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Precise color reproduction and efficient pattern generation are the core goals of digital printing on
clothing. To break through the limitations of traditional processes that rely on manual parameter
adjustment and sample fabric trial and error, this paper proposes an intelligent printing generation
framework based on deep learning. This framework integrates CNN color management, deep segmentation
and loop optimization, GAN-driven 3D virtual rendering and transfer learning material adaptation, and
can achieve end-to-end pattern generation and computational optimization on multi-material data such as
cotton fabric, silk and polyester. The system not only captures the spatial detail features of the patterns
(such as edge sharpness and color gradation), but also maintains color consistency and detail restoration
among different materials through cross-domain modeling. The experimental results show that on
multi-material datasets, this scheme achieves AE 1.9+0.2across cotton/silk/polyester (mean over 3 runs),
which corresponds to a 30-45% reduction versus screen printing (AE~4.1) and 15-25% versus a
commercial inkjet baseline (AE=2.3). It reduces splicing fracture rate to <4%, shortens average processing
time by ~60% (12 h—4.8-8.5 h depending on batch size), and increases SSIM to 0.93+0.01.All statistics are
meanzstd over three independent runs; significance is assessed with paired t-tests or ANOVA with
Bonferroni correction at a=0.05. This research not only verified the effectiveness of deep learning in digital
printing, but also provided an expandable intelligent path for the integration of the clothing design and
production chain, offering significant support for the transformation of the fashion industry towards
personalization, greenness and intelligence.

Povzetek: Clanek predstavi modularni sistem (CNN + U-Net + GAN) za barvno natancno, vecmaterialno
digitalno tiskanje tekstila. Z globokim ucenjem, ciklicnim spajanjem in prenosnim ucenjem doseze odlicne
razultate.

1 Introduction
Unlike traditional processes that rely on manual design and
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combined with GAN, resolution control and material
adaptation based on cross-domain transfer learning.

experience-based adjustment, digital printing based on
deep learning can achieve automatic pattern generation,
style transfer, and multi-material adaptation through
convolutional neural networks (CNNs), generative
adversarial networks (GANs), and image-to-image
conversion frameworks such as Pix2Pix and CycleGAN. It
enables clothing design to possess unprecedented
flexibility and precision in terms of color expression,
texture details and structural restoration.

In response to the above issues, this paper proposes a
deep learning-driven intelligent generation and computing
implementation framework for digital printing patterns on
clothing, and conducts research from four dimensions:
Color restoration and management based on CNN, pattern
segmentation and cyclic optimization based on deep
segmentation networks, virtual rendering and 3D proofing

Through this holistic approach, it is expected to break
through the problems of lagging feedback in traditional
craftsmanship, large deviations between design and
finished products, and frequent manual corrections,
achieving efficient, automated and intelligent pattern
generation, and providing strong support for the
development of the fashion industry towards green and
personalized directions.

The remaining structure of this article is arranged as
follows: The second part reviews the research progress of
deep learning and digital printing. The third part elaborates
on the proposed intelligent generation framework and key
computing mechanisms. The fourth part demonstrates the
performance of this method in pattern generation and effect
optimization in combination with experimental data. The
fifth part discusses and analyzes its industrial application
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value. The sixth part summarizes the research conclusions
and looks forward to the future development direction.

2 Related work

Although digital printing shows broad application
prospects in clothing design, it still faces complex
challenges in the intelligent generation of patterns [5].
Firstly, the issue of color reproduction has long plagued the
connection between design and production. There is often a
difference between the effect on the screen and the actual
presentation on the fabric, especially during high saturation
and gradient transitions, when deviations are more likely to
occur. Secondly, during the process of splicing and circular
design of large-scale patterns, edge breaks or repetitive
marks often occur, which weakens the consistency of the
overall aesthetic [6]. Furthermore, the differences in
droplet diffusion and penetration performance among
various fiber materials make it difficult to unify resolution
control and detail restoration. Therefore, it is urgent to
explore an intelligent path that can integrate deep learning
models with multi-dimensional process parameters to
promote the transformation of digital printing on clothing
from "numerical control™ to "intelligent generation" [7].

In the early stage of development, related research
mostly focused on empirical and statistical methods, such
as establishing fundamental rules based on color physical
tests or fiber adsorption experiments [8]. However, these
methods have insufficient adaptability in complex patterns
and cross-material environments and can only achieve
local optimization. With the emergence of computer-aided
design and virtual simulation tools, pattern layout and loop
design have gradually entered the digital stage. The
parametric pattern-making method enables custom clothing
to have flexible pattern generation and size adaptation
capabilities, while computational geometry and CAD
algorithms promote the automatic transformation from
three-dimensional clothing models to two-dimensional
cutting pieces, thereby achieving efficient connection
between pattern design and structural design [9].

In recent years, the introduction of deep learning
technology has become a breakthrough. On the one hand,
the color prediction model based on convolutional neural
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Network (CNN) and Residual network (ResNet) can learn
the nonlinear response laws of fiber materials, thereby
significantly reducing AE color difference. On the other
hand, generative adversarial networks (GANSs) and
image-to-image transformation frameworks (such as
Pix2Pix and CycleGAN) have been applied to intelligent
pattern generation and style transfer, achieving color
enhancement and texture expansion while maintaining the
original structure. Three-dimensional virtual simulation is
gradually integrating with deep learning. For instance, it
can automatically locate pattern regions through image
segmentation networks and then map them onto
three-dimensional clothing grids for realistic rendering,
thereby achieving dynamic visualization effects in the
design stage [10]. These studies have jointly driven the
transformation of clothing patterns from "handcrafted
creation” to "intelligent synthesis", but there are still
problems such as high computational overhead,
insufficient cross-material generalization ability, and
complex realistic rendering.Compared with prior studies
that focus on single-material color prediction or creative
synthesis, our framework jointly optimizes color mapping,
segmentation/loop tiling, and 3D rendering within one
learning pipeline, and further introduces transfer learning
for cross-material adaptation. Specifically, beyond
Pix2Pix-based silk color prediction [17] and generic
generative design models [18], we explicitly model fabric
features and seam continuity, reducing AE across
cotton/silk/polyester to 1.9+0.2 and the splicing fracture
rate (SFR) to 3.8%0.9%, while increasing SSIM to
0.93+0.01. Unlike CAD-oriented geometric pipelines for
3D-to-2D panel conversion [15] and process-level method
comparisons across printing technologies [10], our system
provides end-to-end, statistically validated gains on real
prints under matched RIP and pre-treatment settings. In
short, our contribution lies in unifying color management,
structural tiling, and material adaptation—dimensions that
prior work typically treats in isolation.

To systematically present the existing research
achievements, Table 1 summarizes the typical studies in
digital printing and deep learning-driven intelligent
generation in recent years, covering the models used,
application scenarios, main evaluation indicators and their
limitations.

Table 1: A Comparison of typical Studies on digital Printing in pattern Creation

Author (Year) Method / Technique Application Scenario Key Metrics Limitations
Gill (2024) [2] Digital Param_etrlc Pattern Customized Garment Pattern Precision, Consistency Limited adaptabll_lty to complex
Making Generation materials
Pietroni (2022) [15] Computational Geometry + 3D-to-2D Garment Panel Automation Efficiency Errors with complex surfaces
CAD Conversion
Choi (2022) [8] 3D Virtual Fitting System Dynamlc_ Try.—on_& Pattern Visual Realism High rendering cost
Visualization
Li Y (2023) [16] Plgment—bas_ed Color ngh—Prec_lswr_l C_olor Control AE, Stability Limited support for complex
Modeling in Printing patterns
Zhu (2023) [17] Pix2Pix Deep Learning Silk Pattern Color Prediction Color Reproduction Requires large-scale training
Framework Accuracy samples
Wu (2024) [18] Generative Deep Learning Creative Pattern Design Diversity, Creativity High computation and training
Model costs
Glogar (2024) [19] Eco-fnerldlpyriFr’];?rE);ocesmng Sustainable Pattern Production Durability, Eco-friendliness Relatively high process cost

Walker (2024) [10]

Sublimation, DTG, Screen
Printing Comparison

Brand Pattern Quality
Assessment

Durability, Color Stability

High equipment demand, no
unified standard
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Based on the above gaps, this paper raises the
following research questions:

(1) Can a unified deep learning framework be
established to jointly optimize color management, pattern
segmentation, virtual rendering and material adaptation, so
as to enhance the stability and accuracy of pattern
generation?

(2) How can convolutional neural networks (CNNs),
generative Adversarial networks (GANSs), and attention
mechanisms be utilized to dynamically optimize recurrent
units and large-scale splicing, avoiding breakage and
repetitive traces?

(3) In a multi-material environment, can color and
detail consistency among different fabrics be achieved
through transfer learning and cross-domain feature
mapping?

The main contributions of this article include:

A multi-dimensional intelligent generation solution
framework has been constructed, covering key links such
as color management based on deep learning, pattern
segmentation and layout optimization, virtual rendering
and 3D proofing, resolution control and material matching,
providing systematic support for digital printing on
clothing.

An optimization mechanism combining deep
segmentation networks and geometric concatenation is
proposed, and a visual continuity loss function is
introduced to effectively enhance the integrity and
naturalness of large-area designs.

Integrating generative adversarial networks and fabric
physical modeling in the virtual rendering process
enhances the mapping efficiency between the design end
and the finished product end, enabling designers to quickly
identify potential problems in the early stage of creation.

The linkage adjustment mechanism between resolution
control and material adaptation was verified through
cross-material dataset experiments. The results show that
among the three types of materials, namely cotton, silk and
polyester, the average color difference AE is reduced to
below 2.0, significantly improving the detail representation
and color reproduction.

The performance of the proposed deep learning
framework in terms of accuracy, efficiency and
cross-material adaptability was systematically evaluated.
The results showed that it outperformed traditional
solutions and existing commercial systems in both
objective indicators and subjective aesthetic feedback.

3 Suggested solutions

In the intelligent generation framework proposed in this
paper, the combination path of "color management and
restoration based on CNN - pattern segmentation and loop
optimization based on deep segmentation network - virtual
rendering and 3D proofing combined with GAN -
resolution control and material adaptation based on transfer
learning" is chosen, considering their complementary
advantages in dealing with the challenges of generating
complex clothing patterns.For reproducibility, we provide
complete model specifications, loss compositions, training
schedules, and hardware details for each module, including
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layer-by-layer architectures, hyperparameters, and random
seeds.

In the color management and restoration module, the
introduction of convolutional neural network (CNN) and
residual learning mechanism can achieve nonlinear color
mapping under cross-device and cross-material conditions,
significantly reducing the AE color difference between the
design end and the finished product end. Compared with
the traditional scheme that only relies on ICC curves, this
method can capture material features through end-to-end
training and quickly complete color correction in the
reasoning stage, ensuring the color consistency of different
fabrics.

In the pattern segmentation and cyclic optimization
stage, traditional geometric algorithms have difficulty
handling the boundary continuity problem of large-format
patterns. In this paper, deep segmentation networks (such
as U-Net and DeepLabV3+) are adopted to extract the
boundaries of recurrent units, and combined with the
attention mechanism to achieve high-precision splicing of
key regions. By minimizing perceptual loss and gradient
continuity constraints, the network can automatically
optimize the cyclic layout of large-area patterns, thereby
reducing breaks and repetitive traces.

In the virtual rendering and 3D proofing stages, this
paper introduces a method that combines generative
adversarial networks (GAN) with physically-driven fabric
modeling. GAN is responsible for enhancing texture details
and lighting effects during the 3D mesh mapping process,
while fabric simulation based on the mass-spring model
ensures the physical authenticity of wrinkles, stretches and
drape. This method not only enhances the visual fidelity of
the patterns but also provides designers with a real-time
interactive virtual sample-making platform, significantly
shortening the creation-production chain.

In terms of resolution control and material adaptation,
this paper adopts transfer learning and cross-domain
feature mapping techniques to establish a unified
high-resolution generative model for multiple materials.
By sharing convolutional features between the source
domain (such as the cotton fabric dataset) and the target
domain (such as the silk and polyester datasets), the model
can automatically adjust the jetting parameters and detail
representation while maintaining the clarity of the pattern,
achieving consistent output across materials. This
mechanism effectively resolves the issue of inconsistent
resolution caused by the differences in ink droplet diffusion
and adsorption among various fiber materials.

Compared with the schemes that solely rely on color
calibration or only use 3D proofing, the overall framework
proposed in this paper can solve the pain points of multiple
links in parallel with the support of deep learning, avoiding
the limitations of "local optimization”. Through the
collaboration and information sharing among modules, the
system not only enhances the accuracy and robustness of
pattern generation, but also possesses the capabilities of
cross-platform expansion and rapid iteration.

Figure 1 shows the overall architecture of the proposed
intelligent generation of digital printing on clothing based
on deep learning. This architecture processes the input
design patterns in sequence through four core modules:
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Firstly, color management and restoration based on CNN to
achieve consistency across materials; Then comes the deep
segmentation and loop optimization module, ensuring the
continuity of large-format patterns; Next comes the
combination of GAN's virtual rendering and 3D proofing,
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providing visual preview and interactive feedback; The last
one is the transfer learning-driven resolution and material
adaptation module, which ensures that the output maintains
high fidelity and detail integrity on different fabrics.
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Input the design
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> and restoration
technology
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Figure 1: Framework of the solution for digital printing in the creation of clothing patterns

3.1 Color management and restoration
technology based on deep learning
In the intelligent pattern generation process of digital
printing, the precise management and restoration of colors
are the key links to ensure that the design intention is
consistent with the final product effect. Due to the
significant differences between the screen end and the
fabric end in terms of display medium, optical properties,
and material adsorption, cross-device mapping relying
solely on ICC Profile often fails to meet the requirements.
Therefore, this paper introduces a deep learning-driven
color prediction model. We use a 12-layer CNN
(Conv-BN-ReLU blocks) with a residual backbone:
Conv(3%3,64)—Conv(3x3,64)—>MaxPool—Conv(3%3,12
8)—Conv(3x3,128)—>MaxPool—ResBlock(128)x2—Con
v(3%3,256)—Global AvgPool -FC(256—64)—FC(64—4
for CMYK). Material features S (surface roughness,
absorption rate, whiteness) are injected via FiLM
conditioning at the 3rd and 5th convolutional blocks.
Firstly, the traditional method establishes a
standardized ICC file, and maps the RGB source space to
the CMYK or extended color space through the color
conversion matrix M:

C.=M-C.Me i (1)

out™ iny
Among them, C; isthe RGB vector at the input end,

C,ut is the CMYK vector at the print end, and the matrix M
is obtained from the device characteristic curve and
experimental calibration.

However, traditional linear mapping is difficult to
characterize the nonlinear response under complex
materials. This paper adopts a convolutional neural
network (CNN) to construct a nonlinear color prediction
model:

Coutzfe(cinis) (2)
Among them, fa represents the CNN model, and the

parameter O is obtained through training. The input
includes the pixel value C;, at the design end and the

material feature S (such as surface roughness, ink
absorption rate), and the output is the optimized CMYK
color vector.

During the optimization process, the CIE 1976 AE*ab
color difference is taken as the loss function:

AE,= (L1 y+@-a; Y+ (- Y @

Here, L'\ @, b"genote the luminance, red—green
axis and yellow—blue axis coordinates of the predicted

output, while LT‘ ars bT represent the corresponding

reference values of the target design. 10 further enhance the
generalization ability across materials, this paper
introduces a transfer learning strategy in training: first, a
benchmark model is trained on cotton fabric samples, and
then fine-tuned with a small amount of silk and polyester
data, thereby achieving consistent prediction across
materials. Experiments show that this method can keep AE
below 2.0 and improve the color reproduction accuracy by
approximately 30% compared with the traditional ICC +
LUT correction. Before each session a one-point and
multi-point spectral calibration is executed; drift is
monitored by re-measuring a three-level gray ramp at the
start and end of the run and remained within AE},<0.3.

In practical implementation, the color management
system in this paper consists of three steps: (DUsing a
spectrophotometer to collect training samples and construct
material feature vectors; (2)Nonlinear color mapping and
prediction output are completed through the CNN model;
(®In the production process, closed-loop feedback is
introduced to feed back the measured AE index to the
model for parameter update, thereby achieving continuous
optimization.Unless stated otherwise, color difference is
computed as CIE 1976 AE;, from five repeated

measurements per patch (rotated by 90° between readings)

and then averaged; instrument repeatability is verified daily
with a white ceramic standard.Training details: Adam
optimizer ($1=0.9, $2=0.999), initial LR=1e—3 with cosine
decay to le—5, batch size=16, epochs=120, early stopping
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patience=15, weight decay=1e—4, random seed=2024. Data
augmentation: random rotation *15° scale 0.9-1.1,
horizontal/vertical flip p=0.5, color jitter
(brightness/contrast/saturation £10%). Transfer learning:
pretrain on cotton, then fine-tune last 4 layers + FiLM
parameters using 20 silk and 20 polyester samples per
epoch (freeze lower layers).

3.2 Pattern segmentation, layout and loop
unit optimization techniques

In the digital printing process of clothing patterns,
segmentation and layout are the key links to efficiently
transform design patterns into producible units. Traditional
printing often relies on manual splicing or repetitive units,
which can easily lead to uneven edges, broken splicing or
overly obvious repetitive marks. To this end, it is necessary
to introduce digital segmentation and cyclic optimization
mechanisms to achieve the continuity and integrity of
patterns on large areas of fabric.

Firstly, pattern segmentation is usually based on
geometric matrix partitioning and edge detection
techniques. Let the original pattern be a two-dimensional
pixel matrix 1(x,y), and it is divided into several basic
regions through the boundary extraction function B(x,y) :

_ Lif I(xy)e £ attern
B(X'y)_{oaif I(va)E ‘Qbackground @

Among them, Q represents the pattern area and

pattern
packgrouna TePresents the background area. Different

from traditional edge detection, we adopt U-Net (encoder:
ResNet34; decoder: bilinear upsampling + skip
connections) with attention gates (channel + spatial SE
blocks) to focus on high-frequency edges and extract
repeat-unit boundaries. Input size is 1024x1024; loss is
Dice+Focal (0=0.25, y=2.0).

During the layout stage, it is necessary to perform
translation and rotation operations on the segmented units
to ensure that the repeated units are seamlessly connected
on the two-dimensional plane. Common splicing methods
include right-angle translation, mirror splicing and
hexagonal tiling. Its mathematical expression can be
achieved through the translation matrix:

1 0 m
T=[0 1 n (5)
0 0 1

Among them, m and n respectively represent the lateral
and vertical translation distances. By constraining the
gradient continuity of color and texture at the loop
boundary, the visual discomfort caused by splicing
breakage can be effectively reduced. Introducing an energy
minimization model is an effective approach in the
optimization of cyclic units. The pixel differences at the
unit edges are constrained by constructing the boundary
energy function E:

EZN:H 1(x,Y; - 1(x+my+n) I (6)

i=1
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Here, (X;,Yy;) represents the coordinates of the

boundary pixels. The process of minimizing E is actually to
find the best cyclic unit so that the spliced area is highly
consistent in color and texture. Meanwhile, in modern
digital systems, this paper combines Poisson Blending and
Deep Generative Network (GAN) for transition processing
to further improve the naturalness after splicing. We
formally define the splicing fracture rate (SFR) as the
percentage of seam pixels whose gradient-magnitude
mismatch across the seam exceeds a tolerance t:

SFR=—3, VT, 0)-VT, () >0 x100% (7

where denotes all pixels along the seam, T, Tgare the
left/right tiles, and we set 1=0.08\tau=0.081=0.08 after
calibration against human perceptual thresholds. For clarity
and reproducibility, the cyclic unit search and optimization
process is summarized in the following pseudocode:
Algorithm 1: Simulated Annealing for Cyclic Unit
Optimization
Inputs:
TO # initial cyclic tile from U-Net
segmentation
| # input pattern image

o, B,y # energy weights (see Eq. (6))
70, p # initial temperature and cooling rate
K # max iterations
t, or # proposal step sizes (translation in px,
rotation in degrees)
Output:
T # optimized cyclic tile
Definitions:
Energy(T): # boundary energy (refer to Eq. (6))

return o * L1(boundary(T))
+ B * L1(VT _left — VT_right)
+v * (1 — SSIM(T))
ProposeNeighbor(T; dt, dr):
dx, dy <« Uniform(—dt, +ot)
0 « Uniform(—9dr, +dr)
return  ApplyTransform(T, translate=(dx,dy),
rotate=0, wrap_around=True)
Procedure:
T — TO
T — 10
E «— Energy(T)
T best — T
E best — E
fork=1to Kdo
T' « ProposeNeighbor(T; 6t, or)
E' < Energy(T")
# Metropolis acceptance
if (E' <E) or (rand(0,1) < exp(—(E’ — E)/t)) then
T—T
E—FE’
end if
if E < E_best then
T best —T
E best — E
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end if
T<—p- T
end for
# Seam refinement
T* « PoissonBlendSeams(T_best)
return T*

Default hyperparameters in our experiments are:
@=0.6,=0.3,y=0.1,10=1.0,p=0.995,K=2000, 6t =1-3px,6r=
1o.We use wrap-around boundary handling to preserve
tiling continuity

For irregular patterns, a constraint perturbation
algorithm based on simulated annealing is also introduced
to explore the optimal solutions for the shape of the cyclic
unit and the layout method, thereby ensuring aesthetic
effects while taking into account production efficiency.

In summary, by combining deep segmentation, feature
alignment and energy constraints, the segmentation and
loop optimization mechanism proposed in this paper can
maintain the coherence and naturalness of patterns on
large-format fabrics, effectively solving the problems of
breakage and distortion in traditional manual splicing
methods, and providing high-quality input for subsequent
virtual rendering and 3D proofing.

3.3 Virtual rendering and 3D proofing
technology

Virtual rendering and 3D proofing are key technical links
in digital printing in clothing design. Through computer
graphics and fabric modeling, it maps two-dimensional
patterns onto 3D clothing models, achieving dynamic
previewing from design to finished clothing. This process
not only enables the early inspection of color, texture and
layout effects, but also significantly reduces the number of
times sample fabric is made and material waste.

In the virtual rendering stage, the core task is to
accurately map the pattern texture onto the surface of the
3D mesh model. Let the three-dimensional model of the
clothing be composed of the vertex coordinate set (X,Y,Z)
and the texture coordinate set (u,v), and the mapping
relationship can be defined by the texture function T(u,v) :

C(X,Y,2)=Tu,v) (8)

Among them, C(X,Y,Z) represents the surface color
values after mapping, and (u,v) are the corresponding
two-dimensional texture coordinates. By maintaining a
one-to-one correspondence between texture coordinates
and three-dimensional grids, the continuity and accuracy of
the pattern distribution on the clothing surface can be
guaranteed.

To enhance the sense of reality, the rendering process
needs to take into account the optical and physical
properties of the fabric. The common lighting model is the
Phong model, and its surface reflection intensity I can be
expressed as:

=1k, kg (L N)+ILK (R-V)" (9)
Among them, 1,,1,,l; represents ambient light,

diffuse reflection light and highlight component
respectively, L, n,R and V represent the direction of
illumination, normal vector, reflection direction and

H. Yan et al.

observation direction respectively, k_,,k;,k, is the

material coefficient, and n is the highlight index. By
parameterizing the material properties, the luster and
softness of different fibers such as cotton, silk and
polyester can be simulated in a virtual environment.We
enhance appearance with a conditional GAN: generator
U-Net(64—512) with SPADE normalization conditioned
on material S; discriminator PatchGAN(70x70). GAN
loss: Lgan + ALy | R= R ll;+ ApercLyca with
AL; =50,A,¢rc =1\lambda_{L1}=50, \lambda_{perc}=1AL1
=50,Aperc=1. Training uses paired (render, photo) samples
captured under D65 lightbox. Inference latency on RTX
3090 is 14 ms/frame at 1024x1024; end-to-end virtual
proofing pipeline runs at 18-22 fps.

During the 3D virtual proofing stage, in addition to
visual rendering, it is also necessary to simulate the
wrinkling, stretching and sagging effects of the fabric
under dynamic conditions. The commonly used physical
model of fabric is an approximate modeling method based
on the mass-spring system. Suppose the fabric is composed
of nodes and springs, and the movement of each node is
described by Newton's second law:

d?x
mF:FelastiC+Fdamping+Fexternal

Among them, m represents the mass of the node,
is the elastic restoring force, F; is the

(10)

=

elastic amping

damping force, and F, ., includes both gravity and

external collision force. Through iterative solution, the
deformation trajectory of the fabric in three-dimensional
space can be obtained.

In practical implementation, this paper integrates CNN
texture prediction, GAN rendering enhancement and
neurophysical modeling into CAD/3D clothing design
software (such as CLO, Browzwear). Designers can
preview the pattern effects under different materials and
patterns in real time during the modeling stage and quickly
complete design iterations through interactive corrections.
The experimental results show that this method is
significantly superior to the traditional virtual rendering
scheme in both subjective evaluation and objective
indicators (structural similarity SSIM, texture sharpness
index), and can provide high-fidelity three-dimensional
sample support for intelligent clothing printing.Integration
details: textures are exported as gl TF with PBR parameters;
API bridge uses Python (PySide2) to push updated maps to
CLO every 200 ms; mesh UVs are fixed; drape is simulated
with mass—spring (ks_ss=25 N/m, kb_bb=0.8 N-m,
damping 0.05), time step 1/240 s, collision via BVH.

3.4 Resolution control and material
compatibility parameter adjustment

To ensure the clarity and color stability of digital printing
patterns on different fiber materials, this paper, based on
the traditional process parameter adjustment, combines the
output optimization mechanism of the deep learning model
to establish a joint adjustment process for resolution and
material adaptation.
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In terms of resolution, the three intervals of 300-600
dpi, 600-1200 dpi and 1200-2400 dpi were still selected for
comparison. The results show that there is a certain loss of
pattern details under the condition of 300-600 dpi,
especially in the gradient transition area, blurring is prone
to occur. The 600-1200 dpi group can better balance clarity
and print speed, and it is the best range for most scenarios.
Under the condition of 1200-2400 dpi, the line integrity and
edge sharpness are significantly improved, but on some
materials, it is manifested as ink accumulation, which
needs to be corrected in combination with pretreatment.
Deep learning models, through automatic learning of
sample features, can perform intelligent compensation at
different resolutions, ensuring that the output effect is
closer to the design end. During printing we map dpi to
droplet size by LUT: {600 dpi—6 pl, 900 dpi—6 pl, 1200
dpi—2 pl} and frequency {15 kHz default}. Nozzle health
is checked via a nozzle-check pattern before each print; any
missing or deviating nozzles trigger an automatic purge and
re-check to ensure uniform drop formation. Adaptive
controller selects (dpi, pl, freq) via a small MLP that takes
S and local frequency content as inputs (hidden 64, ReLU),
trained with REINFORCE on AE and edge sharpness
rewards.

In terms of ink droplet volume and jet frequency, the
experiment set up three Settings of 2pl, 6pl, and 12pl, along
with three frequency combinations of 10kHz, 15kHz, and
20kHz. The results show that small ink droplets (2pl) are
suitable for handling high-precision lines and details, 6pl
strikes a balance between color coverage and clarity, while
12pl is more conducive to large-area color representation
but is prone to causing diffusion. The increase in the spray
frequency significantly improves the adhesion effect of
polyester fabrics. The performance is most stable at 15kHz,
while although the speed increases at 20kHz, some
materials lose details. Training the edge features of printed
samples through deep learning models can further reduce
the loss of clarity caused by excessively high jetting
frequencies.

In the material matching stage, three typical fabrics,
namely cotton, silk and polyester, were selected for testing.
The experiments on contact Angle and surface roughness
show that in a high ink absorption environment, cotton
cloth needs to reduce the ink droplet volume and increase
the pretreatment concentration to avoid edge blurring. Silk,
on the other hand, relies more on temperature and
pretreatment processes to ensure its luster and saturation.
Polyester performs the worst when untreated, but the
pattern performance can be significantly improved by
increasing the spray frequency and moderately increasing
the ink droplet volume. Combining cross-material feature
modeling with deep learning, the system can automatically
adjust the output parameters among three types of fabrics,
stably controlling the AE value within the range of 2.0 to
2.2, reducing the deviation by approximately 30%
compared to manual adjustment. For each fabric, three
replicate prints per condition are produced on independent
days; reported metrics are across-day means to account for
day-to-day variability.
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4 Empirical results and effect analysis

4.1 Research data and sample construction
The data and samples used in this study cover three
dimensions: pattern files at the design end, physical sample
fabrics at the fabric end, and virtual rendering generation
data. Furthermore, a comprehensive dataset suitable for
deep learning training and validation was constructed.

In terms of design-end data, the pattern files mainly
come from high-resolution patterns exported by
professional clothing design software, with color modes
covering both sRGB and AdobeRGB standards, to ensure
that the model can learn the color mapping rules under
different color gamut conditions during the training process.
To facilitate model generalization, the pattern types are
classified into three categories: monochrome regular
patterns, multi-color gradient patterns, and complex
irregular patterns. Fifty samples were collected for each
category, forming a total of 150 pattern samples. These
samples not only include geometrically symmetrical
structures but also cover high-frequency textures and
irregular boundaries.

In terms of fabric samples, three typical materials,
namely cotton, silk and polyester, were selected. Among
them, cotton fabric includes both high-count and ordinary
count types, silk covers satin and crepe types, and polyester
includes both coated and untreated fabrics. All fabrics were
cut into standard sample fabrics of 2020 cm, and the
surface roughness, moisture absorption and whiteness
index were measured by textile testing methods. These
physical parameters not only provide a basis for material
adaptation experiments but also serve as one of the model
inputs features for training neural networks for
cross-material color prediction and resolution adaptation.
Cotton (plain weave, 150+5g/m?), silk (satin, 95+4g/m?),
and polyester (tricot, 130+5g9/m?) were sourced from the
same lots; surface roughness R, was measured on 5
positions per swatch and averaged.

In terms of virtual rendering data, this paper constructs
three-dimensional samples based on the CLO and
Browzwear platforms, mapping the design-end patterns to
three typical clothing patterns: T-shirts, dresses, and coats,
generating 120 sets of virtual samples. To link virtual and
physical outcomes, every virtual sample has a
corresponding 2020 cm printed counterpart using
identical pattern tiles and color profiles. These data are
used to evaluate the reliability of the deep learning
rendering enhancement model in the 3D proofing process.
Virtual samples have high controllability, can provide
diverse training data across styles, and at the same time
avoid the costs required for large-scale physical sampling.

It should be pointed out that this dataset still has
certain limitations: Firstly, the design-end samples mainly
come from software output, lacking multi-source pattern
inputs such as hand-drawn and scanned ones, which may
limit the model's performance in real creative scenarios;
Secondly, the types of fabrics are mainly concentrated on
common fibers and have not yet covered wool, linen and
blended fabrics, which imposes certain constraints on the
breadth of material compatibility. Thirdly, virtual
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rendering samples rely on the accuracy of existing physical
modeling and still have difficulty fully reproducing the
optical and mechanical properties in real wearing. The
above-mentioned limitations have to some extent affected
the generalizability of the experimental results and also
pointed out the direction for future dataset expansion and
model optimization. Train/val/test split is 70/15/15 per
pattern type and per material (cotton 30/7/8, silk 30/7/8,
polyester 30/7/8). Random seeds: {2024, 2025, 2026} for
three independent runs; All physical measurements were
conducted in a controlled laboratory at 23+2°C and relative
humidity 50%+5%after a 24 h pre-conditioning of printed
swatches. we report meanzstd over runs. Unless otherwise
stated, all quantitative results are reported as
meanzstandard deviation over three independent runs
(seeds {2024, 2025, 2026}). For pairwise comparisons we
use two-sided paired t-tests; for multiple comparisons
across methods, we use one-way ANOVA with Bonferroni
correction. Statistical significance is claimed at a=0.05.

4.2 Pattern processing and digital
preprocessing methods

To ensure the stability and comparability of different
pattern samples in the digital printing experiment, this
study designed a multi-level preprocessing and data
construction process, and optimized it in combination with
the input requirements of the deep learning model during
this process.

In terms of design-end processing, the format and
resolution of all pattern files are unified first. The original
data contains both vector graphics and bitmaps, and there
are significant differences between the two in terms of
accuracy and storage structure. To eliminate this difference,
vector graphics are uniformly exported in high-resolution
TIFF format, while bitmap samples are enhanced to the
target resolution through interpolation algorithms and
standardized to two levels: 600 dpi and 1200 dpi. All
exported images use 16-bit per channel precision and are
saved with embedded AdobeRGB (1998) ICC profiles to
avoid gamut clipping during RIP processing. This step
effectively eliminates the differences in file sources and
ensures the feature extraction capability of the deep
learning model under a unified standard.

In terms of color space processing, the original
samples have the problem of mixed use of sSRGB and
AdobeRGB. If they are directly input into the model or
printed, it will lead to inconsistent color gamut mapping.
To this end, all patterns are uniformly converted to
AdobeRGB, and a mapping table is established based on
the standard color card to enhance consistency across
devices and materials. Printer targets comprise a
1,728-patch chart uniformly sampling AdobeRGB; patch
spectral reflectance is recorded at 10° standard observer
under D65 with specular component excluded, and device
profiles are generated with tetrahedral interpolation.
Meanwhile, for patterns with transparent channels and
gradient effects, multi-channel color separation and edge
smoothing processing are adopted to ensure their
continuity in cyclic splicing and large-scale spreading. This
step is also of great significance for the subsequent
convolutional feature extraction of CNN, as edge
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smoothing can reduce the overfitting of the convolutional
layer to abnormal gradients.

In terms of data integrity restoration, interpolation and
smoothing filtering are adopted for missing or abnormal
pixel points to maintain overall continuity and visualization
effects. For extreme values of brightness or saturation, the
percentile truncation method is adopted to keep the values
within the 99th percentile, avoiding excessive interference
from abnormal samples on the training of the deep model.

In terms of the pretreatment of sample fabrics at the
fabric end, all samples undergo desizing, cleaning and
standardized sizing treatment before printing to reduce the
influence of surface impurities and uneven structure on ink
droplet diffusion.

In terms of dataset division, pattern samples are
divided into training sets, validation sets and test sets in a
ratio of 70%: 15%: 15%, and fabric samples are also
divided in the same way to ensure that all three types of
materials (cotton, silk and polyester) are covered. Virtual
rendering data is divided in chronological order. The
early-stage data is used for adjusting model parameters,
while the late-stage data serves as samples for effect
verification. To enhance the generalization ability of deep
learning models, data augmentation operations, including
random rotation, scaling, mirroring, and color perturbation,
are also added to the training set, thereby expanding sample
diversity and strengthening model robustness.Hardware
and runtime: training on 1xRTX 3090 (24 GB), AMD
5950X, 64 GB RAM.Printing is executed on a 1200 dpi
piezoelectric drop-on-demand engine using water-based
CMYK pigment inks; curing is performed at 150 Cfor 4
min with forced air followed by 24 h stabilization prior to
measurement. CNN color model: ~2.3 hours/120 epochs;
U-Net segmentation: ~3.1 hours/150 epochs; cGAN: ~4.5
hours/100 epochs. Peak GPU memory: 7.8 GB
(segmentation), 9.4 GB (cGAN); end-to-end inference per
pattern: 2.6 s (without virtual drape) / 5.8 s (with drape).

4.3 Design effect evaluation and aesthetic
feedback

In the experimental phase, this paper systematically
evaluated 150 design patterns, 90 fabric samples and 120
groups of virtual rendering samples respectively. The
evaluation system consists of two parts: objective
guantitative indicators and subjective aesthetic feedback. It
is used not only to verify the performance optimization
effect of deep learning models but also to examine their
perceived quality in practical design applications.

In terms of objective assessment, this paper selects
three core indicators: color difference (AE), structural
similarity index (SSIM), and edge sharpness index (ES).
Among them, AE, as the main criterion for color
consistency evaluation, has a threshold set at 2. The
experimental results show that under the conditions of 600
dpi resolution and adaptability pretreatment, the average
AE of cotton fabric samples is 1.78, that of silk is 1.95, and
that of polyester is 2.21, indicating that cotton fabric
performs the most stable in color reproduction. These
values are reported as meanzstd over three runs: cotton
1.7840.11, silk 1.95+0.13, polyester 2.21+0.15. Compared
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with the ICC+LUT baseline, the proposed method shows
significantly lower AE for all three materials (paired t-test,
cotton p=0.00, silk p=0.007, polyester p=0.004;
Bonferroni-corrected). The SSIM results show that the
average value of monochrome regular patterns reaches 0.94,
while that of complex gradient patterns remains around
0.87, indicating that deep learning models still have certain
detail loss in complex texture mapping. Specifically, SSIM
for monochrome regular patterns is 0.94+0.02and for
complex gradient patterns 0.87+0.03(n=3 runs). Both are
significantly higher than the ICC+LUT baseline (paired
t-test, p<0.01). The edge sharpness index test results show
that the edge transition under high-resolution conditions is
significantly better than that of the low-resolution group,
especially on polyester substrates, the difference is more
prominent.Edge sharpness is computed on 10 pre-defined
ROl windows per swatch using the gradient-based
modulation transfer function (MTF50) pipeline; the ROI
template is identical across methods and materials.At 1200
dpi the edge sharpness index improves from
0.78+0.04(baseline) to 0.91+0.03(ours) on polyester
(paired t-test, p=0.002).

For subjective assessment, a total of 15 professional
designers and 30 target consumers were invited to
participate in the questionnaire survey. Printed samples
were presented in a D65 light booth at 1000+501x with
neutral gray surroundings; the viewing distance was fixed
at 50 cm, and sample order was randomized per participant.
Participants rated samples on a 5-point Likert scale for
color fidelity, texture integrity, and overall aesthetics.
Designers’ average professional experience was
6.1+2.8years. All participants provided informed consent;
the study followed institutional guidelines for anonymous
data collection. Designers mainly focus on color fidelity,
texture integrity and cross-material compatibility, while
consumers pay more attention to overall aesthetics and
wearing experience. The feedback results show that in the
samples with AE < 2, the average satisfaction of designers
has increased by 18%. This increase corresponds to
4.10£0.36vs. 3.47+0.41 (ours vs. ICC+LUT), which is
statistically significant (paired t-test, p=0.009). Among the
samples with SSIM > 0.9, consumers generally rated the
naturalness of the patterns 0.7 points higher (out of 5).
Consumer naturalness ratings were
4.2240.31(ours)vs.3.52+0.38(ICC+LUT),  p=0.006after
Bonferroni correction. It is worth noting that the aesthetic
feedback results of virtual rendering are highly consistent
with the actual sample fabric, which indicates that the 3D
proofing system enhanced by deep learning can effectively
predict user acceptance during the design stage.

Overall, there is a significant positive correlation
between objective indicators and subjective aesthetic
feedback. Under the conditions of high-resolution output
and optimized material parameters, color consistency,
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pattern continuity and user satisfaction have all been
significantly improved. This not only demonstrates the
optimization effect of deep learning models at the
numerical level, but also verifies their application value in
the context of fashion design.

4.4 Ablation experiment and analysis of key
factors

To further verify the independent contribution and synergy

of each key module in the proposed digital printing solution

to the overall performance, this study designed a systematic

ablation experiment and evaluated its effectiveness in

combination with comparative experiments.

In the ablation experiment section, stripping tests were
conducted on the four core modules respectively: (DThe
basic model, with only the resolution control process
retained; (2)Remove the color management module;
(3)Remove the loop optimization module; (4)Remove the
virtual proofing module; (5)Remove the material
adaptation module; (6)A complete solution, including all
modules.In addition to ablations, we include an ICC+LUT
baseline that performs device characterization via standard
ICC profiles and a 3D lookup-table for RGB—-CMYK
mapping. The LUT is trained on printed color charts (1,728
patches) with least-squares fitting and tetrahedral
interpolation; no learning-based segmentation or rendering
is used.

The experimental results show that the average color
difference (AE) of the basic model on the cotton fabric
sample is 3.24, and the pattern continuity score is 3.1 (out
of 5 points). The ICC+LUT baseline yields AE
2.45%0.14(cotton), 2.62+0.16(silk), and
2.88+0.18(polyester), while our complete model achieves
1.8240.12, 1.98+0.13, and 2.05+0.15, respectively; all
pairwise differences are significant at p<0.01. After adding
the color management module, AE significantly dropped to
1.82, and consumer satisfaction increased by 17%. When
the loop optimization module was introduced, the pattern
splicing fracture rate decreased from 12% to 4%, and the
average edge sharpness index increased by 0.13. The
addition of the virtual proofing module has reduced the
number of revisions required by designers in the pattern
prediction stage by approximately 21%. The effect of the
material adaptation module is reflected in the
cross-material consistency. The AE values of the silk and
polyester samples decreased from 2.95 and 3.12 to 1.98 and
2.05 respectively. The average AE of the complete solution
on the three materials is controlled below 2.0, the edge
sharpness index reaches 0.91, and the SSIM value is 0.93,
demonstrating the best performance. Figure 2 shows the AE
comparison results after the stripping of different modules.
It can be seen that color management and material
matching contribute the most to the color fidelity of the
final product.
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Figure 2: Shows the comparison of average color differences of samples after stripping different modules

Further comparative experiments compare the
complete scheme proposed in this paper with three types of
methods: (1) Traditional screen printing; (2)Single digital
process (only resolution and color correction); (3)Existing
commercial digital printing systems. Durability was
assessed on cotton and polyester by laundering 5x5using
ISO 105-C06 (A2S) and by dry/wet rub fastness (ISO
105-X12); AE; was re-measured post-test and the relative
color change AE,.q,is reported. The results show that
traditional screen printing performs poorly in color
reproduction, with an average AE exceeding 4.0 and a
splicing fracture rate higher than 15%. Here SFR is
computed according to our definition in Section 3.2. Across
150 patterns, the proposed method reduces SFR to
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3.8%+0.9%vs. ICC+LUT 9.6%=1.7%and commercial
inkjet 6.8%x1.4% (ANOVA p<0.001, Bonferroni post-hoc
all p<0.01). The single digital process has a significant
improvement in color and detail representation, but it lacks
the support of material matching and virtual proofing, and
the differences across materials are significant. The
commercial system is close to the scheme proposed in this
paper in terms of color performance, but it is slightly
inferior in the compatibility of large-format splicing and
3D proofing. To ensure fairness, all competing methods
used the same TIFF inputs, identical RIP settings (black
generation and total area coverage 280%), and the same
pre-treat/cure schedule per substrate.
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Figure 3: Shows the performance comparison of different methods in terms of AE and splicing fracture rate

In addition, this study also conducted a fine-grained
analysis of the performance of different module
combinations under three typical patterns (monochrome
regular, multi-color gradient, and complex irregular). The
results show that cyclic optimization has the most

significant improvement effect on complex and irregular
patterns, increasing the SSIM value from 0.81 to 0.90. The
contribution of color management in multi-color gradient
patterns is particularly significant, with a decrease in AE
exceeding 35%.
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Figure 4: Shows the SSIM performance of three typical patterns under different module combinations

5 Discussion

5.1 Comparison with traditional printing

methods

To evaluate the advantages of digital printing solutions
based on deep learning in the creation of clothing patterns,

this paper selects three typical traditional printing methods
as comparison objects: screen printing, heat transfer
printing and commercial digital inkjet systems. The
contrast dimensions cover color fidelity, resolution and
detail representation, production efficiency, flexibility and
environmental friendliness. The results are shown in Table

Table 2 : Comparative analysis of digital printing and traditional printing methods

Color .
Printing Method Reproduction (AE Resolution Production Efficiency Flexibility
b Performance
. AE = 4.1 (High Low (150-300 High (suitable for Fixed templates, costly to
Screen Printing deviation) dpi) large-scale batches) modify
AE=3.2 . . . . .
e Tastr | (ocerate | METUTO00800 | M (s oot et s
deviation) P pap y yp
. . AE ~ 2.3 (Good High (600-1200 Medium-high (ideal for Handles multicolor and
Commercial Inkjet - . .
reproduction) dpi) small-medium runs) complex patterns
Proposed AE= 19 High (above 1200 | Adaptable, supports batch | Supports loop tiling and 3D
(Near-original - - . :
Workflow match) dpi) scaling virtual sampling

Values are reported as meantstd over three independent
runs. ‘Proposed Workflow’ refers to the full model with all
modules enabled; statistics for the commercial inkjet
system were collected on a mid-range 8-color device (1200
dpi) under identical test patterns.
In terms of color reproduction, screen printing is
limited by ink penetration and template precision, with AE
values generally greater than 4, making it difficult to meet
the requirements of high-precision design. Although heat
transfer printing can improve color performance, it has
obvious limitations in material compatibility. In contrast,
both commercial digital inkjet and the solution proposed in
this paper can control AE within 2.5. Among them, the
solution proposed in this paper combines CNN color
mapping and cross-material transfer learning to further

stabilize AE below 2.0,
requirements at the design end.

In terms of resolution and detail representation, screen
printing can only achieve low to medium precision, and
complex gradients or high-frequency textures are often
distorted. Heat transfer printing has improved, but it is still
limited in gradient transitions and texture gradation.
Commercial systems can support 600-1200 dpi, but there is
a risk of breakage in large-format splicing. The scheme
proposed in this paper performs best above 1200 dpi and
optimizes the cyclic units through a deep segmentation
network and energy constraint mechanism, significantly
improving edge sharpness and texture continuity.

In terms of production efficiency and flexibility,
screen printing is suitable for large-scale production but
lacks personalization, while heat transfer printing has a

meeting the consistency
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medium efficiency but is limited by the material.
Commercial systems and the solution proposed in this
paper are more suitable for small and medium-sized batch
personalized production. Among them, the solution
proposed in this paper significantly shortens the
design-production chain through GAN-driven virtual
proofing, supporting rapid iteration and flexible switching
between multiple batches. In terms of environmental
friendliness, screen printing ink wastes a lot, and heat
transfer printing requires additional transfer paper, both of
which impose environmental burdens.

5.2 The impact of digital technology on
creative efficiency and complexity

In the process of creating clothing patterns, efficiency and
complexity often present a contradiction: on the one hand,
designers need to complete the iteration of multiple layouts
and color combinations within a limited time; On the other
hand, complex pattern cycles, cross-material compatibility
and high-precision color correction will significantly
increase the processing time. To evaluate the performance
of the digital printing process based on deep learning
proposed in this paper in terms of the balance between
efficiency and complexity, this paper selects 50
monochrome regular patterns, 50 gradient patterns and 50
complex irregular patterns as test samples. The
performance of traditional screen printing, commercial
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digital printing systems and the scheme proposed in this
paper was compared in three dimensions: processing time,
cycle complexity adaptability and material compatibility.

In terms of processing time, traditional screen printing
requires additional steps such as plate making, ink mixing
and fabric testing, with an average time consumption of
nearly 48 hours. The commercial digital printing system
reduces the time to 12 hours through an automated process,
but manual correction is still required in the complex
pattern splicing stage. The deep learning-driven process
proposed in this paper automatically completes
large-format stitching through a loop optimization module
and provides real-time feedback in virtual proofing with
GAN rendering, further compressing the average
processing time to 8.5 hours.

In terms of complexity adaptability, traditional
processes have limited fidelity to multi-color gradients and
high-resolution details, with an adaptability score of only
2.1/5. Commercial systems can handle some complex
textures, but they perform poorly in cross-material
consistency. The solution proposed in this paper
significantly enhances the consistency of patterns across
multiple materials through resolution control and transfer
learning material adaptation. In the comparative tests of
cotton, silk and polyester, the AE values all remained
below 2.0, outperforming other schemes.

Table 3: Comparison of efficiency and complexity among different printing methods

. Avg. Processing Loop Complexity Cross-Material Color . S
Printing Method Time Adaptiveness (1-5) Matching (AE |) Design Flexibility
Screen Printing 48 hours 2.1 AE = 4.2 Low

Commercial 12 hours 3.4 AE=2.38 Medium
Digital Printing
Proposed Digital - .

Workflow 8.5 hours 4.6 AE=1.9 High

Average processing time is measured over 150 patterns;
‘Loop Complexity Adaptiveness’ is a 5-point Likert rating
by 15 designers (meanzstd). Between-method differences
are significant (ANOVA p<0.001).

The experimental results show that the digital process
proposed in this paper can significantly shorten the creation
time while ensuring high resolution and the fidelity of
complex patterns. Its high consistency and cross-platform
flexibility —under  multi-material conditions  fully
demonstrate the advantages of deep learning frameworks in
practical industrial applications.

5.3 Thoughts on scalability and
cross-platform applications
The scalability and cross-platform application value of
digital printing technology in the creation of clothing
patterns are the key links to promote its implementation
throughout the entire chain of design, production and
market. Unlike traditional screen printing which requires a
large number of fixed processes and dedicated equipment,
the digital process based on deep learning proposed in this

paper mainly consists of core components such as pattern
segmentation networks, color management models, and
virtual proofing engines. The hardware and software
resource requirements are relatively compact. For instance,
when running the complete pattern segmentation, CNN
color correction and GAN virtual rendering modules on a
standardized workstation, the memory usage s
approximately 200 MB, which can be seamlessly adapted
to mainstream textile CAD systems. This means that even
in the context of small and medium-sized clothing
enterprises or workshops with limited resources, this
solution still has relatively high feasibility.From an
industrial perspective, large-batch tests on 500 patterns
across cotton/silk/polyester show an average end-to-end
time of 8.7 h, compared to more than 40 h with traditional
screen printing, yielding nearly 80% reduction in lead
time.All scripts for preprocessing, RIP export, and metric
computation are version-controlled; configuration files and
ROI masks will be made available upon reasonable request
to support independent replication.

In multi-material and high-volume application
scenarios, the scalability of the system is particularly
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crucial. The experimental results show that when
processing 500 different patterns in batches, the average
processing time of the loop optimization and virtual
proofing module, supported by deep learning acceleration,
is approximately 8.7 hours, which is significantly lower
than the more than 40 hours of plate-making and debugging
cycle of traditional screen printing.  Although
high-precision color management and 3D rendering will
increase the computational burden, through model clipping
and resolution grading strategies, the computational
resource consumption can be reduced by approximately 20%
without significantly sacrificing pattern quality, thereby
enhancing the cross-platform applicability of the system.

In terms of cross-platform deployment models, the
digital printing process can be divided into two categories:
local processing and cloud-based collaboration. The local
end is suitable for small-batch and personalized
customization:  Designers can quickly complete
single-pattern processing and virtual sampling on laptops
or workstations. In cloud deployment, relying on GPU
servers and deep learning inference frameworks, the
system can achieve highly parallel batch pattern rendering
and material adaptation, making it suitable for large-scale
clothing enterprises to collaborate in the global supply
chain. However, the cloud model simultaneously brings
about operational costs and network latency issues,
especially in areas with limited bandwidth where usage
strategies need to be weighed.

To further enhance the scalability, this paper suggests
introducing lightweight technologies such as knowledge
distillation and model pruning, enabling the color
prediction and cyclic optimization network to operate
efficiently on low-configuration devices (such as tablet
terminals or embedded proofing machines), and lowering
the equipment threshold. Meanwhile, in the future, a
collaborative framework based on federated learning can
be explored, enabling design teams from different regions
to share model updates without transmitting the original
data. This will protect Copyrights and design privacy while
achieving cross-platform global collaboration.

5.4 Practical significance and potential
impact on industrial development
The proposed deep learning—based digital printing
technology demonstrated clear advantages in color fidelity
(AE<2.0) and efficiency (average processing time ~8.5 h
for complex patterns), highlighting its value across both
design and production stages. By reducing trial samplings
and manual corrections, it shortens the design—production
chain and supports rapid response, personalized
customization, and flexible small-batch manufacturing.

At the industrial level, the integrated modules of CNN
color management, deep segmentation, GAN proofing, and
transfer learning for material adaptation enable consistent
reproduction across fabrics such as silk and polyester,
strengthening brand competitiveness and reducing
coordination costs. Meanwhile, the approach contributes to
sustainable development by lowering ink waste and
chemical usage while improving utilization efficiency,
aligning with the textile industry’s low-carbon and digital
transformation goals. Its cross-platform compatibility
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further ensures deployment local
workstations to cloud clusters.

Looking ahead, this framework can accelerate
industrial upgrading by enabling real-time virtual preview
and cross-regional  collaboration, particularly in
e-commerce and customized production. Challenges
remain in large-scale, high-resolution processing, which
may be mitigated through lightweight models, pruning, and
edge computing strategies. In sum, the method enhances
technical precision while promoting creativity, efficiency,
and sustainability, laying a foundation for greener and
smarter textile manufacturing.

feasibility from

6 Conclusion

The core objective of fashion design lies in achieving an
efficient connection between creative expression and
industrial production, and printing technology is precisely
the key link in this chain. With the diversification of
consumer demands and the acceleration of digital
transformation in the fashion industry, the shortcomings of
traditional printing methods in terms of color consistency,
design flexibility and environmental friendliness have
become increasingly prominent. Digital printing
technology based on deep learning offers new solutions for
pattern creation and demonstrates significant advantages in
achieving high-precision  restoration, cross-material
adaptation, and rapid iteration.Future work includes
lightweighting, cloud deployment and interpretability;
overall, our deep-learning workflow supports greener,
faster, and more consistent textile printing across materials.
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