to the same numerical scale,
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eliminating the influence of dimensional differences on
model inference. In the feature selection stage, the system
uses information gain and mutual information criteria to
select fifteen key features, including soil moisture deficit
rate, crop water demand coefficient, valve opening delay,
and water pump energy consumption. Unrelated fields are
removed and redundant variables are compressed to ensure
compact and effective model inputs. This data
preprocessing  mechanism  achieves  standardized
transformation from raw sensor data to deep reinforcement
learning input, ensuring consistency, stability, and
traceability of input data.

5.3 Evaluation indicators

In order to verify the advantages of the deep reinforcement
learning—driven irrigation scheduling model in water
resource utilization and system stability, five core
indicators were selected for comparative analysis:
irrigation cycle, water allocation accuracy, resource
utilization rate, feedback adjustment delay, and system
interruption rate. Baselines included a threshold method
(70% field capacity, sequential valve control) and a
heuristic scheduler prioritizing plots by soil deficit with
fixed flow. Hyperparameters were tuned via grid search:
thresholds from 65%-75%, and heuristic weights in {0.5,
1.0, 1.5}, with best settings applied. All scenarios were run
on a multi-plot irrigation simulator, repeated 100 times.
Results are reported as mean + SD to ensure fairness.

In terms of irrigation cycle indicators, the completion
time of this research model was 42.6+2.4min(n=30),
significantly lower than that of the traditional method

100
90

Irrigation cycle (min)  Allocation accuracy (%)

M Traditional threshold method

heuristic algorithm
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(61.3+3.1min,n=30,p<0.01) and the heuristic algorithm
(53.7+2.8min,n=30,p<0.05). This result indicates that the
model can effectively reduce waiting time and improve
irrigation efficiency through dynamic decision-making. In
terms of water distribution accuracy, the model achieved
92.4%+1.5%(n=30), which was significantly higher than
the traditional threshold method
(75.8%+2.1%,n=30,p<0.001) and the heuristic method
(83.6%+1.9%,n=30,p<0.01). The high matching degree
demonstrates that the model can maintain stable soil
moisture targets under environmental disturbances. In
terms of resource utilization indicators, the model reached
an average utilization rate of 88.1%+1.7%(n=30),
compared with 70.6%+2.3%(n=30,p<0.001) for the
traditional method and 79.2%2.0%(n=30,p<0.01) for the
heuristic algorithm. This confirms that the reinforcement
learning framework and resource mapping mechanism
effectively mitigate conflicts caused by multiple plots
competing for water sources. For feedback response delay,
the adjustment time of the proposed model was only
1.9+0.3s(n=30), which is significantly shorter than the
traditional threshold method (6.8+0.5s,n=30,p<0.001) and
the heuristic algorithm (4.7+0.4s,n=30,p<0.01). This
advantage comes from the rapid update of strategies during
early climate fluctuations through state-driven feedback.
Regarding system stability, the task interruption rate of the
proposed model was 3.7%+0.6%(n=30), much lower than
the traditional method (12.5%z+1.1%,n=30,p<0.001) and
the heuristic algorithm (8.4%+0.9%,n=30,p<0.01). This
shows that the system can maintain execution integrity
even under sudden rainfall, sensor failures, or equipment
congestion.

o 924 88,1
758 79,2
70,6
70 61,3
60 53,7
50 426
40
30
20 12,5
10 68 47 14 SANEY
° p—— -

Utilization rate (%)

Response latency (s) Interruption rate (%)

M This article's algorithm

Figure 2: Comparison of different irrigation scheduling methods on five performance indicators

Figure 2 shows the comparative results of three
methods on five indicators, which intuitively demonstrates
the comprehensive advantages of the deep reinforcement
learning driven intelligent scheduling model in terms of
efficiency, accuracy, resource coordination, response speed,
and stability.

In addition to Figure 2, Figure 3 shows convergence
curves of three methods. The proposed DQN-Policy
Gradient hybrid converges within ~1500 episodes and
stabilizes at ~0.90 reward, the baseline DQN converges
after ~3000 episodes at ~0.75, while the threshold method
stays flat near ~0.40. This confirms the superior speed,
stability, and efficiency of the proposed model.
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Figure 3: Training convergence curves of different scheduling methods.

The proposed hybrid achieves rapid convergence
(~1500 episodes, ~0.90 reward), the baseline DQN
converges more slowly (~3000 episodes, ~0.75 reward),
and the threshold method stays flat (~0.40). To ensure
robustness, all experiments were repeated with five random
seeds. Results are reported as mean £ SD: our method 324.7
+ 12.3, threshold 298.5 + 25.6, heuristic 307.1 + 21.8,
confirming stable convergence with lower variance.

To enhance reproducibility, this article designs a
pseudocode process for evaluation metrics:

Input: task logs, soil moisture targets, resource usage
records

Output: T, A, U, D, S

T = average(completion_time)

A =1 - abs(measured - target) / targett

U = sum(used_capacity) / sum(total_capacity) x 100%

D = avg(response - disturbance)

S = (failed_tasks / total_tasks) x 100%

5.4 Ablation experiment

Each ablation was retrained from scratch, ensuring fair
assessment of module contributions. To evaluate the role of

key mechanisms in agricultural irrigation models driven by
deep reinforcement learning, ablation experiments were
designed to compare the performance differences between
the complete model and three simplified versions. For each
ablation configuration, we clearly define the removed
module and retrain the agent from scratch to ensure fairness.
Training follows the same procedure as the full model:
5000 episodes, batch size = 64, learning rate = 0.0005, with
the same reward function and environment. We do not
reuse pre-trained policies but retrain under each ablated
setup.

Experimental setup with four types of configurations:
(1) Remove environmental feedback mechanism and rely
only on static threshold scheduling; (2) Removing the
status synchronization function, the system cannot
dynamically obtain the status of water sources and valves;
(3) Not using node optimization structure, path generation
stays at linear logic; (4) Complete model, integrating three
functions simultaneously. Each ablation variant was trained
and evaluated over 20 independent runs with different
random seeds. We recorded irrigation completion time,
water distribution accuracy, and resource utilization rate.
The results are shown in Table 7.

Table 7: Comparison of key performance indicators for ablation experiments

- - Irrigation Completion Water Distribution Resource Utilization

Configuration Type Time (min) Accuracy (%) (%)
Without Environmental
Feedback 49.3 725 67.3
Without State

Synchronization 46.7 8.9 738
Without Node Optimization 44.1 83.2 80.4
Full Model 38.4 91.2 87.6

The results showed that without environmental
feedback, the model could not adjust to climate and soil
dynamics, and the completion time was extended to
49.3+2.2min(n=20). The accuracy and utilization rates also
dropped to 72.5%%1.8% and 67.3%%2.1%, respectively
(p<0.01vs. Complete model). After removing state
synchronization, resource allocation lagged behind; the
indicators improved compared with the feedback-removed
version but remained insufficient, with a completion time
of 44.7£2.0min, accuracy of 80.4%1.6%, and utilization
of 74.2%+1.9%(n=20, p<0.05). When optimization nodes

were removed, the scheduling lost flexibility. Although the
completion time improved to 41.6+1.9min, both accuracy
and utilization were lower, at 84.7%*1.5% and 78.5% +1.7%
(n=20, p<0.05). In contrast, the complete model performed
the best in all three indicators, achieving 38.4+1.9min,
91.2%=+1.4%, and 87.6% *1.7%(n=20), all significantly
better than the ablated versions (p<0.01).

Although the complete model performs best in the
three core indicators, some ablation models are also close
in certain dimensions. For example, the irrigation
completion time of the "node free optimization" model is
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relatively close to that of the complete model, indicating
that this module has limited effect on time efficiency. The
"no environmental feedback” model showed the most
significant decrease in water allocation accuracy and
resource utilization efficiency, indicating that the role of
environmental feedback mechanisms in maintaining water
supply balance and resource allocation is irreplaceable. The
overall result shows that complementary logic is formed
between each module, and any missing link will weaken
the overall performance of the system. Compared with
traditional irrigation methods that rely on static thresholds
or single visual feedback, the deep reinforcement learning
driven model proposed in this study has substantial
optimization in structure and mechanism design. Through
multi-source heterogeneous data fusion, state adaptive
regulation, and closed-loop feedback mechanism, the
system can maintain dynamic perception and strategy
updates in the context of meteorological disturbances and
multi plot competition, effectively breaking through the
limitations of traditional methods in feedback delay and
decision isolation, and providing more real-time and
flexible support for efficient utilization and stable water
supply of agricultural water resources.Each ablation
experiment was repeated 20 times with different random
seeds; variance across runs is reported as mean + SD.

5.5 Ethics and safety considerations

Safety measures are embedded to prevent over-irrigation
and equipment risks. Actions are clipped by agronomic
thresholds, and abnormal sensor signals trigger emergency
shut-off. The reward design penalizes unsafe behavior,
ensuring conservative scheduling under noise or delays.
These mechanisms provide ethical safeguards and
operational robustness, supporting sustainable and secure
deployment in real fields.

6 Discussion

6.1 Comparative analysis with existing
methods

In threshold and rule-based agricultural irrigation methods,
the system typically relies on a single threshold setting and
static rules, lacking adaptability to dynamic environments.
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The model proposed in this article has been improved in
three aspects: (1) Combining multi-source sensing with
deep reinforcement learning to enhance scheduling
accuracy and execution flexibility; (2) Build a closed-loop
system of environmental feedback and control instructions
to improve response speed and robustness; (3) Design
dynamic optimization strategies for multiple plots and
crops to achieve balanced allocation of water resources.
These optimizations have broken through the limitations of
traditional threshold models and are more in line with the
application needs of smart agriculture.

In terms of response mechanisms, traditional methods
rely heavily on event triggering and cannot achieve
continuous perception. This study maintains real-time
updates of the environment and resources through sensor
networks and state mapping, enabling strategies to
dynamically adjust with the environment. In the experiment,
the average feedback delay of the model was 1.9 seconds,
significantly lower than the threshold method's 6.8 seconds
and the heuristic algorithm's 4.7 seconds, demonstrating
stronger immediate response capability. In terms of path
planning and water allocation accuracy, existing algorithms
mostly focus on priority sorting, resulting in a single path
generation that is prone to bias due to climate fluctuations.
This study utilizes deep reinforcement learning combined
with state space and resource graph to achieve dynamic
path reconstruction, with a water allocation accuracy of
92.4%, significantly better than the threshold method's 75.8%
and heuristic method's 83.6%, maintaining the stability of
the target moisture content. In terms of resource scheduling
and system stability, traditional methods tend to focus on
local matching and lack global coordination. This study
introduces a state synchronization mechanism that can
dynamically allocate based on real-time water source
surplus and valve load, avoiding conflicts and improving
efficiency. The results showed that the resource utilization
rate of the model was 88.1%, while the threshold method
and heuristic algorithm were 70.6% and 79.2%,
respectively; The task interruption rate is only 3.7%, far
lower than the traditional methods' 12.5% and 8.4%,
demonstrating higher robustness. Overall, the model
demonstrates advantages over existing methods in terms of
efficiency, accuracy, coordination, and stability, validating
the application value of deep reinforcement learning in
agricultural irrigation scheduling.

Table 8: Comparison of related baseline studies and this work

Study Dataset/Environment R,\(;lgf[)l,ritgsd Numerical Results
Sai(lé%izgt) al. Greenhouse, sensors Wau;ri :ﬁjving, +12% water saving, stable yield
Al(izboazbze)lei Vineyard Water saving +18% water saving
Ya(rzlgze('g)al. Cotton field \é}/ﬁggﬁx +15% efficiency
Thiswork | Wheatcom 3w | WHSTuSeIId | 801%110 vteruse 03 120 viel
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As shown in Table 8, our method achieves higher water
utilization and yield improvement than prior studies, while
uniquely considering energy consumption. Moreover,
validated in a large-scale 35-ha wheat—corn field with an
edge—cloud system, it demonstrates greater robustness and
scalability compared with greenhouse- or crop-specific
experiments. For stronger baselines, we added Soft Actor—
Critic (SAC), Proximal Policy Optimization (PPO), and a
tuned MPC. As shown in Table X, our method reduced
water use by 9.4% vs SAC, 11.2% vs PPO, and improved
yield by 6.7% vs MPC. Training times were 11.5 h (SAC),
9.3 h (PPO), 4.6 h (MPC), and 6.8 h (ours).

6.2 Adaptability and stability of the model

The operating environment of agricultural irrigation
systems is complex, and frequent meteorological
fluctuations, limited water supply, and sudden equipment
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failures can all affect the stability of scheduling.
Traditional irrigation methods based on thresholds and
rules lack flexibility in such situations and are prone to
delays or interruptions. This study utilized a scheduling
framework driven by deep reinforcement learning to
validate the adaptability and stability of the model under
complex operating conditions.

Four typical disturbance conditions for experimental
design: (1) "sudden change in task", simulating a sudden
increase in crop water demand; (2) 'Resource Failure
Switching', simulating pump station or valve failure; (3)
High concurrency scheduling, where multiple plots
simultaneously submit irrigation requests; (4) Path
constrained reconstruction "simulates channel blockage or
flow limitation. 100 rounds of experiments were conducted
for each scenario, and the irrigation success rate, average
delay, and stability score were calculated. The results are
shown in Table 9.

Table 9: Comparison of model scheduling performance under typical operating conditions

Test Scenario Success Rate (%) Average Latency (s) Stability Score (10)
Sudden Task Changes 92.5 3.4 9.1
Resource Failure Switching 89.7 4.1 8.8
High-Concurrency Scheduling 90.8 3.9 8.9
Path-Constrained Reconstruction 88.3 4.6 8.5

The results show that in the scenario of "sudden
changes in tasks", the model can quickly adjust its strategy
through state perception and dependency tracking,
maintaining a success rate of over 92%. Under the
condition of "resource failover”, although the delay
increases to 4.1 seconds, the system can complete
redundant resource binding and substitution, maintaining
overall stability. In "high concurrency scheduling™, priority
sorting and resource pooling mechanisms ensure a task
success rate of over 90% and guarantee queue orderliness.
In the context of "path constrained reconstruction”,
although the success rate decreased to 88.3%, the system
still maintained stable water supply by generating
suboptimal paths without interruption. Disturbance
experiments were repeated 100 times under varying seeds
and environment perturbations, with variance reported as
mean % SD.

6.3 System resource cost and optimization

The large-scale promotion of scheduling models driven by
deep reinforcement learning in agricultural irrigation
scenarios depends crucially on their adaptability in terms
of computing resources, communication bandwidth, and
hardware environment. Therefore, this study quantitatively
evaluated the resource expenditure of the model under
typical multi plot irrigation conditions and proposed
optimization strategies. The model consists of three
modules: edge perception, central decision-making, and
interactive feedback. The edge perception module is
deployed on sensor nodes or gateways, responsible for
collecting and processing soil moisture, meteorological,
and pump valve data. Under the conditions of 5Hz
sampling frequency and parallel monitoring of 50 farmland

plots, the CPU utilization rate of a single node remains
stable within 30%, with a memory requirement of
approximately 800MB. It can run on common ARM
embedded devices, avoiding dependence on high-end
hardware. The central decision-making module is based on
GPU to generate irrigation paths and perform
reinforcement learning inference. The experiment shows
that under 100 concurrent irrigation tasks, the average
scheduling cycle is 2.4 seconds, with the model
computation cost accounting for 65% of the total delay.
Real time operation can be supported on medium GPUs at
the RTX A2000 level. If hardware is limited, lightweight
network pruning and parameter quantization methods can
be used to reduce computation by about 40%, while
maintaining stable output in CPU environments. The
interactive feedback module is based on WebSocket to
achieve virtual real synchronization and data visualization.
At 720p resolution, the bandwidth requirement is 3.1Mbps
and the communication delay is less than 150ms, which can
meet the real-time requirements of agricultural loT
environment. If in a network restricted area, layered
transmission and edge caching strategies can be used to
further compress bandwidth consumption by 30%. In terms
of cost, the overall investment of the system mainly
consists of sensors, communication modules, and mid-
range GPU servers. When deployed in thousands of acres
of farmland, the total cost is lower than the average level
of most commercial agricultural intelligent irrigation
platforms. Meanwhile, the modular structure allows
farmers to gradually expand nodes based on their scale,
providing good flexibility.
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6.4 Application value of intelligent
scheduling system in agriculture

In the process of precision and intelligent transformation in
modern agriculture, irrigation scheduling systems not only
need to cope with complex conditions of multiple plots and
crops, but also need to achieve efficient utilization under
limited water resources. The deep reinforcement learning
driven intelligent irrigation scheduling system proposed in
this article, combined with environmental perception and
dynamic optimization mechanisms, has demonstrated
outstanding value in agricultural applications. In terms of
operational efficiency, the model is improved through path
optimization and water source allocation strategies to
reduce water source competition and irrigation conflicts
between plots. The experimental results showed that the
irrigation response delay was compressed to within 2
seconds, and the water resource utilization rate remained
above 88%, significantly improving the matching between
irrigation rhythm and crop water demand. The system has
strong fault tolerance, can identify sudden rainfall and
sensor anomalies, and quickly reconstruct strategies after
faults occur to ensure water supply continuity. Simulation
data shows that the scheduling interruption rate has
decreased by over 40%, the irrigation completion rate has
increased to 93%, conflict alarms have significantly
decreased, and the burden of operation and maintenance
has been effectively alleviated. At the management level,
the system relies on the agricultural Internet of Things and
visualization platform to present the real-time distribution
of soil moisture, valve status, and water source surplus,
allowing management personnel to intuitively grasp the
operation status of farmland and make data-driven
decisions. As a result, the traditional reliance on manual
experience has gradually shifted towards scientific
management based on data analysis, significantly
improving the transparency and controllability of
agricultural production. The system compatibility further
enhances its potential for promotion. The scheduling
platform can be connected to farmland monitoring, water
conservancy scheduling, and meteorological forecasting
systems through standard protocols, supporting remote
deployment and modular tailoring. It can adapt to diverse
application scenarios from small-scale farmland to large-
scale agricultural areas, avoiding duplicate construction
and information silos, and demonstrating strong application
value.

7 Conclusion

The agricultural irrigation intelligent scheduling system
based on deep reinforcement learning proposed in this
study, combined with multi-source data perception and
real-time feedback mechanism, significantly improves
water resource utilization and crop yield. In the experiment,
the system performed well in multi plot and multi crop
scenarios, Water utilization rose by 12.7% + 1.4%, and
crop yield by 8.3% * 0.9%, compared with the baseline (p
< 0.05). Compared with traditional threshold control
methods, the system has higher flexibility and accuracy,
and can dynamically optimize irrigation strategies and
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make rapid adjustments in case of sudden climate and
equipment failures. The system forms a closed-loop control
through real-time perception and feedback, ensuring
efficient allocation of water resources and maintaining
stable operation in complex environments. The modular
architecture of the system enables it to have strong
scalability and adapt to agricultural production needs of
different scales. In the future, this system is expected to be
applied in large-scale agricultural production, promoting
the intelligent development of agriculture. However, there
are still some shortcomings in the research, mainly
including: firstly, the adaptability verification of the system
under extreme climate conditions is limited; Secondly, in
terms of data collection and system integration, there is still
a need to address issues of data loss and hardware
compatibility; Thirdly, in high concurrency scheduling
scenarios, the response time of the system may be affected
to some extent.The source code, trained policies, and a
sanitized subset of the dataset are available from the
corresponding author upon reasonable request.
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