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The existing research mainly concerns on the static complexity measurement for service-based system, but
the dynamic features like execution behavior have been ignored. In this paper, we proposed a hierarchical
measurement framework for evaluating the complexity of Web services from the dynamic aspect. At the
level of single service, fluctuation rate is used to represent the QoS (Quality of Service) change during
service invocation. Then, a cumulative distribution function is used to measure the dynamic complexity
of service performance. At the system level, execution vectors and the corresponding probabilities can be
counted according to the trace set of system dynamic executions. Subsequently, the complexity of dynamic
execution behaviors can be calculated by the usage of entropy value. In addition, the rationality of above
metrics has been validated by the studies on two real applications.

Povzetek: Predlagan je hierarhični okvir za evalvacijo kompleksnosti dinamičnih spletnih storitev.

1 Introduction

In recent years, Web services have been widely utilized for
building distributed system over Internet. Different from
the traditional software paradigm, the rapid and on-demand
service composition in SOA (Service-Oriented Architec-
ture) cause a series of problems on the analysis, design and
maintenance of service system. Since some quantitative
information like the complexity metric is beneficial to the
software engineering activities, such as project cost estima-
tion, system testing, and fault repairing, it is necessary to
well understand the structure and behavior of service-based
software system. However, These service systems usually
run in the dynamic, heterogeneous and changeable envi-
ronment. As a result, how to measure the complexities of
them is a brand-new and challenge problem.

Almost all existing methods are concerned with system’s
static complexity. They used the models like BPEL (busi-
ness process execution language) [1, 2], Petri-Net [3] or
their variants to describe system logic. Subsequently, the
complexities of basic structure units in the business process
of service system are defined as atomic metrics. Based on
them, the structure complexity of whole service system is
calculated according to the aggregation mode among the
service units in composition logic. Although the execu-
tion probability of each branch is considered, the probabil-
ity obtained by counting historical data is still a relatively
static value. Therefore, the dynamic features of service
system, such as the replacement of service at run-time and
the business logic changes in service system evolution, are
hard to be depicted by the existing complexity measure-
ment framework. For this reason, we will mainly focus on
the complexity of service system from the perspective of

dynamic behaviors of service or system running.
In this paper, we proposed a framework to measure the

dynamic complexity at both single service level and service
composition level. For a single service, its dynamic fea-
ture is principally reflected by the quality variation along
with execution time. While considering the whole ser-
vice system, its dynamic behavior mainly lies in invoca-
tion sequence of services at each time of system execution.
Based on the above consideration, our framework investi-
gates the dynamic complexity of Web services in follow-
ing two aspects: For a single Web service, QoS (quality of
service [4]) records are collected in the run-time environ-
ments firstly, and then the uncertainty of QoS performance
is measured by statistical analysis. At the service com-
position level, the execution traces of Web service system
are the important information for measuring the dynamic
complexity. First, the traces of system dynamic execution
are collected by a monitor, which can be implemented by
aspect-oriented technology [5, 6]. Then, the records are
converted into vectors in accordance with the occurrence
of each service. Subsequently, the complexity computation
method is provided based on the above execution vectors
and Shannon entropy theory. Finally, the feasibility and ef-
fectiveness of above two kinds of metrics are validated by
two real applications.

The main contributions of this paper can be addressed as
follows.

(1) Take the variation of QoS as the dynamic feature of ser-
vice unit, we propose a statistical metric for depicting
the fluctuation of QoS records of a single Web service.

(2) Through collecting the execution traces of service sys-
tem, the diversification of system execution behaviors
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is measured by the entropy of execution vectors.

(3) Studies on two examples and two real applications are
performed to validate the effectiveness of our presented
measurements.

The structure of the paper is as follows. In the next sec-
tion, some existing complexity researches on Web services
that are closely related with our presented approach are
stated. In section 3, the dynamic complexity of Web ser-
vices is defined and discussed. The method for measuring
dynamic complexity of a single service is addressed in sec-
tion 4. Section 5 gives the measurement of dynamic com-
plexity for service composition. Meanwhile, sections 4 and
5 utilize an example to demonstrate the usage of the pro-
posed methods, respectively. Further, the proposed mea-
surements are validated by two real applications in section
6. Finally, section 7 concludes the paper.

2 Related work
How to understand and measure the complexity of Web ser-
vices has received much attention in recent years. For a
single Web service, some existing object-oriented metrics
have been adopted for measuring the complexity of service
interface [7]. In the aspect of application, some tools like
WSDAudit [8] have been developed for measuring service
interface files. These metrics perform the complexity anal-
ysis from the perspective of service code, so they can only
evaluate the complexity of a service for outside calling. Al-
though they can guide users to design the service invocation
code, it can not reflect the dynamic behaviors of Web ser-
vices.

Besides the consideration of static architecture complex-
ity [9], the studies on the complexity of business process
in service system have also been investigated [10]. Espe-
cially, Jorge Cardoso [1, 11] has done some very influen-
tial work in this direction. Similar to other related studies
[12, 13, 14], Cardoso’s work mainly concerns on the struc-
tural complexity of service system. First, the complexities
of basic structure units are defined. Then, system com-
plexity is calculated according to the aggregation mode of
these service units. In addition, cohesion/coupling metrics
[15, 16] and cognitive weights [17] are also used for mea-
suring the process complexity of service system. However,
all above methods are mainly concerned with system com-
plexity in static aspect. That is to say, all above methods
have a basic assumption that the composition architecture
of Web services is unchanged during the system execution.

Jung et al. [18] presented an entropy-based method to
measure the uncertainty of process models. Although they
have considered the execution probability of each branch,
the probability obtained by counting historical data is still a
relative static value, so it is difficult to evaluate the dynamic
complexity in a specific execution context. In addition,
the computation for the complex processes is quite com-
plicated. Recently, Martin Ibl and Jan Čapek use stochastic

Petri nets (SPN) to model the business processes [19]. They
map all reachable marking of SPN into the continuous-time
Markov chain and then calculating its stationary probabili-
ties, the uncertainty of a process model is then measured as
the entropy of the Markov chain. Like Jung et al.’s work,
theirs approach highly depends on the fixed architecture of
service system, and only analyze the static profile of possi-
ble state. These profiles are not the real behaviors produced
at run-time. Therefore, they are still belongs to the static
complexity model indeed.

In the past few years, the dynamic complexity measure-
ments for object-oriented design and software have been
extensively studied [20, 21]. However, the existing work
mainly concerns on the coupling between classes, objects
and methods. That is to say, the dynamic feature is reflected
by the interactions between objects. Since loose-coupling
and distributed are two notable characters of service sys-
tem, the information coupling between services is not very
worth taking into consideration while analyzing the com-
plexity of service system at runtime. In our solution, the
diversity (uncertainty) of execution traces is viewed as an
indicator of dynamic complexity of service system. Re-
cently, Lavazza et al. [22] evaluated quality attributes of
Web services through analyzing the specifications in form
of XML files. Although their quality attributes include dy-
namic indicators like coupling, most of them are extended
from the traditional static complexity metrics such as LOC
or McCabe cyclomatic complexity.

3 Dynamic complexity of web
services

The complexity analysis and measurement of software sys-
tem have been studied over four decades. At the early
stage, the related researches mainly focus on the static
properties of a software system, that is so-called static com-
plexity. Although the static metrics can quantify the com-
plexity of design or source code of a given application, they
are still insufficient in evaluating the dynamic behaviour of
the application at runtime [23]. Accordingly, dynamic soft-
ware metrics gradually become a growing research topic
in the filed of software measurement [24], especially for
object-oriented software [25].

As stated previously, the static complexity of service
system has been investigated from various aspects such as
control dependency or data dependency. However, the dy-
namic complexity for this new emerging software system
has not been fully exploited yet. Referring to the defini-
tions of dynamic software measures in [22, 26], here we
define the dynamic complexity of a Web service system as
the diversity of its execution behaviors in dynamic environ-
ment.

Definition 1. The dynamic complexity of Web services
(a single service or whole service system) can be defined
as the variability (or uncertainty) of execution behaviors.
That is to say, the less change of execution records means
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the lower complexity in dynamic aspect.
In the previous definitions about dynamic complexity,

such as Lavazza et al.’s work [22, 26], they mainly extend
the concepts of static metrics to quantify dynamic features
of execution traces or specifications represented by XML.
In their theoretical framework, the dynamic software met-
rics are still reflected by some basic and axiomatic issues
such as size, McCabe complexity, coupling, cohesion and
so on. However, when we measure the diversity of execu-
tion behaviours of Web services, the statistical indicators
(e.g., entropy) rather than static metric-like issues are in-
troduced here.

With regard to a single Web service, the dynamic fea-
tures are mainly reflected by its runtime performance, that
is quality of service (QoS). In order to measure the vari-
ability of service performance, QoS records should be col-
lected between the same time gap. Then, these records are
used for volatility analysis so as to scale the dynamic com-
plexity of service unit. In the paper, the distribution of fluc-
tuation rate and its cumulative function are used to measure
the uncertainty of Web service’s performance.

For service-based system, it is easy to see that the dy-
namic complexity involves not only system’s static struc-
ture but also the run-time scenarios including input data,
execution environment and observed results. As a result,
in order to precisely measure the dynamic complexity of
service system, the execution traces and system behaviors
should be recorded firstly. Then, the entropy of execution
vector partitions is referred as an indicator of dynamic com-
plexity .

According to the above definition, the dynamic complex-
ity in this paper mainly reflects the performance uncertainty
of single service or the diversity of service system execu-
tion behaviours. For a single service, service requesters
can use the dynamic complexity metric to make scientific
decision on service selection. In the application scenario
of service selection, it needs to choose the most satisfied
one from the functional equivalence set of services. From
the perspective of performance stability, services with the
lower dynamic complexity should be recommended as the
preferred candidates. For the whole service system, the
results of dynamic complexity are beneficial for software
developers and maintainers to understand the evolution of
service system or to perform rational system refactoring.

4 Dynamic complexity for a single
service

4.1 Measurement method

For a Web service, its QoS generally includes the following
issues [4]: response time, throughout, availability, reliabil-
ity, etc. For the sake of simplicity, we take response time
as an example to illustrate our method here.

Definition 2. For the QoS record set of a given service,

its fluctuation rate at time slot ti can be calculated as:

ri = |qi −Qi,δ|/Qi,δ (1)

where qi is the QoS value of the time slot ti, Qi,δ is the
mean value at the backward δ-step fragment w.r.t. qi, i.e.,

Qi,δ = (qi−δ + qi−δ+1 + · · ·+ qi−1)/δ (2)

In particular, Qi,δ = qi−1 if δ = 1.
It is not hard to find that, ri reflects the amplitude of QoS

change at the current time slot ti. In literature [27], Wang
et al. adopt the difference between qi and the mean of set
{qi} to represent the uncertainty of service performance.
However, this mode may fail to express dynamic complex-
ity when the QoS mean values of two services have a big
gap. In order to overcome this problem, we adopt the dif-
ference between service’s current QoS to the mean of the
latest consecutive QoSs to describe the fluctuation of ser-
vice performance.

Here, suppose a sequence of fluctuation rates R=
(r1, r2, · · · , rn) has been calculated by continuous moni-
toring on a given Web service. In order to measure the dy-
namic complexity of service performance, the distribution
of fluctuation rates should be counted. Given k partition-
ing points C=(c1, c2, · · · , ck), the cumulative partitioning
probability pj(1 ≤ j ≤ k) can be computed according to
formula (3). Here, c1 < c2 < · · · < ck.

pj =
|R(cj)|
n

, R(cj) = {ri|ri ≤ cj , 1 ≤ i ≤ n} (3)

where |R(cj)| represents the cardinality of set R(cj). Ob-
viously, R(cj) ⊆ R, 0 ≤ pj ≤ 1.

Accordingly, the dynamic complexity DCqos of a single
service can be expressed as follows.

DCqos = 1− p1 + p2 + · · ·+ pk
k

(4)

The meaning of the above dynamic complexity can be
intuitively explained in the way of graphical representa-
tion. As shown in Fig.1, X-coord. represents the units
from 1 to 5 (i.e., the ordinal number j in formula (3)), Y-
coord. represents the corresponding cumulative partition-
ing probability pj . The proportion of the grey area relative
to the whole 5×1 rectangular area approximately equals to
(p1 + p2 + · · ·+ pk)/k, so the proportion of the remaining
white part is DCqos. It is easy to see that, the more low-
amplitude fluctuation rate means the lower dynamic com-
plexity. For the two services in Fig. 1, DCqos of service 1
is obviously lower than that of service 2.

4.2 Example One
To validate the rationality of our proposed metric for a sin-
gle service’s dynamic performance, response times of two
Web services in a continuous period have been gathered
here. All 31 records for each service are illustrated in Fig.
2.
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(a)  Web service 1 (b)  Web service 2

Figure 1: The illustration of dynamic complexity metric.
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Figure 2: Response times of two sample Web services.

Here, we set δ to 1, so the fluctuation rate is calculated
by |qi − qi−1|/qi−1. Based on the above 31 records, 30
rates can be collected for each service, i.e. n = 30. In this
example, 9 partitioning points are utilized for dividing the
fluctuation rates, i.e. C = (0.01, 0.02, 0.05, 0.1, 0.2, 0.5,
1, 2, 5). Then, the partitioning probabilities of two services
(i.e., ws1 and ws2 in Fig. 2) can be calculated according to
formula (3). For the first service, {pj}ws1 = (0, 0.2, 0.57,
0.73, 0.9, 0.9, 0.97, 1.0, 1.0). For the second one, {pj}ws2
= (0, 0.07, 0.1, 0.3, 0.47, 0.7, 0.9, 0.9, 1.0). Therefore, the
dynamic complexities of two services are DCqos(ws1) =
0.3037 and DCqos(ws2) = 0.5074, respectively.

From the view of instinctive experience, ws2’s change
is more frequent and violent than that of ws1 in Fig. 2.
According to the results in this case, the above dynamic
complexity metric can exactly reflects the dynamic variety
of two different services’ performance.

5 Dynamic complexity for service
composition

5.1 Modeling and measurement

When measuring the behaviors of a whole system, exe-
cution records (a.k.a. traces) are the important source of
information for consideration. Based on our previous re-
search [28], the concept of execution trace can be defined
as below.

Definition 3. The execution trace of Web service system
can be defined as 2-tuple et = ({ws}+, fs), where {ws}+
= < wsi, wsj , . . . , wsk > is the ordered sequence of ser-
vice executions (i, j and k are the service ordinal numbers
in whole service set), fs is the final result (or state) of exe-
cution sequence {ws}+.

Generally speaking, fs is one of the following three
states: success (S), wrong result (W ) and failure (F , or
exception). Take the service system shown in Fig. 3
as an example, an execution of the system may be (<
ws1, ws2, ws3, ws5, ws2, ws4, ws5, ws7 >,W ).

ws1

ws2

ws3

ws4

ws5

ws6

ws7

Figure 3: An example Web service system WS1.

Definition 4. Given a service system contains m service
units, the execution vector of the system can be denoted as
a vector with length m + 1, i.e. ev = ({ws}m, fs). Here,
{ws}m is an occurrence list from service 1 to service m.

Obviously, any execution trace et can be converted into
an execution vector ev. (1) If wsj (1 ≤ j ≤ m) doesn’t
exist in et, the j-th value in ev (i.e. ev[j]) is 0. (2) If wsj
appears only once in et, ev[j]=1. (3) If wsj appears more
than one time in et, ev[j]=2. Thus, ev[j] ∈ {0, 1, 2}. For
the last element of ev, ev[m+ 1] ∈ {S,W,F}.

For the trace related with Fig. 3, the corresponding ex-
ecution vector can be expressed as (1, 2, 1, 1, 2, 0, 1,W ).
Here, the j-th (1 ≤ j ≤ m) number represents the oc-
currence frequency of wsj in the given execution trace.
According to the above definition, the frequency number
could only be the following three choices: 0, 1 or 2.

Definition 5. The execution partition of a Web service
system is a map structure ep = (ev, prob), where ev is an
execution vector of that system, and prob is the probability
of occurrence of ev in the set of system execution traces.

In Fig. 3, the diamond frame represents the branch struc-
ture. For the sample service system (denoted as WS1), the
execution partitions in a possible scenario can be gathered
and listed in Table 1. In this execution scenario, six exe-
cution partitions can run successfully. For the remaining
two, service system will produce the wrong result in one
case, and system will throw an exception in the other case.
For each execution partition, the corresponding probabil-
ity can be counted through collecting the traces during the
dynamic execution of system.

For a Web service system, once the execution traces
have been collected and the execution partition have been
counted, the complexity indicating system’s dynamic exe-
cution behaviors can be measured from the perspective of
information theory.
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Table 1: One possible execution partition set for the service system WS1.
No. ws1 ws2 ws3 ws4 ws5 ws6 ws7 fs prob

ep1 1 1 1 0 1 0 1 S 0.1
ep2 1 2 2 0 2 0 1 S 0.15
ep3 1 1 0 1 1 0 1 S 0.15
ep4 1 2 0 2 2 0 1 F 0.1
ep5 1 2 1 1 2 0 1 W 0.1
ep6 1 2 2 1 2 0 1 S 0.1
ep7 1 2 1 2 2 0 1 S 0.15
ep8 1 0 0 0 0 0 1 S 0.15

Suppose the execution partition set of a service system is
EP = {epi}, where epi = (evi, probi), then the dynamic
complexity of system execution can be calculated as below.

DCexe = −
|EP |∑
i=1

probi · log2 probi (5)

where |EP | is the cardinality of set EP . Obviously, 0 ≤
DCexe ≤ 1, the larger value of DCexe means more com-
plex execution behaviors of a given Web service system.

For the execution traces (ET ) of service system
WS1, its DCexe metric can be computed according
to the execution partitions shown in Table 1, that is,
DCexe(ETWS1) = −4 × 0.1 × log2 0.1 − 4 × 0.15 ×
log2 0.15 = 2.9710.

5.2 Example Two
In order to validate our entropy-based metric for system
dynamic execution behaviors, the following two cases are
studied here.

(1) Study on different execution traces. Here, suppose
service system WS1 runs in another context, so a new exe-
cution trace set ET ′ of system WS1 can be collected. In a
similar way, the execution partitions of this kind of execu-
tion can also be counted in Table 2. In the current scenario,
system behaviors do not exhibit as much diversity as to the
execution illustrated in Table 1. Intuitively, the dynamic
complexity in the latter execution scenario (i.e., ET ′) must
be lower than that in the former scenario (i.e., ET ).

For the second execution trace set ET ′, its dynamic
complexity can also be calculated according to the occur-
rence probabilities and formula (5).
DCexe(ET

′
WS1) = −3 × 0.1 × log2 0.1 − 2 × 0.2 ×

log2 0.2− 0.3× log2 0.3 = 2.4464.
According to the above results, relation

DCexe(ET
′
WS1) < DCexe(ETWS1) is workable. It

is not hard to find that, the metric computed by our method
is in very good agreement with the human cognitive.

(2) Study on different service systems. In order to demon-
strate the distinguishability of our measurement method for
different service systems, we performed the analysis on the
other system shown in Fig. 4. In this figure, symbol ‘‖’
represents the parallel execution relation, and the diamond

symbol is still for the choice relation. Since the execution
relation after service ws2 is a parallel structure, the execu-
tion behaviors of systemWS2 are much simpler than those
of WS1 according to the common sense.

ws1

ws2

ws3

ws4

ws5

ws6

ws7

Figure 4: The other example Web service system WS2.

Here, suppose the possible traces and the corresponding
partitions are shown in Table 3. Since the relation between
ws3 and ws4 is parallel, ws2, ws3, ws4 and ws5 must ap-
pear at the same time. Meanwhile, there is a loop fromws2
to ws5, so the occurrence frequencies of services between
them should be 1 or 2 in a consistent manner.

For the above traces of system WS2, i.e. ETWS2, its
dynamic complexity can also be calculated here. Through
comparing the metrics of WS1 and WS2, it is clear that
our proposed metrics can precisely reflect the actual situa-
tions.
DCexe(ETWS2) = −2 × 0.3 × log2 0.3 − 0.4 ×

log2 0.4 = 1.5710.

6 Empirical study on real
applications

Although the above two examples have demonstrated the
feasibility of our proposed methods for measuring the dy-
namic complexity of Web services, they are not from the
scenarios of real applications. Thus, it is necessary to val-
idate our methods on the cases from the real and public
benchmarks.

6.1 Study on service’s performance
In this section, the following research question should be
identified so as to confirm the effectiveness of our proposed
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Table 2: The other possible execution partition set for system WS1.
No. ws1 ws2 ws3 ws4 ws5 ws6 ws7 fs prob

ep1 1 1 1 0 1 0 1 S 0.1
ep2 1 2 2 0 2 0 1 S 0.2
ep3 1 1 0 1 1 0 1 S 0.1
ep4 1 2 0 2 2 0 1 F 0.1
ep5 1 2 1 1 2 0 1 W 0.2
ep6 1 0 0 0 0 0 1 S 0.3

Table 3: The possible execution partitions for system WS2.
No. ws1 ws2 ws3 ws4 ws5 ws6 ws7 fs prob

ep1 1 1 1 1 1 0 1 W 0.3
ep2 1 2 2 2 2 0 1 S 0.4
ep3 1 0 0 0 0 0 1 S 0.3

measurements.
RQ1: Can the dynamic complexity measurement for sin-

gle Web service precisely depict the fluctuation of QoS per-
formance?

To answer the above question, the public QoS records of
Web services are introduced in our experimental analysis.
WS-DREAM1 is a set of QoS datasets which are collected
from real-world Web services by Zheng et al. [29]. Here,
the third subset is used in this study. It contains the real-
world QoS evaluation results from 142 users on 4532 Web
services on 64 different time slots. For the limit of space,
we did not investigate the time-aware QoS records of all
users for all services. As similar in [30], the records of
user #9 for services #741 and #745 are used as benchmarks
in the experiments. The QoS records at 64 different time
slots of these two services are illustrated in Fig. 5, where
sub-figure 5(a) is for service #741 and sub-figure 5(b) is for
service #745. Through intuitively comparing the stability
of QoSs (i.e. response times here) of two services, it is easy
to see that service #745 is obviously complex than service
#741 from perspective of performance.

According to Equation (1), the fluctuation rate vectors of
the above two services can be calculated. Since the length
of time slots is 64, the length of each fluctuation rate vector
should be 63. In this case study, we also set the step-length
(δ) in Equation (1) as 1, that is to say, the fluctuation rates
of the considered two services are computed by means of
|qi − qi−1|/qi−1 (1 ≤ i ≤ 63). Based on the above cal-
culation, the sequence of fluctuation of services #741 and
#745 can be expressed as (0.0035, 0.0035, 0.0534, 0.1486,
0.5119, · · · ) and (6.0030, 0.8602, 5.4185, 0.0273, 0.3612,
· · · ), respectively.

Since the fluctuation rate of service #745 will exceed
five, the number of partitioning points which are used
to divide the fluctuation rates is assigned with 10. Ac-
cordingly, the set of partitioning points is designed as
C=(0.01,0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10). Based

1http://www.wsdream.com/dataset.html

on this partitioning, the cumulative partitioning probabil-
ities of these two services can be calculated respectively,
that is, {pj}#741=(0.0476, 0.0794, 0.1905, 0.3810, 0.5238,
0.8571, 0.9683, 0.9683, 1.0, 1.0) and {pj}#745=(0.0794,
0.0952, 0.2063, 0.4127, 0.5079, 0.5873, 0.7937, 0.9048,
0.9524, 1.0). Further, the dynamic complexities of
them can be achieved by applying Equation (4), i.e.,
DCqos(#741)=0.3984 and DCqos(#745)=0.4460. Ac-
cording to the above measurement results, service #741 is
more complex than service #745 with respect to QoS per-
formance. The relation between these two services is con-
sistent with the intuitive judgement.

Through the validation on real QoS dataset named WS-
DREAM, we can conform that the proposed metric for dy-
namic complexity of a single service is feasible and ratio-
nal.

6.2 Study on execution behaviours of service
system

Similarly, we also should investigate the research question
on the effect of dynamic complexity measurement for Web
service system.

RQ2: Can the dynamic complexity based on execution
vector and Shannon entropy scientifically measure the di-
versification of system execution behaviors?

Here, a subject application LoanDemo from the sam-
ples of Oracle BPEL Process Manager [31, 32] is adopted
for experimental analysis. The business logic of this ser-
vice system is described by BPEL, and the main pro-
cess is depicted by the file LoanFlow.bpel as shown
in the code listing 1 of reference [32]. In the main pro-
cess, UnitedLoanService and StarLoanService
are two composite services whose execution can be further
decomposed by a BPEL file. Here, for the sake of simpli-
fication, we only further describe the workflow process of
service StarLoanService by BPEL code (refers to the
code listing 2 in [32]).

The process of whole service system is depicted in Fig.
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(b) user #9 for services #745

Figure 5: The time period QoS feature of response time.

6(a), in which the oval node represents basic service unit,
the black strip stands for the parallel logical node and the
diamond box is for the branch logic. It should be noted
that, the workflow process includes both external services
and basic execution activities, here treat both of them as
the basic service units. Compared with the original version
(see Fig. 6(a)) of system logic, the updated system (refer to
Fig. 6(b)) considers the activity about exception handling
and the different treatment for VIP customers. Therefore,
two new services (i.e., S13 and S14) are added into the
workflow process of the updated system.

In order to compare the dynamic complexities between
the original and updated service systems, we firstly collect
(or simulate) the execution traces of each service system
separately, and then apply the metric defined in Section 5.1
to measure the complexity of each trace set. Here, we set
the number (N ) of execution traces as 20, and collect the
same size of traces for both service systems. In this case
study, we assume each service in LoanDemo system can
execute successfully, that is, the final results of all execu-
tion traces are S (success).

According to the definition 5, the above collected traces
of each service system can be formed as execution par-
titions. The corresponding partitions of original and up-
dated service systems are shown in Tables 4 and 5, re-

spectively. When the size of trace set (N ) is equal to 20,
the partitioning number (|EP |) is 2 for the original sys-
tem, and is 7 for the updated system. Based on the results
in Tables 4 and 5, we can further calculated the dynamic
complexities in the light of Equation (5). For the origi-
nal service system, its complexity DCexe(EToriginal) =
−0.55 × log2 0.55 − 0.45 × log2 0.45 = 0.9928. Simi-
larly, for the updated system, the corresponding complexity
DCexe(ETupdated) = 2.5016. Thus, we can say that the
updated service system is more complex than the original
one from the perspective of dynamic execution behaviors.
It it not hard to find that the conclusion is consistent with
the subjective judgement.

The above comparison is only performed on a case of
execution trace set. It should be noted that, given a num-
ber of trace set size, the collected trace sets may have
some minor variance. For this reason, we repeat the
above analysis 100 times and obtain the entropy distri-
bution of each system version. As shown in Fig. 7(a),
the mean of dynamic complexity for the original sys-
tem is 0.9721, and the corresponding value of the up-
dated system is 2.4125. Since the complexity of the orig-
inal system (DCexe(EToriginal)) is always less than or
equal to 1.0, and the complexity of the updated system
(DCexe(ETupdated)) is always higher than 1.5, the rela-
tion DCexe(EToriginal) < DCexe(ETupdated) is always
kept regardless of experiment trials.

While revisiting the updated service system, we find
that the number of possible execution paths is eight in
Fig. 6(b), however the partitioning number (|EP |) in
Table 5 is only seven. That is to say, the collected
execution traces are not sufficient to cover all possi-
ble execution scenarios. Due to this reason, we re-
peat the experiments for the case of N=50. In this
setting of trace set size, the dynamic complexities of
these two system versions are DCexe(EToriginal)=0.9857
and DCexe(ETupdated)=2.5790. Obviously, the relation
DCexe(EToriginal) < DCexe(ETupdated) can still be
kept here. Through comparing Figs. 6(a) with 6(b), we
can find that the distribution of dynamic complexity will
be more stable with the increase of trace set size. Take the
updated service system as an example, the distribution box
of updated system’s complexity in Fig. 6(b) is obviously
shorter than that in Fig. 6(a). That is to say, the complexity
result in case of N=50 is more credible than that in case of
N=20. However, the relation between the complexities of
two system versions usually will not be affected by the size
of execution trace set. On the other hand, the larger trace
set means greater effort on trace collection and complex-
ity computation. Therefore, we suggest to adopt a medium
scale to set the size number (N ) of trace set.

Based on the above observations, we can conclude that
the measurement based on execution vector and Shannon
entropy is suitable to measure the dynamic complexity of
Web service system.
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Figure 6: The business process of Web service system LoanDemo.

7 Conclusion
Although some studies on the evaluation of process com-
plexity in service system have been investigated, the met-
rics for understanding the dynamic complexity of system
behaviors are still very lack. In this paper, a two-level mea-
surement framework for assessing the dynamic variability
of Web services has been presented. At service level, the
uncertainty of service QoS is measured by continuous mon-
itoring and fluctuation rate statistic. At system level, the ex-
ecution traces are classified into vectors, then the entropy
of vector probabilities is calculated as the complexity indi-
cator of system execution behaviors. Finally, the effective-
ness of the proposed metrics has been evaluated by two real
applications.
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Appendix
The business processes of two composite services are
shown in the following two code listings. The code
is written in BPEL (Business Process Execution Lan-
guage) which is published by OASIS standard organiza-
tion to specify actions within business processes with Web
services. The process of the whole service application
(LoanDemo) is shown in the Listing 1, and the process of
subsystem StarLoanService is described by Listing 2.
The code except shadow lines represents the original busi-
ness logic, and the shadow part means the modified code in
the updated version of system.

The two process graphs in Fig. 6 are the corresponding
logic representations of the original BPEL code and up-
dated code, respectively. It should be pointed out that, be-
sides the external service units, the actions of task execu-
tion in BPEL code are also treated as atomic service nodes
in Fig. 6. At the same time, the updated code segments are
represented by the oval red nodes in process graph.
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Listing 1: The BPEL code of LoanDemo application.
<process name="LoanFlow" ...>
<partnerLinks>

<-- Include client, creditRatingService, UnitedLoanService and StarLoanService -->
...

</partnerLinks>
<variables>

<variable name="input" .../>
<variable name="crInput" .../>
<variable name="crOutput" .../>
<variable name="crError" .../>
<variable name="loanApplication" .../>
<variable name="loanOffer1" .../>
<variable name="loanOffer2" .../>
<variable name="selectedLoanOffer" .../>

</variables>

<sequence>
<receive name="receiveInput" partnerLink="client" portType="tns:LoanFlow" operation="initiate"

variable="input" createInstance="yes"/>
<scope name="GetCreditRating">

<-- Watch for faults (exceptions) being thrown from creditRatingService -->

<faultHandlers>

<catch faultName="services:NegativeCredit" faultVariable = "crError">

<assign> <copy> <from expression="number(-1000)"/>

<to variable="input" part="creditRating"/> </copy>

</assign>

</catch>

</faultHandlers>
<sequence>
<assign> <copy> <from variable="input" part="SSN"/> <to variable="crInput" part="SSN"/> </

copy>
</assign>
<invoke name="invokeCR" partnerLink="creditRatingService" portType="services:

CreditRatingService" operation="process" inputVariable="crInput" outputVariable="
crOutput"/>

<assign> <copy> <from variable="crOutput" part="rating"/> <to variable="input" part="
creditRating"/> </copy>

</assign>
</sequence>

</scope>

<scope name="GetLoanOffer">
<sequence>

<assign> <copy> <from variable="input"> <to variable="loanApplication"/> </copy>
</assign>
<flow>
<sequence>

<invoke name="invokeUnitedLoan" partnerLink="UnitedLoanService" portType="services:
LoanService" operation="initiate" inputVariable="loanApplication"/>

<receive name="receive_invokeUnitedLoan" partnerLink="UnitedLoanService" portType="
services:LoanServiceCallback" operation="onResult" variable="loanOffer1"/>

</sequence>
<sequence>

<invoke name="invokeStarLoan" partnerLink="StarLoanService" portType="services:LoanService
" operation="initiate" inputVariable="loanApplication"/>

<receive name="receive_invokeStarLoan" partnerLink="StarLoanService" portType="services:
LoanServiceCallback" operation="onResult" variable="loanOffer2"/>

</sequence>
</flow>

</sequence>
</scope>

<scope name="SelectOffer" variableAccessSerializable="no">
<switch> <-- If loanOffer1 is greater (worse) than loanOffer2 -->

<case condition="bpws:getVariableData(’loanOffer1’,’APR’) > bpws:getVariableData(’loanOffer2
’,’APR’)">

<assign> <copy> <from variable="loanOffer2" part="APR/> <to variable="selectedLoanOffer"
part="APR"/> </copy>

</assign>
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</case>
<otherwise>
<assign> <copy> <from variable="loanOffer1" part="APR"/> <to variable="selectedLoanOffer"

part="APR"/> </copy>
</assign>

</otherwise>
</switch>
</scope>

<invoke name="replyOutput" partnerLink="client" portType="tns:LoanFlowCallback" operation="
onResult" inputVariable="selectedLoanOffer"/>

</sequence>
</process>

Listing 2: The BPEL code of service StarLoanService.
<process name="StarLoanService" ...
<partnerLinks>

<partnerLink name="LoanFlow" .../>
<partnerLink name="IDCheckService" .../>

</partnerLinks>
<variables>

<variable name="loanApp" .../>
<varaible name="sNumber" .../>
<varaible name="crdRate" .../>
<variable name="apRate" .../>
<variable name="loanOffer" .../>

</variables>

<sequence>
<receive name="receive_loanApplication" partnerLink="LoanFlow" portType="services:LoanService"

operation="initiate" variable="loanApp" createInstance="yes"/>
<assign><copy><from variable="loanApp" part="SSN"/> <to variable="sNumber"/></copy>

<copy><from variable="loanApp" part="creditRating"/> <to variable="crdRate"/> </copy>
</assign>
<invoke name="invokeIDCheck" partnerLink="idCheckService" portType="services:IDCheckService"

operation="idCheck" inputVariable="sNumber" outputVariable="idStatus"/>
</sequence>

<sequence>

<if> <condition idStatus = "vip" crdRate="high"/>

<assign> <copy> <from expression="number(0.0015)"/> <to variable="apRate"/></copy>

</assign>

<else>
<assign> <copy> <from expression="number(0.002)"/> <to variable="apRate"/></copy>
</assign>

</if>
<assign><copy><from variable="apRate"/> <to variable="loanOffer" part="APR"/></copy>
</assign>

<invoke name="replyLoanService" partnerLink="LoanFlow" portType="services:LoanServiceCallback"
operation="onResult" inputVariable="loanOffer"/>

</sequence>
</process>


