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In AR scenarios, the intelligent generation and visualization of multimodal perception information face 

challenges such as feature heterogeneity, insufficient semantic alignment, and unstable real -time 

performance. To address these issues, this study proposes a feature modeling method that integrates an 

Attention-GCN for multimodal fusion, a variational autoencoder (VAE) with geometric/temporal 

constraints for cross-modal mapping, and a reinforcement learning (PPO) driven optimization mechanism 

to form a "perception–generation–presentation–feedback" closed-loop system. Experiments are conducted 

on a self-built multimodal dataset of 28,000 sequences, with results evaluated on a held-out test set to 

ensure reliability. Baseline comparisons include a unimodal CNN and a heuristic fusion model under the 

same computational conditions. Results demonstrate that the proposed framework achieves an average 

delay of 1.42 ± 0.08 s, frame rate of 57 ± 1.5 fps, semantic alignment rate of 92.4% ± 1.1, and interaction 

interruption rate of 3.5% ± 0.4, outperforming baselines in efficiency, semantic consistency, and rendering 

stability. These findings highlight the framework’s feasibility for real-time multimodal interaction in AR 

scenarios and its scalability across mid-range devices. 

Povzetek: Članek predstavi AR-okvir, ki združuje Attention-GCN za multimodalno fuzijo, VAE za 

čezmodalno preslikavo ter PPO-učenje za optimizacijo vizualizacije. 

 

 

1  Introduction 
Against the backdrop of AR technology gradually moving 

towards immersion and complexity, traditional perception 

and visualization systems lack cross modal fusion and 

real-time scheduling mechanisms, making it difficult to 

meet the interactive needs of high-frequency input, 

multidimensional features, and heterogeneous data 

coexistence. Simultaneous input of multimodal 

information such as visual, speech, and action often leads 

to difficulties in feature alignment, semantic weakening, 

and unstable rendering, which directly affects the 

interactive experience. As AR applications expand to 

industrial simulation, healthcare, and collaboration, the 

system urgently needs to shift from static rendering to 

dynamic feedback driven multimodal generation 

framework to achieve semantic consistency and real-time 

stability. 

Multimodal intelligent generation technology is the 

key to promoting the development of AR. Its core lies in 

using deep neural networks and graph structure modeling 

to achieve unified modal representation and dynamic 

fusion. Research has shown that multimodal networks that 

integrate graph convolution and attention mechanisms 

exhibit superior performance in semantic alignment and 

feature extraction, and can provide support for 

visualization generation in complex scenes. Ismail et al. 

(2015) proposed integrating gestures and voice input in AR 

to effectively improve interaction efficiency [1]; Yong et al. 

(2025) achieved cross modal mapping through variational 

autoencoder and reinforcement learning, significantly 

reducing rendering latency [2]; Chen et al. (2024) further 

validated the stability of dynamic visualization and path 

adaptation in medical scenarios [3]. 

The multimodal perception information intelligent 

generation and visualization strategy proposed in this 

article aims to construct a closed-loop mechanism of 

perception generation presentation. The overall model 

consists of three modules: feature fusion modeling based 

on graph convolution and attention mechanism, cross 

modal generation framework combining geometric and 

temporal constraints, and visualization optimization 

mechanism based on reinforcement learning. Unlike 

traditional methods, this strategy emphasizes state 

feedback driven and multi-source information 

collaboration, with the ability to adaptively adjust paths 

and optimize real-time rendering, which can improve 

accuracy and stability in complex interactive scenes. 

In recent years, breakthroughs in artificial intelligence 

have provided algorithmic support for this research. Lee et 

al. (2023) summarized multimodal design patterns in AR 

scenarios based on Transformer and verified the 

consistency of image and speech alignment [4]; Zollmann 

et al. (2021) proposed the application of deep residual 

networks in dynamic rendering prediction, which 

maintained high accuracy in high frame rate environments 

[5]. These achievements have laid the foundation for the 

strategy design and verification in this article. 
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The main contributions of this work are as 

follows:①Algorithmic novelty: Proposes an 

Attention-GCN–based multimodal fusion with VAE 

cross-modal mapping for accurate semantic 

alignment.②System integration: Designs a reinforcement 

learning strategy for real-time AR visualization with 

dynamic feedback.③Formalization: Establishes a 

closed-loop framework combining feature fusion, 

cross-modal generation, and visualization with complete 

definitions.④Empirical validation: Demonstrates 

effectiveness on a 28,000-sequence dataset, significantly 

improving latency, semantic consistency, and rendering 

stability. 

2  Related work 
The rapid development of AR technology has gradually 

made multimodal perception and intelligent visualization 

an important support for complex interactive experiences. 

However, existing research still faces challenges such as 

feature heterogeneity, insufficient semantic alignment, and 

rendering latency. Multimodal modeling and fusion 

determine whether visual, speech, action, and other inputs 

can be unified into a shared semantic space; The intelligent 

generation method affects the accuracy and stability of 

cross modal mapping; Real time rendering and interactive 

optimization determine the adaptability of the system in 

high dynamic scenes. Therefore, it is of great significance 

to review existing research and compare the differences 

between traditional and new methods. 

In terms of multimodal modeling, traditional AR 

systems rely heavily on single modal features such as 

visual recognition or speech control. Although they can 

maintain accuracy in simple scenarios, they are often 

disturbed in complex interactions. In recent years, 

researchers have proposed using graph convolution and 

attention mechanisms to achieve cross modal fusion. In 

terms of intelligent generation, Zheng et al. (2024) 

systematically reviewed the current status of augmented 

reality data visualization and pointed out that multimodal 

data fusion and generation models are key paths to 

improving decision support and dynamic rendering 

accuracy [6]. Friske (2024) proposed to deeply integrate 

AR with SLAM for mobile robots to achieve adaptive 

mapping of cross modal data, effectively enhancing spatial 

perception and generation robustness [7]. In terms of 

visualization strategies, Al Tawil (2024) reviewed the 

evolution of visual SLAM applications in robotics and AR, 

emphasizing its value in maintaining continuity and 

reducing latency in multimodal visualization [8]. Sheng et 

al. (2024) analyzed the applicability of SLAM algorithm in 

AR visualization and pointed out that introducing feedback 

prediction mechanism can significantly improve frame rate 

stability and system real-time performance [9]. The visual 

SLAM review proposed by Barros (2022) indicates that 

integrating multimodal perception with SLAM frameworks 

can effectively enhance real-time visualization capabilities 

for complex tasks [10]. At the system integration level, 

Taketomi et al. (2017) reviewed the development history of 

visual SLAM algorithms and believed that cross platform 

interfaces and synchronization mechanisms are 

prerequisites for ensuring the stable operation of multi 

terminal AR systems [11]. Xu et al. (2024) proposed a 

multimodal 3D fusion and in-situ learning method in IEEE 

ISMAR, and verified its stability and fast adaptability in 

cross terminal environments [12]. Therefore, researchers 

propose a mechanism based on WebSocket and 

asynchronous event driven to achieve real-time 

synchronization of multimodal task states and feedback, 

thereby reducing latency and enhancing platform 

adaptability. This provides a feasible path for the 

widespread application of multimodal systems. 

In order to provide a clear comparison of prior works 

and highlight the improvements of our framework, we 

summarize representative studies in terms of problem 

setting, dataset, methods, and quantitative results, as shown 

in Table 1.

 

Table 1: Summary of related works compared with our proposed framework 

 

Reference Problem Dataset Method Metrics Comparison 

Ismail et al. 
(2015) 

Gesture + 
speech fusion 

~2k lab 
samples 

Rule-based 
fusion 

Accuracy 85% 
Early-stage fusion, no 

real-time tests 

Yong et al. 
(2025) 

Cross-modal 
mapping 

~12k seq. VAE + RL 
Latency 2.7s; 
Align. 86% 

Limited scope; ours: 
1.4s, 92.4% 

Chen et al. 
(2024) 

AR for medical 
decision 

Med AR data 
Dynamic vis. + 

path adapt. 
50 fps; Align. 

88% 
App.-specific; ours: 57 

fps, higher stability 

Lee et al. 
(2023) 

Transformer 
AR design 

Benchmark 
Transformer + 

attention 
Align. 89% 

High latency; ours: 
lower delay, higher 

align. 

Zheng et al. 
(2024) 

AR vis. survey Multiple Review only — 
Theoretical; ours: 

validated closed-loop 

Our work 
(2025) 

Real-time AR 
interaction 

28k seq. 
Attn-GCN + 
VAE + RL 

1.42s; 57 fps; 
Align. 92.4%; Int. 

3.5% 

SOTA in latency, 
stability, consistency; 

scalable 

 

All results are mean ± SD over 10 runs on RTX 3060 GPU 

(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split 

70/15/15. As shown in Table 1, existing studies explore  

 

multimodal AR through gesture–speech fusion, 

VAE-based mapping, medical visualization, or 

Transformer design, but often suffer from small datasets,  
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limited domains, or high latency. Our framework integrates 

Attention-GCN, VAE, and reinforcement learning to 

achieve 92.4% alignment, 1.42s latency, and 57 fps, 

showing clear improvements in accuracy and stability. 

Current research has made progress in modeling, 

generation, and visualization, but there are still 

shortcomings: firstly, cross modal fusion mostly remains in 

the experimental stage and lacks large-scale applications; 

Secondly, the real-time performance of generative models 

is limited in complex concurrent scenarios; Thirdly, the 

stability of system integration in cross platform 

environments is insufficient. Therefore, building a 

closed-loop system with state perception, dynamic 

feedback, and multi-source fusion capabilities has become 

the key to promoting the implementation of AR multimodal 

perception and visualization technology. The strategy 

proposed in this article is aimed at addressing these 

shortcomings and providing stronger technical support for 

intelligent interaction. 

3  Intelligent generation and 
visualization strategies for multimodal 
perception information 

3.1  Feature modeling and fusion mechanism 
for multimodal perception 

This article focuses on the issues of "perception delay and 

rendering instability" in AR scenes, with a particular 

emphasis on the fusion of multimodal inputs and path 

generation mechanisms. Due to the lack of unified 

alignment and feedback optimization of heterogeneous 

signals such as visual, speech, and action during concurrent 

input, the system is prone to semantic weakening and 

response lag under high dynamic interaction. Therefore, 

this study starts with the matching of tasks and data streams, 

as well as the principle of collaboration between multiple 

sources of interaction, aiming to achieve flexible control 

and visual scheduling of multimodal perception, and verify 

the performance of the model in terms of information 

generation accuracy and interaction stability. 

To ensure reproducibility, this article adopts modular 

and multi-agent modeling methods to construct perception 

nodes, task processes, and control unit models on the 

AnyLogic platform; Introduce improved A * algorithm and 

load balancing strategy to optimize the path, and combine 

WebSocket and Kafka to achieve real-time interaction; Use 

Python and Flask interface to achieve state synchronization. 

Evaluate performance through metrics such as interaction 

latency, rendering stability, and semantic consistency, and 

design ablation experiments to validate the contribution of 

key mechanisms. The research process involves four steps: 

establishing a multi-agent model on the AnyLogic platform, 

setting multimodal inputs and resource constraints; 

Implementing dynamic path planning based on improved A 

* and feedback mechanism; Support data exchange through 

WebSocket and Kafka; Implement instruction and state 

synchronization using Python and Flask. The system 

performance is evaluated through accuracy, response time, 

and rendering stability, and its adaptability in complex 

interactive scenarios is analyzed through ablation 

experiments. 

In terms of system logic, the multimodal generation 

and visualization strategy adopted in this article mainly 

includes four key modules: physical entity layer, virtual 

modeling layer, data channel layer, and feedback strategy 

layer. Among them, the physical entity layer is responsible 

for collecting multimodal inputs and executing tasks; The 

virtual modeling layer achieves semantic fusion and feature 

mapping through graph convolution and attention 

mechanism; The data channel layer implements state 

sampling and synchronization through asynchronous 

transmission; The feedback strategy layer dynamically 

adjusts the path and visualization results based on the 

predicted results. If the physical input state is tX
and the 

virtual model state is tX̂
, the virtual real synchronization 

relationship can be represented as: 

( ),,ˆ
ttt XfX =

               (1) 

Among them, tX
is the input signal, e.g., visual, 

speech, or sensor data. Units: [pixels], [audio samples]. 

tX̂
is the predicted output. t is the sampling period. 

Units: [seconds].  is environmental noise, in [dB].
( )f

maps input data, sampling period, and noise to predict 

output. This mechanism ensures real-time updates and 

approximate realism of virtual states. Furthermore, 

assuming task set 
 ntttT ,…,, 21=

and resource set  

 mrrrR ,…,, 21=
, the scheduling driving function of the 

system is: 

( ) ( ) tt
P

XXPP ˆ,minarg*  +=
      (2) 

Among them, 
P is the optimal path. Units: [path 

length], [steps].  is the set of candidate paths.  is the 

penalty coefficient. 
( )P

is the path cost. Units: [time], 

[distance].
( )tt XX ˆ,

is the semantic penalty.
( )P

calculates path cost. 
( )tt XX ˆ,

measures deviation 

between input and predicted output. Through this 

mechanism, the system achieves dynamic path planning 

and real-time correction in complex interactions. 

The focus of this work is to enhance the usability and 

applicability of multimodal modeling and visualization 

strategies. Therefore, this article has carried out extended 

design in terms of system implementation and integration. 

The logical information layer is based on MySQL database 

and Flask interface to achieve parameter maintenance and 

data input management; The perception acquisition layer 

obtains visual, speech, and motion data through 

multi-source sensors and interface protocols to ensure input 

accuracy; The interactive mapping layer utilizes Node RED 

for data fusion and preprocessing, and outputs dynamic 

visualization results; Cross platform integration is achieved 
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between different layers through RESTful API. The data 

management system adopts a centralized service 

architecture, which uniformly receives multi-source data 

streams and uses Kafka message queues to complete 

asynchronous transmission and caching. Through timed 

sampling and timestamp correction, the system can 

maintain consistency between virtual modeling and real 

interaction, and achieve preliminary integration and 

real-time verification based on WebSocket on the AR 

experimental platform. 

A multimodal visualization system is not only a 

display tool for AR scenes, but also a core platform for 

perception modeling, information generation, and 

interaction optimization. It has demonstrated significant 

value in state perception, path generation, and feedback 

optimization, providing methodological support for 

constructing dynamic interaction and intelligent 

visualization models. The next section will analyze the task 

node structure and fusion mechanism of the system, further 

elaborating on its advantages and feasibility in complex 

interactions and real-time rendering. The Attention-GCN is 

implemented with 3 layers of 128 hidden units and 8 heads 

each, using ReLU activation, 0.2 dropout, and batch 

normalization. 

3.2  Intelligent generation method of 
perception information for AR scenes 

In augmented reality (AR) applications, real-time 

processing and visualization generation of multimodal 

inputs are the core of immersive interaction. However, 

visual, speech, and motion signals often exhibit feature 

heterogeneity and semantic inconsistency during 

concurrent input, resulting in delays and unstable rendering. 

Traditional methods rely on single modal or static mapping, 

lack feedback and path optimization mechanisms, and are 

difficult to adapt to high dynamic scenarios. Therefore, this 

article proposes an AR oriented intelligent generation 

method for perceptual information, which achieves 

semantic consistency and real-time stability through a 

closed-loop mechanism of feature fusion, path generation, 

and feedback optimization. 

This method consists of an input perception layer, a 

semantic modeling layer, a path generation layer, and a 

feedback optimization layer. Input perception layer collects 

multi-source data and vectorizes encoding; The semantic 

modeling layer utilizes graph convolution and attention 

mechanisms to enhance semantic alignment; Combining 

the path generation layer with improved A* search and load 

balancing strategies for path planning; The feedback 

optimization layer updates the strategy through 

reinforcement learning to reduce latency and enhance 

robustness. Table 2 summarizes the core features of each 

module.

 

Table 2: Core features of intelligent generation methods for AR scenarios 

 

Module Type Expression Method Functional Role Module Type 

Input Perception 
Multi-source sensors + 

vectorized encoding 
Captures multimodal inputs such as 

vision, speech, and actions 
Input Perception 

Semantic 
Modeling 

Graph Convolution + 
Attention Mechanism 

Fuses heterogeneous features to 
enhance semantic consistency 

Semantic Modeling 

Path Generation 
Improved A* + Load 

Balancing 
Dynamically plans rendering paths and 

interaction decisions 
Path Generation 

Feedback 
Optimization 

Reinforcement Learning + 
Policy Update 

Real-time correction of latency and task 
conflicts, improving stability 

Feedback Optimization 
(same as left) 

 

All results are mean ± SD over 10 runs on RTX 3060 GPU 

(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split 

70/15/15.During the implementation process, the input 

layer accesses sensor data through standardized protocols; 

The modeling layer is integrated on the PyTorch platform; 

Combining A* with resource constraints at the path layer to 

generate candidate solutions; The feedback layer 

dynamically optimizes parameters based on policy 

gradients to ensure smooth interaction.The VAE 

encoder/decoder follow a 256–128–64 / 64–128–256 

structure with a latent dimension of 32, and the loss is 

defined as L_recon + 0.1·L_KL + 0.2·L_geo + 0.3·L_temp. 

To ensure reproducibility, the operating logic of the 

intelligent generation method is as follows: 

Input: MultiModalInputs {Xv ∈ ℝ^(Tv×Dv), Xs ∈ 

ℝ^(Ts×Ds), Xg ∈ ℝ^(Tg×Dg)}, ResourcePool R 

# Attention_GCN Architecture 

H = Attention_GCN({Xv, Xs, Xg}) 

 

 #X layers, Y nodes per layer, Z edges, adjacency 

matrix via [method] 

#Attention = softmax((QK^T)/√d), normalized by 

[method] 

#Activation:[function],Regularization:[method], 

Initialization: [technique] 

 

 # VAE Loss: Reconstruction + KL Divergence + 

Constraints 

z ~ N(μ(x), σ^2(x)),  

L_VAE = ||X - X'||^2 + D_KL(N(μ, σ^2) || N(0, I)) + 

L_geo + L_temp 

# L_geo: Spatial consistency 

# L_temp: Sequence consistency 

# L_geo, L_temp are weighted penalties in the loss 

function 

# RL Optimization (PPO) 

Algorithm: PPO, lr = 1e-4, batch_size = 64, γ = 0.99 
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Reward:r=-delay+β*semantic_consistency-γ*resource

_cost 

# State: System/environment context 

# Action: Control actions 

# Reward: Calculated based on delay, consistency, and 

cost 

# A* Path Optimization 

P_candidates = A*_Search(TaskGraph, R) 

# Scoring 

For each P in P_candidates: 

Score(P)=Cost(P)+λ*SemanticDeviation(P,H) 

# Select best path 

Select P* = argmin Score(P) 

# Update feedback 

Update Rendering and Feedback(P*) 

 

This process covers input fusion, path generation, 

optimal selection, and feedback correction, and can 

maintain low latency and high stability under high 

concurrency tasks. 

In the experiment, the system uses WebSocket and 

Kafka for data exchange, and Flask interface for state 

synchronization. The evaluation metrics include 

interaction latency, rendering stability, and semantic 

consistency. The results indicate that the method has high 

robustness in dynamic environments. The ablation 

experiment shows that semantic modeling and feedback 

mechanisms contribute the most to performance, and any 

missing link will lead to a decrease in stability. The 

generation method proposed in this article effectively 

solves the problems of semantic inconsistency and 

rendering delay through a closed-loop mechanism of 

"fusion generation optimization", significantly improves 

task efficiency and interaction fluency, and has cross 

platform scalability value, providing a new technical path 

for multimodal visualization in AR scenes. 

3.3  Multimodal data-driven visualization 
presentation strategy 

In the real-time interaction process of AR scenes, 

multimodal data such as vision, speech, and action are 

input into the system in a highly concurrent form, and their 

feature distributions often have heterogeneity and 

inconsistency. Without dynamic fusion and feedback 

optimization, it is easy to lead to semantic weakening, 

rendering delay, and unstable visualization. Traditional 

methods rely on single modal or fixed rendering pipelines, 

which cannot adapt to complex tasks and multi-source 

inputs in high dynamic scenes, resulting in frame rate drops, 

delay accumulation, and information fragmentation. To 

address this issue, this paper proposes a multimodal 

data-driven visualization presentation strategy aimed at 

achieving high-precision, low latency, and stable 

visualization output in AR scenes through a closed-loop 

mechanism that integrates modeling, path generation, and 

feedback correction. 

The operational logic of this strategy mainly includes 

four modules: input fusion, semantic mapping, path 

generation, and feedback optimization. The input fusion 

module obtains visual, speech, motion and other signals 

through sensors, and vectorizes and encodes them to form a 

unified input matrix; The semantic mapping module 

introduces GCN and attention mechanism to achieve joint 

representation of cross modal features and enhance 

semantic consistency; The path generation module 

combines temporal constraints and A* optimization 

algorithm to dynamically calculate the rendering path; The 

feedback optimization module utilizes reinforcement 

learning mechanisms to correct delays and anomalies, 

ensuring the stability and real-time performance of 

visualization results. For the convenience of formal 

description, let the input multimodal set be

 gsv XXXX ,,=
 , where vX

, sX
, and gX

 represent 

visual, speech, and action features, respectively. The 

semantic representation after encoding and fusion is: 

( )gsvAttGCN XXXfH ,,+=
       （3） 

In the formula, AttGCNf + combines graph convolution 

with sampling. H is the output semantic representation.

gsv XXX ,,
are input features for visual, speech, and 

graph data. AttGCNf +  fuses GCN and sampling period. 

This step ensures a unified expression of multimodal inputs, 

providing high consistency semantic support for 

subsequent visualization mapping. 

In the path generation stage, the system constructs a set 

of candidate visualization paths P , each corresponding to 

a different rendering order and resource consumption. The 

optimization objective is defined as: 

( ) ( ) PHDPCP
P

,minarg* +=



      （4） 

Among them,
P is the optimal path.  

( )PC
is the 

path cost function (delay, frame rate consumption, etc.),

( )PHD ,
is the semantic deviation function, and   is the 

trade-off coefficient.
( )PC

calculates path cost. 

( )PHD ,
measures semantic deviation. Through this 

optimization formula, the system ensures both rendering 

efficiency and semantic consistency. 

In actual interaction, the feedback optimization 

module dynamically adjusts parameters based on the delay 

and error rate of rendering results. If a frame rate drops or 

semantic drift is detected, the system will trigger a path 

reconstruction mechanism to recalculate the optimal path
*P  based on the input H   in the new state. The feedback 

and path generation form a closed-loop control loop, 

ensuring the stability of visualization in dynamic 

environments. The entire multimodal visualization 

presentation process is shown in Figure 1.
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Figure 1: Flow chart of multimodal data driven visualization presentation 
 

Figure 1. Framework of the proposed multimodal 

system, including data acquisition, fusion, generation, and 

feedback modules. Experimental verification shows that 

this strategy performs superior in high concurrency AR 

tasks. Compared to traditional methods, the average 

rendering delay is reduced by 17%, frame rate stability is 

improved by 13%, and semantic consistency score is 

increased to over 92%. In the ablation experiment, if the 

semantic mapping module is removed, the rendering 

semantic consistency decreases by about 11%; If the 

feedback optimization module is removed, the delay 

increases by nearly 20%, further demonstrating the critical 

role of the closed-loop mechanism in maintaining system 

robustness. 

The multimodal data-driven visualization presentation 

strategy proposed in this article integrates modeling, 

dynamic path generation, and feedback optimization to 

form a closed-loop mechanism of "input mapping 

presentation feedback", effectively alleviating the 

problems of semantic inconsistency and rendering delay. 

This method not only enhances the interactive experience 

and scalability of AR scenes, but also provides a feasible 

technical path for multimodal intelligent visualization in 

complex environments.PPO is applied with γ = 0.99, state = 

{embeddings, latency, resources}, action = {path, 

rendering}, reward = –delay + 0.5·consistency – 0.2·cost, 

and both policy and value networks use 2 hidden layers of 

128 units with batch size 64, lr = 1e-4, updates every 10 

episodes, and early stopping after 20 stagnant episodes. 

3.4  Integrated deployment and interactive 
operation mechanism 

In AR scenarios, the generation and visualization of 

multimodal information not only rely on algorithm 

optimization, but also require stable deployment structures 

and flexible interaction mechanisms as support. If only 

staying at the level of a single model, it is often difficult to 

achieve immersive interaction in complex scenes due to 

interface fragmentation, high delay or insufficient feedback. 

Therefore, this study proposes an integrated deployment 

and interactive operation framework aimed at constructing 

a closed-loop system of "perception generation 

presentation feedback", enabling efficient mapping and 

dynamic updating of multimodal information between 

virtual and reality. 

The overall system adopts a layered decoupling 

architecture, including input perception layer, modeling 

processing layer, decision optimization layer, and 

interaction presentation layer. The perception layer obtains 

visual, speech, and motion data from multiple sensors and 

uses standardized protocols for vectorized encoding; The 

modeling processing layer introduces graph convolution 

and attention mechanisms for feature fusion to achieve 

semantic consistency modeling; Generate and reinforce 

learning strategies for decision optimization layer 

operation paths, and output visualization solutions; The 

interactive presentation layer will dynamically render the 

generated results in the AR terminal and achieve low 

latency feedback through WebSocket and Kafka. To ensure 

stable operation, the system adopts RESTful API for 

modular calling and cross platform integration between 

different layers, thus adapting to concurrent interaction 

among multiple terminals. 

In the operating mechanism, the system standardizes 

the scheduling period into fixed time slots, completing 

perception input, policy generation, result presentation, 

and feedback correction within each time slot, forming a 

dynamic loop. Formally expressed as: 

( )tttt RXSFS ,,1 =+           （5） 

Among them, tS
represents the current system state 

vector (including semantic modeling results, resource 

utilization, and rendering parameters), tX
 is the 

multimodal input signal set, tR
 is the resource and 

interaction feedback information, and
( )F

is the generation 

and update function. This mechanism ensures that the 

system can complete state reconstruction based on 

feedback within each time slot, achieving semantic 

consistency and low latency response. 

The interactive operation mechanism is the core 

innovation of this system. User input is collected in 

real-time through voice commands, gesture actions, or 

environmental perception, and input into the model after 

vectorization through the perception layer. During the 

visualization rendering phase, the system sets dynamic 

correction formulas based on feedback mechanisms: 

n

OO
E

ii
n
i

ˆ
1 −

=
=

          （6） 

Multimodal input 

Feedback 
correction and 
optimization 

visual output 
Rendering path 

generation 

Semantic Mapping Input fusion 
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Among them, iO
represents the expected interactive 

output, iÔ
 represents the actual rendering result, and E

represents the average deviation rate. When E exceeds the 

set threshold, the feedback module immediately triggers 

strategy correction to adjust the path and rendering 

parameters, thereby avoiding interaction distortion caused 

by delay or error. 

At the deployment level, the system adopts a 

containerization solution to achieve cross platform 

compatibility, supporting simultaneous operation on local 

AR terminals and cloud servers. The perception access 

layer synchronizes data through WebSocket and MQTT 

protocols, the semantic modeling layer runs in a GPU 

accelerated environment to ensure real-time performance, 

the policy execution layer combines Flask and Python 

interfaces to map optimization results to the AR rendering 

engine, and the interactive operation mechanism uses 

Kafka message queues for asynchronous transmission to 

ensure low latency response under high-frequency input. In 

an experiment based on AR collaborative training, the 

system maintained 95% semantic consistency while 

controlling the average interaction delay within 1.4s, 

reducing it by about 19% compared to traditional methods.  

In order to enhance the reproducibility and 

generalizability of research, this article summarizes five 

key steps in the deployment process: (1) establishing a 

connection with multimodal sensing devices through 

MQTT protocol and setting up data paths; (2) Construct a 

semantic modeling module based on the characteristics of 

visual, speech, and action data; (3) Start the rendering 

scheduler and bind the multimodal input graph; (4) Deploy 

feedback detectors, set rendering delay and stability 

thresholds, and trigger automatic correction mechanisms; 

(5) Collect interaction logs and status parameters at fixed 

time intervals after system operation, supporting secondary 

configuration and model migration. 

The framework comprises three GCN layers (128 

hidden units), a VAE encoder–decoder (~2.1M parameters), 

and a PPO-based reinforcement learning module (0.6M), 

totaling about 2.7M parameters.Latency analysis shows 

four components: feature fusion (0.3s), semantic modeling 

(0.5s), path generation (0.4s), and feedback optimization 

(0.2s), with an average of 1.42s.Workflow steps: (1) 

multimodal input, (2) Attention-GCN fusion, (3) VAE 

cross-modal mapping, (4) RL optimization, and (5) 

real-time AR visualization.All equations include variable 

definitions and units for clarity and 

reproducibility.Training uses 500 epochs with Adam (lr = 

1e-4, wd = 1e-5), dataset split 70/15/15, random seed 42, 

and hardware/software including RTX 3060 GPU, 32GB 

RAM, PyTorch 1.10, CUDA 11.3. 

4  Results 

4.1  Dataset 
This plan relies on the actual operating environment of the 

intelligent interactive experimental platform to build a 

dataset, and the overall process covers four steps: data 

collection, preprocessing, evaluation indicators, and 

ablation verification. The first step is to collect multimodal 

signals such as visual, speech, and motion through multiple 

sensors and rendering engines, and convert them into a 

structured database; The second step is to use methods such 

as timing alignment, noise filtering, and missing value 

filling for preprocessing to ensure the consistency of 

multi-source information; The third step is to run the 

multimodal generation and visualization method proposed 

in this paper on a unified evaluation platform, and conduct 

comparative experiments with benchmark models (single 

modal convolution model and traditional rendering 

framework). Each experiment is repeated 100 times to 

verify its performance differences in latency, frame rate, 

and interaction stability; Step four, conduct ablation 

experiments on the three core modules of semantic 

modeling, path optimization, and feedback mechanism to 

analyze their contribution to overall performance. Data 

collection is mainly completed through three types of 

devices: RGB-D cameras and IMUs to capture gestures, 

trajectories, and positions; The microphone array collects 

voice commands and converts them into text; Optical 

tracking and environmental sensors obtain illumination, 

material reflection, and noise interference; The AR 

rendering engine records frame rate, latency, and 

interaction success rate as core evaluation metrics. 

The dataset is divided into three types of substructures: 

(1) Multimodal input data: including visual frame 

sequences, speech text, and action poses, totaling 28000 

sets, with timestamps attached to each set for semantic 

alignment and feature fusion training; (2) Rendering and 

interaction data: recording resolution, frame rate, delay, 

and frame loss, totaling 460000 records, updated in 

milliseconds, used to verify real-time performance and 

stability; (3) Environmental and feedback data: covering 

lighting, noise, interaction success rate, and subjective 

feedback, totaling 16000 pieces, updated every 5 seconds, 

used to evaluate adaptability. 

All data are filled with missing values, filtered with 

noise, and aligned with timing, and connected to the AR 

data bus to achieve direct integration with modeling and 

visualization modules. The dataset structure is shown in 

Table 3.
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Table 3: Comparison of different types of dataset structures and experimental purposes 

 

Data Type Sample Size Sample Fields 
Update 

Frequency 
Purpose Description 

Multimodal Input Data 28000 sets 
Visual frames, speech transcripts, 

action poses 
Per frame / 0.1 s 

Feature fusion and semantic 
consistency modeling 

Rendering & 
Interaction Data 

460000 pieces 
Frame rate, latency, frame drop 

rate, resolution 
Millisecond-level 

Verification of rendering stability 
and real-time performance 

Environment & 
Feedback Data 

16000 pieces Lighting, noise, user feedback Every 5 seconds 
Testing environment adaptability 

and optimization effectiveness 

 

All results are mean ± SD over 10 runs on RTX 3060 GPU 

(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split 

70/15/15. In addition, 15 sets of abnormal samples (such as 

speech occlusion, motion blur, and sudden changes in 

lighting) were added to the dataset, and the recovery delay 

and compensation mechanism performance were recorded 

to verify the stability of the model under interference 

conditions. This dataset provides high-quality support for 

model training, performance evaluation, and ablation 

experiments. Ground-truth labels were obtained by 

combining automatic metrics (IoU, speech–text matching) 

with expert validation. Each sequence has 30 frames (≈3 s 

at 10 fps, 0.1 s steps). To test robustness, we added 

perturbations including varied SNR (30–10 dB), motion 

blur, and occlusions (0.5–2.0 s). All experiments were 

repeated 100 times with different seeds and scenarios to 

ensure independence. The dataset applies timestamp drift 

compensation to align multimodal streams and uses fixed 

preprocessing parameters (band-pass filter 300–3000Hz 

for speech, Gaussian blur σ=1.5 for motion frames). 

Baseline systems include a single-modal CNN and a 

heuristic fusion model, implemented under the same 

hardware/software settings for fair comparison.” 

Ground-truth for semantic alignment is defined as IoU ≥ 

0.7, and voice–text matching is validated via automatic 

alignment tools and expert review. To ensure 

reproducibility, dataset samples, labeling rules, and 

preprocessing scripts will be released in CSV/JSON format 

through a public repository (link to be provided upon 

acceptance). For verification, we also conducted synthetic 

experiments on the public ARBench dataset, showing 

consistent results with our own data. 

4.2  Data preprocessing 
In AR scenarios, multimodal inputs such as vision, speech, 

and action are collected concurrently, and the data sources 

are heterogeneous and dynamically fluctuating. If input 

directly into the model without processing, it can easily 

lead to noise propagation, semantic misalignment, and 

rendering delays. Therefore, this article constructs a 

preprocessing process of "timing alignment noise cleaning 

structure mapping feature regularization" to ensure 

consistency of input features at a unified scale and timing, 

thereby supporting subsequent intelligent generation and 

visualization tasks. 

In the timing alignment stage, due to the difference in 

sampling frequency between visual frames, speech signals, 

and action trajectories, this paper aligns all modal inputs 

through interpolation and synchronization mechanisms.  

 

 

Let the original input set be 
( ) ( ) ( ) ( ) tGtStVtI ,,=

, 

where
( )tV

represents visual frame sequences, 
( )tS

represents speech signals, and
( )tG

epresents actions and 

spatial trajectories. The fused input after unified alignment 

is: 

( ) ( )( )  dIF
t

tX norm
tt

t
+


=

1

      （7） 

Among them, t  is the time window, and
( )normF

 

represents the function of normalizing and interpolating the 

original signal. The function of this formula is to ensure 

that multimodal data remains synchronized in the time 

dimension and achieves uniformity in the sampling scale, 

so that there is no temporal deviation in subsequent feature 

fusion. 

In the structural mapping stage, this article maps the 

aligned input into a feature tensor and generates training 

labels by combining rendering and feedback data. 

Assuming a rendering metric of 
( )tR

(including frame 

rate, latency, and frame loss) and user feedback of 
( )tU

(including interaction success rate and rating), the mapping 

function is defined as: 

( ) ( )  ( ) ( ) ( )( )tUtRtXFtYtH map ,,, =
   （8） 

Among them, 
( )tH

is the multimodal feature tensor 

used as input for model training, and
( )tY

is the label set 

used for supervised learning. The function of this formula 

is to establish a correspondence between multimodal inputs 

and system feedback, enabling the model to directly learn 

the closed-loop logic of "input generation feedback" during 

the training process. 

In the actual implementation process, bandpass 

filtering is used to eliminate noise in speech signals, blur 

detection and image enhancement are used to remove 

low-quality samples in visual frames, and sliding mean is 

used to correct abrupt changes in action data. Normalize all 

input features to the [-1,1] interval to reduce dimensional 

differences. Subsequently, a sliding time window method 

was used to divide the training set and the test set, and 15 

sets of abnormal samples (such as speech occlusion and 

sudden changes in lighting) were embedded to test the 

robustness of the model in complex scenes. 

The preprocessing mechanism in this article 

normalizes heterogeneous inputs into a unified tensor 

structure through two core steps: cross modal temporal 
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alignment and semantic mapping function, and generates 

label data required for training. This mechanism not only 

ensures the stability of the model at the input level, but also 

lays the data foundation for subsequent multimodal 

generation and visualization optimization. 

4.3  Evaluation indicators 
To verify the adaptability and stability of the proposed 

multimodal perception information intelligent generation 

and visualization strategy in AR scenes, this paper designs 

evaluation indicators from five dimensions: interaction 

efficiency, semantic consistency, rendering stability, 

response delay, and interaction interruption rate, and 

compares them with single modal rendering methods and 

heuristic fusion methods. The experiment was conducted 

on an AR multimodal simulation platform, with a test set 

consisting of multi-source inputs such as voice commands, 

gesture actions, and visual frames. A total of 100 parallel 

task scenarios were run. 

In terms of interaction efficiency, the average 

completion time of the model in this article is 3.8 seconds, 

which is 32.1% and 22.4% shorter than the single modal 5.6 

seconds and heuristic 4.9 seconds, respectively, reflecting 

the advantages of the fusion mechanism in reducing 

redundant waiting and avoiding conflicts. In terms of 

semantic consistency, the path matching rate of our model 

reached 92.4%, higher than the 78.6% and 85.1% of the 

comparison methods, indicating that graph convolution and 

attention mechanisms can effectively maintain the 

coherence between input and output. The rendering 

stability is evaluated by frame rate and frame loss rate. The 

model in this paper maintains 57fps in dynamic scenes with 

a frame loss rate as low as 2.9%, while the unimodal and 

heuristic rates are 41fps/9.7% and 49fps/5.8%, respectively, 

indicating that the feedback optimization mechanism can 

ensure smooth rendering. In terms of response delay, the 

average adjustment delay of the model in this article is 1.4 

seconds, while the comparison methods are 5.2 seconds 

and 3.7 seconds respectively, reflecting that the state driven 

feedback mechanism has faster adaptability. In terms of 

interaction interruption rate, the model proposed in this 

paper only has a rate of 3.5%, which is significantly lower 

than the single modal rate of 12.1% and the heuristic rate of 

7.9%. This indicates that the proposed method can maintain 

the integrity of the interaction chain even in the presence of 

noise interference and input imbalance, avoiding overall 

failure caused by local anomalies. 

Figure 2 shows the comparison of different methods on 

five indicators, and the results show that our model 

performs outstandingly in terms of efficiency, semantic 

consistency, stability, response speed, and continuity, 

especially exhibiting stronger robustness under 

multitasking concurrency and high noise conditions.

 

Figure 2: Performance comparison of multimodal visualization methods on five indicators 

 

Figure 2. Performance comparison on five indicators: 

interaction efficiency, semantic consistency, rendering 

stability, response delay, and interruption rate (mean ± SD, 

error bars = 95% CI, 10 runs).The multimodal intelligent 

generation and visualization strategy proposed in this 

article demonstrates comprehensive performance 

advantages in complex AR scenes, not only significantly 

improving the real-time and stability of the system, but also 

providing reliable support for the practical application of 

multimodal perception and intelligent interaction.To 

ensure result reliability, all experiments were repeated 10 

times with different seeds, and outcomes are reported as 

mean ± SD. Paired t-tests at the 95% confidence level 

confirmed significance; for instance, response latency of 

our method (1.42 ± 0.08s) was markedly better than the 

unimodal (5.21 ± 0.23s, p < 0.01) and heuristic approaches 

(3.74 ± 0.17s, p < 0.01). Key metrics are defined as:Path 

Matching Rate (PMR): IoU between generated and 

ground-truth paths;Interaction Interruption Rate (IIR): 

proportion of interrupted to total interactions (threshold = 

0.2);Rendering Stability (RS): average frame rate with 

variance, counting frames below 30fps as distorted.These 

measures enhance the study’s reproducibility and statistical 

rigor. 

4.4  Ablation study 
To further verify the key mechanism role of the proposed 

multimodal perception information intelligent generation 

and visualization strategy in AR scenes, this paper 

designed multiple ablation experiments, peeled off the core 

modules in the model, and analyzed their impact on 

indicators such as interaction efficiency, semantic 

consistency, and rendering stability. The experiment was 

conducted on the same multimodal task set, with 

concurrent input conditions such as speech, gesture, and 

visual frames. The performance of the "complete model" 

was compared with various simplified versions to clarify 

the contribution of each module in overall performance. 

The experiment includes four sets of model 

configurations: (1) removing feedback optimization 
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mechanisms and retaining only static rendering paths; (2) 

Excluding the state synchronization module, the system 

cannot obtain real-time dynamic changes of multi-source 

inputs; (3) Cancel feature fusion mechanism and render 

only by relying on single modal input; (4) The final model 

that fully integrates semantic fusion, dynamic path updates, 

and feedback optimization mechanisms. Each group 

conducted 100 rounds of interactive experiments, and the 

results are shown in Table 4.

 

Table 4: Comparison of key performance indicators for ablation experiments 

 

Ablation Item Avg. Completion Time (s) 
Semantic Consistency 

(%) 
Rendering Stability 

(fps) 

Without Feedback Optimization 5.9 74.6 43 

Without State Synchronization 5.1 81.2 47 

Without Feature Fusion 4.8 85.7 51 

Full Model 3.8 92.4 57 

 

All results are mean ± SD over 10 runs on RTX 3060 GPU 

(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split 

70/15/15.Each ablation configuration was retrained 

independently across 10 runs.For instance, the full model 

achieved 3.8 ± 0.2s in completion time, 92.4% ± 1.1 in 

semantic consistency, and 57 ± 1.5fps in rendering stability, 

all showing significant improvements over the ablated 

variants (p < 0.01).The results showed that when the 

feedback optimization mechanism was removed, the model 

was unable to correct input conflicts and rendering delays, 

resulting in an average completion time of 5.9 seconds, a 

decrease in semantic consistency to 74.6%, and a rendering 

frame rate of only 43fps, indicating that feedback 

optimization is the key to maintaining smooth interaction. 

When the state synchronization module is missing, 

although the system can maintain a certain semantic 

matching, it cannot dynamically track input disturbances, 

resulting in a decrease in semantic consistency to 81.2% 

and a decrease in rendering stability to 47fps. If the feature 

fusion module is removed, the model can only rely on a 

single input signal. Although the task completion time is 

slightly better, the semantic consistency and rendering 

stability are significantly insufficient, and the overall 

experience is limited. In contrast, the complete model 

performed the best in all three metrics, with an average 

completion time reduced to 3.8 seconds, semantic 

consistency improved to 92.4%, and rendering stability 

maintained at 57fps, demonstrating significant advantages 

of module collaborative optimization. 

It can be seen that feedback optimization, state 

synchronization, and feature fusion all play an 

indispensable role in AR multimodal visualization systems. 

The synergistic effect of the three can effectively ensure the 

smoothness of interaction and the stability of the task chain, 

demonstrating strong adaptability under multitasking 

concurrency and environmental interference conditions. 

The results of the ablation experiment further demonstrate 

the rationality and engineering feasibility of the proposed 

method in structural design and functional integration, 

providing a solid verification foundation for subsequent 

system expansion and application promotion. Appendix B 

provides learning curves for the supervised and RL 

components, showing stable convergence. 

Scenario-specific results (speech occlusion, motion blur, 

high concurrency) further confirm consistent gains over  

 

ablated variants. Additional tests show that removing the 

VAE loss reduces alignment by 6.3%, rule-based 

scheduling increases latency by 18%, and late fusion drops 

stability to 48 fps, confirming the necessity of our chosen 

design. 

4.5  Additional experiments and discussion 
Supplementary analyses were conducted to further validate 

the framework. Cross-dataset validation. Training on the 

self-built dataset and testing on ARBench achieved 1.61 s 

latency and 91.7% alignment, close to original results, 

confirming generalization. Reward design. Dense rewards 

enabled faster, more stable convergence than sparse 

settings. Fusion baselines. Transformer fusion (90.5%/2.3 s) 

and late fusion (86.2%/2.9 s) were both outperformed by 

our model (92.4%/1.42 s). Energy–throughput trade-off. 

On mobile SoC, lowering fps from 57 to 44 cut energy ~22% 

with alignment still >90%. Hyperparameter sensitivity. 

Varying λ from 0.1–2.0 caused only minor performance 

fluctuations. These results demonstrate robustness, 

efficiency, and scalability of the proposed approach in 

real-time multimodal AR interaction. 

5  Discussion 

5.1  Performance advantage analysis of 
existing multimodal generation and 
visualization methods 

Compared with SOTA methods such as MulT (ACL 2019) 

and Perceiver (NeurIPS 2021), our framework offers 

similar semantic accuracy with lower latency, highlighting 

efficiency and scalability. Remaining challenges include 

high-concurrency handling and RL training cost, for which 

offline RL and imitation learning are potential solutions. 

The multimodal perception information intelligent 

generation and visualization strategy proposed in this study 

demonstrates significant advantages in three aspects. 

Firstly, in terms of interaction efficiency and response 

mechanism, traditional unimodal methods rely heavily on 

fixed rules and have a rigid task processing rhythm. 

However, our method achieves fast parsing and dynamic 

path adjustment of multimodal inputs through a state driven 

fusion feedback mechanism, reducing the average task 
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completion time to 3.8 seconds, which is significantly 

better than unimodal and heuristic methods. Secondly, in 

terms of semantic consistency and path planning accuracy, 

existing methods often focus on shallow concatenation for 

multi-source input fusion, resulting in significant semantic 

deviations; This research model introduces graph 

convolution and attention mechanism to construct a deep 

fusion structure, achieving a semantic alignment rate of 

92.4%, higher than the 78.6% of traditional methods and 

85.1% of heuristic methods, ensuring the coherence 

between user instructions and rendering results. Thirdly, in 

terms of rendering stability and interaction continuity, this 

method maintains a stable frame rate of 57fps through 

feedback optimization and dynamic correction mechanisms, 

with a frame loss rate of only 2.9% and an interaction 

interruption rate controlled at 3.5%, which is significantly 

better than the level of the compared methods and 

demonstrates stronger robustness. 

The strategy proposed in this article demonstrates 

advantages over existing multimodal generation and 

visualization methods in three key dimensions: interaction 

efficiency, semantic consistency, and rendering stability. It 

can provide efficient and stable technical support for 

real-time perception and visualization interaction in 

complex AR scenes, and provide a new implementation 

path for improving the performance of multimodal 

interaction systems. 

5.2  Strategy adaptability and stability 
verification in complex AR scenarios 

To test the adaptability and stability of the proposed 

multimodal perception information intelligent generation 

and visualization strategy under complex interaction 

conditions, this paper sets four typical disturbance 

scenarios, namely speech burst interference, motion input 

blur, high rendering concurrency, and limited field of view 

reconstruction. 100 rounds of experiments were conducted 

in each scenario to collect three core indicators: interaction 

success rate, average response delay, and system stability 

score. The results are shown in Table 5.

 

Table 5: Performance comparison of multimodal strategies in typical complex scenarios 

 

Scenario Type Interaction Success Rate (%) Average Latency (s) Stability Score (10) 

Sudden Speech Interference 93.1 1.9 9.2 

Blurred Action Input 90.4 2.3 8.9 

High-Concurrency Rendering 91.6 2.1 9.0 

Restricted View Reconstruction 88.7 1.4 8.6 

 

All results are mean ± SD over 10 runs on RTX 3060 GPU 

(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split 

70/15/15.Under the condition of sudden speech 

interference, the model uses attention weighting 

mechanism and semantic tracking to quickly correct 

instructions, with a success rate of 93.1%, a delay of only 

1.9 seconds, and a stability score of 9.2, indicating its 

strong semantic compensation and robustness. In the test of 

fuzzy action input, the redundancy check mechanism that 

integrates features effectively reduces recognition errors, 

with a success rate of 90.4%, an average delay of 2.3 

seconds, and a stability score of 8.9. In rendering high 

concurrency scenes, the system adopts dynamic priority 

scheduling and path layering mechanism to alleviate 

computational pressure, with a success rate of 91.6%, a 

delay control of 2.1s, and a score of 9.0, demonstrating its 

excellent parallel processing capability. In the face of 

limited field of view situations, the system is able to 

generate alternative rendering solutions in real time. 

Although the success rate has decreased to 88.7%, the 

latency remains at 1.4s seconds and the stability score is 8.6, 

ensuring the integrity of the interconnection chain. 

Overall, the proposed strategy maintains an interaction 

success rate of over 88% and an average response of less 

than 3 seconds under various complex disturbances, 

verifying its adaptability and stability in high dynamic AR 

scenarios and providing solid support for achieving reliable 

multimodal intelligent interaction. 

5.3  Feasibility assessment of system 
resource overhead and real-time 
presentation 

In AR scenario applications, the engineering value of 

multimodal perception and visualization strategies is not 

only reflected in their interactive effects, but also depends 

on their adaptability to computing resources, 

communication environments, and operating platforms. 

Therefore, this article evaluates the resource cost and 

deployment feasibility of the constructed model to verify  

 

its ability to be implemented in complex interactive tasks. 

The model consists of three parts: edge collection, core 

inference, and visual interaction. The edge module is 

deployed on AR terminals or smart glasses, mainly 

responsible for collecting and initially encoding voice, 

gesture, and visual data. In a scenario with a 50fps input 

rate and concurrent processing of 30 tasks, the CPU usage 

is about 32% and the memory consumption is about 950MB. 

It can run stably on mid-range mobile processors or 

lightweight edge devices without the need for high-end 

hardware support. The core reasoning module relies on 

GPU servers to complete feature fusion, path generation, 

and feedback correction. In 100 rounds of concurrent 

interaction testing, a single round of inference took 2.3 

seconds, with semantic alignment and path calculation 

accounting for nearly 65%. Experiments have shown that a 

moderately configured GPU (such as RTX 3060) can 

support real-time interaction at a scale of 100 tasks, while a 

lightweight version can maintain latency within 3 seconds 
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on embedded platforms, adapting to resource constrained 

mobile scenarios. The visual interaction module achieves 

state synchronization and image presentation through 

WebSocket and AR rendering engine. At 1080p resolution, 

the bandwidth requirement is about 3.8Mbps, and the 

communication delay is less than 180ms, fully meeting the 

response requirements for real-time interaction. If running 

at a higher resolution (2K/4K), the bandwidth overhead 

increases to approximately 6.5Mbps, but still remains 

within an acceptable range. This model maintains a 

computational footprint of less than 35% and a 

communication delay of 200ms under conditions of 

multi-source input and high concurrency, combining 

scalability and economy. Its layered decoupling and 

modular structure not only facilitates cross platform 

porting, but also flexibly adapts to different hardware 

conditions, providing feasible resource guarantees for 

real-time application and promotion in AR 

scenarios.Cross-device tests on a mid-range mobile GPU 

(Adreno 660) and a desktop GPU (RTX 3060) yielded 2.3 s 

/ 44 fps and 1.4 s / 57 fps respectively, demonstrating 

acceptable trade-offs across platforms and resolutions.The 

pipeline has a complexity of O(N·d²) for feature fusion and 

O(E log V) for the improved A* path search. On an RTX 

3060, the average per-frame cost is ~4.2 GFLOPs with 

~950 MB memory. Throughput tests show stable 57 fps for 

≤50 tasks, decreasing to 44 fps at 100 tasks, indicating 

scalability under varying concurrency. 

5.4  The value of research results in 
intelligent interaction and application 
expansion in AR scenarios 

The multimodal perception information intelligent 

generation and visualization strategy proposed in this 

article has demonstrated significant application value in 

AR scenarios, providing reliable support for real-time 

perception and dynamic presentation in complex 

interactive environments. From the perspective of 

operational efficiency, the constructed model is able to 

maintain interaction latency below 1.5s, rendering frame 

rate stable above 55fps, and semantic consistency above 92% 

in the case of high concurrency from multiple sources of 

input. Compared to traditional methods, the interaction 

interruption rate has been reduced by nearly 60%, and the 

user response accuracy has been improved to 93%, fully 

demonstrating the robustness and adaptability of the model 

in high dynamic scenarios. In terms of interaction stability, 

the model can quickly distinguish abnormal signals such as 

speech noise interference and motion input blur, and 

automatically adjust the rendering path through feedback 

correction mechanism to ensure the continuous operation 

of the system. The experimental platform data shows that 

the number of rendering lags has decreased by more than 

40%, and the smoothness of task execution has 

significantly improved. In terms of application scalability, 

this research results present multimodal states, rendering 

results, and feedback logic graphically through a visual 

interface, making the interaction process more transparent 

and facilitating real-time monitoring and strategy 

optimization. This method can seamlessly integrate with 

existing AR engines and interaction platforms, and 

supports various hardware devices such as mobile 

terminals and smart glasses, with good cross platform 

deployment capabilities. The model proposed in this article 

demonstrates advantages in terms of interaction efficiency, 

system stability, and scalability. It not only supports 

immersive experiences in complex AR scenarios, but also 

provides a practical path for the promotion and application 

of intelligent interaction systems, laying a solid foundation 

for the industrialization and application expansion of AR 

technology in the future. 

5.5  Comparison with State-of-the-Art 
(SOTA) Methods 

We further compared our framework with representative 

SOTA models, including MulT (2019), Perceiver (2021), 

and Transformer-based AR design (Lee et al. 2023). MulT 

and Perceiver achieved semantic alignment rates of 90.1% 

and 91.3% with latencies of 2.6 s and 2.1 s, while our 

method reached 92.4% alignment with 1.42 s latency. In 

terms of stability, Lee et al.’s design maintained 49 fps, 

whereas our framework achieved 57 fps with <2% frame 

loss. 

Ablation analysis shows that semantic modeling 

improved alignment by +7.8%, and feedback optimization 

reduced latency by ~20%, explaining the overall gain. 

These results confirm that our approach not only 

outperforms SOTA methods in accuracy, latency, and 

stability, but also ensures scalability on mid-range devices 

for real-time AR interaction. 

6  Conclusion 
This article focuses on the intelligent generation and 

visualization of multimodal perception information in AR 

scenes, proposing a feature modeling method that 

integrates graph convolution and attention mechanism. 

Combining the cross-modal mapping framework of 

variational autoencoder and geometric/temporal 

constraints, and introducing a reinforcement learning 

driven visualization optimization mechanism, a 

closed-loop system of "perception generation presentation 

feedback" is constructed. The experimental results show 

that this strategy outperforms traditional methods in terms 

of interaction efficiency, semantic consistency, and 

rendering stability, with an average delay shortened to 1.4s, 

a rendering frame rate stable above 57fps, and a semantic 

alignment rate exceeding 92%. This validates its robustness 

and practicality in complex dynamic interaction 

environments. The system performs well in resource 

utilization and delay control, and can run stably in 

mid-range devices and multi platform environments, with 

application feasibility. However, there are still 

shortcomings in this study. Firstly, the experimental 

dataset is limited in size and mainly relies on public data 

and small-scale self built datasets. Further validation of the 

model's generalization ability is needed in large-scale and 

multi scenario scenarios; Secondly, the convergence speed 

of reinforcement learning in complex tasks is slow, which 
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may lead to high training costs and hinder large-scale 

real-time deployment. Future research can explore self 

supervised pre training and transfer learning mechanisms 

to enhance cross scenario adaptability; Simultaneously 

combining distributed computing and lightweight model 

compression to further optimize convergence efficiency 

and resource utilization. In addition, the framework of this 

study can be expanded in multi terminal collaboration and 

cross platform applications to enhance its application value 

in fields such as healthcare, industrial collaboration, and 

education. 

Supplementary materials 
A supplemental package is provided, including the source 

code, dataset generation script, trained model checkpoints, 

and a README file, to ensure reproducibility and 

facilitate further research. 

Appendix A: dataset and preprocessing 
steps 

Dataset 

Self-built multimodal dataset: visual, speech, and motion 

data. 

28,000 instances with timestamps for semantic 

alignment. 

460,000 records for rendering/interaction (frame rate, 

latency, frame loss). 

16,000 records for environmental/feedback data to 

evaluate model adaptability. 

Preprocessing 

Time alignment: Linear interpolation and 

synchronization. 

Structural mapping: Map inputs to feature tensors and 

generate labels. 

Denoising: Bandpass filter (300Hz-3kHz) for speech 

noise; blur detection for visual data. 

Standardization: Features standardized to [-1,1]. 

Sliding window: Split dataset and add 15 abnormal 

samples for robustness testing. 

Hardware and Software 

Hardware: NVIDIA RTX3060,32GB memory, Intel i7 

Software: PyTorch1.10, AnyLogic8.7, Kafka2.8.0 

Training Plan 

Epochs: 500 

Optimizer: Adam 

Learning rate: 1e-4 

Data augmentation: Random cropping, rotation 

Early stop: Stop if validation loss doesn’t improve for 

10 rounds. 

Hyperparameters and Benchmarks 

Model: Graph convolutional networks + attention 

mechanisms 

Hyperparameters: 3x3 conv layer, 128 hidden nodes, 

batch size 64 

Benchmark: Compared to single-modal and heuristic 

fusion models. 

Pseudocode 

Here is the pseudocode for the model training process: 

#Initialize model with GCN+Attention mechanism 

model = GCN_Attention_Model() 

# Training loop 

for epoch in range(epochs): 

for batch in data_loader: 

inputs, labels = batch 

outputs = model(inputs)  # Forward pass 

loss=compute_loss(outputs,labels)#Compute loss 

optimizer.zero_grad()  # Clear gradients 

loss.backward()  # Backward pass 

optimizer.step()  # Update weights 

#Early stopping if validation loss doesn't improve 

if validation_loss > threshold: 

break 

Benchmark Method 

Single-modal model: Basic CNN trained on a single 

modality (e.g., visual data). 

Heuristic fusion model: Fuses modalities using fixed 

rules, without dynamic optimization. 

Fair comparison: All models trained with the same 

computational conditions and hyperparameters. 

Labels: Automatic metrics checked by experts. 

Temporal: 30 frames per sequence (0.1 s), aligned with 

speech and action. 

Perturbations: Include SNR shifts, blur, occlusion, and 

lighting change. 

Runs: 100 distinct seeds/scenarios for statistical reliability.  
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