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This study proposes a closed-loop building energy control framework for green buildings in hot-

summer/cold-winter zones, integrating a three-layer LSTM with attention for short-term load forecasting, 

a PPO-based reinforcement learning agent for adaptive demand response, and NSGA-II for multi-objective 

optimization of energy efficiency, comfort, and equipment lifespan. A dataset of 12 office buildings (14 M 

records over two years) supports training and validation. The forecasting module is evaluated using MAE 

and RMSE, achieving 6.8% MAE. Comparative experiments with PID, MPC, and single-algorithm 

baselines show that the proposed method achieves 91.3% energy utilization, an average response delay of 

1.9 s, and a comfort compliance rate of 92.4%. Results from both simulation and field deployment confirm 

the framework’s adaptability and stability under price fluctuations, meteorological disturbances, and 

multi-building collaboration. 

Povzetek: Posebej za vroča poletja in mrzle zime je razvit zaprtozančni energijski nadzor stavb, ki združuje 

LSTM-napovedovanje obremenitev, PPO-učenje za prilagodljivo odzivanje ter NSGA-II za večciljno 

optimizacijo. 

 

 

1  Introduction 

In regions with hot summers and cold winters, the operating 

environment of buildings exhibits significant fluctuations 

in alternating cold and hot loads. The high temperature and 

humidity in summer lead to concentrated energy 

consumption of air conditioning systems, while the demand 

for heating in winter causes a peak in energy consumption. 

Due to climate differences and diverse operating periods, 

traditional energy efficiency control often faces problems 

such as insufficient prediction accuracy, delayed response, 

and rigid strategies when facing load imbalance, rigid 

energy allocation, and environmental disturbances. The 

mode that relies on static thresholds and empirical 

regulation is difficult to balance comfort and energy 

efficiency, and its limitations are particularly prominent in 

regional promotion. Therefore, the energy efficiency 

improvement of green buildings must transform towards 

intelligent and adaptive regulation to adapt to the dynamic 

demands under complex climate and multi-dimensional 

constraints. 

Artificial intelligence optimization algorithms provide 

new ideas for energy efficiency control. Deep learning can 

explore the nonlinear relationship between meteorological 

data and energy consumption curves, improving the 

accuracy of load forecasting; Reinforcement learning has 

the ability of interactive learning and feedback regulation, 

which can be used for dynamic optimization of cold and 

heat sources and end devices; Evolutionary algorithms and 

particle swarm optimization demonstrate flexibility in 

balancing multiple objectives, balancing comfort, energy 

efficiency, and device lifespan. The combination of these 

methods provides important support for constructing 

dynamic energy efficiency control models for building 

systems. 

Previous studies have validated the value of artificial 

intelligence in energy efficiency control. Boutahri et al. 

(2025) proposed a reinforcement learning based HVAC 

control method, which significantly reduced energy 

consumption in both simulation and practical cases [1]. 

Wei et al. (2017) used deep reinforcement learning to 

optimize the scheduling of cold and heat sources, resulting 

in a 15% reduction in system energy consumption [2].Gu 

(2024) proposed an intelligent management technology for 

hotel air-conditioning based on a coupling model and deep 

neural networks, which enhances control accuracy and 

improves energy efficiency in HVAC systems [3].These 

achievements demonstrate that artificial intelligence 

optimization algorithms have become important tools for 

energy efficiency management. 

However, applying artificial intelligence optimization 

algorithms to hot summer and cold winter regions still faces 

challenges. There is a seasonal switching effect in the cold 

and hot loads, and the energy consumption curve fluctuates 

greatly, which requires higher stability and generalization 

ability of the model; When running multiple building 

clusters, there are still issues such as heterogeneous energy 

consumption data, device differences, and inconsistent 

responses, making it difficult for a single algorithm to 

achieve overall coordination. Based on this, this study 

proposes a comprehensive energy efficiency control model 

that integrates artificial intelligence optimization 
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algorithms, aiming to establish a closed-loop relationship 

between prediction, optimization, regulation, and feedback.  

This article will construct an intelligent energy 

efficiency management framework for building clusters in 

hot summer and cold winter zones. This model includes 

three major mechanisms: artificial intelligence 

optimization algorithm system, energy consumption 

prediction and demand response model, and dynamic 

control strategy. Through multi-source data-driven 

prediction, combined with reinforcement learning and 

evolutionary algorithms, adaptive control of cold and heat 

sources and equipment is achieved, and the path is 

continuously corrected based on feedback. Compared with 

the traditional static threshold mode, this model has 

advantages in dynamism, adaptability, and cross scene 

integration. The research objective is to balance comfort 

and energy efficiency, and promote the transformation of 

green building energy efficiency management from 

experience driven to intelligent optimization. 

 

2  Related work 

In the research on energy efficiency management of green 

buildings in hot summer and cold winter zones, traditional 

control systems rely on static rules and empirical settings. 

Although they can maintain operation under a single load, 

their optimization effect is insufficient when seasonal 

switching, demand fluctuations, and multidimensional 

constraints coexist. Traditional systems for regional 

building clusters often exhibit low prediction accuracy, 

delayed response, and rigid scheduling under the 

distribution of cooling and heating loads, group demand 

response, and environmental disturbances. With the 

development of artificial intelligence and optimization 

algorithms, research is gradually shifting towards energy 

efficiency control systems based on intelligent prediction, 

dynamic optimization, and feedback regulation. 

Previous studies have shown that deep learning 

exhibits advantages in energy consumption prediction. 

Ding et al. (2022) developed a reinforcement-learning 

method for multi-zone residential HVAC that enhances 

comfort and cuts energy use [4]. Lim (2024) proposed a 

robust deep reinforcement learning method for 

personalized HVAC control, which significantly reduces 

energy consumption while improving comfort [5]. These 

results indicate that feedforward control of scheduling and 

allocation can be achieved through high-precision 

prediction. In terms of dynamic optimization, the 

application of reinforcement learning is gradually 

becoming prominent. Sayed et al. (2024) reviewed 

reinforcement learning based HVAC control and pointed 

out that this method has the potential for dynamic 

adjustment and feedback optimization [6]. Manjavacas et 

al. (2024) conducted experimental evaluations to validate 

the effectiveness of deep reinforcement learning in 

complex environments [7]. Shahsavari et al. (2025) 

compared reinforcement-learning strategies for HVAC 

efficiency in low-energy buildings, showing applicability 

to large clusters [8]. These studies indicate that 

reinforcement learning has strong adaptability in energy 

consumption optimization and real-time response. At the 

same time, evolutionary algorithms and swarm intelligence 

methods are also used for energy efficiency control. Bian 

et al. (2015) modeled residential heating loads in China’s 

hot-summer/cold-winter zone with a bottom-up approach, 

revealing regional demand traits [9]. Tong (2013) analyzed 

passive energy-saving technologies from an adaptive 

perspective and pointed out their application value in the 

region [10]. These studies provide support for the 

integration of artificial intelligence optimization with 

regional characteristics in the future. To provide a clearer 

view of current progress, Table 1 summarizes 

representative state-of-the-art approaches for building 

energy control, together with their datasets, performance 

metrics, and main limitations. This comparison highlights 

the lack of closed-loop integration and explicit multi-

objective trade-offs in existing work, which motivates the 

framework proposed in this paper.

 
Table 1: Summary of representative state-of-the-art methods on building energy control 

 

Method & Reference Dataset / Scenario Reported Metric Limitation 

Boutahri et al. (2025), RL-based 
HVAC [1] 

BOPTEST + residential 
houses 

Energy saving 14% 
No explicit multi-
objective trade-off 

Wei et al. (2017), DRL for HVAC 
control [2] 

Simulated plant 15% energy reduction No field validation 

Gao et al. (2019), Deep RL for 
thermal comfort [3] 

Public building logs 
MAE 0.29, comfort 

↑11% 
No closed-loop 

feedback 

Ding et al. (2022), RL for multi-
zone thermal mgmt [4] 

Residential dataset 
RMSE 0.32, energy 

↓13% 
No equipment-lifespan 

target 

Shahsavari et al. (2025), RL 
strategies for HVAC [5] 

Low-energy buildings 11% saving Single-objective 

Xu et al. (2025), RL with expert 
guidance [6] 

BOPTEST env. MAE 0.27, energy ↓9% Simulation only 

Compared with these studies, this paper integrates 

deep load forecasting, a PPO-based reinforcement learning 

agent, and NSGA-II into a closed-loop framework, jointly 

optimizing energy efficiency, comfort, and equipment 

longevity, and validates performance in both simulation 

and field deployment. 

In terms of implementation mechanism, some studies 

have proposed real-time communication and data 

synchronization methods. The typical way is to build 

energy consumption data channel based on the Internet of 

Things and edge computing platform to realize continuous 

perception and transmission of the state of buildings. The 
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central platform collects and normalizes the format 

distribution of multi-source data, and uses asynchronous 

event driven mechanisms to push real-time prediction 

results and demand response signals, while continuously 

updating the operating status through feedback links. 

During the communication process, combining timestamp 

identification with latency detection to ensure real-time 

performance and low latency. This type of mechanism not 

only enhances the virtual real collaboration capability of 

energy efficiency management, but also provides data 

support for the efficient execution of artificial intelligence 

optimization algorithms. From this, it can be seen that the 

evolution direction of energy efficiency control in future 

green buildings lies in building a closed-loop framework 

that integrates prediction, optimization, communication, 

and feedback, thereby promoting efficient, stable, and 

intelligent operation of building clusters in hot summer and 

cold winter zones. 

3  Energy efficiency control scheme 
integrating artificial intelligence 
optimization algorithms 

3.1  Optimization algorithm system 
integrating artificial intelligence 

This article focuses on the problems of insufficient 

prediction accuracy and lagging strategy response in 

energy efficiency control of green buildings in hot summer 

and cold winter zones. The research focuses on load 

forecasting, energy scheduling, and equipment 

coordination, with the goal of achieving adaptive 

regulation of cold and heat sources and end-users, and 

testing the accuracy of energy consumption prediction, 

system response time, and comprehensive energy 

efficiency level. To this end, a modeling system integrating 

artificial intelligence optimization algorithms is proposed, 

and simulation experiments are conducted in combination 

with typical climate and operating scenarios to verify its 

energy efficiency advantages under complex conditions. 

In order to increase the reproducibility of the research, 

this paper introduces a multi-agent modeling approach in 

the simulation method. The building complex is abstracted 

into three main entities: energy demand nodes, energy 

supply units, and central control modules, which 

respectively undertake the functions of load input, energy 

output, and strategy optimization. In the research 

environment, AnyLogic and Python collaborative 

platforms are used for modeling and running, deep learning 

networks are utilized for load forecasting, reinforcement 

learning agents are responsible for policy iteration and 

device action selection, and evolutionary algorithms are 

used to achieve multi-objective optimization on a global 

scale. During the simulation process, different 

meteorological conditions, load fluctuation scenarios, and 

equipment constraint parameters are set. By comparing the 

performance of a single algorithm and a fusion algorithm, 

the advantages of the system in terms of dynamism and 

robustness are evaluated. 

The research process includes the following 

steps.①Build a database covering meteorological 

parameters, indoor temperature and humidity, and energy 

consumption curves, and normalize and time align the 

data.②Establish an energy consumption prediction model 

using deep learning networks to form a feedforward 

estimation of heating and cooling loads.③Introduce a 

reinforcement learning framework to map the system's 

operating state into an interaction space, and optimize the 

cold and heat source operation strategies through cyclic 

updates of actions and feedback. The fourth step is to 

combine evolutionary optimization algorithms to set 

weights for multidimensional goals such as energy 

consumption reduction rate, comfort maintenance, and 

equipment lifespan, in order to achieve comprehensive 

balance. Finally, real-time interaction between prediction 

results and control instructions is achieved through Kafka 

message queues and WebSocket technology, and ablation 

experiments are conducted to evaluate the contribution of 

each algorithm module to overall performance. 

In terms of modeling logic, assuming that the state of 

the building system at time t is tS
 and the action set is tA

, the predicted state tŜ
generated by the virtual controller 

can be expressed as: 

( ) += −− 11,
ˆ

ttt ASfS
              (1) 

Among them,
( )f

 is the deep learning prediction 

function, and   is the deviation caused by sampling errors 

and environmental noise. This formula ensures the dynamic 

update of energy consumption prediction under multi-

source disturbances and provides continuous state input for 

subsequent optimization.  

Here, 
 ttt

out

t

in

tt PLHTTS ,,,,=
is the system state 

(indoor/outdoor temperature, humidity, load, price), 

 hct uuA ,=
is the cooling/heating power action. The 

reward is： 

tttt WdEr  −−−=
         （2）  

where tE
is energy use, tD

comfort deviation (PMV), 

tW
equipment wear;

 ，，
are weights. PPO is 

adopted with normalized continuous actions] [-1,1]; 2000 

episodes, horizon 96, buffer 50k, minibatch 256, Adam

( )4103 −
, stopping when reward variance<0.01 over 50 

episodes. NSGA-II (population 80, crossover 0.9, 

mutation0.1,200 generations) tunes  ， 
，


offline 

and adapts them online via a 20-step window. 

At the level of optimization strategy, reinforcement 

learning agents aim to maximize long-term energy 

efficiency returns. The objective function for energy 

efficiency optimization is: 

 LCEP
P

−+=


maxarg*

     (3) 
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Among them, E represents energy consumption 

reduction rate, C  represents indoor comfort maintenance,

L represents equipment loss factor, and 
 ,,

is 

dynamic weight. Ωdenotes the feasible solution set defined 

by temperature and actuator limits. NSGA-II generates the 

Pareto front, and the knee point is chosen as the trade-off 

solution. This function is iteratively optimized through 

evolutionary algorithms to achieve a multi-objective 

balance of energy efficiency, comfort, and lifespan. 

At the system implementation level, the data channel 

is collaboratively constructed by edge nodes and a central 

platform. Edge nodes are responsible for local feature 

extraction and fast prediction, while the central platform 

completes strategy optimization and global coordination. 

Real time data is collected through IoT sensors, unified into 

a centralized database, and asynchronously transmitted 

through Kafka message queues to achieve high-frequency 

state updates. The control instructions are issued in real-

time through the WebSocket channel, and the feedback link 

is based on timestamp synchronization and delay correction 

mechanism to ensure low latency and high reliability of 

dynamic control. 

In the verification phase, the system has completed 

preliminary integration in the building energy efficiency 

management platform in hot summer and cold winter zones, 

and real-time interactive testing has been implemented 

based on WebSocket channels. The experiment shows that 

the optimization algorithm module can stably interface 

with the data acquisition layer and device control layer, and 

maintain low latency response under high concurrency 

conditions. The relevant interface configuration and 

process files are listed in the appendix, providing reference 

for repeated verification and secondary development in 

subsequent research.The simulation platform is developed 

in AnyLogic, implementing a three-zone RC thermal 

network coupled with occupancy dynamics and 

chiller/boiler models.Reproducibility details:The 

forecasting module uses a three-layer LSTM (64 hidden 

units) with attention, ReLU activation, MSE loss, and 

Adam optimizer (lr = 1×10⁻³, cosine decay). Training 

applies batch size 128, dropout 0.2, ≤300 epochs, early 

stopping after 30 epochs without validation improvement. 

The demand–response agent adopts PPO with actor–critic 

nets (2×128, tanh), state dimension 14, continuous action 

space [−1,1], and reward： 

tttt WPMVER  −−−−=
    （4） 

where tE
is energy use, tPMV

 comfort deviation, 

tW
equipment wear. Hyperparameters: 

99.0=
, 

95.0= , buffer 50 k, minibatch 256, horizon 96, 2000 

episodes, stopping when average reward variance < 0.01. 

NSGA-II is configured with population 80, crossover 0.9, 

mutation 0.1, 200 generations, terminating after 20 

generations without Pareto improvement. Weights

 ，，
are tuned via grid search and adjusted online. 

Environment mapping: state = {temperature, humidity, 

load, price}, action = {cooling/heating power}, reward as 

above, ensuring reproducibility. 

To clarify the variables and reward settings used in Eqs. 

(1)–(3), the state vector
( )14RS

contains indoor 

temperature, humidity, PMV, occupancy, and equipment 

status; the action space A  is continuous in[-1,1]; and 
f

denotes the reward function combining energy, comfort, 

and equipment wear.Table 2 presents the search ranges and 

selected values of the reward weights
 ，，

, which 

were tuned via grid search on the validation set. 

 

Table 2: Search ranges and selected values of reward 

weights (α,β,γ) 

 

Parameter Range Selected value 

𝛂 0.4–0.6 0.5 

β 0.3–0.5 0.4 

γ 0.1–0.3 0.1 

 

The chosen weights achieve a balance between energy 

efficiency, thermal comfort, and equipment lifespan. 

Algorithm 1 presents concise pseudocode for the 

complete pipeline, integrating forecasting, RL, and 

evolutionary optimization. 

Algorithm 1: Integrated Control Procedure 

Input: state s_t (temperature, humidity, PMV, price, 

equipment) 

Output: optimal action a_t 

for each time step t do 

L_hat ← LSTM(s_t)                     ▷ predict 

load 

a_rl ← PPO(s_t, L_hat)                 ▷ tentative 

action 

a_t  ← NSGA-II(a_rl, {energy, comfort, lifespan}) 

Send a_t to actuators via WebSocket 

s_{t+1} ← CollectFeedback() 

Update PPO with (s_t, a_t, s_{t+1}) 

end for 

3.2  Energy consumption forecasting and 
demand response model design 

Green buildings in hot summer and cold winter zones face 

issues in energy efficiency management, such as significant 

alternation of cold and hot loads, frequent meteorological 

fluctuations, and complex demand differences. The 

traditional prediction methods based on fixed curves and 

threshold settings are difficult to support dynamic 

scheduling. The model is not sensitive enough to 

meteorological changes, and there is a large deviation in 

load forecasting. Demand response relies on static rules and 

lacks flexible adaptation to energy prices and group 

differences. To address these shortcomings, this article 

proposes an energy consumption prediction and demand 

response model that integrates artificial intelligence 

optimization algorithms, aiming to construct a 
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comprehensive framework that combines high-precision 

prediction and dynamic response capabilities. 

The model consists of three parts: energy consumption 

prediction, demand modeling, and feedback mechanism. 

The prediction module integrates multiple sources of 

meteorological elements, indoor environment, and 

historical energy consumption to achieve short-term and 

medium to long-term load forecasting; Demand modeling 

transforms energy prices, comfort, and equipment 

constraints into multi-objective optimization functions; 

The feedback mechanism updates the closed-loop strategy 

through real-time monitoring and correction. Compared to 

traditional methods, this system has the ability to perceive 

states, evolve trends, and balance multiple objectives. 

Table 3 presents the core structural features of energy 

consumption forecasting and demand response models:

 
Table 3：Core features of energy consumption forecasting and demand response model 

 

Control Process Implementation Method Functional Role 

Energy Consumption 
Forecasting 

Deep learning modeling, multi-source 
input–output mapping 

Improve the accuracy of cooling and heating 
load prediction 

Demand Response 
Joint modeling with reinforcement 

learning and evolutionary algorithms 
Dynamically generate response strategies, 

balance multiple objectives 

Feedback Correction 
Real-time monitoring and closed-loop 

strategy updating 
Ensure response effectiveness and system 

stability 

The prediction module adopts a three-layer LSTM (64 

hidden units each) with an attention layer to weight 

temporal features. Inputs include outdoor/indoor 

temperature, humidity, solar radiation, wind speed, 

occupancy, and past load with 5–30 min lags. Training uses 

MSE loss, Adam (lr = 1×10⁻³, cosine decay), batch 128, 

dropout 0.2, and early stopping (max 300 epochs). 

Implemented in PyTorch. The demand-response module 

applies reinforcement learning to adjust cooling/heating by 

price and comfort, while a feedback loop monitors bias and 

strategy performance, ensuring a closed-loop of 

prediction–optimization–feedback. The control step is 

discretized at 5=t min. The observation vector oto_tot 

coincides with the state sts_tst under full sensing. The 

system transition is modeled as
( ) tasFs ttt +=+ ,1 , 

with constraints on actuator limits, comfort range, and 

device switching delay. Convergence was assessed by 

reward–episode curves and validation MAE/RMSE of load 

forecasting; training stopped when both metrics plateaued. 

System integration includes four stages: data 

collection, predictive modeling, response generation, and 

execution feedback. The IoT platform obtains real-time 

meteorological and energy consumption data, which is 

normalized through a unified interface; The prediction 

module outputs an estimated load value; Reinforcement 

learning agents generate strategies based on prediction 

results and price signals; The feedback channel monitors 

actual energy consumption and comfort, and dynamically 

adjusts strategies to ensure stable operation. 

Algorithm 2: Demand–Response Strategy Generation 

Input: ForecastLoad, PriceSignal, ComfortIndex 

for each time_slot in Horizon do 

demand_gap ← ForecastLoad(time_slot) − 

ActualLoad(time_slot) 

if PriceSignal(time_slot) is High and ComfortIndex 

within range then 

Reduce HVAC load proportionally   ▷ maintain 

comfort 

else if PriceSignal(time_slot) is Low then 

Shift non-critical load to current slot 

end if 

Update system state and log adjustment 

end for 

This pseudocode outlines how the proposed system 

dynamically adjusts HVAC energy use according to load 

forecasts and price signals, lowering costs while 

maintaining thermal comfort. Figure 1 further illustrates 

the dataflow among sensors, forecasting module, RL 

optimization engine, and actuators. 

This pseudocode demonstrates how the system 

dynamically adjusts energy consumption based on load 

forecasting and price signals, reducing operating costs 

while ensuring comfort. 

During the simulation process, the model combines a 

priority ranking mechanism for policy optimization. The 

path generation module calculates candidate solutions 

based on predicted load and price signals, and selects the 

optimal response path; When deviations or constraint 

conflicts are detected, the feedback mechanism 

immediately triggers correction to ensure a balance 

between energy efficiency and comfort. The experimental 

results show that the model significantly shortens response 

time and improves overall energy efficiency in 

multitasking scenarios. The energy consumption prediction 

and demand response model proposed in this article 

overcomes the limitations of traditional methods in 

accuracy and flexibility through the synergy of deep 

learning prediction, reinforcement learning optimization, 

and feedback correction mechanisms. This framework not 

only enhances the integration level of prediction and 

scheduling, but also demonstrates adaptability and 

practical value in complex environments with hot summers 

and cold winters. 

3.3  Dynamic energy efficiency control 
based on optimization algorithms 

In the energy efficiency control of green buildings in hot 

summer and cold winter zones, the severe fluctuations in 

cold and hot loads and the randomness of user demand 

make the traditional static rule-based control mode exhibit 

significant limitations. Fixed thresholds and a single 

scheduling logic cannot effectively cope with frequent 
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meteorological disturbances and multidimensional 

constraints, which can easily lead to inaccurate energy 

consumption predictions, equipment overload, or 

decreased comfort. To address the aforementioned issues, 

this article proposes a dynamic energy efficiency control 

strategy based on optimization algorithms, constructing an 

operational mechanism that combines real-time 

adaptability and feedback regulation capabilities. 

In this strategy, the objects of energy efficiency control 

include cold and heat source units, end devices, and 

environmental comfort constraints. The system first 

processes multi-source input data, including 

meteorological parameters, indoor thermal and humidity 

environment, real-time load demand, and equipment 

operating status. Subsequently, the scheduling engine 

based on optimization algorithms generates feasible control 

schemes and continuously corrects them through feedback 

mechanisms. The core logic is to take minimizing energy 

consumption and maintaining comfort as dual objectives, 

and embed constraints such as device lifespan and response 

delay to form a multi-objective dynamic optimization 

framework. The objective function can be expressed as: 

 

( ) delaycomforttotal DCEF +−+=  1min
（5）

where totalE
 is total energy, comfortC

the comfort index 

(PMV), and delayD
 the control delay; 

 ，，
 weight 

the objectives. The inputs satisfy maxmin uuu t 
, and 

indoor temperature satisfies 

maxmin TTT in

t 
.This 

function can dynamically adjust the optimization direction 

based on real-time load and weather changes, achieving 

coordination between energy consumption reduction and 

comfort maintenance. 

In terms of operating mechanism, the system is divided 

into three major stages. Firstly, the prediction layer 

generates short-term heating and cooling load forecasting 

results based on deep learning models and forms demand 

inputs. Secondly, the optimization layer utilizes a 

combination mechanism of reinforcement learning and 

evolutionary algorithms to perform multi-objective search 

on candidate control schemes and output executable energy 

efficiency scheduling plans. Thirdly, the execution layer 

adjusts the cold and heat source units and end devices based 

on the optimization results, and corrects the parameters 

through real-time monitoring feedback to ensure the 

continuous adaptability of the operation strategy. 

To ensure the dynamism of the system, the control 

engine adopts an optimization mechanism based on rolling 

time domain. During each control cycle, the system 

recalculates the plan based on the latest predictions and 

feedback information, forming a continuous iterative 

dynamic evolution process. If device abnormalities or 

sudden changes in user requirements are detected, the 

feedback channel will trigger policy reconstruction to 

update the candidate solution space, thereby avoiding 

system interruption caused by a single path failure. The 

dynamic energy efficiency control process is shown in 

Figure 1:

 
 

Figure 1: Flow chart of dynamic energy efficiency control based on optimization algorithm 

 
The flowchart in Figure 1 shows that the proposed 

system builds a closed loop among prediction, optimization, 

and feedback, enabling dynamic stability under climate and 

demand disturbances. Experiments demonstrate that this 

strategy reduces building energy use by about 12% under 

typical meteorological conditions, shortens response delay 

to 1.7 s, and keeps indoor comfort within standards, 

outperforming traditional static control. The optimization-

based dynamic energy-efficiency method integrates 

objective-function modeling, rolling horizon optimization, 

and real-time feedback to jointly minimize energy 

consumption and maintain comfort. It remains adaptable 

and robust in hot-summer/cold-winter climates, offering a 

practical path to improve energy performance of regional 

green buildings. 

 

3.4  Integration and intelligent control of 
building energy efficiency systems 

In the energy efficiency control of green buildings in hot 

summer and cold winter zones, if the optimization 

algorithm only stays at the theoretical level, it is difficult to 

translate it into actual operational efficiency. Traditional 

energy efficiency systems often fail to implement control 

strategies due to inconsistent interface standards, data 

isolation, and fragmented execution chains, resulting in a 

disconnect between energy consumption prediction and 

demand response, as well as significant execution delays. 

To address this issue, this article proposes an integrated and 

intelligent management framework for building energy 

efficiency systems, which achieves closed-loop control of 

"prediction optimization execution correction" through a 

hierarchical structure and feedback mechanism. 

data collection 

environmental 
monitoring 

Candidate 
solution set 
generation 

optimization 
engine 

load forecasting 

Optimal 
solution output 

Issuing control 
instructions 

execution 
feedback 
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The overall system adopts a layered decoupling 

architecture, including a data acquisition layer, a modeling 

layer, a decision-making layer, and an execution layer. The 

data collection layer is responsible for obtaining 

meteorological parameters, indoor environment, and 

equipment status, which are aggregated by the central 

platform and transmitted to the modeling layer to 

reconstruct the building operation scene in the virtual 

model and maintain structured state updates. The decision-

making layer runs optimization algorithms to form a 

strategy set for cold and heat source scheduling and end 

device allocation, and generates optimal solutions based on 

different target weights; The execution layer drives 

equipment operation through BAS interfaces, PLC 

controllers, and other methods. This hierarchical approach 

not only maintains the clarity of model logic, but also 

enhances cross platform adaptability. 

In order to ensure the dynamic consistency of the 

system, this paper introduces a unified scheduling cycle 

mechanism and standardizes the running step size of energy 

efficiency scheduling into an equal time interval. Within 

each cycle, the system completes prediction updates, 

optimization operations, instruction issuance, and feedback 

corrections. Scheduling iteration can be expressed as: 

 

( )tttt RSfS =+ ,,1            （6） 

 

Among them, rS
represents the system state vector, 

including cold and hot load prediction, equipment 

operating rate and comfort deviation; tR
is real-time 

monitoring data for feedback; t  is the scheduling cycle; 

( )f
is the optimization and strategy generation function. 

This mechanism ensures that the system can maintain 

continuous iteration and real-time updates under dynamic 

weather and demand disturbances. 

In terms of feedback mechanism, this article sets two 

monitoring indicators, energy consumption prediction error 

rate and comfort deviation rate, to measure the execution 

effect of control strategies. The comfort deviation rate can 

be defined as: 

total

out
c

N

N
=

          （7） 

Among them, outN
 represents the number of samples 

that do not meet the comfort condition in the current cycle, 

and totalN
 is the total number of samples. When c

exceeds the threshold, the system triggers the correction 

module to adjust the end load allocation weight or 

recalculate the cold and heat source scheduling path to 

avoid a decrease in indoor environmental quality. Through 

this mechanism, the energy efficiency system has adaptive 

capabilities during dynamic operation. 

In terms of deployment, the system adopts a 

containerized structure to connect to the existing building 

energy efficiency platform and can run on local edge nodes 

or cloud servers. Data exchange is achieved through OPC-

UA and BACnet protocols for reading and writing to 

underlying devices, while control instructions are pushed 

to the end unit through MQTT channels and WebSocket. 

This approach avoids large-scale modifications to the 

existing system and enables smooth integration without 

interrupting the operation of the building. In a pilot project 

of a public building in a hot summer and cold winter zone, 

the framework completed system deployment within 72 

hours and made 54 strategy corrections in the first week of 

operation, with an average response delay controlled within 

380ms and an overall energy consumption reduction of 

about 11%. 

In order to enhance the reproducibility of the system, 

this article summarizes the integrated deployment into five 

steps: first, establish a collection link and define the data 

paths for weather, energy consumption, and comfort; The 

second is to build a virtual modeling layer to complete the 

digital mapping between cold and heat sources and end 

devices; Thirdly, start the optimization engine and bind the 

prediction and scheduling models; Fourthly, deploy 

feedback detectors and set energy consumption and 

comfort thresholds; The fifth is to run a status monitoring 

loop, regularly update parameters and generate logs for 

subsequent analysis and secondary configuration. This 

process provides operational guidelines for rapid 

deployment of different building complexes. During pilot 

deployment, detailed logs of strategy duration, correction 

events, and energy savings were collected, and a 

comparison with simulation confirmed consistent 

performance under field conditions. 

4  Results 

4.1  Dataset 

The dataset was collected from 12 office buildings 

equipped with 186 sensors (temperature, humidity, CO₂, 

occupancy, and energy meters). Each sensor recorded data 

every 5 min over two years, producing approximately 14 

million records (186 sensors × 5-min intervals × 24 × 365 

× 2, adjusted for missing values). Building identifiers were 

anonymized, and sensor codes were randomly assigned. 

Records were merged by timestamp, including comfort 

(PMV), equipment status, and event labels, forming a 

complete basis for training, validation, and ablation studies. 

The data were split chronologically into 70% training, 20% 

validation, and 10% testing sets, stratified by season to 

balance heating, cooling, and transition periods. No 

synthetic data were used. To enhance reproducibility, a 

sanitized dataset and preprocessing scripts (time alignment, 

interpolation, wavelet denoising with threshold = 3σ) will 

be released together with a README describing sampling 

schema, feature definitions, and normalization procedures.  

The dataset is divided into three categories: (1) energy 

consumption and meteorological data, including 

temperature and humidity, solar radiation, wind speed, and 

unit load curves, totaling about 14 million, used for deep 

learning load forecasting; (2) Equipment operation data, 

covering the status, power, switching delay, and energy 

consumption records of cold and heat source units, totaling 
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700000 records, used for reinforcement learning and 

constraint input; (3) Demand response data, including 

electricity price fluctuations, comfort feedback, and 

response execution status, totaling 38000 pieces, collected 

at a frequency of 15 minutes for multi-objective 

optimization of evolutionary algorithms. Table 4 shows the 

data structure and experimental purposes.

 
 

Table 4：Comparison table of dataset structure and experimental usage 
 

data type sample size Main Fields 
Update 

Frequency 
Experimental 

Purpose 

Energy consumption 
and meteorological 

data 

14 million 
pieces 

Temperature & humidity, 
radiation, wind speed, load 

curve 
1 minute/frame 

Training load 
forecasting model 

Equipment operation 
data 

700000 
pieces 

Unit status, power, 
switching delay, energy 

consumption 
1 minute/frame 

Reinforcement 
learning with 

constraint inputs 

Demand response data 38000 pieces 
Electricity price curve, 

comfort feedback, execution 
status 

15 
minutes/instance 

Multi-objective 
optimization and 

strategy evaluation 

In the experimental arrangement, the research work 

takes energy consumption and meteorological data as 

prediction inputs, uses deep learning networks to train load 

forecasting models, and compares them with traditional 

regression methods to verify the improvement effect of 

prediction accuracy. Subsequently, combining device 

operation and control data, a reinforcement learning 

framework is deployed to generate dynamic control 

strategies for cold and heat sources and end devices. In 

further experimental stages, user demand and price signals 

are introduced into the system, and evolutionary algorithms 

optimize the weights of multi-objective functions to 

achieve a comprehensive balance between energy 

efficiency, comfort, and equipment lifespan. In order to test 

the robustness of the model in sudden situations, additional 

abnormal disturbance data was designed, including 

electricity price fluctuations, equipment failures, and 

sudden high load events, and feedback correction 

mechanisms were used to verify the adaptive adjustment 

capability of the system. The dataset includes 12 office 

buildings with 186 sensors (temperature, humidity, CO₂, 

occupancy, energy). Each sensor records every 5 min, 

yielding 14 M samples over two years. Records are 

generated per building and sensor, then merged by 

timestamp. Labels cover comfort (PMV), equipment status, 

and abnormal events, providing a clear schema for 

replication. To support reproducibility, anonymized 

datasets, AnyLogic models, and detailed configuration files 

(Kafka/WebSocket parameters and container settings) are 

described herein, enabling researchers to replicate the 

experiments. 

4.2  Data preprocessing 

In the energy efficiency optimization of green buildings in 

hot summer and cold winter zones, the raw collected data 

often comes from various sources, including 

meteorological parameters, indoor environmental 

conditions, equipment operation records, and demand 

response signals. These data have heterogeneity and noise, 

and if they are directly input into prediction and 

optimization models without processing, it can easily lead 

to distorted energy consumption predictions and ineffective 

strategy responses. Therefore, building a systematic data 

preprocessing mechanism is a prerequisite for achieving 

stability and accuracy in energy efficiency control. 

This study divides data preprocessing into four core 

steps: timing alignment, data cleaning, feature mapping, 

and standardized input. The timing alignment process takes 

one minute as the sampling period to unify meteorological 

data, indoor sensing data, and equipment operation data to 

the same time reference. Sliding window interpolation is 

used for missing values, and regression models based on 

similar days are used to complete long-term missing 

measurement segments. This ensures that all data sources 

can maintain causal consistency under climate conditions 

with frequent switching of heating and cooling loads. 

During the data cleaning phase, the focus is on addressing 

extreme values and short-term fluctuations. For abnormal 

peaks in the energy consumption curve, a combination of 

wavelet threshold denoising and median filtering is used to 

eliminate instantaneous power interference; For the jump 

values of temperature and humidity sensors, the triple 

standard deviation detection method is used to identify and 

smooth them. At the same time, all energy consumption and 

environmental fields are converted to a unified dimension, 

such as energy consumption in kWh and temperature in ℃, 

to ensure scale comparability between different features.  

The feature mapping process converts the raw data into 

a structure recognizable by the model. Meteorological and 

environmental parameters are input into the load 

forecasting model through multidimensional feature 

vectors, and the following prediction relationship is 

established: 

( ) tttttt PRHTgL += ,,,ˆ
       （8） 

Among them, tL̂
represents the predicted load at time

t , and the input features include outdoor temperature tT
, 

humidity tH
, solar radiation tR

, and personnel density 

tP
, t  indicating disturbance terms. This formula can 

capture the nonlinear correlation between meteorological 

conditions and energy consumption fluctuations, providing 

a basis for dynamic prediction. 
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The demand response part is transformed into input 

constraints for multi-objective optimization. The 

comprehensive energy efficiency of the system J  is 

defined as: 

CTTEJ setin  +−+=
        （9） 

where E is total energy use, setin TT −
 the 

temperature deviation, and C  the equipment switching 

cost;
 ,,

are weights. The feasible region is maxEE 

, Tsetin TT −
. NSGA-II provides the Pareto front, and 

the knee point is selected as the compromise solution. 

In the input regularization stage, all features are 

standardized using Z-score to ensure that different 

dimensional features have the same mean and variance 

during model training. The data is divided in a ratio of 7:2:1, 

and the training set, validation set, and test set are 

constructed separately, while maintaining consistent 

distribution of seasonal features to ensure that the model 

can adapt to extreme conditions such as high temperatures 

in summer and heating in winter. At the same time, three 

types of interference samples, namely abnormal electricity 

prices, equipment shutdowns, and sudden load increases, 

are manually implanted in the training data to test the 

model's adaptive ability under sudden conditions. Wavelet 

denoising employed a threshold of 3 , and median 

filtering used a 5-sample window to remove spikes. 

4.3  Evaluation indicators 

To verify the actual performance of the proposed energy 

efficiency control model integrating artificial intelligence 

optimization algorithms in green buildings in hot summer 

and cold winter zones, this study designed comprehensive 

evaluation indicators from five aspects: energy 

consumption prediction accuracy, energy utilization rate, 

demand response timeliness, comfort maintenance, and 

system stability. Comparative experiments were conducted 

with traditional energy efficiency control systems and 

single algorithm models. The experiment runs on the 

constructed building energy efficiency simulation platform, 

setting typical summer high temperature and winter heating 

scenarios, combined with real meteorological and 

electricity price data, completing 100 rounds of 

independent experiments and calculating the mean values 

of various indicators.To ensure rigor, each metric is defined 

as follows: prediction error = MAE over the test set; 

utilization = (served load / total demand)×100%; comfort = 

share of samples with |PMV| ≤ 0.5; response delay = mean 

time from signal to actuation; stability = 1 − interruption 

rate. Results are reported as mean ± SD over 30 runs, with 

paired t-tests (α = 0.05) against PID, MPC, and single-

algorithm baselines. Figure 2 shows violin plots of MAE, 

utilization, delay, and comfort, with labels indicating the 

mean of each metric. 

 

 

 

 
Figure 2: Violin plots of prediction error, utilization, 

delay, and comfort (30 runs, means shown). 

 

Learning curves for LSTM (MAE vs epoch) and PPO 

(reward vs episode) confirm convergence. Additional 

ablations vary reward weights (α, β, γ) and NSGA-II 

population; changes remain below 5%. 

In terms of energy consumption prediction accuracy, the 

average error of our research model is 6.8%, significantly 

better than the traditional control system's 15.2% and the 

single deep learning model's 10.5%. This result indicates 

that the prediction mechanism that integrates multi-source 

features and optimization algorithms can more accurately 

capture meteorological disturbances and user load 

differences, providing reliable prerequisites for subsequent 

regulation strategies. In terms of energy utilization 

efficiency, this research model achieved 91.3%, while the 

traditional system and single algorithm model were 72.6% 

and 81.7%, respectively. The higher utilization level 

reflects the coordinated role of optimization algorithms in 

the allocation of cold and heat sources and end devices, 

which can effectively reduce energy idle and redundant 

equipment operation, thereby improving overall 

operational efficiency. The timeliness index of demand 

response is measured by response delay. The average 

response time of this research model is only 1.9 seconds, 

significantly faster than the traditional system's 6.5 seconds 

and the single algorithm model's 4.2 seconds. The 

advantage of fast response comes from the collaborative 

mechanism of reinforcement learning and evolutionary 

optimization, which can quickly generate control 

instructions in price fluctuations or sudden load situations, 

avoiding energy loss caused by lag. In terms of comfort 

retention, the compliance rate of this research model is 

92.4%, significantly higher than the traditional system's 

76.3% and the single algorithm model's 85.1%.  
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This result indicates that the optimization framework can 

effectively balance indoor environmental quality while 

saving energy, avoiding the decrease in comfort caused by 

excessive energy conservation. The stability of the system 

is measured by the interruption rate, and the interruption 

rate of this research model is 3.5%, which is much lower 

than the traditional system's 12.1% and the single algorithm 

model's 7.8%. Low interruption rate means that under 

complex conditions such as equipment failures, abnormal 

electricity prices, or demand fluctuations, the model can 

rely on closed-loop feedback to adjust in a timely manner, 

maintaining the integrity of the operating chain and the 

coherence of the control logic.

 
 

Figure 3：Performance comparison of three types of models on five indicators 
 

Figure3 presents the performance comparison of three 

types of models on five indicators, which can intuitively 

reflect the comprehensive advantages of our research 

model in prediction accuracy, energy utilization, response 

speed, comfort maintenance, and operational stability. 

Baselines are: (i) a PID controller (Ziegler–Nichols); (ii) 

MPC with a 15-min horizon; (iii) a fixed-threshold HVAC 

schedule; and (iv) single-algorithm models (LSTM, PPO). 

Hyperparameters (learning rate, batch size, regularization) 

appear in Table 5. Improvements report standard deviations 

over 30 runs, with paired t-tests (α = 0.05) confirming 

significance. learning curves and ablation curves are given 

in Figures 2–3 to verify convergence and module 

contribution. Significance of improvements was verified by 

paired t-tests (α = 0.05) against PID, MPC and single-

algorithm baselines. 

 
Figure 4. Pareto front (NSGA-II) for energy efficiency, 

comfort, and equipment lifespan. 

Figure 4 shows the Pareto front of NSGA-II for energy 

efficiency, comfort, and equipment lifespan, with the knee 

point selected as the scheduling solution. 

4.4  Ablation study 

To further verify the core role of integrated artificial 

intelligence optimization algorithms in energy efficiency 

control of green buildings in hot summer and cold winter 

zones, this study designed ablation experiments to compare 

the complete model with the reduced version, in order to 

analyze the contribution of each module to overall 

performance. The experiment was conducted on a building 

energy efficiency simulation platform, selecting typical 

summer high temperature and winter heating scenarios. 

After running for 100 rounds, key indicators such as energy 

consumption prediction accuracy, energy utilization rate, 

response delay, and system interruption rate were 

calculated. 

The experiment includes four types of models: one is 

to remove the depth prediction module and rely only on 

empirical curves for energy consumption estimation; The 

second is to eliminate demand response logic, and the 

system will no longer adjust its operation based on 

electricity prices and comfort feedback; The third is the 

missing feedback correction mechanism, which cannot be 

dynamically updated after strategy generation; The fourth 

is a model that fully integrates prediction, optimization, and 

feedback mechanisms. The experimental data of each 

group are shown in Table 5.
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Table 5：Comparison of key performance indicators for ablation experiments 
 

Model Configuration 
Prediction 
Error (%) 

Energy 
Utilization (%) 

Response 
Delay (s) 

Comfort 
Satisfaction 

(%) 

Interruption 
Rate (%) 

Without Prediction 
Module 

14.6 ± 0.7 83.1 ± 1.3 3.5 ± 0.3 79.0 ± 1.5 8.2 ± 0.6 

Without Demand 
Response Logic 

11.8 ± 0.5 82.0 ± 1.2 3.9 ± 0.4 84.7 ± 1.2 6.1 ± 0.5 

Without Feedback 
Correction 

10.7 ± 0.6 86.4 ± 1.1 3.2 ± 0.3 86.2 ± 1.3 7.4 ± 0.4 

Complete Model 6.8 ± 0.4 91.3 ± 1.1 1.9 ± 0.2 92.4 ± 0.7 3.5 ± 0.3 

The experimental results show that removing the 

prediction module increases the energy consumption 

prediction error to 14.6±0.7%, lowers the comfort 

compliance rate to 79.0±1.5%, and weakens operational 

stability. Without the demand-response logic, energy 

utilization drops to 82.0±1.2%, response delay rises to 

3.9±0.4 s, and overall efficiency decreases due to redundant 

equipment operation. The absence of the feedback-

correction mechanism raises the interruption rate to 

7.4±0.4%, and the system struggles to react to price 

fluctuations and equipment faults, while comfort remains 

at 86.2±1.3%. In contrast, the complete model achieves the 

best results across all indicators: prediction error 6.8±0.4%, 

energy utilization 91.3±1.1%, response delay 1.9±0.2 s, 

comfort compliance 92.4±0.7%, and interruption rate 

3.5±0.3%. These findings confirm that the joint effect of 

prediction, demand-response, and feedback correction 

enhances both efficiency and stability in building energy-

efficiency control. Results are reported as mean ±SD over 

five runs (prediction error 6.8±0.4%, utilization 91.3±1.1%, 

delay 1.9±0. s, comfort 92.4±0.7%). Removing RL falls 

back to a safe HVAC setting. Reward-weight, NSGA-II 

sizes, and LSTM look-ahead sensitivity caused <5% 

change. Training on ten offices and testing on two lecture 

halls kept MAE < 8% and comfort > 90%. Latency rose 

sublinearly from 1.9s to 3.4s as terminals grew (50→300); 

8-bit quantization cut delay 18% with no accuracy loss. 

With 30% sensor loss or 200ms lag, fallback held comfort 

>85%. Delay components were 0.55s prediction,0.82s 

optimization,0.28s communication, and 0.25s actuation. 

5  Discussion 

5.1  Performance advantage analysis of 
existing energy efficiency control 
methods 

The existing energy efficiency control methods for green 

buildings mostly rely on static thresholds, statistical 

regression, or empirical adjustment. Although they are 

effective under small load fluctuations or single operating 

conditions, they often exhibit insufficient prediction 

accuracy, slow response, and unstable energy efficiency in 

scenarios such as hot summer and cold winter zones with 

frequent switching of cold and hot loads, complex 

meteorology, and variable demand. Traditional methods 

are based on historical mean prediction, manual threshold 

start stop, and rule triggered response, lacking perception 

of real-time data, making it difficult to balance comfort and 

energy efficiency, and lacking adaptability under sudden 

disturbances. 

The energy efficiency control model proposed in this 

study, which integrates artificial intelligence optimization 

algorithms, demonstrates advantages in three aspects. One 

is in the energy consumption prediction stage, deep 

learning captures the nonlinear relationship between 

meteorological features and energy consumption curves, 

reducing the prediction error to 6.8%, which is better than 

the traditional system's 15.2%, providing reliable basis for 

subsequent regulation. Secondly, in terms of demand 

response mechanism, the combination of reinforcement 

learning and evolutionary algorithms is used to achieve 

multi-objective dynamic optimization of price, comfort, 

and lifespan, avoiding the lag of fixed threshold strategies. 

In the experiment, the response delay was only 1.9s, while 

the traditional system was 6.5s. Thirdly, in terms of energy 

efficiency stability and resource utilization, the closed-loop 

feedback mechanism continuously adjusts the strategy, 

reducing local optima and resource waste. The energy 

utilization rate is improved to 91.3%, and the interruption 

rate is only 3.5%, which is significantly better than the 

traditional methods of 72.6% and 12.1%. 

In addition, the model in this study also performs 

outstandingly in maintaining comfort. Through multi-

objective weight balancing, the indoor comfort compliance 

rate has been increased to 92.4%, while traditional methods 

only achieve 76.3%. This result indicates that while saving 

energy, it can effectively balance user experience, breaking 

through the limitations of "choosing between energy saving 

and comfort". Overall, the model demonstrates significant 

advantages in prediction accuracy, response speed, energy 

efficiency stability, and comfort maintenance, providing a 

practical and feasible path for energy efficiency control of 

green buildings in hot summer and cold winter zones. 

5.2  Model adaptability and stability 
verification under complex climatic 
conditions 

The operating environment for energy efficiency control of 

buildings in hot summer and cold winter zones is highly 

complex, with frequent seasonal switching of cold and hot 

loads. At the same time, dynamic disturbances in 

meteorological conditions and price signals make it 

difficult for traditional methods to maintain stability. To 

verify the adaptability and stability of the fusion artificial 
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intelligence optimization algorithm model proposed in this 

study under complex working conditions, four typical test 

scenarios were set: extreme high temperature in summer, 

low temperature heating in winter, severe fluctuations in 

electricity prices, and high concurrency operation of 

multiple building clusters. Each scenario runs 100 rounds 

of experiments to collect three indicators: energy efficiency 

compliance rate, average response delay, and system 

stability score.

 
Table 6：Performance of models under typical complex climate scenarios 

 

Test Scenario 
Energy Efficiency Compliance 

Rate (%) 
Average Response 

Delay (s) 
Stability Score 

(10) 

Extreme High Temperature in 
Summer 

93.1 2.4 9.2 

Low Temperature Heating in 
Winter 

90.6 2.7 8.8 

Sharp Fluctuations in Electricity 
Price 

91.8 2.6 8.9 

High-Concurrency in Multi-
Building Groups 

89.4 3.1 8.6 

As shown in Table 6, under extreme high temperatures 

in summer, the model utilizes a combination of prediction 

and regulation to achieve rapid allocation of cold sources, 

with an energy efficiency compliance rate of up to 93.1% 

and an average response time of only 2.4 seconds, 

demonstrating high adaptability to extreme cooling loads; 

Under the condition of "low-temperature heating in winter", 

the system maintains continuous operation by optimizing 

the heating strategy, with an energy efficiency compliance 

rate of 90.6% and a stability score of 8.8, reflecting its 

stability in peak energy consumption; In the context of 

severe fluctuations in electricity prices, the model 

dynamically balances comfort and cost through a demand 

response mechanism, with an energy efficiency compliance 

rate of 91.8% and a delay of 2.6 seconds, demonstrating its 

flexibility in market disturbances; In the context of "high 

concurrency in multiple building clusters", the system 

effectively alleviates conflicts through hierarchical 

regulation and resource sharing mechanisms, with an 

energy efficiency compliance rate of 89.4% and a stability 

score of 8.6, verifying its robustness in group collaboration 

scenarios. 

The model maintains an energy efficiency compliance 

rate of over 89% and a response delay of less than 3.1 

seconds under four complex operating conditions, with 

stability scores exceeding 8.5, demonstrating its good 

adaptability and robustness. 

5.3  Feasibility assessment of system 
resource expenditure and building 
scene deployment 

In the energy efficiency control of green buildings in hot 

summer and cold winter zones, the implementation of the 

model not only depends on the accuracy of prediction and 

optimization, but also on the adaptability of computing 

resources, communication bandwidth, and operating 

platforms. This study evaluated the resource cost and 

deployment feasibility of an energy efficiency control 

model that integrates artificial intelligence optimization 

algorithms in typical building clusters. 

The model includes three major modules: edge 

acquisition, center optimization, and interactive feedback. 

The edge acquisition module is deployed in building BAS 

or monitoring gateways for real-time acquisition of 

meteorological, indoor temperature and humidity, and 

equipment operation data. Under a 1-minute sampling 

period, the CPU usage of a single node remains within 30%, 

with a memory consumption of approximately 1GB. It can 

run stably on common embedded controllers without the 

need for high-performance hardware support. The central 

optimization module is based on GPU servers to complete 

energy consumption prediction and strategy generation, 

with an average control cycle of 2.3 seconds and 

optimization calculations accounting for about 65%. 

Taking mid-range GPUs (such as RTX A2000) as an 

example, they can support real-time control of over a 

hundred terminals and provide lightweight versions to 

adapt to resource constrained scenarios. The interactive 

feedback module transmits data and instructions through 

WebSocket, with a bandwidth requirement of 

approximately 3.9Mbps and a latency of less than 180ms, 

which can meet the real-time requirements of building 

group monitoring and support remote operation and 

maintenance. In terms of economic investment, taking a 

medium-sized building complex consisting of 5 office 

buildings, 300 rooms, and 500 collection points as an 

example, the total investment is about 800000 yuan, 

covering software, hardware, and platform integration, 

which is lower than most similar solutions. Modular design 

supports later expansion, compatible with BAS, EMS, and 

smart building platforms, avoids information silos, and has 

hot swappable and remote update capabilities. In addition, 

the model can seamlessly integrate with existing BAS, 

EMS, and smart building platforms through standard 

interfaces, avoiding information silos, supporting module 

hot plugging and remote updates, and significantly 

reducing later operation and maintenance costs. Overall, 

the model is feasible in terms of computational burden, 

economic investment, and compatibility, providing solid 

support for the promotion and application of energy 

efficiency management in green buildings in hot summer 

and cold winter zones. 
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5.4  The application value of models in 
improving energy efficiency of green 
buildings 

In the energy efficiency optimization of green buildings in 

hot summer and cold winter zones, improving operational 

efficiency and ensuring system stability are the key to 

implementing energy efficiency management. The energy 

efficiency control model proposed in this study, which 

integrates artificial intelligence optimization algorithms, 

has demonstrated significant value in multiple application 

areas. From the perspective of operational performance, the 

model achieves dynamic updates and path corrections in 

energy consumption scheduling through deep integration of 

prediction and optimization, significantly improving 

energy utilization and operational efficiency. In the 

experimental environment, the regulation response time is 

shortened to less than 2 seconds on average, and the energy 

utilization rate is stable at more than 90%. At the same time, 

the closed-loop feedback mechanism can quickly 

distinguish the interference caused by electricity price 

fluctuations, equipment shutdowns, and sudden increases 

in demand, and reconstruct optimization strategies in a 

short period of time to avoid uncontrolled energy efficiency 

fluctuations. According to statistics, unplanned operational 

interruptions have decreased by about 40%, the success rate 

of demand response has increased to 93%, and energy 

waste and equipment overload have significantly decreased. 

In terms of energy efficiency management, the model 

visualizes energy consumption distribution, equipment 

status, and comfort indicators through a graphical platform, 

allowing operators to intuitively grasp the global status of 

the system and make decisions and trend judgments based 

on data. This model breaks through the traditional control 

method that relies on experience and promotes energy 

efficiency management to shift from passive regulation to 

active optimization. System compatibility also enhances its 

potential for promotion. The model can seamlessly 

integrate with BAS, EMS, and smart building systems, 

supporting remote deployment and modular expansion, and 

adapting to different types and sizes of building clusters. 

Its standardized interface avoids duplicate construction and 

information isolation issues, making the energy efficiency 

system more flexible in updates and operations, and 

reducing additional investment costs. 

5.5  Comparison with state-of-the-art 
studies 

Table 1 provides a reference for quantitative 

comparison.The proposed framework achieves a prediction 

MAE of 6.8%, energy utilization of 91.3%, average 

response delay of 1.9 s, and comfort compliance of 

92.4%.In contrast, Boutahri et al. (2025) reported 14% 

energy saving without comfort control, Wei et al. (2017) 

achieved 15% saving in simulation, and Gao et al. (2019) 

obtained MAE 0.29 with 11% comfort gain. Ding et al. 

(2022) reached RMSE 0.32 and 13% saving, while later 

studies focused on single objectives or simulation only.Our 

method lowers prediction error, enhances comfort, and 

raises utilization in both simulation and field 

tests.Differences mainly stem from (i) larger and more 

diverse data (14 M records, two years), (ii) closed-loop 

integration of forecasting, demand response and 

optimization, (iii) inclusion of field deployment, and (iv) 

reward shaping on comfort and equipment life.Paired t-

tests (α = 0.05) across 30 runs confirm that gains in MAE, 

utilization and comfort are statistically significant.  

6  Conclusion 

This article proposes a comprehensive energy efficiency 

control model that integrates deep learning, reinforcement 

learning, and evolutionary optimization algorithms to 

address issues such as insufficient prediction accuracy, 

delayed dynamic response, and system instability in green 

building energy efficiency control in hot summer and cold 

winter zones. The model constructs a closed-loop 

framework of "prediction optimization execution 

feedback". The experimental results show that the model 

outperforms traditional methods in energy consumption 

prediction, demand response, energy utilization, and 

comfort maintenance. The prediction error is reduced to 

6.8%, the energy utilization rate reaches 91.3%, the 

response delay is shortened to 1.9 seconds, the comfort 

compliance rate is 92.4%, and the interruption rate is only 

3.5%. This verifies the adaptability and stability of the 

model in complex climates. At the same time, the model 

performs well in terms of computing resources and 

communication overhead, and can run stably in common 

building controllers and mid-range GPU environments, 

making it feasible for application in medium to large 

building clusters. However, there are still shortcomings in 

this study: firstly, the dataset size is limited and the scene 

diversity is insufficient, which needs to be further validated 

in a larger range of building clusters; Secondly, the 

convergence speed of reinforcement learning is slow and 

the training cost is high, which is not conducive to large-

scale real-time deployment; Thirdly, the adaptability of 

cross building group collaboration and multi terminal 

integration operation still needs further research. Future 

research can be conducted from three aspects: firstly, 

introducing transfer learning and self supervised pre 

training mechanisms to enhance their applicability under 

different climates and building types; Second, combine 

edge computing, model compression and distributed 

optimization to reduce resource consumption and enhance 

real-time scheduling capability; The third is to expand 

cross scenario collaboration applications, promote the 

promotion of models in energy efficiency management of 

urban level building clusters, and assist in green and low-

carbon development. In summary, the energy efficiency 

control framework proposed in this study provides an 

effective path for improving the energy efficiency of green 

buildings in hot summer and cold winter zones, and lays 

the engineering and theoretical foundation for the 

construction of intelligent control systems. 
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