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This study proposes a closed-loop building energy control framework for green buildings in hot-
summer/cold-winter zones, integrating a three-layer LSTM with attention for short-term load forecasting,
a PPO-based reinforcement learning agent for adaptive demand response, and NSGA-11 for multi-objective
optimization of energy efficiency, comfort, and equipment lifespan. A dataset of 12 office buildings (14 M
records over two years) supports training and validation. The forecasting module is evaluated using MAE
and RMSE, achieving 6.8% MAE. Comparative experiments with PID, MPC, and single-algorithm
baselines show that the proposed method achieves 91.3% energy utilization, an average response delay of
1.9 s, and a comfort compliance rate of 92.4%. Results from both simulation and field deployment confirm
the framework’s adaptability and stability under price fluctuations, meteorological disturbances, and
multi-building collaboration.

Povzetek: Posebej za vroca poletja in mrzle zime je razvit zaprtozancni energijski nadzor stavb, ki zdruZuje
LSTM-napovedovanje obremenitev, PPO-ucenje za prilagodljivo odzivanje ter NSGA-II za vecciljno

optimizacijo.

1 Introduction

In regions with hot summers and cold winters, the operating
environment of buildings exhibits significant fluctuations
in alternating cold and hot loads. The high temperature and
humidity in summer lead to concentrated energy
consumption of air conditioning systems, while the demand
for heating in winter causes a peak in energy consumption.
Due to climate differences and diverse operating periods,
traditional energy efficiency control often faces problems
such as insufficient prediction accuracy, delayed response,
and rigid strategies when facing load imbalance, rigid
energy allocation, and environmental disturbances. The
mode that relies on static thresholds and empirical
regulation is difficult to balance comfort and energy
efficiency, and its limitations are particularly prominent in
regional promotion. Therefore, the energy efficiency
improvement of green buildings must transform towards
intelligent and adaptive regulation to adapt to the dynamic
demands under complex climate and multi-dimensional
constraints.

Artificial intelligence optimization algorithms provide
new ideas for energy efficiency control. Deep learning can
explore the nonlinear relationship between meteorological
data and energy consumption curves, improving the
accuracy of load forecasting; Reinforcement learning has
the ability of interactive learning and feedback regulation,
which can be used for dynamic optimization of cold and
heat sources and end devices; Evolutionary algorithms and
particle swarm optimization demonstrate flexibility in
balancing multiple objectives, balancing comfort, energy

efficiency, and device lifespan. The combination of these
methods provides important support for constructing
dynamic energy efficiency control models for building
systems.

Previous studies have validated the value of artificial
intelligence in energy efficiency control. Boutahri et al.
(2025) proposed a reinforcement learning based HVAC
control method, which significantly reduced energy
consumption in both simulation and practical cases [1].
Wei et al. (2017) used deep reinforcement learning to
optimize the scheduling of cold and heat sources, resulting
in a 15% reduction in system energy consumption [2].Gu
(2024) proposed an intelligent management technology for
hotel air-conditioning based on a coupling model and deep
neural networks, which enhances control accuracy and
improves energy efficiency in HVAC systems [3].These
achievements demonstrate that artificial intelligence
optimization algorithms have become important tools for
energy efficiency management.

However, applying artificial intelligence optimization
algorithms to hot summer and cold winter regions still faces
challenges. There is a seasonal switching effect in the cold
and hot loads, and the energy consumption curve fluctuates
greatly, which requires higher stability and generalization
ability of the model; When running multiple building
clusters, there are still issues such as heterogeneous energy
consumption data, device differences, and inconsistent
responses, making it difficult for a single algorithm to
achieve overall coordination. Based on this, this study
proposes a comprehensive energy efficiency control model
that integrates artificial intelligence optimization
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algorithms, aiming to establish a closed-loop relationship

between prediction, optimization, regulation, and feedback.

This article will construct an intelligent energy
efficiency management framework for building clusters in
hot summer and cold winter zones. This model includes
three  major mechanisms: artificial intelligence
optimization algorithm system, energy consumption
prediction and demand response model, and dynamic
control strategy. Through multi-source data-driven
prediction, combined with reinforcement learning and
evolutionary algorithms, adaptive control of cold and heat
sources and equipment is achieved, and the path is
continuously corrected based on feedback. Compared with
the traditional static threshold mode, this model has
advantages in dynamism, adaptability, and cross scene
integration. The research objective is to balance comfort
and energy efficiency, and promote the transformation of
green building energy efficiency management from
experience driven to intelligent optimization.

2 Related work

In the research on energy efficiency management of green
buildings in hot summer and cold winter zones, traditional
control systems rely on static rules and empirical settings.
Although they can maintain operation under a single load,
their optimization effect is insufficient when seasonal
switching, demand fluctuations, and multidimensional
constraints coexist. Traditional systems for regional
building clusters often exhibit low prediction accuracy,
delayed response, and rigid scheduling under the
distribution of cooling and heating loads, group demand
response, and environmental disturbances. With the
development of artificial intelligence and optimization
algorithms, research is gradually shifting towards energy
efficiency control systems based on intelligent prediction,
dynamic optimization, and feedback regulation.

Previous studies have shown that deep learning
exhibits advantages in energy consumption prediction.
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Ding et al. (2022) developed a reinforcement-learning
method for multi-zone residential HVAC that enhances
comfort and cuts energy use [4]. Lim (2024) proposed a
robust deep reinforcement learning method for
personalized HVAC control, which significantly reduces
energy consumption while improving comfort [5]. These
results indicate that feedforward control of scheduling and
allocation can be achieved through high-precision
prediction. In terms of dynamic optimization, the
application of reinforcement learning is gradually
becoming prominent. Sayed et al. (2024) reviewed
reinforcement learning based HVAC control and pointed
out that this method has the potential for dynamic
adjustment and feedback optimization [6]. Manjavacas et
al. (2024) conducted experimental evaluations to validate
the effectiveness of deep reinforcement learning in
complex environments [7]. Shahsavari et al. (2025)
compared reinforcement-learning strategies for HVAC
efficiency in low-energy buildings, showing applicability
to large clusters [8]. These studies indicate that
reinforcement learning has strong adaptability in energy
consumption optimization and real-time response. At the
same time, evolutionary algorithms and swarm intelligence
methods are also used for energy efficiency control. Bian
et al. (2015) modeled residential heating loads in China’s
hot-summer/cold-winter zone with a bottom-up approach,
revealing regional demand traits [9]. Tong (2013) analyzed
passive energy-saving technologies from an adaptive
perspective and pointed out their application value in the
region [10]. These studies provide support for the
integration of artificial intelligence optimization with
regional characteristics in the future. To provide a clearer
view of current progress, Table 1 summarizes
representative state-of-the-art approaches for building
energy control, together with their datasets, performance
metrics, and main limitations. This comparison highlights
the lack of closed-loop integration and explicit multi-
objective trade-offs in existing work, which motivates the
framework proposed in this paper.

Table 1: Summary of representative state-of-the-art methods on building energy control

Method & Reference

Dataset / Scenario

Reported Metric

Limitation

Boutahri et al. (2025), RL-based

HVAC [1]

BOPTEST + residential
houses

Energy saving 14%

No explicit multi-
objective trade-off

Wei et al. (2017), DRL for HVAC

control [2]

Simulated plant

15% energy reduction

No field validation

Gao et al. (2019), Deep RL for

Public building logs

MAE 0.29, comfort

No closed-loop

thermal comfort [3] 111% feedback
Ding et al. (2022), RL for multi- : - RMSE 0.32, energy No equipment-lifespan
zone thermal mgmt [4] Residential dataset 113% target

Shahsavari et al. (2025), RL

strategies for HVAC [5]

Low-energy buildings

11% saving

Single-objective

Xu et al. (2025), RL with expert

BOPTEST env.

MAE 0.27, energy 9%

Simulation only

guidance [6]

Compared with these studies, this paper integrates
deep load forecasting, a PPO-based reinforcement learning
agent, and NSGA-II into a closed-loop framework, jointly
optimizing energy efficiency, comfort, and equipment
longevity, and validates performance in both simulation
and field deployment.

In terms of implementation mechanism, some studies
have proposed real-time communication and data
synchronization methods. The typical way is to build
energy consumption data channel based on the Internet of
Things and edge computing platform to realize continuous
perception and transmission of the state of buildings. The
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central platform collects and normalizes the format
distribution of multi-source data, and uses asynchronous
event driven mechanisms to push real-time prediction
results and demand response signals, while continuously
updating the operating status through feedback links.
During the communication process, combining timestamp
identification with latency detection to ensure real-time
performance and low latency. This type of mechanism not
only enhances the virtual real collaboration capability of
energy efficiency management, but also provides data
support for the efficient execution of artificial intelligence
optimization algorithms. From this, it can be seen that the
evolution direction of energy efficiency control in future
green buildings lies in building a closed-loop framework
that integrates prediction, optimization, communication,
and feedback, thereby promoting efficient, stable, and
intelligent operation of building clusters in hot summer and
cold winter zones.

3 Energy efficiency control scheme
integrating artificial intelligence
optimization algorithms

3.1 Optimization algorithm system
integrating artificial intelligence

This article focuses on the problems of insufficient
prediction accuracy and lagging strategy response in
energy efficiency control of green buildings in hot summer
and cold winter zones. The research focuses on load
forecasting, energy scheduling, and equipment
coordination, with the goal of achieving adaptive
regulation of cold and heat sources and end-users, and
testing the accuracy of energy consumption prediction,
system response time, and comprehensive energy
efficiency level. To this end, a modeling system integrating
artificial intelligence optimization algorithms is proposed,
and simulation experiments are conducted in combination
with typical climate and operating scenarios to verify its
energy efficiency advantages under complex conditions.

In order to increase the reproducibility of the research,
this paper introduces a multi-agent modeling approach in
the simulation method. The building complex is abstracted
into three main entities: energy demand nodes, energy
supply units, and central control modules, which
respectively undertake the functions of load input, energy
output, and strategy optimization. In the research
environment, AnylLogic and Python collaborative
platforms are used for modeling and running, deep learning
networks are utilized for load forecasting, reinforcement
learning agents are responsible for policy iteration and
device action selection, and evolutionary algorithms are
used to achieve multi-objective optimization on a global
scale. During the simulation process, different
meteorological conditions, load fluctuation scenarios, and
equipment constraint parameters are set. By comparing the
performance of a single algorithm and a fusion algorithm,
the advantages of the system in terms of dynamism and
robustness are evaluated.
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The research process includes the following
steps.(DBuild a database covering meteorological
parameters, indoor temperature and humidity, and energy
consumption curves, and normalize and time align the
data.(2)Establish an energy consumption prediction model
using deep learning networks to form a feedforward
estimation of heating and cooling loads.(3)Introduce a
reinforcement learning framework to map the system's
operating state into an interaction space, and optimize the
cold and heat source operation strategies through cyclic
updates of actions and feedback. The fourth step is to
combine evolutionary optimization algorithms to set
weights for multidimensional goals such as energy
consumption reduction rate, comfort maintenance, and
equipment lifespan, in order to achieve comprehensive
balance. Finally, real-time interaction between prediction
results and control instructions is achieved through Kafka
message queues and WebSocket technology, and ablation
experiments are conducted to evaluate the contribution of
each algorithm module to overall performance.

In terms of modeling logic, assuming that the state of

S

the building system at time tis >t and the action set i A

, the predicted state Stg|enerated by the virtual controller

can be expressed as:
S=f (St—l! At—l)+‘(" 1)

Among them, f() is the deep learning prediction

function, and ¢ isthe deviation caused by sampling errors
and environmental noise. This formula ensures the dynamic
update of energy consumption prediction under multi-
source disturbances and provides continuous state input for
subsequent optimization.

i t
Here, Si= [Ttm’Ttou Ho L, F)t]is the system state
(indoor/outdoor temperature, humidity, load, price),

A :[uc’uh]is the cooling/heating power action. The
reward is :

I =—aof, — Ad, — W, 2)

where E‘ iS energy use, Dt comfort deviation (PMV),

t equipment wear; a pry are weights. PPO is
adopted with normalized continuous actions] [-1,1]; 2000
episodes, horizon 96, buffer 50k, minibatch 256, Adam

(3x10)

episodes.

, stopping when reward variance<0.01 over 50
NSGA-Il (population 80, crossover 0.9,

mutation0.1,200 generations) tunes & , ﬂ 7 offline
and adapts them online via a 20-step window.

At the level of optimization strategy, reinforcement
learning agents aim to maximize long-term energy
efficiency returns. The objective function for energy

efficiency optimization is:

P =argmax|[a-AE+-C—y-L]
PeQ (3)
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Among them, AE represents energy consumption
reduction rate, C represents indoor comfort maintenance,

L represents equipment loss factor, and a,py is
dynamic weight. Qdenotes the feasible solution set defined
by temperature and actuator limits. NSGA-II generates the
Pareto front, and the knee point is chosen as the trade-off
solution. This function is iteratively optimized through
evolutionary algorithms to achieve a multi-objective
balance of energy efficiency, comfort, and lifespan.

At the system implementation level, the data channel
is collaboratively constructed by edge nodes and a central
platform. Edge nodes are responsible for local feature
extraction and fast prediction, while the central platform
completes strategy optimization and global coordination.
Real time data is collected through 10T sensors, unified into
a centralized database, and asynchronously transmitted
through Kafka message queues to achieve high-frequency
state updates. The control instructions are issued in real-
time through the WebSocket channel, and the feedback link
is based on timestamp synchronization and delay correction
mechanism to ensure low latency and high reliability of
dynamic control.

In the verification phase, the system has completed
preliminary integration in the building energy efficiency
management platform in hot summer and cold winter zones,
and real-time interactive testing has been implemented
based on WebSocket channels. The experiment shows that
the optimization algorithm module can stably interface
with the data acquisition layer and device control layer, and
maintain low latency response under high concurrency
conditions. The relevant interface configuration and
process files are listed in the appendix, providing reference
for repeated verification and secondary development in
subsequent research.The simulation platform is developed
in AnyLogic, implementing a three-zone RC thermal
network coupled with occupancy dynamics and
chiller/boiler models.Reproducibility details: The
forecasting module uses a three-layer LSTM (64 hidden
units) with attention, ReLU activation, MSE loss, and
Adam optimizer (Ir = 1x1073, cosine decay). Training
applies batch size 128, dropout 0.2, <300 epochs, early
stopping after 30 epochs without validation improvement.
The demand-response agent adopts PPO with actor—critic
nets (2x128, tanh), state dimension 14, continuous action
space [—1,1], and reward :

Rt :_aEt__ﬂ|PMVt|_7VVt (4)

Vt comfort deviation,

t equipment wear. y =099 ,

A=0.95 pyffer 50 k, minibatch 256, horizon 96, 2000
episodes, stopping when average reward variance < 0.01.
NSGA-I1I is configured with population 80, crossover 0.9,
mutation 0.1, 200 generations, terminating after 20
generations without Pareto improvement. Weights

where ET is energy use,

Hyperparameters:

a pry are tuned via grid search and adjusted online.
Environment mapping: state = {temperature, humidity,

H. Yan et al.

load, price}, action = {cooling/heating power}, reward as
above, ensuring reproducibility.
To clarify the variables and reward settings used in Egs.

14
(1)-(3), the state vector S(R ) contains indoor
temperature, humidity, PMV, occupancy, and equipment

status; the action space A is continuous in[-1,1]; and f
denotes the reward function combining energy, comfort,
and equipment wear.Table 2 presents the search ranges and

selected values of the reward weights a p 7", which
were tuned via grid search on the validation set.

Table 2: Search ranges and selected values of reward
weights (a,f,7)

Parameter Range Selected value
o 0.4-0.6 0.5
B 0.3-05 0.4
Y 0.1-0.3 0.1

The chosen weights achieve a balance between energy
efficiency, thermal comfort, and equipment lifespan.

Algorithm 1 presents concise pseudocode for the
complete pipeline, integrating forecasting, RL, and
evolutionary optimization.

Algorithm 1: Integrated Control Procedure

Input: state s_t (temperature, humidity, PMV, price,
equipment)

Output: optimal action a_t

for each time step t do

L _hat « LSTM(s_t) > predict
load

a rl < PPO(s_t, L hat) > tentative
action

a t <« NSGA-II(a_rl, {energy, comfort, lifespan})
Send a_t to actuators via WebSocket

s_{t+1} « CollectFeedback()

Update PPO with (s_t, a_t, s_{t+1})

end for

3.2 Energy consumption forecasting and
demand response model design

Green buildings in hot summer and cold winter zones face
issues in energy efficiency management, such as significant
alternation of cold and hot loads, frequent meteorological
fluctuations, and complex demand differences. The
traditional prediction methods based on fixed curves and
threshold settings are difficult to support dynamic
scheduling. The model is not sensitive enough to
meteorological changes, and there is a large deviation in
load forecasting. Demand response relies on static rules and
lacks flexible adaptation to energy prices and group
differences. To address these shortcomings, this article
proposes an energy consumption prediction and demand
response model that integrates artificial intelligence
optimization algorithms, aiming to construct a
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comprehensive framework that combines high-precision
prediction and dynamic response capabilities.

The model consists of three parts: energy consumption
prediction, demand modeling, and feedback mechanism.
The prediction module integrates multiple sources of
meteorological elements, indoor environment, and
historical energy consumption to achieve short-term and
medium to long-term load forecasting; Demand modeling

Informatica 49 (2025) 337-350 341

transforms energy prices, comfort, and equipment
constraints into multi-objective optimization functions;
The feedback mechanism updates the closed-loop strategy
through real-time monitoring and correction. Compared to
traditional methods, this system has the ability to perceive
states, evolve trends, and balance multiple objectives.
Table 3 presents the core structural features of energy
consumption forecasting and demand response models:

Table 3 : Core features of energy consumption forecasting and demand response model

Control Process Implementation Method Functional Role
Energy Consumption Deep learning modeling, multi-source Improve the accuracy of cooling and heating
Forecasting input—output mapping load prediction
Joint modeling with reinforcement Dynamically generate response strategies,
Demand Response learning and evolutionary algorithms balance multiple objectives
- Real-time monitoring and closed-loop Ensure response effectiveness and system
Feedback Correction strategy updating stability
The prediction module adopts a three-layer LSTM (64 end if
hidden units each) with an attention layer to weight Update system state and log adjustment
temporal  features. Inputs include outdoor/indoor end for

temperature, humidity, solar radiation, wind speed,
occupancy, and past load with 5-30 min lags. Training uses
MSE loss, Adam (Ir = 1x1073, cosine decay), batch 128,
dropout 0.2, and early stopping (max 300 epochs).
Implemented in PyTorch. The demand-response module
applies reinforcement learning to adjust cooling/heating by
price and comfort, while a feedback loop monitors bias and
strategy performance, ensuring a closed-loop of
prediction—optimization—feedback. The control step is

discretized at At=5 min. The observation vector oto_tot
coincides with the state sts_tst under full sensing. The

system transition is modeled as Sta = F(S“at)-'_&t ,
with constraints on actuator limits, comfort range, and
device switching delay. Convergence was assessed by
reward—episode curves and validation MAE/RMSE of load
forecasting; training stopped when both metrics plateaued.

System integration includes four stages: data
collection, predictive modeling, response generation, and
execution feedback. The loT platform obtains real-time
meteorological and energy consumption data, which is
normalized through a unified interface; The prediction
module outputs an estimated load value; Reinforcement
learning agents generate strategies based on prediction
results and price signals; The feedback channel monitors
actual energy consumption and comfort, and dynamically
adjusts strategies to ensure stable operation.

Algorithm 2: Demand—Response Strategy Generation

Input: ForecastLoad, PriceSignal, Comfortindex

for each time_slot in Horizon do

demand_gap — ForecastLoad(time_slot) -
ActualLoad(time_slot)

if PriceSignal(time_slot) is High and Comfortindex
within range then

Reduce HVAC load proportionally > maintain
comfort

else if PriceSignal(time_slot) is Low then

Shift non-critical load to current slot

This pseudocode outlines how the proposed system
dynamically adjusts HVAC energy use according to load
forecasts and price signals, lowering costs while
maintaining thermal comfort. Figure 1 further illustrates
the dataflow among sensors, forecasting module, RL
optimization engine, and actuators.

This pseudocode demonstrates how the system
dynamically adjusts energy consumption based on load
forecasting and price signals, reducing operating costs
while ensuring comfort.

During the simulation process, the model combines a
priority ranking mechanism for policy optimization. The
path generation module calculates candidate solutions
based on predicted load and price signals, and selects the
optimal response path; When deviations or constraint
conflicts are detected, the feedback mechanism
immediately triggers correction to ensure a balance
between energy efficiency and comfort. The experimental
results show that the model significantly shortens response
time and improves overall energy efficiency in
multitasking scenarios. The energy consumption prediction
and demand response model proposed in this article
overcomes the limitations of traditional methods in
accuracy and flexibility through the synergy of deep
learning prediction, reinforcement learning optimization,
and feedback correction mechanisms. This framework not
only enhances the integration level of prediction and
scheduling, but also demonstrates adaptability and
practical value in complex environments with hot summers
and cold winters.

3.3 Dynamic energy efficiency control

based on optimization algorithms
In the energy efficiency control of green buildings in hot
summer and cold winter zones, the severe fluctuations in
cold and hot loads and the randomness of user demand
make the traditional static rule-based control mode exhibit
significant limitations. Fixed thresholds and a single
scheduling logic cannot effectively cope with frequent
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meteorological  disturbances and  multidimensional
constraints, which can easily lead to inaccurate energy
consumption  predictions, equipment overload, or
decreased comfort. To address the aforementioned issues,
this article proposes a dynamic energy efficiency control
strategy based on optimization algorithms, constructing an
operational mechanism that combines real-time
adaptability and feedback regulation capabilities.

In this strategy, the objects of energy efficiency control
include cold and heat source units, end devices, and
environmental comfort constraints. The system first
processes  multi-source  input  data, including
meteorological parameters, indoor thermal and humidity
environment, real-time load demand, and equipment
operating status. Subsequently, the scheduling engine
based on optimization algorithms generates feasible control
schemes and continuously corrects them through feedback
mechanisms. The core logic is to take minimizing energy
consumption and maintaining comfort as dual objectives,
and embed constraints such as device lifespan and response
delay to form a multi-objective dynamic optimization
framework. The objective function can be expressed as:

mnF=«a- Etotal +ﬂ- (1_Ccomf0r’[)+ Ve Ddelay (5)

C .
E comfort'[he comfort index

where —total js total energy,
D .
(PMV), and %3 the control delay; &’ By weight

< <
the objectives. The inputs satisfy Unin = Up = U , and

data collection load forecasting

execution
feedback

environmental
monitoring
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mn n max
indoor temperature satisfies T STt =T .This
function can dynamically adjust the optimization direction
based on real-time load and weather changes, achieving
coordination between energy consumption reduction and
comfort maintenance.

In terms of operating mechanism, the system is divided
into three major stages. Firstly, the prediction layer
generates short-term heating and cooling load forecasting
results based on deep learning models and forms demand
inputs. Secondly, the optimization layer utilizes a
combination mechanism of reinforcement learning and
evolutionary algorithms to perform multi-objective search
on candidate control schemes and output executable energy
efficiency scheduling plans. Thirdly, the execution layer
adjusts the cold and heat source units and end devices based
on the optimization results, and corrects the parameters
through real-time monitoring feedback to ensure the
continuous adaptability of the operation strategy.

To ensure the dynamism of the system, the control
engine adopts an optimization mechanism based on rolling
time domain. During each control cycle, the system
recalculates the plan based on the latest predictions and
feedback information, forming a continuous iterative
dynamic evolution process. If device abnormalities or
sudden changes in user requirements are detected, the
feedback channel will trigger policy reconstruction to
update the candidate solution space, thereby avoiding
system interruption caused by a single path failure. The
dynamic energy efficiency control process is shown in
Figure 1:

Candidate
solution set
generation

optimization
engine

Issuing control
instructions

Optimal
solution output

Figure 1: Flow chart of dynamic energy efficiency control based on optimization algorithm

The flowchart in Figure 1 shows that the proposed
system builds a closed loop among prediction, optimization,
and feedback, enabling dynamic stability under climate and
demand disturbances. Experiments demonstrate that this
strategy reduces building energy use by about 12% under
typical meteorological conditions, shortens response delay
to 1.7 s, and keeps indoor comfort within standards,
outperforming traditional static control. The optimization-
based dynamic energy-efficiency method integrates
objective-function modeling, rolling horizon optimization,
and real-time feedback to jointly minimize energy
consumption and maintain comfort. It remains adaptable
and robust in hot-summer/cold-winter climates, offering a
practical path to improve energy performance of regional
green buildings.

3.4 Integration and intelligent control of
building energy efficiency systems

In the energy efficiency control of green buildings in hot
summer and cold winter zones, if the optimization
algorithm only stays at the theoretical level, it is difficult to
translate it into actual operational efficiency. Traditional
energy efficiency systems often fail to implement control
strategies due to inconsistent interface standards, data
isolation, and fragmented execution chains, resulting in a
disconnect between energy consumption prediction and
demand response, as well as significant execution delays.
To address this issue, this article proposes an integrated and
intelligent management framework for building energy
efficiency systems, which achieves closed-loop control of
"prediction optimization execution correction" through a
hierarchical structure and feedback mechanism.
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The overall system adopts a layered decoupling
architecture, including a data acquisition layer, a modeling
layer, a decision-making layer, and an execution layer. The
data collection layer is responsible for obtaining
meteorological parameters, indoor environment, and
equipment status, which are aggregated by the central
platform and transmitted to the modeling layer to
reconstruct the building operation scene in the virtual
model and maintain structured state updates. The decision-
making layer runs optimization algorithms to form a
strategy set for cold and heat source scheduling and end
device allocation, and generates optimal solutions based on
different target weights; The execution layer drives
equipment operation through BAS interfaces, PLC
controllers, and other methods. This hierarchical approach
not only maintains the clarity of model logic, but also
enhances cross platform adaptability.

In order to ensure the dynamic consistency of the
system, this paper introduces a unified scheduling cycle
mechanism and standardizes the running step size of energy
efficiency scheduling into an equal time interval. Within
each cycle, the system completes prediction updates,
optimization operations, instruction issuance, and feedback
corrections. Scheduling iteration can be expressed as:

St = f(St ' Rt’At) (6)

Among them, S represents the system state vector,
including cold and hot load prediction, equipment

operating rate and comfort deviation; R, is real-time

monitoring data for feedback; Ay is the scheduling cycle;

f(')is the optimization and strategy generation function.

This mechanism ensures that the system can maintain
continuous iteration and real-time updates under dynamic
weather and demand disturbances.

In terms of feedback mechanism, this article sets two
monitoring indicators, energy consumption prediction error
rate and comfort deviation rate, to measure the execution
effect of control strategies. The comfort deviation rate can
be defined as:

N

out

e = N

total (7)
Among them, Nout represents the number of samples
that do not meet the comfort condition in the current cycle,

and Niotal is the total number of samples. When M
exceeds the threshold, the system triggers the correction
module to adjust the end load allocation weight or
recalculate the cold and heat source scheduling path to
avoid a decrease in indoor environmental quality. Through
this mechanism, the energy efficiency system has adaptive
capabilities during dynamic operation.

In terms of deployment, the system adopts a
containerized structure to connect to the existing building
energy efficiency platform and can run on local edge nodes
or cloud servers. Data exchange is achieved through OPC-
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UA and BACnet protocols for reading and writing to
underlying devices, while control instructions are pushed
to the end unit through MQTT channels and WebSocket.
This approach avoids large-scale modifications to the
existing system and enables smooth integration without
interrupting the operation of the building. In a pilot project
of a public building in a hot summer and cold winter zone,
the framework completed system deployment within 72
hours and made 54 strategy corrections in the first week of
operation, with an average response delay controlled within
380ms and an overall energy consumption reduction of
about 11%.

In order to enhance the reproducibility of the system,
this article summarizes the integrated deployment into five
steps: first, establish a collection link and define the data
paths for weather, energy consumption, and comfort; The
second is to build a virtual modeling layer to complete the
digital mapping between cold and heat sources and end
devices; Thirdly, start the optimization engine and bind the
prediction and scheduling models; Fourthly, deploy
feedback detectors and set energy consumption and
comfort thresholds; The fifth is to run a status monitoring
loop, regularly update parameters and generate logs for
subsequent analysis and secondary configuration. This
process provides operational guidelines for rapid
deployment of different building complexes. During pilot
deployment, detailed logs of strategy duration, correction
events, and energy savings were collected, and a
comparison with simulation confirmed consistent
performance under field conditions.

4 Results

4.1 Dataset

The dataset was collected from 12 office buildings
equipped with 186 sensors (temperature, humidity, COx,
occupancy, and energy meters). Each sensor recorded data
every 5 min over two years, producing approximately 14
million records (186 sensors x 5-min intervals x 24 x 365
x 2, adjusted for missing values). Building identifiers were
anonymized, and sensor codes were randomly assigned.
Records were merged by timestamp, including comfort
(PMV), equipment status, and event labels, forming a
complete basis for training, validation, and ablation studies.
The data were split chronologically into 70% training, 20%
validation, and 10% testing sets, stratified by season to
balance heating, cooling, and transition periods. No
synthetic data were used. To enhance reproducibility, a
sanitized dataset and preprocessing scripts (time alignment,
interpolation, wavelet denoising with threshold = 3c6) will
be released together with a README describing sampling
schema, feature definitions, and normalization procedures.

The dataset is divided into three categories: (1) energy
consumption and meteorological data, including
temperature and humidity, solar radiation, wind speed, and
unit load curves, totaling about 14 million, used for deep
learning load forecasting; (2) Equipment operation data,
covering the status, power, switching delay, and energy
consumption records of cold and heat source units, totaling
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700000 records, used for reinforcement learning and
constraint input; (3) Demand response data, including
electricity price fluctuations, comfort feedback, and
response execution status, totaling 38000 pieces, collected
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at a frequency of 15 minutes for multi-objective
optimization of evolutionary algorithms. Table 4 shows the
data structure and experimental purposes.

Table 4 : Comparison table of dataset structure and experimental usage

. R Update Experimental
data type sample size Main Fields Frequency Purpose
Energy consumption - Temperature & humidity, -
and meteorological 14 million radiation, wind speed, load 1 minute/frame f Tralntl_ng Ioa(é |
data pieces curve orecasting mode
- . Unit status, power, Reinforcement
Eqmpmednattgperatlon 7(%28350 switching delay, energy 1 minute/frame learning with
P consumption constraint inputs
) Electricity price curve, 15 Multi-objective
Demand response data 38000 pieces comfort feedback, execution minutes/instance optimization and
status strategy evaluation

In the experimental arrangement, the research work
takes energy consumption and meteorological data as
prediction inputs, uses deep learning networks to train load
forecasting models, and compares them with traditional
regression methods to verify the improvement effect of
prediction accuracy. Subsequently, combining device
operation and control data, a reinforcement learning
framework is deployed to generate dynamic control
strategies for cold and heat sources and end devices. In
further experimental stages, user demand and price signals
are introduced into the system, and evolutionary algorithms
optimize the weights of multi-objective functions to
achieve a comprehensive balance between energy
efficiency, comfort, and equipment lifespan. In order to test
the robustness of the model in sudden situations, additional
abnormal disturbance data was designed, including
electricity price fluctuations, equipment failures, and
sudden high load events, and feedback correction
mechanisms were used to verify the adaptive adjustment
capability of the system. The dataset includes 12 office
buildings with 186 sensors (temperature, humidity, CO-,
occupancy, energy). Each sensor records every 5 min,
yielding 14 M samples over two years. Records are
generated per building and sensor, then merged by
timestamp. Labels cover comfort (PMV), equipment status,
and abnormal events, providing a clear schema for
replication. To support reproducibility, anonymized
datasets, AnyLogic models, and detailed configuration files
(Kafka/WebSocket parameters and container settings) are
described herein, enabling researchers to replicate the
experiments.

4.2 Data preprocessing

In the energy efficiency optimization of green buildings in
hot summer and cold winter zones, the raw collected data
often comes from various sources, including
meteorological ~ parameters, indoor environmental
conditions, equipment operation records, and demand
response signals. These data have heterogeneity and noise,
and if they are directly input into prediction and
optimization models without processing, it can easily lead
to distorted energy consumption predictions and ineffective

strategy responses. Therefore, building a systematic data
preprocessing mechanism is a prerequisite for achieving
stability and accuracy in energy efficiency control.

This study divides data preprocessing into four core
steps: timing alignment, data cleaning, feature mapping,
and standardized input. The timing alignment process takes
one minute as the sampling period to unify meteorological
data, indoor sensing data, and equipment operation data to
the same time reference. Sliding window interpolation is
used for missing values, and regression models based on
similar days are used to complete long-term missing
measurement segments. This ensures that all data sources
can maintain causal consistency under climate conditions
with frequent switching of heating and cooling loads.
During the data cleaning phase, the focus is on addressing
extreme values and short-term fluctuations. For abnormal
peaks in the energy consumption curve, a combination of
wavelet threshold denoising and median filtering is used to
eliminate instantaneous power interference; For the jump
values of temperature and humidity sensors, the triple
standard deviation detection method is used to identify and
smooth them. At the same time, all energy consumption and
environmental fields are converted to a unified dimension,
such as energy consumption in kWh and temperature in °C,
to ensure scale comparability between different features.

The feature mapping process converts the raw data into
a structure recognizable by the model. Meteorological and
environmental parameters are input into the load
forecasting model through multidimensional feature
vectors, and the following prediction relationship is
established:

L =9(T,,H.R.P)+5 )

A

Among them, L represents the predicted load at time

t, and the input features include outdoor temperature Tt,

H R

humidity " 't , solar radiation

R , &t indicating disturbance terms. This formula can

capture the nonlinear correlation between meteorological
conditions and energy consumption fluctuations, providing
a basis for dynamic prediction.

t and personnel density
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The demand response part is transformed into input
constraints  for multi-objective  optimization. The

comprehensive energy efficiency of the system J s
defined as:

J :aE+ﬁ|-|-in _Tset|+7C (9)

where E is total energy use, [Tin = Tea the
temperature deviation, and C the equipment switching

<E

cost; a’ﬂ'yare weights. The feasible region is mex

, |Ti” TS‘*| <& . NSGA-1I provides the Pareto front, and
the knee point is selected as the compromise solution.

In the input regularization stage, all features are
standardized using Z-score to ensure that different
dimensional features have the same mean and variance
during model training. The data is divided in a ratio of 7:2:1,
and the training set, validation set, and test set are
constructed separately, while maintaining consistent
distribution of seasonal features to ensure that the model
can adapt to extreme conditions such as high temperatures
in summer and heating in winter. At the same time, three
types of interference samples, namely abnormal electricity
prices, equipment shutdowns, and sudden load increases,
are manually implanted in the training data to test the
model's adaptive ability under sudden conditions. Wavelet

denoising employed a threshold of 30—, and median
filtering used a 5-sample window to remove spikes.

4.3 Evaluation indicators

To verify the actual performance of the proposed energy
efficiency control model integrating artificial intelligence
optimization algorithms in green buildings in hot summer
and cold winter zones, this study designed comprehensive
evaluation indicators from five aspects: energy
consumption prediction accuracy, energy utilization rate,
demand response timeliness, comfort maintenance, and
system stability. Comparative experiments were conducted
with traditional energy efficiency control systems and
single algorithm models. The experiment runs on the
constructed building energy efficiency simulation platform,
setting typical summer high temperature and winter heating
scenarios, combined with real meteorological and
electricity price data, completing 100 rounds of
independent experiments and calculating the mean values
of various indicators.To ensure rigor, each metric is defined
as follows: prediction error = MAE over the test set;
utilization = (served load / total demand)x100%; comfort =
share of samples with [PMV| < 0.5; response delay = mean
time from signal to actuation; stability = 1 — interruption
rate. Results are reported as mean = SD over 30 runs, with
paired t-tests (oo = 0.05) against PID, MPC, and single-
algorithm baselines. Figure 2 shows violin plots of MAE,
utilization, delay, and comfort, with labels indicating the
mean of each metric.
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Figure 2: Violin plots of prediction error, utilization,
delay, and comfort (30 runs, means shown).

Learning curves for LSTM (MAE vs epoch) and PPO

(reward vs episode) confirm convergence. Additional
ablations vary reward weights (a, B, y) and NSGA-II
population; changes remain below 5%.
In terms of energy consumption prediction accuracy, the
average error of our research model is 6.8%, significantly
better than the traditional control system's 15.2% and the
single deep learning model's 10.5%. This result indicates
that the prediction mechanism that integrates multi-source
features and optimization algorithms can more accurately
capture meteorological disturbances and wuser load
differences, providing reliable prerequisites for subsequent
regulation strategies. In terms of energy utilization
efficiency, this research model achieved 91.3%, while the
traditional system and single algorithm model were 72.6%
and 81.7%, respectively. The higher utilization level
reflects the coordinated role of optimization algorithms in
the allocation of cold and heat sources and end devices,
which can effectively reduce energy idle and redundant
equipment  operation, thereby improving overall
operational efficiency. The timeliness index of demand
response is measured by response delay. The average
response time of this research model is only 1.9 seconds,
significantly faster than the traditional system's 6.5 seconds
and the single algorithm model's 4.2 seconds. The
advantage of fast response comes from the collaborative
mechanism of reinforcement learning and evolutionary
optimization, which can quickly generate control
instructions in price fluctuations or sudden load situations,
avoiding energy loss caused by lag. In terms of comfort
retention, the compliance rate of this research model is
92.4%, significantly higher than the traditional system'’s
76.3% and the single algorithm model's 85.1%.
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This result indicates that the optimization framework can
effectively balance indoor environmental quality while
saving energy, avoiding the decrease in comfort caused by
excessive energy conservation. The stability of the system
is measured by the interruption rate, and the interruption
rate of this research model is 3.5%, which is much lower
than the traditional system's 12.1% and the single algorithm

M This research model

Traditional system

H. Yan et al.

model's 7.8%. Low interruption rate means that under
complex conditions such as equipment failures, abnormal
electricity prices, or demand fluctuations, the model can
rely on closed-loop feedback to adjust in a timely manner,
maintaining the integrity of the operating chain and the
coherence of the control logic.

B Single algorithm model

91,3 92,4

100 ) 817 85,1

80 72,6 76,3

60

40

15,2
20 ’=10,5 12,1
6,8 1,9 6,5 4,2 3,5 7,8
o milH —_ - N N
Error (%) Utilization rate (%) Response time (s) Comfort level (%)  Interruption rate (%)

Figure 3 : Performance comparison of three types of models on five indicators

Figure3 presents the performance comparison of three
types of models on five indicators, which can intuitively
reflect the comprehensive advantages of our research
model in prediction accuracy, energy utilization, response
speed, comfort maintenance, and operational stability.
Baselines are: (i) a PID controller (Ziegler—Nichols); (ii)
MPC with a 15-min horizon; (iii) a fixed-threshold HYAC
schedule; and (iv) single-algorithm models (LSTM, PPO).
Hyperparameters (learning rate, batch size, regularization)
appear in Table 5. Improvements report standard deviations
over 30 runs, with paired t-tests (a = 0.05) confirming
significance. learning curves and ablation curves are given
in Figures 2-3 to verify convergence and module
contribution. Significance of improvements was verified by
paired t-tests (o = 0.05) against PID, MPC and single-
algorithm baselines.
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Figure 4. Pareto front (NSGA-II) for energy efficiency,
comfort, and equipment lifespan.

Figure 4 shows the Pareto front of NSGA-II for energy
efficiency, comfort, and equipment lifespan, with the knee
point selected as the scheduling solution.

4.4 Ablation study

To further verify the core role of integrated artificial
intelligence optimization algorithms in energy efficiency
control of green buildings in hot summer and cold winter
zones, this study designed ablation experiments to compare
the complete model with the reduced version, in order to
analyze the contribution of each module to overall
performance. The experiment was conducted on a building
energy efficiency simulation platform, selecting typical
summer high temperature and winter heating scenarios.
After running for 100 rounds, key indicators such as energy
consumption prediction accuracy, energy utilization rate,
response delay, and system interruption rate were
calculated.

The experiment includes four types of models: one is
to remove the depth prediction module and rely only on
empirical curves for energy consumption estimation; The
second is to eliminate demand response logic, and the
system will no longer adjust its operation based on
electricity prices and comfort feedback; The third is the
missing feedback correction mechanism, which cannot be
dynamically updated after strategy generation; The fourth
is a model that fully integrates prediction, optimization, and
feedback mechanisms. The experimental data of each
group are shown in Table 5.
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Table 5 : Comparison of key performance indicators for ablation experiments

. Comfort ;
. : Prediction Energy Response : : Interruption

Model Configuration Error (%) Utilization (%) Delay (s) Satlg/%():tlon Rate (%)
Without Prediction

Module 14.6 +0.7 83.1+1.3 35+0.3 79.0+15 8.2+0.6
Without Demand

Response Logic 11.8+0.5 820+1.2 39+04 847+1.2 6.1+0.5
Without Feedback

Correction 10.7+0.6 86.4+1.1 3.2+0.3 86.2+1.3 74104

Complete Model 6.8+0.4 91.3+1.1 19+0.2 92.4+£0.7 3.5+0.3

The experimental results show that removing the
prediction module increases the energy consumption
prediction error to 14.6+0.7%, lowers the comfort
compliance rate to 79.0+1.5%, and weakens operational
stability. Without the demand-response logic, energy
utilization drops to 82.0+1.2%, response delay rises to
3.920.4 s, and overall efficiency decreases due to redundant
equipment operation. The absence of the feedback-
correction mechanism raises the interruption rate to
7.4+0.4%, and the system struggles to react to price
fluctuations and equipment faults, while comfort remains
at 86.2+1.3%. In contrast, the complete model achieves the
best results across all indicators: prediction error 6.8+0.4%,
energy utilization 91.3+1.1%, response delay 1.9+0.2 s,
comfort compliance 92.41+0.7%, and interruption rate
3.5£0.3%. These findings confirm that the joint effect of
prediction, demand-response, and feedback correction
enhances both efficiency and stability in building energy-
efficiency control. Results are reported as mean £SD over
five runs (prediction error 6.8+0.4%, utilization 91.3+1.1%,
delay 1.9+0. s, comfort 92.4+0.7%). Removing RL falls
back to a safe HVAC setting. Reward-weight, NSGA-II
sizes, and LSTM look-ahead sensitivity caused <5%
change. Training on ten offices and testing on two lecture
halls kept MAE < 8% and comfort > 90%. Latency rose
sublinearly from 1.9s to 3.4s as terminals grew (50—300);
8-bit quantization cut delay 18% with no accuracy loss.
With 30% sensor loss or 200ms lag, fallback held comfort
>85%. Delay components were 0.55s prediction,0.82s
optimization,0.28s communication, and 0.25s actuation.

5 Discussion

5.1 Performance advantage analysis of
existing energy efficiency control
methods

The existing energy efficiency control methods for green
buildings mostly rely on static thresholds, statistical
regression, or empirical adjustment. Although they are
effective under small load fluctuations or single operating
conditions, they often exhibit insufficient prediction
accuracy, slow response, and unstable energy efficiency in
scenarios such as hot summer and cold winter zones with
frequent switching of cold and hot loads, complex
meteorology, and variable demand. Traditional methods
are based on historical mean prediction, manual threshold
start stop, and rule triggered response, lacking perception

of real-time data, making it difficult to balance comfort and
energy efficiency, and lacking adaptability under sudden
disturbances.

The energy efficiency control model proposed in this
study, which integrates artificial intelligence optimization
algorithms, demonstrates advantages in three aspects. One
is in the energy consumption prediction stage, deep
learning captures the nonlinear relationship between
meteorological features and energy consumption curves,
reducing the prediction error to 6.8%, which is better than
the traditional system's 15.2%, providing reliable basis for
subsequent regulation. Secondly, in terms of demand
response mechanism, the combination of reinforcement
learning and evolutionary algorithms is used to achieve
multi-objective dynamic optimization of price, comfort,
and lifespan, avoiding the lag of fixed threshold strategies.
In the experiment, the response delay was only 1.9s, while
the traditional system was 6.5s. Thirdly, in terms of energy
efficiency stability and resource utilization, the closed-loop
feedback mechanism continuously adjusts the strategy,
reducing local optima and resource waste. The energy
utilization rate is improved to 91.3%, and the interruption
rate is only 3.5%, which is significantly better than the
traditional methods of 72.6% and 12.1%.

In addition, the model in this study also performs
outstandingly in maintaining comfort. Through multi-
objective weight balancing, the indoor comfort compliance
rate has been increased to 92.4%, while traditional methods
only achieve 76.3%. This result indicates that while saving
energy, it can effectively balance user experience, breaking
through the limitations of "choosing between energy saving
and comfort". Overall, the model demonstrates significant
advantages in prediction accuracy, response speed, energy
efficiency stability, and comfort maintenance, providing a
practical and feasible path for energy efficiency control of
green buildings in hot summer and cold winter zones.

5.2 Model adaptability and stability
verification under complex climatic
conditions

The operating environment for energy efficiency control of
buildings in hot summer and cold winter zones is highly
complex, with frequent seasonal switching of cold and hot
loads. At the same time, dynamic disturbances in
meteorological conditions and price signals make it
difficult for traditional methods to maintain stability. To
verify the adaptability and stability of the fusion artificial
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intelligence optimization algorithm model proposed in this
study under complex working conditions, four typical test
scenarios were set: extreme high temperature in summer,
low temperature heating in winter, severe fluctuations in
electricity prices, and high concurrency operation of
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multiple building clusters. Each scenario runs 100 rounds
of experiments to collect three indicators: energy efficiency
compliance rate, average response delay, and system
stability score.

Table 6 : Performance of models under typical complex climate scenarios

Test Scenario Energy Effg:;?g(zg/o C):ompliance Averg%?aﬁe(ség)onse Stabil(i%)Score
Extreme Hng;J1mTr$]$perature in 93.1 2.4 9.2
Low Tempt\e/(/ailmgi Heating in 906 57 8.8
Sharp FIuctua}thc;gg in Electricity 91.8 26 8.9
o S tiiing Groups. 804 - o0

As shown in Table 6, under extreme high temperatures
in summer, the model utilizes a combination of prediction
and regulation to achieve rapid allocation of cold sources,
with an energy efficiency compliance rate of up to 93.1%
and an average response time of only 2.4 seconds,
demonstrating high adaptability to extreme cooling loads;
Under the condition of "low-temperature heating in winter",
the system maintains continuous operation by optimizing
the heating strategy, with an energy efficiency compliance
rate of 90.6% and a stability score of 8.8, reflecting its
stability in peak energy consumption; In the context of
severe fluctuations in electricity prices, the model
dynamically balances comfort and cost through a demand
response mechanism, with an energy efficiency compliance
rate of 91.8% and a delay of 2.6 seconds, demonstrating its
flexibility in market disturbances; In the context of "high
concurrency in multiple building clusters”, the system
effectively alleviates conflicts through hierarchical
regulation and resource sharing mechanisms, with an
energy efficiency compliance rate of 89.4% and a stability
score of 8.6, verifying its robustness in group collaboration
scenarios.

The model maintains an energy efficiency compliance
rate of over 89% and a response delay of less than 3.1
seconds under four complex operating conditions, with
stability scores exceeding 8.5, demonstrating its good
adaptability and robustness.

5.3 Feasibility assessment of system
resource expenditure and building
scene deployment

In the energy efficiency control of green buildings in hot
summer and cold winter zones, the implementation of the
model not only depends on the accuracy of prediction and
optimization, but also on the adaptability of computing
resources, communication bandwidth, and operating
platforms. This study evaluated the resource cost and
deployment feasibility of an energy efficiency control
model that integrates artificial intelligence optimization
algorithms in typical building clusters.

The model includes three major modules: edge
acquisition, center optimization, and interactive feedback.
The edge acquisition module is deployed in building BAS
or monitoring gateways for real-time acquisition of
meteorological, indoor temperature and humidity, and
equipment operation data. Under a 1-minute sampling
period, the CPU usage of a single node remains within 30%,
with a memory consumption of approximately 1GB. It can
run stably on common embedded controllers without the
need for high-performance hardware support. The central
optimization module is based on GPU servers to complete
energy consumption prediction and strategy generation,
with an average control cycle of 2.3 seconds and
optimization calculations accounting for about 65%.
Taking mid-range GPUs (such as RTX A2000) as an
example, they can support real-time control of over a
hundred terminals and provide lightweight versions to
adapt to resource constrained scenarios. The interactive
feedback module transmits data and instructions through
WebSocket, with a bandwidth requirement of
approximately 3.9Mbps and a latency of less than 180ms,
which can meet the real-time requirements of building
group monitoring and support remote operation and
maintenance. In terms of economic investment, taking a
medium-sized building complex consisting of 5 office
buildings, 300 rooms, and 500 collection points as an
example, the total investment is about 800000 yuan,
covering software, hardware, and platform integration,
which is lower than most similar solutions. Modular design
supports later expansion, compatible with BAS, EMS, and
smart building platforms, avoids information silos, and has
hot swappable and remote update capabilities. In addition,
the model can seamlessly integrate with existing BAS,
EMS, and smart building platforms through standard
interfaces, avoiding information silos, supporting module
hot plugging and remote updates, and significantly
reducing later operation and maintenance costs. Overall,
the model is feasible in terms of computational burden,
economic investment, and compatibility, providing solid
support for the promotion and application of energy
efficiency management in green buildings in hot summer
and cold winter zones.
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5.4 The application value of models in
improving energy efficiency of green
buildings

In the energy efficiency optimization of green buildings in
hot summer and cold winter zones, improving operational
efficiency and ensuring system stability are the key to
implementing energy efficiency management. The energy
efficiency control model proposed in this study, which
integrates artificial intelligence optimization algorithms,
has demonstrated significant value in multiple application
areas. From the perspective of operational performance, the
model achieves dynamic updates and path corrections in
energy consumption scheduling through deep integration of
prediction and optimization, significantly improving
energy utilization and operational efficiency. In the
experimental environment, the regulation response time is
shortened to less than 2 seconds on average, and the energy
utilization rate is stable at more than 90%. At the same time,
the closed-loop feedback mechanism can quickly
distinguish the interference caused by electricity price
fluctuations, equipment shutdowns, and sudden increases
in demand, and reconstruct optimization strategies in a
short period of time to avoid uncontrolled energy efficiency
fluctuations. According to statistics, unplanned operational
interruptions have decreased by about 40%, the success rate
of demand response has increased to 93%, and energy
waste and equipment overload have significantly decreased.
In terms of energy efficiency management, the model
visualizes energy consumption distribution, equipment
status, and comfort indicators through a graphical platform,
allowing operators to intuitively grasp the global status of
the system and make decisions and trend judgments based
on data. This model breaks through the traditional control
method that relies on experience and promotes energy
efficiency management to shift from passive regulation to
active optimization. System compatibility also enhances its
potential for promotion. The model can seamlessly
integrate with BAS, EMS, and smart building systems,
supporting remote deployment and modular expansion, and
adapting to different types and sizes of building clusters.
Its standardized interface avoids duplicate construction and
information isolation issues, making the energy efficiency
system more flexible in updates and operations, and
reducing additional investment costs.

5.5 Comparison with state-of-the-art
studies

Table 1 provides a reference for quantitative
comparison.The proposed framework achieves a prediction
MAE of 6.8%, energy utilization of 91.3%, average
response delay of 1.9 s, and comfort compliance of
92.4%.In contrast, Boutahri et al. (2025) reported 14%
energy saving without comfort control, Wei et al. (2017)
achieved 15% saving in simulation, and Gao et al. (2019)
obtained MAE 0.29 with 11% comfort gain. Ding et al.
(2022) reached RMSE 0.32 and 13% saving, while later
studies focused on single objectives or simulation only.Our
method lowers prediction error, enhances comfort, and
raises utilization in  both simulation and field
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tests.Differences mainly stem from (i) larger and more
diverse data (14 M records, two years), (ii) closed-loop
integration of forecasting, demand response and
optimization, (iii) inclusion of field deployment, and (iv)
reward shaping on comfort and equipment life.Paired t-
tests (o = 0.05) across 30 runs confirm that gains in MAE,
utilization and comfort are statistically significant.

6 Conclusion

This article proposes a comprehensive energy efficiency
control model that integrates deep learning, reinforcement
learning, and evolutionary optimization algorithms to
address issues such as insufficient prediction accuracy,
delayed dynamic response, and system instability in green
building energy efficiency control in hot summer and cold
winter zones. The model constructs a closed-loop
framework of "prediction optimization execution
feedback". The experimental results show that the model
outperforms traditional methods in energy consumption
prediction, demand response, energy utilization, and
comfort maintenance. The prediction error is reduced to
6.8%, the energy utilization rate reaches 91.3%, the
response delay is shortened to 1.9 seconds, the comfort
compliance rate is 92.4%, and the interruption rate is only
3.5%. This verifies the adaptability and stability of the
model in complex climates. At the same time, the model
performs well in terms of computing resources and
communication overhead, and can run stably in common
building controllers and mid-range GPU environments,
making it feasible for application in medium to large
building clusters. However, there are still shortcomings in
this study: firstly, the dataset size is limited and the scene
diversity is insufficient, which needs to be further validated
in a larger range of building clusters; Secondly, the
convergence speed of reinforcement learning is slow and
the training cost is high, which is not conducive to large-
scale real-time deployment; Thirdly, the adaptability of
cross building group collaboration and multi terminal
integration operation still needs further research. Future
research can be conducted from three aspects: firstly,
introducing transfer learning and self supervised pre
training mechanisms to enhance their applicability under
different climates and building types; Second, combine
edge computing, model compression and distributed
optimization to reduce resource consumption and enhance
real-time scheduling capability; The third is to expand
cross scenario collaboration applications, promote the
promotion of models in energy efficiency management of
urban level building clusters, and assist in green and low-
carbon development. In summary, the energy efficiency
control framework proposed in this study provides an
effective path for improving the energy efficiency of green
buildings in hot summer and cold winter zones, and lays
the engineering and theoretical foundation for the
construction of intelligent control systems.
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