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Precise color reproduction and efficient pattern generation are the core goals of digital printing on 

clothing. To break through the limitations of traditional processes that rely on manual parameter 

adjustment and sample fabric trial and error, this paper proposes an intelligent printing generation 

framework based on deep learning. This framework integrates CNN color management, deep segmentation 

and loop optimization, GAN-driven 3D virtual rendering and transfer learning material adaptation, and 

can achieve end-to-end pattern generation and computational optimization on multi-material data such as 

cotton fabric, silk and polyester. The system not only captures the spatial detail features of the patterns 

(such as edge sharpness and color gradation), but also maintains color consistency and detail restoration 

among different materials through cross-domain modeling. The experimental results show that on 

multi-material datasets, this scheme achieves ΔE 1.9±0.2across cotton/silk/polyester (mean over 3 runs), 

which corresponds to a 30–45% reduction versus screen printing (ΔE≈4.1) and 15–25% versus a 

commercial inkjet baseline (ΔE≈2.3). It reduces splicing fracture rate to <4%, shortens average processing 

time by ~60% (12 h→4.8–8.5 h depending on batch size), and increases SSIM to 0.93±0.01.All statistics are 

mean±std over three independent runs; significance is assessed with paired t-tests or ANOVA with 

Bonferroni correction at α=0.05. This research not only verified the effectiveness of deep learning in digital 

printing, but also provided an expandable intelligent path for the integration of the clothing design and 

production chain, offering significant support for the transformation of the fashion industry towards 

personalization, greenness and intelligence. 

Povzetek: Članek predstavi modularni sistem (CNN + U-Net + GAN) za barvno natančno, večmaterialno 

digitalno tiskanje tekstila. Z globokim učenjem, cikličnim spajanjem in prenosnim učenjem doseže odlične 

razultate. 

 

1  Introduction 
Unlike traditional processes that rely on manual design and 

experience-based adjustment, digital printing based on 

deep learning can achieve automatic pattern generation, 

style transfer, and multi-material adaptation through 

convolutional neural networks (CNNs), generative 

adversarial networks (GANs), and image-to-image 

conversion frameworks such as Pix2Pix and CycleGAN. It 

enables clothing design to possess unprecedented 

flexibility and precision in terms of color expression, 

texture details and structural restoration. 

In response to the above issues, this paper proposes a 

deep learning-driven intelligent generation and computing 

implementation framework for digital printing patterns on 

clothing, and conducts research from four dimensions: 

Color restoration and management based on CNN, pattern 

segmentation and cyclic optimization based on deep 

segmentation networks, virtual rendering and 3D proofing 

combined with GAN, resolution control and material 

adaptation based on cross-domain transfer learning. 

Through this holistic approach, it is expected to break 

through the problems of lagging feedback in traditional 

craftsmanship, large deviations between design and 

finished products, and frequent manual corrections, 

achieving efficient, automated and intelligent pattern 

generation, and providing strong support for the 

development of the fashion industry towards green and 

personalized directions. 

The remaining structure of this article is arranged as 

follows: The second part reviews the research progress of 

deep learning and digital printing. The third part elaborates 

on the proposed intelligent generation framework and key 

computing mechanisms. The fourth part demonstrates the 

performance of this method in pattern generation and effect 

optimization in combination with experimental data. The 

fifth part discusses and analyzes its industrial application 
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value. The sixth part summarizes the research conclusions 

and looks forward to the future development direction. 

 

2  Related work 
Although digital printing shows broad application 

prospects in clothing design, it still faces complex 

challenges in the intelligent generation of patterns [5]. 

Firstly, the issue of color reproduction has long plagued the 

connection between design and production. There is often a 

difference between the effect on the screen and the actual 

presentation on the fabric, especially during high saturation 

and gradient transitions, when deviations are more likely to 

occur. Secondly, during the process of splicing and circular 

design of large-scale patterns, edge breaks or repetitive 

marks often occur, which weakens the consistency of the 

overall aesthetic [6]. Furthermore, the differences in 

droplet diffusion and penetration performance among 

various fiber materials make it difficult to unify resolution 

control and detail restoration. Therefore, it is urgent to 

explore an intelligent path that can integrate deep learning 

models with multi-dimensional process parameters to 

promote the transformation of digital printing on clothing 

from "numerical control" to "intelligent generation" [7]. 

In the early stage of development, related research 

mostly focused on empirical and statistical methods, such 

as establishing fundamental rules based on color physical 

tests or fiber adsorption experiments [8]. However, these 

methods have insufficient adaptability in complex patterns 

and cross-material environments and can only achieve 

local optimization. With the emergence of computer-aided 

design and virtual simulation tools, pattern layout and loop 

design have gradually entered the digital stage. The 

parametric pattern-making method enables custom clothing 

to have flexible pattern generation and size adaptation 

capabilities, while computational geometry and CAD 

algorithms promote the automatic transformation from 

three-dimensional clothing models to two-dimensional 

cutting pieces, thereby achieving efficient connection 

between pattern design and structural design [9]. 

In recent years, the introduction of deep learning 

technology has become a breakthrough. On the one hand, 

the color prediction model based on convolutional neural 

Network (CNN) and Residual network (ResNet) can learn 

the nonlinear response laws of fiber materials, thereby 

significantly reducing ΔE color difference. On the other 

hand, generative adversarial networks (GANs) and 

image-to-image transformation frameworks (such as 

Pix2Pix and CycleGAN) have been applied to intelligent 

pattern generation and style transfer, achieving color 

enhancement and texture expansion while maintaining the 

original structure. Three-dimensional virtual simulation is 

gradually integrating with deep learning. For instance, it 

can automatically locate pattern regions through image 

segmentation networks and then map them onto 

three-dimensional clothing grids for realistic rendering, 

thereby achieving dynamic visualization effects in the 

design stage [10]. These studies have jointly driven the 

transformation of clothing patterns from "handcrafted 

creation" to "intelligent synthesis", but there are still 

problems such as high computational overhead, 

insufficient cross-material generalization ability, and 

complex realistic rendering.Compared with prior studies 

that focus on single-material color prediction or creative 

synthesis, our framework jointly optimizes color mapping, 

segmentation/loop tiling, and 3D rendering within one 

learning pipeline, and further introduces transfer learning 

for cross-material adaptation. Specifically, beyond 

Pix2Pix-based silk color prediction [17] and generic 

generative design models [18], we explicitly model fabric 

features and seam continuity, reducing ΔE across 

cotton/silk/polyester to 1.9±0.2 and the splicing fracture 

rate (SFR) to 3.8%±0.9%, while increasing SSIM to 

0.93±0.01. Unlike CAD-oriented geometric pipelines for 

3D-to-2D panel conversion [15] and process-level method 

comparisons across printing technologies [10], our system 

provides end-to-end, statistically validated gains on real 

prints under matched RIP and pre-treatment settings. In 

short, our contribution lies in unifying color management, 

structural tiling, and material adaptation—dimensions that 

prior work typically treats in isolation. 

To systematically present the existing research 

achievements, Table 1 summarizes the typical studies in 

digital printing and deep learning-driven intelligent 

generation in recent years, covering the models used, 

application scenarios, main evaluation indicators and their 

limitations.

 

Table 1: A Comparison of typical Studies on digital Printing in pattern Creation 
Author (Year) Method / Technique Application Scenario Key Metrics Limitations 

Gill (2024) [2] 
Digital Parametric Pattern 

Making 

Customized Garment Pattern 

Generation 
Precision, Consistency 

Limited adaptability to complex 

materials 

Pietroni (2022) [15] 
Computational Geometry + 

CAD 

3D-to-2D Garment Panel 

Conversion 
Automation Efficiency Errors with complex surfaces 

Choi (2022) [8] 3D Virtual Fitting System 
Dynamic Try-on & Pattern 

Visualization 
Visual Realism High rendering cost 

Li Y (2023) [16] 
Pigment-based Color 

Modeling 

High-Precision Color Control 

in Printing 
ΔE, Stability 

Limited support for complex 

patterns 

Zhu (2023) [17] 
Pix2Pix Deep Learning 

Framework 
Silk Pattern Color Prediction 

Color Reproduction 

Accuracy 

Requires large-scale training 

samples 

Wu (2024) [18] 
Generative Deep Learning 

Model 
Creative Pattern Design Diversity, Creativity 

High computation and training 

costs 

Glogar (2024) [19] 
Eco-friendly Preprocessing 

+ Printing 
Sustainable Pattern Production Durability, Eco-friendliness Relatively high process cost 

Walker (2024) [10] 
Sublimation, DTG, Screen 

Printing Comparison 

Brand Pattern Quality 

Assessment 
Durability, Color Stability 

High equipment demand, no 

unified standard 
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Based on the above gaps, this paper raises the 

following research questions: 

(1) Can a unified deep learning framework be 

established to jointly optimize color management, pattern 

segmentation, virtual rendering and material adaptation, so 

as to enhance the stability and accuracy of pattern 

generation? 

(2) How can convolutional neural networks (CNNs), 

generative Adversarial networks (GANs), and attention 

mechanisms be utilized to dynamically optimize recurrent 

units and large-scale splicing, avoiding breakage and 

repetitive traces? 

(3) In a multi-material environment, can color and 

detail consistency among different fabrics be achieved 

through transfer learning and cross-domain feature 

mapping? 

The main contributions of this article include: 

A multi-dimensional intelligent generation solution 

framework has been constructed, covering key links such 

as color management based on deep learning, pattern 

segmentation and layout optimization, virtual rendering 

and 3D proofing, resolution control and material matching, 

providing systematic support for digital printing on 

clothing. 

An optimization mechanism combining deep 

segmentation networks and geometric concatenation is 

proposed, and a visual continuity loss function is 

introduced to effectively enhance the integrity and 

naturalness of large-area designs. 

Integrating generative adversarial networks and fabric 

physical modeling in the virtual rendering process 

enhances the mapping efficiency between the design end 

and the finished product end, enabling designers to quickly 

identify potential problems in the early stage of creation. 

The linkage adjustment mechanism between resolution 

control and material adaptation was verified through 

cross-material dataset experiments. The results show that 

among the three types of materials, namely cotton, silk and 

polyester, the average color difference ΔE is reduced to 

below 2.0, significantly improving the detail representation 

and color reproduction. 

The performance of the proposed deep learning 

framework in terms of accuracy, efficiency and 

cross-material adaptability was systematically evaluated. 

The results showed that it outperformed traditional 

solutions and existing commercial systems in both 

objective indicators and subjective aesthetic feedback. 

3  Suggested solutions 
In the intelligent generation framework proposed in this 

paper, the combination path of "color management and 

restoration based on CNN - pattern segmentation and loop 

optimization based on deep segmentation network - virtual 

rendering and 3D proofing combined with GAN - 

resolution control and material adaptation based on transfer 

learning" is chosen, considering their complementary 

advantages in dealing with the challenges of generating 

complex clothing patterns.For reproducibility, we provide 

complete model specifications, loss compositions, training 

schedules, and hardware details for each module, including 

layer-by-layer architectures, hyperparameters, and random 

seeds. 

In the color management and restoration module, the 

introduction of convolutional neural network (CNN) and 

residual learning mechanism can achieve nonlinear color 

mapping under cross-device and cross-material conditions, 

significantly reducing the ΔE color difference between the 

design end and the finished product end. Compared with 

the traditional scheme that only relies on ICC curves, this 

method can capture material features through end-to-end 

training and quickly complete color correction in the 

reasoning stage, ensuring the color consistency of different 

fabrics. 

In the pattern segmentation and cyclic optimization 

stage, traditional geometric algorithms have difficulty 

handling the boundary continuity problem of large-format 

patterns. In this paper, deep segmentation networks (such 

as U-Net and DeepLabV3+) are adopted to extract the 

boundaries of recurrent units, and combined with the 

attention mechanism to achieve high-precision splicing of 

key regions. By minimizing perceptual loss and gradient 

continuity constraints, the network can automatically 

optimize the cyclic layout of large-area patterns, thereby 

reducing breaks and repetitive traces. 

In the virtual rendering and 3D proofing stages, this 

paper introduces a method that combines generative 

adversarial networks (GAN) with physically-driven fabric 

modeling. GAN is responsible for enhancing texture details 

and lighting effects during the 3D mesh mapping process, 

while fabric simulation based on the mass-spring model 

ensures the physical authenticity of wrinkles, stretches and 

drape. This method not only enhances the visual fidelity of 

the patterns but also provides designers with a real-time 

interactive virtual sample-making platform, significantly 

shortening the creation-production chain. 

In terms of resolution control and material adaptation, 

this paper adopts transfer learning and cross-domain 

feature mapping techniques to establish a unified 

high-resolution generative model for multiple materials. 

By sharing convolutional features between the source 

domain (such as the cotton fabric dataset) and the target 

domain (such as the silk and polyester datasets), the model 

can automatically adjust the jetting parameters and detail 

representation while maintaining the clarity of the pattern, 

achieving consistent output across materials. This 

mechanism effectively resolves the issue of inconsistent 

resolution caused by the differences in ink droplet diffusion 

and adsorption among various fiber materials. 

Compared with the schemes that solely rely on color 

calibration or only use 3D proofing, the overall framework 

proposed in this paper can solve the pain points of multiple 

links in parallel with the support of deep learning, avoiding 

the limitations of "local optimization". Through the 

collaboration and information sharing among modules, the 

system not only enhances the accuracy and robustness of 

pattern generation, but also possesses the capabilities of 

cross-platform expansion and rapid iteration. 

Figure 1 shows the overall architecture of the proposed 

intelligent generation of digital printing on clothing based 

on deep learning. This architecture processes the input 

design patterns in sequence through four core modules: 
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Firstly, color management and restoration based on CNN to 

achieve consistency across materials; Then comes the deep 

segmentation and loop optimization module, ensuring the 

continuity of large-format patterns; Next comes the 

combination of GAN's virtual rendering and 3D proofing, 

providing visual preview and interactive feedback; The last 

one is the transfer learning-driven resolution and material 

adaptation module, which ensures that the output maintains 

high fidelity and detail integrity on different fabrics.

 
Figure 1: Framework of the solution for digital printing in the creation of clothing patterns 

3.1  Color management and restoration 
technology based on deep learning 

In the intelligent pattern generation process of digital 

printing, the precise management and restoration of colors 

are the key links to ensure that the design intention is 

consistent with the final product effect. Due to the 

significant differences between the screen end and the 

fabric end in terms of display medium, optical properties, 

and material adsorption, cross-device mapping relying 

solely on ICC Profile often fails to meet the requirements. 

Therefore, this paper introduces a deep learning-driven 

color prediction model. We use a 12-layer CNN 

(Conv-BN-ReLU blocks) with a residual backbone: 

Conv(3×3,64)→Conv(3×3,64)→MaxPool→Conv(3×3,12

8)→Conv(3×3,128)→MaxPool→ResBlock(128)×2→Con

v(3×3,256)→GlobalAvgPool→FC(256→64)→FC(64→4 

for CMYK). Material features S (surface roughness, 

absorption rate, whiteness) are injected via FiLM 

conditioning at the 3rd and 5th convolutional blocks. 

Firstly, the traditional method establishes a 

standardized ICC file, and maps the RGB source space to 

the CMYK or extended color space through the color 

conversion matrix M: 

34 ,M∈ MC=MC inout     （1） 

Among them, inC  is the RGB vector at the input end, 

outC is the CMYK vector at the print end, and the matrix M 

is obtained from the device characteristic curve and 

experimental calibration. 

However, traditional linear mapping is difficult to 

characterize the nonlinear response under complex 

materials. This paper adopts a convolutional neural 

network (CNN) to construct a nonlinear color prediction 

model: 

,S)(C=fC inθout
ˆ        （2） 

Among them, θf  represents the CNN model, and the 

parameter θ is obtained through training. The input 

includes the pixel value inC  at the design end and the  

 

material feature S (such as surface roughness, ink 

absorption rate), and the output is the optimized CMYK 

color vector. 

During the optimization process, the CIE 1976 ΔE*ab 

color difference is taken as the loss function: 

222

76Δ )-b+(b)-a+(a)-L(L=E TTT


 （3） 

Here, 
 b、a、L denote the luminance, red–green 

axis and yellow–blue axis coordinates of the predicted 

output, while 


TTT b、a、L represent the corresponding 

reference values of the target design.To further enhance the 

generalization ability across materials, this paper 

introduces a transfer learning strategy in training: first, a 

benchmark model is trained on cotton fabric samples, and 

then fine-tuned with a small amount of silk and polyester 

data, thereby achieving consistent prediction across 

materials. Experiments show that this method can keep ΔE 

below 2.0 and improve the color reproduction accuracy by 

approximately 30% compared with the traditional ICC + 

LUT correction. Before each session a one-point and 

multi-point spectral calibration is executed; drift is 

monitored by re-measuring a three-level gray ramp at the 

start and end of the run and remained within ΔEab
∗ <0.3. 

In practical implementation, the color management 

system in this paper consists of three steps: ①Using a 

spectrophotometer to collect training samples and construct 

material feature vectors; ②Nonlinear color mapping and 

prediction output are completed through the CNN model; 

③In the production process, closed-loop feedback is 

introduced to feed back the measured ΔE index to the 

model for parameter update, thereby achieving continuous 

optimization.Unless stated otherwise, color difference is 

computed as CIE 1976 ΔEab
∗ from five repeated 

measurements per patch (rotated by 90°between readings) 

and then averaged; instrument repeatability is verified daily 

with a white ceramic standard.Training details: Adam 

optimizer (β1=0.9, β2=0.999), initial LR=1e−3 with cosine 

decay to 1e−5, batch size=16, epochs=120, early stopping 

Input the design 
pattern 

Color management 
and restoration 

technology 

Pattern segmentation 
and loop optimization 

The resolution is 
compatible with the 

material 

Virtual rendering and 

3D proofing 

Maintain color 
consistency 

Eliminate splicing 
fractures 

Simulate the wearing 

effect 

Ensure details and 
clarity 
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patience=15, weight decay=1e−4, random seed=2024. Data 

augmentation: random rotation ±15°, scale 0.9–1.1, 

horizontal/vertical flip p=0.5, color jitter 

(brightness/contrast/saturation ±10%). Transfer learning: 

pretrain on cotton, then fine-tune last 4 layers + FiLM 

parameters using 20 silk and 20 polyester samples per 

epoch (freeze lower layers). 

3.2  Pattern segmentation, layout and loop 
unit optimization techniques 

In the digital printing process of clothing patterns, 

segmentation and layout are the key links to efficiently 

transform design patterns into producible units. Traditional 

printing often relies on manual splicing or repetitive units, 

which can easily lead to uneven edges, broken splicing or 

overly obvious repetitive marks. To this end, it is necessary 

to introduce digital segmentation and cyclic optimization 

mechanisms to achieve the continuity and integrity of 

patterns on large areas of fabric. 

Firstly, pattern segmentation is usually based on 

geometric matrix partitioning and edge detection 

techniques. Let the original pattern be a two-dimensional 

pixel matrix I(x,y), and it is divided into several basic 

regions through the boundary extraction function B(x,y) :  

background

pattern

∈ Ω,if I(x,y)

∈ Ω,if I(x,y)
B(x,y)=

0

1
{  （4） 

Among them, patternΩ  represents the pattern area and 

backgroundΩ  represents the background area. Different 

from traditional edge detection, we adopt U-Net (encoder: 

ResNet34; decoder: bilinear upsampling + skip 

connections) with attention gates (channel + spatial SE 

blocks) to focus on high-frequency edges and extract 

repeat-unit boundaries. Input size is 1024×1024; loss is 

Dice+Focal (α=0.25, γ=2.0). 

During the layout stage, it is necessary to perform 

translation and rotation operations on the segmented units 

to ensure that the repeated units are seamlessly connected 

on the two-dimensional plane. Common splicing methods 

include right-angle translation, mirror splicing and 

hexagonal tiling. Its mathematical expression can be 

achieved through the translation matrix: 

















100

10

01

n

m

T=       （5） 

Among them, m and n respectively represent the lateral 

and vertical translation distances. By constraining the 

gradient continuity of color and texture at the loop 

boundary, the visual discomfort caused by splicing 

breakage can be effectively reduced. Introducing an energy 

minimization model is an effective approach in the 

optimization of cyclic units. The pixel differences at the 

unit edges are constrained by constructing the boundary 

energy function E: 

2

1

∥))∥ +n+m,y-I(x,yI(xE ii

N

i

ii
=

  （6） 

Here, ),y(x ii  represents the coordinates of the 

boundary pixels. The process of minimizing E is actually to 

find the best cyclic unit so that the spliced area is highly 

consistent in color and texture. Meanwhile, in modern 

digital systems, this paper combines Poisson Blending and 

Deep Generative Network (GAN) for transition processing 

to further improve the naturalness after splicing. We 

formally define the splicing fracture rate (SFR) as the 

percentage of seam pixels whose gradient-magnitude 

mismatch across the seam exceeds a tolerance τ: 

100%×τ)>∥(p)T-(p)T∥(I
∣Γ∣

1
=SFR 2RLΓ∈p

 （7） 

where denotes all pixels along the seam, TL,TRare the 

left/right tiles, and we set τ=0.08\tau=0.08τ=0.08 after 

calibration against human perceptual thresholds. For clarity 

and reproducibility, the cyclic unit search and optimization 

process is summarized in the following pseudocode: 

Algorithm 1: Simulated Annealing for Cyclic Unit 

Optimization 

Inputs: 

  T0           # initial cyclic tile from U-Net 

segmentation 

  I            # input pattern image 

  α, β, γ      # energy weights (see Eq. (6)) 

  τ0, ρ        # initial temperature and cooling rate 

  K            # max iterations 

  δt, δr       # proposal step sizes (translation in px, 

rotation in degrees) 

Output: 

  T*           # optimized cyclic tile 

Definitions: 

  Energy(T):   # boundary energy (refer to Eq. (6)) 

      return α * L1(boundary(T)) 

           + β * L1(∇T_left − ∇T_right) 

           + γ * (1 − SSIM(T)) 

  ProposeNeighbor(T; δt, δr): 

      dx, dy  ← Uniform(−δt, +δt) 

      θ       ← Uniform(−δr, +δr) 

      return ApplyTransform(T, translate=(dx,dy), 

rotate=θ, wrap_around=True) 

Procedure: 

  T      ← T0 

  τ      ← τ0 

  E      ← Energy(T) 

  T_best ← T 

  E_best ← E 

  for k = 1 to K do 

      T′ ← ProposeNeighbor(T; δt, δr) 

      E′ ← Energy(T′) 

      # Metropolis acceptance 

      if (E′ ≤ E) or (rand(0,1) < exp(−(E′ − E)/τ)) then 

          T ← T′ 

          E ← E′ 

      end if 

      if E < E_best then 

          T_best ← T 

          E_best ← E 
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      end if 

      τ ← ρ · τ 

  end for 

  # Seam refinement 

  T* ← PoissonBlendSeams(T_best) 

  return T* 

Default hyperparameters in our experiments are: 

α=0.6,β=0.3,γ=0.1,τ0=1.0,ρ=0.995,K=2000, δt =1-3px,δr=

1∘.We use wrap-around boundary handling to preserve 

tiling continuity 

For irregular patterns, a constraint perturbation 

algorithm based on simulated annealing is also introduced 

to explore the optimal solutions for the shape of the cyclic 

unit and the layout method, thereby ensuring aesthetic 

effects while taking into account production efficiency. 

In summary, by combining deep segmentation, feature 

alignment and energy constraints, the segmentation and 

loop optimization mechanism proposed in this paper can 

maintain the coherence and naturalness of patterns on 

large-format fabrics, effectively solving the problems of 

breakage and distortion in traditional manual splicing 

methods, and providing high-quality input for subsequent 

virtual rendering and 3D proofing. 

3.3  Virtual rendering and 3D proofing 
technology 

Virtual rendering and 3D proofing are key technical links 

in digital printing in clothing design. Through computer 

graphics and fabric modeling, it maps two-dimensional 

patterns onto 3D clothing models, achieving dynamic 

previewing from design to finished clothing. This process 

not only enables the early inspection of color, texture and 

layout effects, but also significantly reduces the number of 

times sample fabric is made and material waste. 

In the virtual rendering stage, the core task is to 

accurately map the pattern texture onto the surface of the 

3D mesh model. Let the three-dimensional model of the 

clothing be composed of the vertex coordinate set (X,Y,Z) 

and the texture coordinate set (u,v), and the mapping 

relationship can be defined by the texture function T(u,v) :  

(u,v)C(X,Y,Z)=T      （8） 

Among them, C(X,Y,Z) represents the surface color 

values after mapping, and (u,v) are the corresponding 

two-dimensional texture coordinates. By maintaining a 

one-to-one correspondence between texture coordinates 

and three-dimensional grids, the continuity and accuracy of 

the pattern distribution on the clothing surface can be 

guaranteed. 

To enhance the sense of reality, the rendering process 

needs to take into account the optical and physical 

properties of the fabric. The common lighting model is the 

Phong model, and its surface reflection intensity I can be 

expressed as: 

n
ssddaa VRk+INLk+IkI=I )()(  （9） 

Among them, sda ,I,II  represents ambient light, 

diffuse reflection light and highlight component 

respectively, L, n,R and V represent the direction of 

illumination, normal vector, reflection direction and 

observation direction respectively, sda ,k,kk  is the 

material coefficient, and n is the highlight index. By 

parameterizing the material properties, the luster and 

softness of different fibers such as cotton, silk and 

polyester can be simulated in a virtual environment.We 

enhance appearance with a conditional GAN: generator 

U-Net(64→512) with SPADE normalization conditioned 

on material S; discriminator PatchGAN(70×70). GAN 

loss: LGAN + λL1 ∥ R̂ − R ∥1+ λpercLVGG with 

λL1 =50,λperc =1\lambda_{L1}=50, \lambda_{perc}=1λL1

=50,λperc=1. Training uses paired (render, photo) samples 

captured under D65 lightbox. Inference latency on RTX 

3090 is 14 ms/frame at 1024×1024; end-to-end virtual 

proofing pipeline runs at 18–22 fps. 

During the 3D virtual proofing stage, in addition to 

visual rendering, it is also necessary to simulate the 

wrinkling, stretching and sagging effects of the fabric 

under dynamic conditions. The commonly used physical 

model of fabric is an approximate modeling method based 

on the mass-spring system. Suppose the fabric is composed 

of nodes and springs, and the movement of each node is 

described by Newton's second law: 

externaldampingelastic +F+F=F
dt

xd
m

2

2

  

（10） 

Among them, m represents the mass of the node, 

elasticF  is the elastic restoring force, dampingF  is the 

damping force, and externalF  includes both gravity and 

external collision force. Through iterative solution, the 

deformation trajectory of the fabric in three-dimensional 

space can be obtained. 

In practical implementation, this paper integrates CNN 

texture prediction, GAN rendering enhancement and 

neurophysical modeling into CAD/3D clothing design 

software (such as CLO, Browzwear). Designers can 

preview the pattern effects under different materials and 

patterns in real time during the modeling stage and quickly 

complete design iterations through interactive corrections. 

The experimental results show that this method is 

significantly superior to the traditional virtual rendering 

scheme in both subjective evaluation and objective 

indicators (structural similarity SSIM, texture sharpness 

index), and can provide high-fidelity three-dimensional 

sample support for intelligent clothing printing.Integration 

details: textures are exported as glTF with PBR parameters; 

API bridge uses Python (PySide2) to push updated maps to 

CLO every 200 ms; mesh UVs are fixed; drape is simulated 

with mass–spring (ks_ss=25 N/m, kb_bb=0.8 N·m, 

damping 0.05), time step 1/240 s, collision via BVH. 

3.4  Resolution control and material 
compatibility parameter adjustment 

To ensure the clarity and color stability of digital printing 

patterns on different fiber materials, this paper, based on 

the traditional process parameter adjustment, combines the 

output optimization mechanism of the deep learning model 

to establish a joint adjustment process for resolution and 

material adaptation. 
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In terms of resolution, the three intervals of 300-600 

dpi, 600-1200 dpi and 1200-2400 dpi were still selected for 

comparison. The results show that there is a certain loss of 

pattern details under the condition of 300-600 dpi, 

especially in the gradient transition area, blurring is prone 

to occur. The 600-1200 dpi group can better balance clarity 

and print speed, and it is the best range for most scenarios. 

Under the condition of 1200-2400 dpi, the line integrity and 

edge sharpness are significantly improved, but on some 

materials, it is manifested as ink accumulation, which 

needs to be corrected in combination with pretreatment. 

Deep learning models, through automatic learning of 

sample features, can perform intelligent compensation at 

different resolutions, ensuring that the output effect is 

closer to the design end. During printing we map dpi to 

droplet size by LUT: {600 dpi→6 pl, 900 dpi→6 pl, 1200 

dpi→2 pl} and frequency {15 kHz default}. Nozzle health 

is checked via a nozzle-check pattern before each print; any 

missing or deviating nozzles trigger an automatic purge and 

re-check to ensure uniform drop formation. Adaptive 

controller selects (dpi, pl, freq) via a small MLP that takes 

S and local frequency content as inputs (hidden 64, ReLU), 

trained with REINFORCE on ΔE and edge sharpness 

rewards. 

In terms of ink droplet volume and jet frequency, the 

experiment set up three Settings of 2pl, 6pl, and 12pl, along 

with three frequency combinations of 10kHz, 15kHz, and 

20kHz. The results show that small ink droplets (2pl) are 

suitable for handling high-precision lines and details, 6pl 

strikes a balance between color coverage and clarity, while 

12pl is more conducive to large-area color representation 

but is prone to causing diffusion. The increase in the spray 

frequency significantly improves the adhesion effect of 

polyester fabrics. The performance is most stable at 15kHz, 

while although the speed increases at 20kHz, some 

materials lose details. Training the edge features of printed 

samples through deep learning models can further reduce 

the loss of clarity caused by excessively high jetting 

frequencies. 

In the material matching stage, three typical fabrics, 

namely cotton, silk and polyester, were selected for testing. 

The experiments on contact Angle and surface roughness 

show that in a high ink absorption environment, cotton 

cloth needs to reduce the ink droplet volume and increase 

the pretreatment concentration to avoid edge blurring. Silk, 

on the other hand, relies more on temperature and 

pretreatment processes to ensure its luster and saturation. 

Polyester performs the worst when untreated, but the 

pattern performance can be significantly improved by 

increasing the spray frequency and moderately increasing 

the ink droplet volume. Combining cross-material feature 

modeling with deep learning, the system can automatically 

adjust the output parameters among three types of fabrics, 

stably controlling the ΔE value within the range of 2.0 to 

2.2, reducing the deviation by approximately 30% 

compared to manual adjustment. For each fabric, three 

replicate prints per condition are produced on independent 

days; reported metrics are across-day means to account for 

day-to-day variability. 

 

4  Empirical results and effect analysis 

4.1  Research data and sample construction 
The data and samples used in this study cover three 

dimensions: pattern files at the design end, physical sample 

fabrics at the fabric end, and virtual rendering generation 

data. Furthermore, a comprehensive dataset suitable for 

deep learning training and validation was constructed. 

In terms of design-end data, the pattern files mainly 

come from high-resolution patterns exported by 

professional clothing design software, with color modes 

covering both sRGB and AdobeRGB standards, to ensure 

that the model can learn the color mapping rules under 

different color gamut conditions during the training process. 

To facilitate model generalization, the pattern types are 

classified into three categories: monochrome regular 

patterns, multi-color gradient patterns, and complex 

irregular patterns. Fifty samples were collected for each 

category, forming a total of 150 pattern samples. These 

samples not only include geometrically symmetrical 

structures but also cover high-frequency textures and 

irregular boundaries. 

In terms of fabric samples, three typical materials, 

namely cotton, silk and polyester, were selected. Among 

them, cotton fabric includes both high-count and ordinary 

count types, silk covers satin and crepe types, and polyester 

includes both coated and untreated fabrics. All fabrics were 

cut into standard sample fabrics of 20×20 cm, and the 

surface roughness, moisture absorption and whiteness 

index were measured by textile testing methods. These 

physical parameters not only provide a basis for material 

adaptation experiments but also serve as one of the model 

inputs features for training neural networks for 

cross-material color prediction and resolution adaptation. 

Cotton (plain weave, 150±5g/m2), silk (satin, 95±4g/m2), 

and polyester (tricot, 130±5g/m2) were sourced from the 

same lots; surface roughness Ra was measured on 5 

positions per swatch and averaged. 

In terms of virtual rendering data, this paper constructs 

three-dimensional samples based on the CLO and 

Browzwear platforms, mapping the design-end patterns to 

three typical clothing patterns: T-shirts, dresses, and coats, 

generating 120 sets of virtual samples. To link virtual and 

physical outcomes, every virtual sample has a 

corresponding 20×20 cm printed counterpart using 

identical pattern tiles and color profiles. These data are 

used to evaluate the reliability of the deep learning 

rendering enhancement model in the 3D proofing process. 

Virtual samples have high controllability, can provide 

diverse training data across styles, and at the same time 

avoid the costs required for large-scale physical sampling. 

It should be pointed out that this dataset still has 

certain limitations: Firstly, the design-end samples mainly 

come from software output, lacking multi-source pattern 

inputs such as hand-drawn and scanned ones, which may 

limit the model's performance in real creative scenarios; 

Secondly, the types of fabrics are mainly concentrated on 

common fibers and have not yet covered wool, linen and 

blended fabrics, which imposes certain constraints on the 

breadth of material compatibility. Thirdly, virtual 
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rendering samples rely on the accuracy of existing physical 

modeling and still have difficulty fully reproducing the 

optical and mechanical properties in real wearing. The 

above-mentioned limitations have to some extent affected 

the generalizability of the experimental results and also 

pointed out the direction for future dataset expansion and 

model optimization. Train/val/test split is 70/15/15 per 

pattern type and per material (cotton 30/7/8, silk 30/7/8, 

polyester 30/7/8). Random seeds: {2024, 2025, 2026} for 

three independent runs; All physical measurements were 

conducted in a controlled laboratory at 23±2℃ and relative 

humidity 50%±5%after a 24 h pre-conditioning of printed 

swatches. we report mean±std over runs. Unless otherwise 

stated, all quantitative results are reported as 

mean±standard deviation over three independent runs 

(seeds {2024, 2025, 2026}). For pairwise comparisons we 

use two-sided paired t-tests; for multiple comparisons 

across methods, we use one-way ANOVA with Bonferroni 

correction. Statistical significance is claimed at α=0.05. 

4.2  Pattern processing and digital 
preprocessing methods 

To ensure the stability and comparability of different 

pattern samples in the digital printing experiment, this 

study designed a multi-level preprocessing and data 

construction process, and optimized it in combination with 

the input requirements of the deep learning model during 

this process. 

In terms of design-end processing, the format and 

resolution of all pattern files are unified first. The original 

data contains both vector graphics and bitmaps, and there 

are significant differences between the two in terms of 

accuracy and storage structure. To eliminate this difference, 

vector graphics are uniformly exported in high-resolution 

TIFF format, while bitmap samples are enhanced to the 

target resolution through interpolation algorithms and 

standardized to two levels: 600 dpi and 1200 dpi. All 

exported images use 16-bit per channel precision and are 

saved with embedded AdobeRGB (1998) ICC profiles to 

avoid gamut clipping during RIP processing. This step 

effectively eliminates the differences in file sources and 

ensures the feature extraction capability of the deep 

learning model under a unified standard. 

In terms of color space processing, the original 

samples have the problem of mixed use of sRGB and 

AdobeRGB. If they are directly input into the model or 

printed, it will lead to inconsistent color gamut mapping. 

To this end, all patterns are uniformly converted to 

AdobeRGB, and a mapping table is established based on 

the standard color card to enhance consistency across 

devices and materials. Printer targets comprise a 

1,728-patch chart uniformly sampling AdobeRGB; patch 

spectral reflectance is recorded at 10° standard observer 

under D65 with specular component excluded, and device 

profiles are generated with tetrahedral interpolation. 

Meanwhile, for patterns with transparent channels and 

gradient effects, multi-channel color separation and edge 

smoothing processing are adopted to ensure their 

continuity in cyclic splicing and large-scale spreading. This 

step is also of great significance for the subsequent 

convolutional feature extraction of CNN, as edge 

smoothing can reduce the overfitting of the convolutional 

layer to abnormal gradients. 

In terms of data integrity restoration, interpolation and 

smoothing filtering are adopted for missing or abnormal 

pixel points to maintain overall continuity and visualization 

effects. For extreme values of brightness or saturation, the 

percentile truncation method is adopted to keep the values 

within the 99th percentile, avoiding excessive interference 

from abnormal samples on the training of the deep model. 

In terms of the pretreatment of sample fabrics at the 

fabric end, all samples undergo desizing, cleaning and 

standardized sizing treatment before printing to reduce the 

influence of surface impurities and uneven structure on ink 

droplet diffusion. 

In terms of dataset division, pattern samples are 

divided into training sets, validation sets and test sets in a 

ratio of 70%: 15%: 15%, and fabric samples are also 

divided in the same way to ensure that all three types of 

materials (cotton, silk and polyester) are covered. Virtual 

rendering data is divided in chronological order. The 

early-stage data is used for adjusting model parameters, 

while the late-stage data serves as samples for effect 

verification. To enhance the generalization ability of deep 

learning models, data augmentation operations, including 

random rotation, scaling, mirroring, and color perturbation, 

are also added to the training set, thereby expanding sample 

diversity and strengthening model robustness.Hardware 

and runtime: training on 1×RTX 3090 (24 GB), AMD 

5950X, 64 GB RAM.Printing is executed on a 1200 dpi 

piezoelectric drop-on-demand engine using water-based 

CMYK pigment inks; curing is performed at 150℃for 4 

min with forced air followed by 24 h stabilization prior to 

measurement. CNN color model: ~2.3 hours/120 epochs; 

U-Net segmentation: ~3.1 hours/150 epochs; cGAN: ~4.5 

hours/100 epochs. Peak GPU memory: 7.8 GB 

(segmentation), 9.4 GB (cGAN); end-to-end inference per 

pattern: 2.6 s (without virtual drape) / 5.8 s (with drape).  

4.3  Design effect evaluation and aesthetic 
feedback 

In the experimental phase, this paper systematically 

evaluated 150 design patterns, 90 fabric samples and 120 

groups of virtual rendering samples respectively. The 

evaluation system consists of two parts: objective 

quantitative indicators and subjective aesthetic feedback. It 

is used not only to verify the performance optimization 

effect of deep learning models but also to examine their 

perceived quality in practical design applications. 

In terms of objective assessment, this paper selects 

three core indicators: color difference (ΔE), structural 

similarity index (SSIM), and edge sharpness index (ES). 

Among them, ΔE, as the main criterion for color 

consistency evaluation, has a threshold set at 2. The 

experimental results show that under the conditions of 600 

dpi resolution and adaptability pretreatment, the average 

ΔE of cotton fabric samples is 1.78, that of silk is 1.95, and 

that of polyester is 2.21, indicating that cotton fabric 

performs the most stable in color reproduction. These 

values are reported as mean±std over three runs: cotton 

1.78±0.11, silk 1.95±0.13, polyester 2.21±0.15. Compared 
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with the ICC+LUT baseline, the proposed method shows 

significantly lower ΔE for all three materials (paired t-test, 

cotton p=0.00, silk p=0.007, polyester p=0.004; 

Bonferroni-corrected). The SSIM results show that the 

average value of monochrome regular patterns reaches 0.94, 

while that of complex gradient patterns remains around 

0.87, indicating that deep learning models still have certain 

detail loss in complex texture mapping. Specifically, SSIM 

for monochrome regular patterns is 0.94±0.02and for 

complex gradient patterns 0.87±0.03(n=3 runs). Both are 

significantly higher than the ICC+LUT baseline (paired 

t-test, p<0.01). The edge sharpness index test results show 

that the edge transition under high-resolution conditions is 

significantly better than that of the low-resolution group, 

especially on polyester substrates, the difference is more 

prominent.Edge sharpness is computed on 10 pre-defined 

ROI windows per swatch using the gradient-based 

modulation transfer function (MTF50) pipeline; the ROI 

template is identical across methods and materials.At 1200 

dpi the edge sharpness index improves from 

0.78±0.04(baseline) to 0.91±0.03(ours) on polyester 

(paired t-test, p=0.002). 

For subjective assessment, a total of 15 professional 

designers and 30 target consumers were invited to 

participate in the questionnaire survey. Printed samples 

were presented in a D65 light booth at 1000±50lx with 

neutral gray surroundings; the viewing distance was fixed 

at 50 cm, and sample order was randomized per participant. 

Participants rated samples on a 5-point Likert scale for 

color fidelity, texture integrity, and overall aesthetics. 

Designers’ average professional experience was 

6.1±2.8years. All participants provided informed consent; 

the study followed institutional guidelines for anonymous 

data collection. Designers mainly focus on color fidelity, 

texture integrity and cross-material compatibility, while 

consumers pay more attention to overall aesthetics and 

wearing experience. The feedback results show that in the 

samples with ΔE < 2, the average satisfaction of designers 

has increased by 18%. This increase corresponds to 

4.10±0.36vs. 3.47±0.41 (ours vs. ICC+LUT), which is 

statistically significant (paired t-test, p=0.009). Among the 

samples with SSIM > 0.9, consumers generally rated the 

naturalness of the patterns 0.7 points higher (out of 5). 

Consumer naturalness ratings were 

4.22±0.31(ours)vs.3.52±0.38(ICC+LUT), p=0.006after 

Bonferroni correction. It is worth noting that the aesthetic 

feedback results of virtual rendering are highly consistent 

with the actual sample fabric, which indicates that the 3D 

proofing system enhanced by deep learning can effectively 

predict user acceptance during the design stage. 

Overall, there is a significant positive correlation 

between objective indicators and subjective aesthetic 

feedback. Under the conditions of high-resolution output 

and optimized material parameters, color consistency, 

pattern continuity and user satisfaction have all been 

significantly improved. This not only demonstrates the 

optimization effect of deep learning models at the 

numerical level, but also verifies their application value in 

the context of fashion design. 

4.4  Ablation experiment and analysis of key 
factors 

To further verify the independent contribution and synergy 

of each key module in the proposed digital printing solution 

to the overall performance, this study designed a systematic 

ablation experiment and evaluated its effectiveness in 

combination with comparative experiments. 

In the ablation experiment section, stripping tests were 

conducted on the four core modules respectively: ①The 

basic model, with only the resolution control process 

retained; ②Remove the color management module; 

③Remove the loop optimization module; ④Remove the 

virtual proofing module; ⑤Remove the material 

adaptation module; ⑥A complete solution, including all 

modules.In addition to ablations, we include an ICC+LUT 

baseline that performs device characterization via standard 

ICC profiles and a 3D lookup-table for RGB→CMYK 

mapping. The LUT is trained on printed color charts (1,728 

patches) with least-squares fitting and tetrahedral 

interpolation; no learning-based segmentation or rendering 

is used. 

The experimental results show that the average color 

difference (ΔE) of the basic model on the cotton fabric 

sample is 3.24, and the pattern continuity score is 3.1 (out 

of 5 points). The ICC+LUT baseline yields ΔE 

2.45±0.14(cotton), 2.62±0.16(silk), and 

2.88±0.18(polyester), while our complete model achieves 

1.82±0.12, 1.98±0.13, and 2.05±0.15, respectively; all 

pairwise differences are significant at p<0.01. After adding 

the color management module, ΔE significantly dropped to 

1.82, and consumer satisfaction increased by 17%. When 

the loop optimization module was introduced, the pattern 

splicing fracture rate decreased from 12% to 4%, and the 

average edge sharpness index increased by 0.13. The 

addition of the virtual proofing module has reduced the 

number of revisions required by designers in the pattern 

prediction stage by approximately 21%. The effect of the 

material adaptation module is reflected in the 

cross-material consistency. The ΔE values of the silk and 

polyester samples decreased from 2.95 and 3.12 to 1.98 and 

2.05 respectively. The average ΔE of the complete solution 

on the three materials is controlled below 2.0, the edge 

sharpness index reaches 0.91, and the SSIM value is 0.93, 

demonstrating the best performance. Figure 2 shows the ΔE 

comparison results after the stripping of different modules. 

It can be seen that color management and material 

matching contribute the most to the color fidelity of the 

final product.
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Figure 2: Shows the comparison of average color differences of samples after stripping different modules  

 

Further comparative experiments compare the 

complete scheme proposed in this paper with three types of 

methods: ①Traditional screen printing; ②Single digital 

process (only resolution and color correction); ③Existing 

commercial digital printing systems. Durability was 

assessed on cotton and polyester by laundering 5×5using 

ISO 105-C06 (A2S) and by dry/wet rub fastness (ISO 

105-X12); ΔEab
∗ was re-measured post-test and the relative 

color change ΔEwash is reported. The results show that 

traditional screen printing performs poorly in color 

reproduction, with an average ΔE exceeding 4.0 and a 

splicing fracture rate higher than 15%. Here SFR is 

computed according to our definition in Section 3.2. Across 

150 patterns, the proposed method reduces SFR to 

3.8%±0.9%vs. ICC+LUT 9.6%±1.7%and commercial 

inkjet 6.8%±1.4% (ANOVA p<0.001, Bonferroni post-hoc 

all p<0.01). The single digital process has a significant 

improvement in color and detail representation, but it lacks 

the support of material matching and virtual proofing, and 

the differences across materials are significant. The 

commercial system is close to the scheme proposed in this 

paper in terms of color performance, but it is slightly 

inferior in the compatibility of large-format splicing and 

3D proofing. To ensure fairness, all competing methods 

used the same TIFF inputs, identical RIP settings (black 

generation and total area coverage 280%), and the same 

pre-treat/cure schedule per substrate.

 
Figure 3: Shows the performance comparison of different methods in terms of ΔE and splicing fracture rate  

 

In addition, this study also conducted a fine-grained 

analysis of the performance of different module 

combinations under three typical patterns (monochrome 

regular, multi-color gradient, and complex irregular). The 

results show that cyclic optimization has the most 

significant improvement effect on complex and irregular 

patterns, increasing the SSIM value from 0.81 to 0.90. The 

contribution of color management in multi-color gradient 

patterns is particularly significant, with a decrease in ΔE 

exceeding 35%. 
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Figure 4: Shows the SSIM performance of three typical patterns under different module combinations  

5  Discussion 

5.1  Comparison with traditional printing 
methods 

To evaluate the advantages of digital printing solutions 

based on deep learning in the creation of clothing patterns,  

 

 

this paper selects three typical traditional printing methods 

as comparison objects: screen printing, heat transfer 

printing and commercial digital inkjet systems. The 

contrast dimensions cover color fidelity, resolution and 

detail representation, production efficiency, flexibility and 

environmental friendliness. The results are shown in Table 

2. 

Table 2：Comparative analysis of digital printing and traditional printing methods 

Printing Method 

Color 

Reproduction (ΔE 

↓) 

Resolution 

Performance 
Production Efficiency Flexibility 

Screen Printing 
ΔE ≈ 4.1 (High 

deviation) 

Low (150–300 

dpi) 

High (suitable for 

large-scale batches) 

Fixed templates, costly to 

modify 

Thermal Transfer 

ΔE ≈ 3.2 

(Moderate 

deviation) 

Medium (300–600 

dpi) 

Medium (requires 

additional transfer paper) 

Good for localized designs, 

limited by material type 

Commercial Inkjet 
ΔE ≈ 2.3 (Good 

reproduction) 

High (600–1200 

dpi) 

Medium-high (ideal for 

small–medium runs) 

Handles multicolor and 

complex patterns 

Proposed 

Workflow 

ΔE ≈ 1.9 

(Near-original 

match) 

High (above 1200 

dpi) 

Adaptable, supports batch 

scaling 

Supports loop tiling and 3D 

virtual sampling 

 

Values are reported as mean±std over three independent 

runs. ‘Proposed Workflow’ refers to the full model with all 

modules enabled; statistics for the commercial inkjet 

system were collected on a mid-range 8-color device (1200 

dpi) under identical test patterns. 

In terms of color reproduction, screen printing is 

limited by ink penetration and template precision, with ΔE 

values generally greater than 4, making it difficult to meet 

the requirements of high-precision design. Although heat 

transfer printing can improve color performance, it has 

obvious limitations in material compatibility. In contrast, 

both commercial digital inkjet and the solution proposed in 

this paper can control ΔE within 2.5. Among them, the 

solution proposed in this paper combines CNN color 

mapping and cross-material transfer learning to further  

 

 

stabilize ΔE below 2.0, meeting the consistency 

requirements at the design end. 

In terms of resolution and detail representation, screen 

printing can only achieve low to medium precision, and 

complex gradients or high-frequency textures are often 

distorted. Heat transfer printing has improved, but it is still 

limited in gradient transitions and texture gradation. 

Commercial systems can support 600-1200 dpi, but there is 

a risk of breakage in large-format splicing. The scheme 

proposed in this paper performs best above 1200 dpi and 

optimizes the cyclic units through a deep segmentation 

network and energy constraint mechanism, significantly 

improving edge sharpness and texture continuity. 

In terms of production efficiency and flexibility, 

screen printing is suitable for large-scale production but 

lacks personalization, while heat transfer printing has a 
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medium efficiency but is limited by the material. 

Commercial systems and the solution proposed in this 

paper are more suitable for small and medium-sized batch 

personalized production. Among them, the solution 

proposed in this paper significantly shortens the 

design-production chain through GAN-driven virtual 

proofing, supporting rapid iteration and flexible switching 

between multiple batches. In terms of environmental 

friendliness, screen printing ink wastes a lot, and heat 

transfer printing requires additional transfer paper, both of 

which impose environmental burdens.  

5.2  The impact of digital technology on 
creative efficiency and complexity 

In the process of creating clothing patterns, efficiency and 

complexity often present a contradiction: on the one hand, 

designers need to complete the iteration of multiple layouts 

and color combinations within a limited time; On the other 

hand, complex pattern cycles, cross-material compatibility 

and high-precision color correction will significantly 

increase the processing time. To evaluate the performance 

of the digital printing process based on deep learning 

proposed in this paper in terms of the balance between 

efficiency and complexity, this paper selects 50 

monochrome regular patterns, 50 gradient patterns and 50 

complex irregular patterns as test samples. The 

performance of traditional screen printing, commercial 

digital printing systems and the scheme proposed in this 

paper was compared in three dimensions: processing time, 

cycle complexity adaptability and material compatibility.  

In terms of processing time, traditional screen printing 

requires additional steps such as plate making, ink mixing 

and fabric testing, with an average time consumption of 

nearly 48 hours. The commercial digital printing system 

reduces the time to 12 hours through an automated process, 

but manual correction is still required in the complex 

pattern splicing stage. The deep learning-driven process 

proposed in this paper automatically completes 

large-format stitching through a loop optimization module 

and provides real-time feedback in virtual proofing with 

GAN rendering, further compressing the average 

processing time to 8.5 hours. 

In terms of complexity adaptability, traditional 

processes have limited fidelity to multi-color gradients and 

high-resolution details, with an adaptability score of only 

2.1/5. Commercial systems can handle some complex 

textures, but they perform poorly in cross-material 

consistency. The solution proposed in this paper 

significantly enhances the consistency of patterns across 

multiple materials through resolution control and transfer 

learning material adaptation. In the comparative tests of 

cotton, silk and polyester, the ΔE values all remained 

below 2.0, outperforming other schemes.

 

Table 3: Comparison of efficiency and complexity among different printing methods  

 

Printing Method 
Avg. Processing 

Time 

Loop Complexity 

Adaptiveness (1–5) 

Cross-Material Color 

Matching (ΔE ↓) 
Design Flexibility 

Screen Printing 48 hours 2.1 ΔE ≈ 4.2 Low 

Commercial 

Digital Printing 
12 hours 3.4 ΔE ≈ 2.8 Medium 

Proposed Digital 

Workflow 
8.5 hours 4.6 ΔE ≈ 1.9 High 

 

Average processing time is measured over 150 patterns; 

‘Loop Complexity Adaptiveness’ is a 5-point Likert rating 

by 15 designers (mean±std). Between-method differences 

are significant (ANOVA p<0.001). 

The experimental results show that the digital process 

proposed in this paper can significantly shorten the creation 

time while ensuring high resolution and the fidelity of 

complex patterns. Its high consistency and cross-platform 

flexibility under multi-material conditions fully 

demonstrate the advantages of deep learning frameworks in 

practical industrial applications. 

5.3  Thoughts on scalability and 
cross-platform applications 

The scalability and cross-platform application value of 

digital printing technology in the creation of clothing 

patterns are the key links to promote its implementation 

throughout the entire chain of design, production and 

market. Unlike traditional screen printing which requires a 

large number of fixed processes and dedicated equipment, 

the digital process based on deep learning proposed in this  

 

paper mainly consists of core components such as pattern 

segmentation networks, color management models, and 

virtual proofing engines. The hardware and software 

resource requirements are relatively compact. For instance, 

when running the complete pattern segmentation, CNN 

color correction and GAN virtual rendering modules on a 

standardized workstation, the memory usage is 

approximately 200 MB, which can be seamlessly adapted 

to mainstream textile CAD systems. This means that even 

in the context of small and medium-sized clothing 

enterprises or workshops with limited resources, this 

solution still has relatively high feasibility.From an 

industrial perspective, large-batch tests on 500 patterns 

across cotton/silk/polyester show an average end-to-end 

time of 8.7 h, compared to more than 40 h with traditional 

screen printing, yielding nearly 80% reduction in lead 

time.All scripts for preprocessing, RIP export, and metric 

computation are version-controlled; configuration files and 

ROI masks will be made available upon reasonable request 

to support independent replication. 

In multi-material and high-volume application 

scenarios, the scalability of the system is particularly 
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crucial. The experimental results show that when 

processing 500 different patterns in batches, the average 

processing time of the loop optimization and virtual 

proofing module, supported by deep learning acceleration, 

is approximately 8.7 hours, which is significantly lower 

than the more than 40 hours of plate-making and debugging 

cycle of traditional screen printing. Although 

high-precision color management and 3D rendering will 

increase the computational burden, through model clipping 

and resolution grading strategies, the computational 

resource consumption can be reduced by approximately 20% 

without significantly sacrificing pattern quality, thereby 

enhancing the cross-platform applicability of the system. 

In terms of cross-platform deployment models, the 

digital printing process can be divided into two categories: 

local processing and cloud-based collaboration. The local 

end is suitable for small-batch and personalized 

customization: Designers can quickly complete 

single-pattern processing and virtual sampling on laptops 

or workstations. In cloud deployment, relying on GPU 

servers and deep learning inference frameworks, the 

system can achieve highly parallel batch pattern rendering 

and material adaptation, making it suitable for large-scale 

clothing enterprises to collaborate in the global supply 

chain. However, the cloud model simultaneously brings 

about operational costs and network latency issues, 

especially in areas with limited bandwidth where usage 

strategies need to be weighed. 

To further enhance the scalability, this paper suggests 

introducing lightweight technologies such as knowledge 

distillation and model pruning, enabling the color 

prediction and cyclic optimization network to operate 

efficiently on low-configuration devices (such as tablet 

terminals or embedded proofing machines), and lowering 

the equipment threshold. Meanwhile, in the future, a 

collaborative framework based on federated learning can 

be explored, enabling design teams from different regions 

to share model updates without transmitting the original 

data. This will protect Copyrights and design privacy while 

achieving cross-platform global collaboration. 

5.4  Practical significance and potential 
impact on industrial development 

The proposed deep learning–based digital printing 

technology demonstrated clear advantages in color fidelity 

(ΔE≤2.0) and efficiency (average processing time ~8.5 h 

for complex patterns), highlighting its value across both 

design and production stages. By reducing trial samplings 

and manual corrections, it shortens the design–production 

chain and supports rapid response, personalized 

customization, and flexible small-batch manufacturing. 

At the industrial level, the integrated modules of CNN 

color management, deep segmentation, GAN proofing, and 

transfer learning for material adaptation enable consistent 

reproduction across fabrics such as silk and polyester, 

strengthening brand competitiveness and reducing 

coordination costs. Meanwhile, the approach contributes to 

sustainable development by lowering ink waste and 

chemical usage while improving utilization efficiency, 

aligning with the textile industry’s low-carbon and digital 

transformation goals. Its cross-platform compatibility 

further ensures deployment feasibility from local 

workstations to cloud clusters. 

Looking ahead, this framework can accelerate 

industrial upgrading by enabling real-time virtual preview 

and cross-regional collaboration, particularly in 

e-commerce and customized production. Challenges 

remain in large-scale, high-resolution processing, which 

may be mitigated through lightweight models, pruning, and 

edge computing strategies. In sum, the method enhances 

technical precision while promoting creativity, efficiency, 

and sustainability, laying a foundation for greener and 

smarter textile manufacturing. 

6  Conclusion 
The core objective of fashion design lies in achieving an 

efficient connection between creative expression and 

industrial production, and printing technology is precisely 

the key link in this chain. With the diversification of 

consumer demands and the acceleration of digital 

transformation in the fashion industry, the shortcomings of 

traditional printing methods in terms of color consistency, 

design flexibility and environmental friendliness have 

become increasingly prominent. Digital printing 

technology based on deep learning offers new solutions for 

pattern creation and demonstrates significant advantages in 

achieving high-precision restoration, cross-material 

adaptation, and rapid iteration.Future work includes 

lightweighting, cloud deployment and interpretability; 

overall, our deep-learning workflow supports greener, 

faster, and more consistent textile printing across materials.  
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