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In AR scenarios, the intelligent generation and visualization of multimodal perception information face
challenges such as feature heterogeneity, insufficient semantic alignment, and unstable real-time
performance. To address these issues, this study proposes a feature modeling method that integrates an
Attention-GCN for multimodal fusion, a variational autoencoder (VAE) with geometric/temporal
constraints for cross-modal mapping, and a reinforcement learning (PPO) driven optimization mechanism
to form a "perception—generation—presentation—feedback™ closed-loop system. Experiments are conducted
on a self-built multimodal dataset of 28,000 sequences, with results evaluated on a held-out test set to
ensure reliability. Baseline comparisons include a unimodal CNN and a heuristic fusion model under the
same computational conditions. Results demonstrate that the proposed framework achieves an average
delay of 1.42 £ 0.08 s, frame rate of 57 + 1.5 fps, semantic alignment rate of 92.4% + 1.1, and interaction
interruption rate of 3.5% + 0.4, outperforming baselines in efficiency, semantic consistency, and rendering
stability. These findings highlight the framework’s feasibility for real-time multimodal interaction in AR
scenarios and its scalability across mid-range devices.

Povzetek: Clanek predstavi AR-okvir, ki zdruzuje Attention-GCN za multimodalno fuzijo, VAE za

¢ezmodalno preslikavo ter PPO-ucenje za optimizacijo vizualizacije.

1 Introduction

Against the backdrop of AR technology gradually moving
towards immersion and complexity, traditional perception
and visualization systems lack cross modal fusion and
real-time scheduling mechanisms, making it difficult to
meet the interactive needs of high-frequency input,
multidimensional features, and heterogeneous data
coexistence.  Simultaneous input of  multimodal
information such as visual, speech, and action often leads
to difficulties in feature alignment, semantic weakening,
and unstable rendering, which directly affects the
interactive experience. As AR applications expand to
industrial simulation, healthcare, and collaboration, the
system urgently needs to shift from static rendering to
dynamic feedback driven multimodal generation
framework to achieve semantic consistency and real-time
stability.

Multimodal intelligent generation technology is the
key to promoting the development of AR. Its core lies in
using deep neural networks and graph structure modeling
to achieve unified modal representation and dynamic
fusion. Research has shown that multimodal networks that
integrate graph convolution and attention mechanisms
exhibit superior performance in semantic alignment and
feature extraction, and can provide support for
visualization generation in complex scenes. Ismail et al.
(2015) proposed integrating gestures and voice input in AR

to effectively improve interaction efficiency [1]; Yong etal.

(2025) achieved cross modal mapping through variational

autoencoder and reinforcement learning, significantly
reducing rendering latency [2]; Chen et al. (2024) further
validated the stability of dynamic visualization and path
adaptation in medical scenarios [3].

The multimodal perception information intelligent
generation and visualization strategy proposed in this
article aims to construct a closed-loop mechanism of
perception generation presentation. The overall model
consists of three modules: feature fusion modeling based
on graph convolution and attention mechanism, cross
modal generation framework combining geometric and
temporal constraints, and visualization optimization
mechanism based on reinforcement learning. Unlike
traditional methods, this strategy emphasizes state
feedback driven and  multi-source  information
collaboration, with the ability to adaptively adjust paths
and optimize real-time rendering, which can improve
accuracy and stability in complex interactive scenes.

In recent years, breakthroughs in artificial intelligence
have provided algorithmic support for this research. Lee et
al. (2023) summarized multimodal design patterns in AR
scenarios based on Transformer and verified the
consistency of image and speech alignment [4]; Zollmann
et al. (2021) proposed the application of deep residual
networks in dynamic rendering prediction, which
maintained high accuracy in high frame rate environments
[5]. These achievements have laid the foundation for the
strategy design and verification in this article.
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The main contributions of this work are as
follows:(DAlgorithmic novelty: Proposes an
Attention-GCN-based multimodal fusion with VAE
cross-modal mapping for accurate semantic
alignment.(2)System integration: Designs a reinforcement
learning strategy for real-time AR visualization with
dynamic  feedback.(3)Formalization: ~ Establishes a
closed-loop framework combining feature fusion,
cross-modal generation, and visualization with complete
definitions.(4)Empirical validation: Demonstrates
effectiveness on a 28,000-sequence dataset, significantly
improving latency, semantic consistency, and rendering
stability.

2 Related work

The rapid development of AR technology has gradually
made multimodal perception and intelligent visualization
an important support for complex interactive experiences.
However, existing research still faces challenges such as
feature heterogeneity, insufficient semantic alignment, and
rendering latency. Multimodal modeling and fusion
determine whether visual, speech, action, and other inputs
can be unified into a shared semantic space; The intelligent
generation method affects the accuracy and stability of
cross modal mapping; Real time rendering and interactive
optimization determine the adaptability of the system in
high dynamic scenes. Therefore, it is of great significance
to review existing research and compare the differences
between traditional and new methods.

In terms of multimodal modeling, traditional AR
systems rely heavily on single modal features such as
visual recognition or speech control. Although they can
maintain accuracy in simple scenarios, they are often
disturbed in complex interactions. In recent years,
researchers have proposed using graph convolution and
attention mechanisms to achieve cross modal fusion. In
terms of intelligent generation, Zheng et al. (2024)
systematically reviewed the current status of augmented
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reality data visualization and pointed out that multimodal
data fusion and generation models are key paths to
improving decision support and dynamic rendering
accuracy [6]. Friske (2024) proposed to deeply integrate
AR with SLAM for mobile robots to achieve adaptive
mapping of cross modal data, effectively enhancing spatial
perception and generation robustness [7]. In terms of
visualization strategies, Al Tawil (2024) reviewed the
evolution of visual SLAM applications in robotics and AR,
emphasizing its value in maintaining continuity and
reducing latency in multimodal visualization [8]. Sheng et
al. (2024) analyzed the applicability of SLAM algorithm in
AR visualization and pointed out that introducing feedback
prediction mechanism can significantly improve frame rate
stability and system real-time performance [9]. The visual
SLAM review proposed by Barros (2022) indicates that
integrating multimodal perception with SLAM frameworks
can effectively enhance real-time visualization capabilities
for complex tasks [10]. At the system integration level,
Taketomi et al. (2017) reviewed the development history of
visual SLAM algorithms and believed that cross platform
interfaces and  synchronization  mechanisms are
prerequisites for ensuring the stable operation of multi
terminal AR systems [11]. Xu et al. (2024) proposed a
multimodal 3D fusion and in-situ learning method in IEEE
ISMAR, and verified its stability and fast adaptability in
cross terminal environments [12]. Therefore, researchers
propose a mechanism based on WebSocket and
asynchronous event driven to achieve real-time
synchronization of multimodal task states and feedback,
thereby reducing latency and enhancing platform
adaptability. This provides a feasible path for the
widespread application of multimodal systems.

In order to provide a clear comparison of prior works
and highlight the improvements of our framework, we
summarize representative studies in terms of problem
setting, dataset, methods, and quantitative results, as shown
in Table 1.

Table 1: Summary of related works compared with our proposed framework

Reference Problem Dataset Method Metrics Comparison
Ismail et al. Gesture + ~2k lab Rule-based Early-stage fusion, no
(2015) speech fusion samples fusion Accuracy 85% real-time tests
Yong et al. Cross-modal B Latency 2.7s; Limited scope; ours:
(2025) mapping 12k seq. VAE +RL Align. 86% 1.4s, 92.4%
Chen et al. AR for medical Med AR data Dynamic vis. + 50 fps; Align. App.-specific; ours: 57
(2024) decision path adapt. 88% fps, higher stability
High latency; ours:
L?fogts?l' T'&%Elﬂgirgﬁr Benchmark Traarlfgg{irgﬁr * Align. 89% lower dei!ay, higher
align.
Zheng et al. ; ; ; Theoretical; ours:
' - validated closed-loop
(2024) AR vis. survey Multiple Review only lidated closed-I
- 1.42s; 57 fps; SOTA in latency
Our work Real-time AR Attn-GCN + : d y T : !
: - 28Kk seq. Align. 92.4%; Int. stability, consistency;
(2025) interaction VAE + RL 3.5% scalable
All results are mean = SD over 10 runs on RTX 3060 GPU multimodal AR through  gesture—speech  fusion,
(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split VAE-based mapping, medical visualization, or

70/15/15. As shown in Table 1, existing studies explore

Transformer design, but often suffer from small datasets,
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limited domains, or high latency. Our framework integrates
Attention-GCN, VAE, and reinforcement learning to
achieve 92.4% alignment, 1.42s latency, and 57 fps,
showing clear improvements in accuracy and stability.

Current research has made progress in modeling,
generation, and visualization, but there are still
shortcomings: firstly, cross modal fusion mostly remains in
the experimental stage and lacks large-scale applications;
Secondly, the real-time performance of generative models
is limited in complex concurrent scenarios; Thirdly, the
stability of system integration in cross platform
environments is insufficient. Therefore, building a
closed-loop system with state perception, dynamic
feedback, and multi-source fusion capabilities has become
the key to promoting the implementation of AR multimodal
perception and visualization technology. The strategy
proposed in this article is aimed at addressing these
shortcomings and providing stronger technical support for
intelligent interaction.

3 Intelligent generation and
visualization strategies for multimodal
perception information

3.1 Feature modeling and fusion mechanism
for multimodal perception

This article focuses on the issues of "perception delay and
rendering instability”™ in AR scenes, with a particular
emphasis on the fusion of multimodal inputs and path
generation mechanisms. Due to the lack of unified
alignment and feedback optimization of heterogeneous
signals such as visual, speech, and action during concurrent
input, the system is prone to semantic weakening and
response lag under high dynamic interaction. Therefore,
this study starts with the matching of tasks and data streams,
as well as the principle of collaboration between multiple
sources of interaction, aiming to achieve flexible control
and visual scheduling of multimodal perception, and verify
the performance of the model in terms of information
generation accuracy and interaction stability.

To ensure reproducibility, this article adopts modular
and multi-agent modeling methods to construct perception
nodes, task processes, and control unit models on the
AnyLogic platform; Introduce improved A * algorithm and
load balancing strategy to optimize the path, and combine
WebSocket and Kafka to achieve real-time interaction; Use
Python and Flask interface to achieve state synchronization.
Evaluate performance through metrics such as interaction
latency, rendering stability, and semantic consistency, and
design ablation experiments to validate the contribution of
key mechanisms. The research process involves four steps:
establishing a multi-agent model on the AnyLogic platform,
setting multimodal inputs and resource constraints;
Implementing dynamic path planning based on improved A
* and feedback mechanism; Support data exchange through
WebSocket and Kafka; Implement instruction and state
synchronization using Python and Flask. The system
performance is evaluated through accuracy, response time,
and rendering stability, and its adaptability in complex
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interactive scenarios is
experiments.

In terms of system logic, the multimodal generation
and visualization strategy adopted in this article mainly
includes four key modules: physical entity layer, virtual
modeling layer, data channel layer, and feedback strategy
layer. Among them, the physical entity layer is responsible
for collecting multimodal inputs and executing tasks; The
virtual modeling layer achieves semantic fusion and feature
mapping through graph convolution and attention
mechanism; The data channel layer implements state
sampling and synchronization through asynchronous
transmission; The feedback strategy layer dynamically
adjusts the path and visualization results based on the

analyzed through ablation

predicted results. If the physical input state is Xtand the

virtual model state is Xt, the virtual real synchronization
relationship can be represented as:

)ztzf(xt,At,g) 1)

Among them, Xt is the input signal, e.g., visual,
speech, or sensor data. Units: [pixels], [audio samples].

xt is the predicted output. At is the sampling period.

Units: [seconds]. € is environmental noise, in [dB]. f()
maps input data, sampling period, and noise to predict
output. This mechanism ensures real-time updates and
approximate realism of virtual states. Furthermore,

assuming task set T:{tl'tZ’”"tn} and resource set

R= {rl’ IR rm}, the scheduling driving function of the
system is:

P =agmiple Py X

Among them, Pis the optimal path. Units: [path
length], [steps]. Qjs the set of candidate paths. A is the

penalty coefficient. (D(P)is the path cost. Units: [time],

[distance]. viXi X, is the semantic penalty. (D(P)
calculates path cost. l//(x“ Xt) measures deviation
between input and predicted output. Through this
mechanism, the system achieves dynamic path planning
and real-time correction in complex interactions.

The focus of this work is to enhance the usability and
applicability of multimodal modeling and visualization
strategies. Therefore, this article has carried out extended
design in terms of system implementation and integration.
The logical information layer is based on MySQL database
and Flask interface to achieve parameter maintenance and
data input management; The perception acquisition layer
obtains visual, speech, and motion data through
multi-source sensors and interface protocols to ensure input
accuracy; The interactive mapping layer utilizes Node RED
for data fusion and preprocessing, and outputs dynamic
visualization results; Cross platform integration is achieved
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between different layers through RESTful API. The data
management system adopts a centralized service
architecture, which uniformly receives multi-source data
streams and uses Kafka message queues to complete
asynchronous transmission and caching. Through timed
sampling and timestamp correction, the system can
maintain consistency between virtual modeling and real
interaction, and achieve preliminary integration and
real-time verification based on WebSocket on the AR
experimental platform.

A multimodal visualization system is not only a
display tool for AR scenes, but also a core platform for
perception modeling, information generation, and
interaction optimization. It has demonstrated significant
value in state perception, path generation, and feedback
optimization, providing methodological support for
constructing  dynamic interaction and intelligent
visualization models. The next section will analyze the task
node structure and fusion mechanism of the system, further
elaborating on its advantages and feasibility in complex
interactions and real-time rendering. The Attention-GCN is
implemented with 3 layers of 128 hidden units and 8 heads
each, using ReLU activation, 0.2 dropout, and batch
normalization.

3.2 Intelligent generation method of
perception information for AR scenes
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In augmented reality (AR) applications, real-time
processing and visualization generation of multimodal
inputs are the core of immersive interaction. However,
visual, speech, and motion signals often exhibit feature
heterogeneity and semantic inconsistency  during
concurrent input, resulting in delays and unstable rendering.
Traditional methods rely on single modal or static mapping,
lack feedback and path optimization mechanisms, and are
difficult to adapt to high dynamic scenarios. Therefore, this
article proposes an AR oriented intelligent generation
method for perceptual information, which achieves
semantic consistency and real-time stability through a
closed-loop mechanism of feature fusion, path generation,
and feedback optimization.

This method consists of an input perception layer, a
semantic modeling layer, a path generation layer, and a
feedback optimization layer. Input perception layer collects
multi-source data and vectorizes encoding; The semantic
modeling layer utilizes graph convolution and attention
mechanisms to enhance semantic alignment; Combining
the path generation layer with improved A* search and load
balancing strategies for path planning; The feedback
optimization layer updates the strategy through
reinforcement learning to reduce latency and enhance
robustness. Table 2 summarizes the core features of each
module.

Table 2: Core features of intelligent generation methods for AR scenarios

Module Type Expression Method

Functional Role Module Type

Multi-source sensors +

Input Perception vectorized encoding

Captures multimodal inputs such as

vision, speech, and actions Input Perception

Semantic
Modeling

Graph Convolution +
Attention Mechanism

Fuses heterogeneous features to
enhance semantic consistency

Semantic Modeling

Improved A* + Load

Path Generation Balancing

Dynamically plans rendering paths and

interaction decisions Path Generation

Feedback
Optimization

Reinforcement Learning +
Policy Update

Real-time correction of latency and task
conflicts, improving stability

Feedback Optimization
(same as left)

All results are mean + SD over 10 runs on RTX 3060 GPU
(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split
70/15/15.During the implementation process, the input
layer accesses sensor data through standardized protocols;
The modeling layer is integrated on the PyTorch platform;
Combining A* with resource constraints at the path layer to
generate candidate solutions; The feedback layer
dynamically optimizes parameters based on policy
gradients to ensure smooth interaction.The VAE
encoder/decoder follow a 256-128-64 / 64-128-256
structure with a latent dimension of 32, and the loss is
definedas L_recon+0.1-L_KL +0.2-L_geo + 0.3-L_temp.

To ensure reproducibility, the operating logic of the
intelligent generation method is as follows:

Input: MultiModallnputs {Xv € R*(TvxDv), Xs €
RN(TsxDs), Xg € RN(TgxDg)}, ResourcePool R

# Attention_GCN Architecture

H = Attention_GCN({Xv, Xs, Xg})

#X layers, Y nodes per layer, Z edges, adjacency
matrix via [method]

#Attention = softmax((QK’\T)/\/d), normalized by
[method]

#Activation:[function],Regularization:[method],
Initialization: [technique]

# VAE Loss: Reconstruction + KL Divergence +
Constraints

z ~ N(u(x), 6"2(x)),

L VAE = ||[X - X'[|"2 + D_KL(N(u, 6”2) || N(0, I)) +
L_geo + L_temp

# L_geo: Spatial consistency

# L_temp: Sequence consistency

# L_geo, L_temp are weighted penalties in the loss
function

# RL Optimization (PPO)

Algorithm: PPO, Ir = 1e-4, batch_size = 64, y = 0.99
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Reward:r=-delay+B*semantic_consistency-y*resource
_cost

# State: System/environment context

# Action: Control actions

# Reward: Calculated based on delay, consistency, and
cost

# A* Path Optimization

P_candidates = A*_Search(TaskGraph, R)

# Scoring

For each P in P_candidates:

Score(P)=Cost(P)+A*SemanticDeviation(P,H)

# Select best path

Select P* = argmin Score(P)

# Update feedback

Update Rendering and Feedback(P*)

This process covers input fusion, path generation,
optimal selection, and feedback correction, and can
maintain low latency and high stability under high
concurrency tasks.

In the experiment, the system uses WebSocket and
Kafka for data exchange, and Flask interface for state
synchronization. The evaluation metrics include
interaction latency, rendering stability, and semantic
consistency. The results indicate that the method has high
robustness in dynamic environments. The ablation
experiment shows that semantic modeling and feedback
mechanisms contribute the most to performance, and any
missing link will lead to a decrease in stability. The
generation method proposed in this article effectively
solves the problems of semantic inconsistency and
rendering delay through a closed-loop mechanism of
"fusion generation optimization"”, significantly improves
task efficiency and interaction fluency, and has cross
platform scalability value, providing a new technical path
for multimodal visualization in AR scenes.

3.3 Multimodal data-driven visualization
presentation strategy

In the real-time interaction process of AR scenes,
multimodal data such as vision, speech, and action are
input into the system in a highly concurrent form, and their
feature distributions often have heterogeneity and
inconsistency. Without dynamic fusion and feedback
optimization, it is easy to lead to semantic weakening,
rendering delay, and unstable visualization. Traditional
methods rely on single modal or fixed rendering pipelines,
which cannot adapt to complex tasks and multi-source
inputs in high dynamic scenes, resulting in frame rate drops,
delay accumulation, and information fragmentation. To
address this issue, this paper proposes a multimodal
data-driven visualization presentation strategy aimed at
achieving high-precision, low latency, and stable
visualization output in AR scenes through a closed-loop
mechanism that integrates modeling, path generation, and
feedback correction.
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The operational logic of this strategy mainly includes
four modules: input fusion, semantic mapping, path
generation, and feedback optimization. The input fusion
module obtains visual, speech, motion and other signals
through sensors, and vectorizes and encodes them to form a
unified input matrix; The semantic mapping module
introduces GCN and attention mechanism to achieve joint
representation of cross modal features and enhance
semantic consistency; The path generation module
combines temporal constraints and A* optimization
algorithm to dynamically calculate the rendering path; The
feedback optimization module utilizes reinforcement
learning mechanisms to correct delays and anomalies,
ensuring the stability and real-time performance of
visualization results. For the convenience of formal
description, let the input multimodal set be

X Z{XV’XS’XQ} , where XV' XS' and Xg represent

visual, speech, and action features, respectively. The
semantic representation after encoding and fusion is:

H= fGCN+Att(XV’ Xs: Xg) (3)

In the formula, foonsat combines graph convolution
with sampling. H is the output semantic representation.

X, X, X i )
VISP 8 are input features for visual, speech, and

graph data. Foon-a fuses GCN and sampling period.
This step ensures a unified expression of multimodal inputs,
providing high consistency semantic support for
subsequent visualization mapping.

In the path generation stage, the system constructs a set

of candidate visualization paths P , each corresponding to
a different rendering order and resource consumption. The
optimization objective is defined as:

P" =argmin[C(P)+1-D(H,P)]
Pep (4)

Among them, P is the optimal path. C(P)is the
path cost function (delay, frame rate consumption, etc.),

D(H ! P) is the semantic deviation function, and A is the

trade-off  coefficient. C(P) calculates path cost.

D(H ! P) measures semantic deviation. Through this
optimization formula, the system ensures both rendering
efficiency and semantic consistency.

In actual interaction, the feedback optimization
module dynamically adjusts parameters based on the delay
and error rate of rendering results. If a frame rate drops or
semantic drift is detected, the system will trigger a path
reconstruction mechanism to recalculate the optimal path

P based on the input H' in the new state. The feedback

and path generation form a closed-loop control loop,
ensuring the stability of visualization in dynamic
environments. The entire multimodal visualization
presentation process is shown in Figure 1.
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Figure 1: Flow chart of multimodal data driven visualization presentation

Figure 1. Framework of the proposed multimodal
system, including data acquisition, fusion, generation, and
feedback modules. Experimental verification shows that
this strategy performs superior in high concurrency AR
tasks. Compared to traditional methods, the average
rendering delay is reduced by 17%, frame rate stability is
improved by 13%, and semantic consistency score is
increased to over 92%. In the ablation experiment, if the
semantic mapping module is removed, the rendering
semantic consistency decreases by about 11%; If the
feedback optimization module is removed, the delay
increases by nearly 20%, further demonstrating the critical
role of the closed-loop mechanism in maintaining system
robustness.

The multimodal data-driven visualization presentation
strategy proposed in this article integrates modeling,
dynamic path generation, and feedback optimization to
form a closed-loop mechanism of "input mapping
presentation feedback", effectively alleviating the
problems of semantic inconsistency and rendering delay.
This method not only enhances the interactive experience
and scalability of AR scenes, but also provides a feasible
technical path for multimodal intelligent visualization in
complex environments.PPO is applied with y =0.99, state =
{embeddings, latency, resources}, action = {path,
rendering}, reward = —delay + 0.5-consistency — 0.2-cost,
and both policy and value networks use 2 hidden layers of
128 units with batch size 64, Ir = 1e-4, updates every 10
episodes, and early stopping after 20 stagnant episodes.

3.4 Integrated deployment and interactive
operation mechanism

In AR scenarios, the generation and visualization of
multimodal information not only rely on algorithm
optimization, but also require stable deployment structures
and flexible interaction mechanisms as support. If only
staying at the level of a single model, it is often difficult to
achieve immersive interaction in complex scenes due to

interface fragmentation, high delay or insufficient feedback.

Therefore, this study proposes an integrated deployment
and interactive operation framework aimed at constructing
a closed-loop system of ‘“perception generation
presentation feedback”, enabling efficient mapping and
dynamic updating of multimodal information between
virtual and reality.

The overall system adopts a layered decoupling
architecture, including input perception layer, modeling
processing layer, decision optimization layer, and
interaction presentation layer. The perception layer obtains
visual, speech, and motion data from multiple sensors and
uses standardized protocols for vectorized encoding; The
modeling processing layer introduces graph convolution
and attention mechanisms for feature fusion to achieve
semantic consistency modeling; Generate and reinforce
learning strategies for decision optimization layer
operation paths, and output visualization solutions; The
interactive presentation layer will dynamically render the
generated results in the AR terminal and achieve low
latency feedback through WebSocket and Kafka. To ensure
stable operation, the system adopts RESTful API for
modular calling and cross platform integration between
different layers, thus adapting to concurrent interaction
among multiple terminals.

In the operating mechanism, the system standardizes
the scheduling period into fixed time slots, completing
perception input, policy generation, result presentation,
and feedback correction within each time slot, forming a
dynamic loop. Formally expressed as:

St = F(St’ Xt Rt) (5)

Among them, S represents the current system state
vector (including semantic modeling results, resource

X

utilization, and rendering parameters), is the

multimodal input signal set, R, is the resource and

interaction feedback information, and F() is the generation
and update function. This mechanism ensures that the
system can complete state reconstruction based on
feedback within each time slot, achieving semantic
consistency and low latency response.

The interactive operation mechanism is the core
innovation of this system. User input is collected in
real-time through voice commands, gesture actions, or
environmental perception, and input into the model after
vectorization through the perception layer. During the
visualization rendering phase, the system sets dynamic
correction formulas based on feedback mechanisms:

i1(O; _Oi‘

n
i=1

E =
n (6)
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Among them, 0 represents the expected interactive

O

output, i represents the actual rendering result, and E

represents the average deviation rate. When E exceeds the
set threshold, the feedback module immediately triggers
strategy correction to adjust the path and rendering
parameters, thereby avoiding interaction distortion caused
by delay or error.

At the deployment level, the system adopts a
containerization solution to achieve cross platform
compatibility, supporting simultaneous operation on local
AR terminals and cloud servers. The perception access
layer synchronizes data through WebSocket and MQTT
protocols, the semantic modeling layer runs in a GPU
accelerated environment to ensure real-time performance,
the policy execution layer combines Flask and Python
interfaces to map optimization results to the AR rendering
engine, and the interactive operation mechanism uses
Kafka message queues for asynchronous transmission to
ensure low latency response under high-frequency input. In
an experiment based on AR collaborative training, the
system maintained 95% semantic consistency while
controlling the average interaction delay within 1.4s,
reducing it by about 19% compared to traditional methods.

In order to enhance the reproducibility and
generalizability of research, this article summarizes five
key steps in the deployment process: (1) establishing a
connection with multimodal sensing devices through
MQTT protocol and setting up data paths; (2) Construct a
semantic modeling module based on the characteristics of
visual, speech, and action data; (3) Start the rendering
scheduler and bind the multimodal input graph; (4) Deploy
feedback detectors, set rendering delay and stability
thresholds, and trigger automatic correction mechanisms;
(5) Collect interaction logs and status parameters at fixed
time intervals after system operation, supporting secondary
configuration and model migration.

The framework comprises three GCN layers (128
hidden units), a VAE encoder—decoder (~2.1M parameters),
and a PPO-based reinforcement learning module (0.6M),
totaling about 2.7M parameters.Latency analysis shows
four components: feature fusion (0.3s), semantic modeling
(0.5s), path generation (0.4s), and feedback optimization
(0.2s), with an average of 1.42s.Workflow steps: (1)
multimodal input, (2) Attention-GCN fusion, (3) VAE
cross-modal mapping, (4) RL optimization, and (5)
real-time AR visualization.All equations include variable
definitions and units for clarity and
reproducibility. Training uses 500 epochs with Adam (Ir =
le-4, wd = le-5), dataset split 70/15/15, random seed 42,
and hardware/software including RTX 3060 GPU, 32GB
RAM, PyTorch 1.10, CUDA 11.3.
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4 Results

4.1 Dataset

This plan relies on the actual operating environment of the
intelligent interactive experimental platform to build a
dataset, and the overall process covers four steps: data
collection, preprocessing, evaluation indicators, and
ablation verification. The first step is to collect multimodal
signals such as visual, speech, and motion through multiple
sensors and rendering engines, and convert them into a
structured database; The second step is to use methods such
as timing alignment, noise filtering, and missing value
filling for preprocessing to ensure the consistency of
multi-source information; The third step is to run the
multimodal generation and visualization method proposed
in this paper on a unified evaluation platform, and conduct
comparative experiments with benchmark models (single
modal convolution model and traditional rendering
framework). Each experiment is repeated 100 times to
verify its performance differences in latency, frame rate,
and interaction stability; Step four, conduct ablation
experiments on the three core modules of semantic
modeling, path optimization, and feedback mechanism to
analyze their contribution to overall performance. Data
collection is mainly completed through three types of
devices: RGB-D cameras and IMUs to capture gestures,
trajectories, and positions; The microphone array collects
voice commands and converts them into text; Optical
tracking and environmental sensors obtain illumination,
material reflection, and noise interference; The AR
rendering engine records frame rate, latency, and
interaction success rate as core evaluation metrics.

The dataset is divided into three types of substructures:
(1) Multimodal input data: including visual frame
sequences, speech text, and action poses, totaling 28000
sets, with timestamps attached to each set for semantic
alignment and feature fusion training; (2) Rendering and
interaction data: recording resolution, frame rate, delay,
and frame loss, totaling 460000 records, updated in
milliseconds, used to verify real-time performance and
stability; (3) Environmental and feedback data: covering
lighting, noise, interaction success rate, and subjective
feedback, totaling 16000 pieces, updated every 5 seconds,
used to evaluate adaptability.

All data are filled with missing values, filtered with
noise, and aligned with timing, and connected to the AR
data bus to achieve direct integration with modeling and
visualization modules. The dataset structure is shown in
Table 3.
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Table 3: Comparison of different types of dataset structures and experimental purposes

Data Type Sample Size Sample Fields FrLég(thzEecy Purpose Description
Multimodal Input Data 28000 sets Visual frarggfi,osnpg%csggranscripts, Per frame /0.1 s Feagg;&esifsﬂgin()cr;emgdsglrﬁ%ntic
e Sy | 460000 peces | FrAMe e ey, fameiop | viiseconcevel | VeHicEion o encering iy
Egggg:c?%];tg‘ 16000 pieces Lighting, noise, user feedback Every 5 seconds Tgﬁgr})gpfi%izrg{;g]eg;fggm%iﬁglsisw

All results are mean + SD over 10 runs on RTX 3060 GPU
(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split
70/15/15. In addition, 15 sets of abnormal samples (such as
speech occlusion, motion blur, and sudden changes in
lighting) were added to the dataset, and the recovery delay
and compensation mechanism performance were recorded
to verify the stability of the model under interference
conditions. This dataset provides high-quality support for
model training, performance evaluation, and ablation
experiments. Ground-truth labels were obtained by
combining automatic metrics (loU, speech—text matching)
with expert validation. Each sequence has 30 frames (=3 s
at 10 fps, 0.1 s steps). To test robustness, we added
perturbations including varied SNR (30-10 dB), motion
blur, and occlusions (0.5-2.0 s). All experiments were
repeated 100 times with different seeds and scenarios to
ensure independence. The dataset applies timestamp drift
compensation to align multimodal streams and uses fixed
preprocessing parameters (band-pass filter 300-3000Hz
for speech, Gaussian blur o=1.5 for motion frames).
Baseline systems include a single-modal CNN and a
heuristic fusion model, implemented under the same
hardware/software  settings for fair comparison.”
Ground-truth for semantic alignment is defined as IoU >
0.7, and voice—text matching is validated via automatic
alignment tools and expert review. To ensure
reproducibility, dataset samples, labeling rules, and
preprocessing scripts will be released in CSV/JSON format
through a public repository (link to be provided upon
acceptance). For verification, we also conducted synthetic
experiments on the public ARBench dataset, showing
consistent results with our own data.

4.2 Data preprocessing

In AR scenarios, multimodal inputs such as vision, speech,
and action are collected concurrently, and the data sources
are heterogeneous and dynamically fluctuating. If input
directly into the model without processing, it can easily
lead to noise propagation, semantic misalignment, and
rendering delays. Therefore, this article constructs a
preprocessing process of "timing alignment noise cleaning
structure mapping feature regularization" to ensure
consistency of input features at a unified scale and timing,
thereby supporting subsequent intelligent generation and
visualization tasks.

In the timing alignment stage, due to the difference in
sampling frequency between visual frames, speech signals,
and action trajectories, this paper aligns all modal inputs
through interpolation and synchronization mechanisms.

Let the original input set be I(t)={\/(t),S(t),G(t)}'

where V(t) represents visual frame sequences, S(t)

represents speech signals, and G(t)epresents actions and
spatial trajectories. The fused input after unified alignment
is:

X(t)=— [ Fo (1))
At 7

Among them, AU s the time window, and FﬂOfm(')
represents the function of normalizing and interpolating the
original signal. The function of this formula is to ensure
that multimodal data remains synchronized in the time
dimension and achieves uniformity in the sampling scale,
so that there is no temporal deviation in subsequent feature
fusion.

In the structural mapping stage, this article maps the
aligned input into a feature tensor and generates training
labels by combining rendering and feedback data.

Assuming a rendering metric of R(t) (including frame

rate, latency, and frame loss) and user feedback of U(t)
(including interaction success rate and rating), the mapping
function is defined as:

{H (t),Y(t)}z Fmap(x (t)’ R(t)’U(t)) (8)

Among them, H(t)is the multimodal feature tensor

used as input for model training, andY(t)is the label set
used for supervised learning. The function of this formula
is to establish a correspondence between multimodal inputs
and system feedback, enabling the model to directly learn
the closed-loop logic of "input generation feedback™ during
the training process.

In the actual implementation process, bandpass
filtering is used to eliminate noise in speech signals, blur
detection and image enhancement are used to remove
low-quality samples in visual frames, and sliding mean is
used to correct abrupt changes in action data. Normalize all
input features to the [-1,1] interval to reduce dimensional
differences. Subsequently, a sliding time window method
was used to divide the training set and the test set, and 15
sets of abnormal samples (such as speech occlusion and
sudden changes in lighting) were embedded to test the
robustness of the model in complex scenes.

The preprocessing mechanism in this article
normalizes heterogeneous inputs into a unified tensor
structure through two core steps: cross modal temporal
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alignment and semantic mapping function, and generates
label data required for training. This mechanism not only
ensures the stability of the model at the input level, but also
lays the data foundation for subsequent multimodal
generation and visualization optimization.

4.3 Evaluation indicators

To verify the adaptability and stability of the proposed
multimodal perception information intelligent generation
and visualization strategy in AR scenes, this paper designs
evaluation indicators from five dimensions: interaction
efficiency, semantic consistency, rendering stability,
response delay, and interaction interruption rate, and
compares them with single modal rendering methods and
heuristic fusion methods. The experiment was conducted
on an AR multimodal simulation platform, with a test set
consisting of multi-source inputs such as voice commands,
gesture actions, and visual frames. A total of 100 parallel
task scenarios were run.

In terms of interaction efficiency, the average
completion time of the model in this article is 3.8 seconds,
which is 32.1% and 22.4% shorter than the single modal 5.6
seconds and heuristic 4.9 seconds, respectively, reflecting
the advantages of the fusion mechanism in reducing
redundant waiting and avoiding conflicts. In terms of
semantic consistency, the path matching rate of our model
reached 92.4%, higher than the 78.6% and 85.1% of the

100 92,4, 85,1
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comparison methods, indicating that graph convolution and
attention mechanisms can effectively maintain the
coherence between input and output. The rendering
stability is evaluated by frame rate and frame loss rate. The
model in this paper maintains 57fps in dynamic scenes with
a frame loss rate as low as 2.9%, while the unimodal and
heuristic rates are 41fps/9.7% and 49fps/5.8%, respectively,
indicating that the feedback optimization mechanism can
ensure smooth rendering. In terms of response delay, the
average adjustment delay of the model in this article is 1.4
seconds, while the comparison methods are 5.2 seconds
and 3.7 seconds respectively, reflecting that the state driven
feedback mechanism has faster adaptability. In terms of
interaction interruption rate, the model proposed in this
paper only has a rate of 3.5%, which is significantly lower
than the single modal rate of 12.1% and the heuristic rate of
7.9%. This indicates that the proposed method can maintain
the integrity of the interaction chain even in the presence of
noise interference and input imbalance, avoiding overall
failure caused by local anomalies.

Figure 2 shows the comparison of different methods on
five indicators, and the results show that our model
performs outstandingly in terms of efficiency, semantic
consistency, stability, response speed, and continuity,
especially  exhibiting  stronger  robustness  under
multitasking concurrency and high noise conditions.

57
49
" 41
3,8 5,6 4,9 I 1,452 3,7 3,51217,9
0 — — P — — |

Interaction efficiency (s) Semantic consistency (%) Rendering stability (fps)

B the model in this paper

Response delay (s) Interruption rate (%)

unimodal M heuristic

Figure 2: Performance comparison of multimodal visualization methods on five indicators

Figure 2. Performance comparison on five indicators:
interaction efficiency, semantic consistency, rendering
stability, response delay, and interruption rate (mean + SD,
error bars = 95% CI, 10 runs).The multimodal intelligent
generation and visualization strategy proposed in this
article  demonstrates  comprehensive  performance
advantages in complex AR scenes, not only significantly
improving the real-time and stability of the system, but also
providing reliable support for the practical application of
multimodal perception and intelligent interaction.To
ensure result reliability, all experiments were repeated 10
times with different seeds, and outcomes are reported as
mean + SD. Paired t-tests at the 95% confidence level
confirmed significance; for instance, response latency of
our method (1.42 + 0.08s) was markedly better than the
unimodal (5.21 £ 0.23s, p < 0.01) and heuristic approaches
(3.74 £ 0.17s, p < 0.01). Key metrics are defined as:Path
Matching Rate (PMR): loU between generated and
ground-truth paths;Interaction Interruption Rate (IIR):
proportion of interrupted to total interactions (threshold =

0.2);Rendering Stability (RS): average frame rate with
variance, counting frames below 30fps as distorted.These
measures enhance the study’s reproducibility and statistical
rigor.

4.4 Ablation study

To further verify the key mechanism role of the proposed
multimodal perception information intelligent generation
and visualization strategy in AR scenes, this paper
designed multiple ablation experiments, peeled off the core
modules in the model, and analyzed their impact on
indicators such as interaction efficiency, semantic
consistency, and rendering stability. The experiment was
conducted on the same multimodal task set, with
concurrent input conditions such as speech, gesture, and
visual frames. The performance of the "complete model”
was compared with various simplified versions to clarify
the contribution of each module in overall performance.
The experiment includes four sets of model
configurations: (1) removing feedback optimization
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mechanisms and retaining only static rendering paths; (2)
Excluding the state synchronization module, the system
cannot obtain real-time dynamic changes of multi-source
inputs; (3) Cancel feature fusion mechanism and render
only by relying on single modal input; (4) The final model
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that fully integrates semantic fusion, dynamic path updates,
and feedback optimization mechanisms. Each group
conducted 100 rounds of interactive experiments, and the
results are shown in Table 4.

Table 4;: Comparison of key performance indicators for ablation experiments

Ablation Item Avg. Completion Time (s) Semantic(g/,‘oc;nsistency Renderi(?ggtability
Without Feedback Optimization 5.9 74.6 43
Without State Synchronization 5.1 81.2 47
Without Feature Fusion 4.8 85.7 51
Full Model 3.8 92.4 57

All results are mean £ SD over 10 runs on RTX 3060 GPU
(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split
70/15/15.Each ablation configuration was retrained
independently across 10 runs.For instance, the full model
achieved 3.8 + 0.2s in completion time, 92.4% + 1.1 in
semantic consistency, and 57 £ 1.5fps in rendering stability,
all showing significant improvements over the ablated
variants (p < 0.01).The results showed that when the
feedback optimization mechanism was removed, the model
was unable to correct input conflicts and rendering delays,
resulting in an average completion time of 5.9 seconds, a
decrease in semantic consistency to 74.6%, and a rendering
frame rate of only 43fps, indicating that feedback
optimization is the key to maintaining smooth interaction.
When the state synchronization module is missing,
although the system can maintain a certain semantic
matching, it cannot dynamically track input disturbances,
resulting in a decrease in semantic consistency to 81.2%
and a decrease in rendering stability to 47fps. If the feature
fusion module is removed, the model can only rely on a
single input signal. Although the task completion time is
slightly better, the semantic consistency and rendering
stability are significantly insufficient, and the overall
experience is limited. In contrast, the complete model
performed the best in all three metrics, with an average
completion time reduced to 3.8 seconds, semantic
consistency improved to 92.4%, and rendering stability
maintained at 57fps, demonstrating significant advantages
of module collaborative optimization.

It can be seen that feedback optimization, state
synchronization, and feature fusion all play an
indispensable role in AR multimodal visualization systems.
The synergistic effect of the three can effectively ensure the
smoothness of interaction and the stability of the task chain,
demonstrating strong adaptability under multitasking
concurrency and environmental interference conditions.
The results of the ablation experiment further demonstrate
the rationality and engineering feasibility of the proposed
method in structural design and functional integration,
providing a solid verification foundation for subsequent
system expansion and application promotion. Appendix B
provides learning curves for the supervised and RL
components, showing stable convergence.
Scenario-specific results (speech occlusion, motion blur,
high concurrency) further confirm consistent gains over

ablated variants. Additional tests show that removing the
VAE loss reduces alignment by 6.3%, rule-based
scheduling increases latency by 18%, and late fusion drops
stability to 48 fps, confirming the necessity of our chosen
design.

4.5 Additional experiments and discussion
Supplementary analyses were conducted to further validate
the framework. Cross-dataset validation. Training on the
self-built dataset and testing on ARBench achieved 1.61 s
latency and 91.7% alignment, close to original results,
confirming generalization. Reward design. Dense rewards
enabled faster, more stable convergence than sparse
settings. Fusion baselines. Transformer fusion (90.5%/2.3 s)
and late fusion (86.2%/2.9 s) were both outperformed by
our model (92.4%/1.42 s). Energy-throughput trade-off.
On mobile SoC, lowering fps from 57 to 44 cut energy ~22%
with alignment still >90%. Hyperparameter sensitivity.
Varying A from 0.1-2.0 caused only minor performance
fluctuations. These results demonstrate robustness,
efficiency, and scalability of the proposed approach in
real-time multimodal AR interaction.

5 Discussion

5.1 Performance advantage analysis of
existing multimodal generation and
visualization methods

Compared with SOTA methods such as MulT (ACL 2019)

and Perceiver (NeurlPS 2021), our framework offers

similar semantic accuracy with lower latency, highlighting
efficiency and scalability. Remaining challenges include
high-concurrency handling and RL training cost, for which
offline RL and imitation learning are potential solutions.

The multimodal perception information intelligent

generation and visualization strategy proposed in this study

demonstrates significant advantages in three aspects.

Firstly, in terms of interaction efficiency and response

mechanism, traditional unimodal methods rely heavily on

fixed rules and have a rigid task processing rhythm.

However, our method achieves fast parsing and dynamic

path adjustment of multimodal inputs through a state driven

fusion feedback mechanism, reducing the average task
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completion time to 3.8 seconds, which is significantly
better than unimodal and heuristic methods. Secondly, in
terms of semantic consistency and path planning accuracy,
existing methods often focus on shallow concatenation for
multi-source input fusion, resulting in significant semantic
deviations; This research model introduces graph
convolution and attention mechanism to construct a deep
fusion structure, achieving a semantic alignment rate of
92.4%, higher than the 78.6% of traditional methods and
85.1% of heuristic methods, ensuring the coherence
between user instructions and rendering results. Thirdly, in
terms of rendering stability and interaction continuity, this
method maintains a stable frame rate of 57fps through
feedback optimization and dynamic correction mechanisms,
with a frame loss rate of only 2.9% and an interaction
interruption rate controlled at 3.5%, which is significantly
better than the level of the compared methods and
demonstrates stronger robustness.

The strategy proposed in this article demonstrates
advantages over existing multimodal generation and
visualization methods in three key dimensions: interaction
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efficiency, semantic consistency, and rendering stability. It
can provide efficient and stable technical support for
real-time perception and visualization interaction in
complex AR scenes, and provide a new implementation
path for improving the performance of multimodal
interaction systems.

5.2 Strategy adaptability and stability
verification in complex AR scenarios

To test the adaptability and stability of the proposed
multimodal perception information intelligent generation
and visualization strategy under complex interaction
conditions, this paper sets four typical disturbance
scenarios, namely speech burst interference, motion input
blur, high rendering concurrency, and limited field of view
reconstruction. 100 rounds of experiments were conducted
in each scenario to collect three core indicators: interaction
success rate, average response delay, and system stability
score. The results are shown in Table 5.

Table 5: Performance comparison of multimodal strategies in typical complex scenarios

Scenario Type Interaction Success Rate (%) Average Latency (s) Stability Score (10)
Sudden Speech Interference 93.1 1.9 9.2
Blurred Action Input 90.4 2.3 8.9
High-Concurrency Rendering 91.6 2.1 9.0
Restricted View Reconstruction 88.7 14 8.6

All results are mean + SD over 10 runs on RTX 3060 GPU
(32GB RAM, CUDA 11.3, PyTorch 1.10) with dataset split
70/15/15.Under the condition of sudden speech
interference, the model uses attention weighting
mechanism and semantic tracking to quickly correct
instructions, with a success rate of 93.1%, a delay of only
1.9 seconds, and a stability score of 9.2, indicating its
strong semantic compensation and robustness. In the test of
fuzzy action input, the redundancy check mechanism that
integrates features effectively reduces recognition errors,
with a success rate of 90.4%, an average delay of 2.3
seconds, and a stability score of 8.9. In rendering high
concurrency scenes, the system adopts dynamic priority
scheduling and path layering mechanism to alleviate
computational pressure, with a success rate of 91.6%, a
delay control of 2.1s, and a score of 9.0, demonstrating its
excellent parallel processing capability. In the face of
limited field of view situations, the system is able to
generate alternative rendering solutions in real time.
Although the success rate has decreased to 88.7%, the
latency remains at 1.4s seconds and the stability score is 8.6,
ensuring the integrity of the interconnection chain.

Overall, the proposed strategy maintains an interaction
success rate of over 88% and an average response of less
than 3 seconds under various complex disturbances,
verifying its adaptability and stability in high dynamic AR
scenarios and providing solid support for achieving reliable
multimodal intelligent interaction.

5.3 Feasibility assessment of system
resource overhead and real-time
presentation

In AR scenario applications, the engineering value of

multimodal perception and visualization strategies is not

only reflected in their interactive effects, but also depends
on their adaptability to computing resources,
communication environments, and operating platforms.

Therefore, this article evaluates the resource cost and

deployment feasibility of the constructed model to verify

its ability to be implemented in complex interactive tasks.
The model consists of three parts: edge collection, core
inference, and visual interaction. The edge module is
deployed on AR terminals or smart glasses, mainly
responsible for collecting and initially encoding voice,
gesture, and visual data. In a scenario with a 50fps input
rate and concurrent processing of 30 tasks, the CPU usage
is about 32% and the memory consumption is about 950MB.
It can run stably on mid-range mobile processors or
lightweight edge devices without the need for high-end
hardware support. The core reasoning module relies on
GPU servers to complete feature fusion, path generation,
and feedback correction. In 100 rounds of concurrent
interaction testing, a single round of inference took 2.3
seconds, with semantic alignment and path calculation
accounting for nearly 65%. Experiments have shown that a
moderately configured GPU (such as RTX 3060) can
support real-time interaction at a scale of 100 tasks, while a
lightweight version can maintain latency within 3 seconds
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on embedded platforms, adapting to resource constrained
mobile scenarios. The visual interaction module achieves
state synchronization and image presentation through
WebSocket and AR rendering engine. At 1080p resolution,
the bandwidth requirement is about 3.8Mbps, and the
communication delay is less than 180ms, fully meeting the
response requirements for real-time interaction. If running
at a higher resolution (2K/4K), the bandwidth overhead
increases to approximately 6.5Mbps, but still remains
within an acceptable range. This model maintains a
computational footprint of less than 35% and a
communication delay of 200ms under conditions of
multi-source input and high concurrency, combining
scalability and economy. Its layered decoupling and
modular structure not only facilitates cross platform
porting, but also flexibly adapts to different hardware
conditions, providing feasible resource guarantees for
real-time  application and  promotion in AR
scenarios.Cross-device tests on a mid-range mobile GPU
(Adreno 660) and a desktop GPU (RTX 3060) yielded 2.3 s
/ 44 fps and 1.4 s / 57 fps respectively, demonstrating
acceptable trade-offs across platforms and resolutions.The
pipeline has a complexity of O(N-d?) for feature fusion and
O(E log V) for the improved A* path search. On an RTX
3060, the average per-frame cost is ~4.2 GFLOPs with
~950 MB memory. Throughput tests show stable 57 fps for
<50 tasks, decreasing to 44 fps at 100 tasks, indicating
scalability under varying concurrency.

5.4 The value of research results in
intelligent interaction and application
expansion in AR scenarios

The multimodal perception information intelligent

generation and visualization strategy proposed in this

article has demonstrated significant application value in

AR scenarios, providing reliable support for real-time

perception and dynamic presentation in complex

interactive environments. From the perspective of
operational efficiency, the constructed model is able to
maintain interaction latency below 1.5s, rendering frame

rate stable above 55fps, and semantic consistency above 92%

in the case of high concurrency from multiple sources of

input. Compared to traditional methods, the interaction
interruption rate has been reduced by nearly 60%, and the
user response accuracy has been improved to 93%, fully
demonstrating the robustness and adaptability of the model
in high dynamic scenarios. In terms of interaction stability,
the model can quickly distinguish abnormal signals such as
speech noise interference and motion input blur, and
automatically adjust the rendering path through feedback
correction mechanism to ensure the continuous operation
of the system. The experimental platform data shows that
the number of rendering lags has decreased by more than
40%, and the smoothness of task execution has
significantly improved. In terms of application scalability,
this research results present multimodal states, rendering
results, and feedback logic graphically through a visual
interface, making the interaction process more transparent
and facilitating real-time monitoring and strategy
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optimization. This method can seamlessly integrate with
existing AR engines and interaction platforms, and
supports various hardware devices such as mobile
terminals and smart glasses, with good cross platform
deployment capabilities. The model proposed in this article
demonstrates advantages in terms of interaction efficiency,
system stability, and scalability. It not only supports
immersive experiences in complex AR scenarios, but also
provides a practical path for the promotion and application
of intelligent interaction systems, laying a solid foundation
for the industrialization and application expansion of AR
technology in the future.

5.5 Comparison with State-of-the-Art
(SOTA) Methods

We further compared our framework with representative
SOTA models, including MulT (2019), Perceiver (2021),
and Transformer-based AR design (Lee et al. 2023). MulT
and Perceiver achieved semantic alignment rates of 90.1%
and 91.3% with latencies of 2.6 s and 2.1 s, while our
method reached 92.4% alignment with 1.42 s latency. In
terms of stability, Lee et al.’s design maintained 49 fps,
whereas our framework achieved 57 fps with <2% frame
loss.

Ablation analysis shows that semantic modeling
improved alignment by +7.8%, and feedback optimization
reduced latency by ~20%, explaining the overall gain.
These results confirm that our approach not only
outperforms SOTA methods in accuracy, latency, and
stability, but also ensures scalability on mid-range devices
for real-time AR interaction.

6 Conclusion

This article focuses on the intelligent generation and
visualization of multimodal perception information in AR
scenes, proposing a feature modeling method that
integrates graph convolution and attention mechanism.
Combining the cross-modal mapping framework of
variational autoencoder and  geometric/temporal
constraints, and introducing a reinforcement learning
driven  visualization  optimization = mechanism, a
closed-loop system of “perception generation presentation
feedback" is constructed. The experimental results show
that this strategy outperforms traditional methods in terms
of interaction efficiency, semantic consistency, and
rendering stability, with an average delay shortened to 1.4s,
a rendering frame rate stable above 57fps, and a semantic
alignment rate exceeding 92%. This validates its robustness
and practicality in complex dynamic interaction
environments. The system performs well in resource
utilization and delay control, and can run stably in
mid-range devices and multi platform environments, with
application feasibility. However, there are still
shortcomings in this study. Firstly, the experimental
dataset is limited in size and mainly relies on public data
and small-scale self built datasets. Further validation of the
model's generalization ability is needed in large-scale and
multi scenario scenarios; Secondly, the convergence speed
of reinforcement learning in complex tasks is slow, which
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may lead to high training costs and hinder large-scale
real-time deployment. Future research can explore self
supervised pre training and transfer learning mechanisms
to enhance cross scenario adaptability; Simultaneously
combining distributed computing and lightweight model
compression to further optimize convergence efficiency
and resource utilization. In addition, the framework of this
study can be expanded in multi terminal collaboration and
cross platform applications to enhance its application value
in fields such as healthcare, industrial collaboration, and
education.

Supplementary materials

A supplemental package is provided, including the source
code, dataset generation script, trained model checkpoints,
and a README file, to ensure reproducibility and
facilitate further research.

Appendix A: dataset and preprocessing

steps

Dataset
Self-built multimodal dataset: visual, speech, and motion
data.

28,000 instances with timestamps for semantic
alignment.

460,000 records for rendering/interaction (frame rate,
latency, frame loss).

16,000 records for environmental/feedback data to
evaluate model adaptability.

Preprocessing

Time  alignment:
synchronization.

Structural mapping: Map inputs to feature tensors and
generate labels.

Denoising: Bandpass filter (300Hz-3kHz) for speech
noise; blur detection for visual data.

Standardization: Features standardized to [-1,1].

Sliding window: Split dataset and add 15 abnormal
samples for robustness testing.

Hardware and Software

Hardware: NVIDIA RTX3060,32GB memory, Intel i7

Software: PyTorch1.10, AnyLogic8.7, Kafka2.8.0

Training Plan

Epochs: 500

Optimizer: Adam

Learning rate: le-4

Data augmentation: Random cropping, rotation

Early stop: Stop if validation loss doesn’t improve for
10 rounds.

Hyperparameters and Benchmarks

Model: Graph convolutional networks + attention
mechanisms

Hyperparameters: 3x3 conv layer, 128 hidden nodes,
batch size 64

Benchmark: Compared to single-modal and heuristic
fusion models.

Linear interpolation  and
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Pseudocode
Here is the pseudocode for the model training process:

#Initialize model with GCN+Attention mechanism

model = GCN_Attention_Model()

# Training loop

for epoch in range(epochs):

for batch in data_loader:

inputs, labels = batch

outputs = model(inputs) # Forward pass

loss=compute_loss(outputs,labels)#Compute loss

optimizer.zero_grad() # Clear gradients
loss.backward() # Backward pass

optimizer.step() # Update weights

#Early stopping if validation loss doesn't improve

if validation_loss > threshold:

break

Benchmark Method

Single-modal model: Basic CNN trained on a single
modality (e.g., visual data).

Heuristic fusion model: Fuses modalities using fixed
rules, without dynamic optimization.

Fair comparison: All models trained with the same
computational conditions and hyperparameters.

Labels: Automatic metrics checked by experts.
Temporal: 30 frames per sequence (0.1 s), aligned with
speech and action.

Perturbations: Include SNR shifts, blur, occlusion, and
lighting change.
Runs: 100 distinct seeds/scenarios for statistical reliability.
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