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In modern smart canteens, accurate personalized recommendations and robust security are essential for 

operational efficiency and user satisfaction. Traditional systems often face low accuracy, delayed response, 

and weak data protection. This study proposes an e-Cantong smart canteen system that integrates deep 

neural networks (DNNs) for feature extraction, reinforcement learning for adaptive path optimization, and 

a real-time feedback mechanism to dynamically adjust recommendations to changing user demands and 

environments. For security, a layered framework combining AES encryption, user authentication, and role-

based access control is designed to ensure privacy and stability under high concurrency. Experiments on 

cafeteria operation records and user behavior datasets demonstrate 91.3% recommendation accuracy and 

1.5-second inference latency, with stable performance in large-scale scenarios. The innovation lies in 

unifying adaptive recommendation and multi-level security, offering a practical path for intelligent canteen 

management that enhances efficiency, resilience, and user experience in complex environments.  

Povzetek:Članek predstavi sistem e-Cantong, ki združuje globoke nevronske mreže, utrjevalno učenje in 

realnočasni povratni mehanizem za prilagodljivo priporočanje v pametnih menzah. Večnivojska varnost z 

AES, avtentikacijo in RBAC zagotavlja veliko zanesljivost. 

 

 

1  Introduction 

With the rise of smart catering, traditional cafeteria 

management methods are facing many challenges, such as 

food waste, inaccurate dish recommendations, and long 

queuing times. To enhance operational efficiency and user 

experience, the intelligent recommendation system has 

become one of the key technologies in smart cafeteria 

management. However, most of the existing 

recommendation systems rely on traditional collaborative 

filtering or content recommendation algorithms, which 

cannot effectively cope with the frequently changing user 

demands and environmental changes, resulting in 

insufficient recommendation accuracy and slow response 

speed. 

To enhance the performance of intelligent 

recommendation systems, this paper proposes an intelligent 

recommendation algorithm based on deep learning and 

optimizes it in combination with an adaptive mechanism. 

This algorithm, through in-depth mining of users' historical 

dining records, dietary preferences, health needs and other 

information, can accurately predict users' demands and 

provide real-time feedback to adjust the recommendation 

results. Compared with traditional recommendation 

systems, this study adopts deep neural networks for multi-

level feature extraction. By automatically learning the 

complex relationship between user behavior and dishes, it 

improves the accuracy of recommendations and the 

response efficiency of the system. Panwar et al. (2024) 

proposed an intelligent time-series food recommendation 

system based on support vector machines, which can make 

personalized recommendations according to users' time 

perception needs, improving the accuracy and response 

speed of recommendations [1]. Andrade-Ruiz (2024) 

explored the application prospects of smart city 

recommendation systems, emphasizing their potential in 

enhancing urban service efficiency and user satisfaction [2]. 

In addition, Felfernig et al. (2023) proposed a sustainable 

recommendation system, presenting a multi-objective 

optimization scheme based on recommendation algorithms 

for the fields of resource management and environmental 

protection [3]. Bondevik J N (2024) conducted a systematic 

review of food recommendation systems, analyzed the 

challenges and prospects of existing technologies, and 

proposed directions for further optimization [4]. 

Hamdollahi Oskouei et al. (2023) developed FoodRecNet, 

a comprehensive and personalized food recommendation 

system that integrates users' dietary habits and health needs, 

significantly enhancing the personalization and accuracy of 

recommendations [5]. 

With the growth of user information and dining data, 

privacy protection and system security have become urgent 

challenges. Traditional architectures provide static defense 

but lack real-time monitoring. This raises two key 

questions: ①Can a multi-level framework combining 

encryption, authentication, and access control deliver 

stronger protection under high concurrency? ②Can it 
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ensure robust security while maintaining efficiency and 

responsiveness? 

The innovation of this research lies in the combination 

of the optimization of intelligent recommendation 

algorithms and the design of security architecture, 

proposing a more efficient, accurate and secure 

recommendation system. This system can not only make 

personalized recommendations based on user needs, but 

also provide real-time feedback to adjust the 

recommendation path, adapting to the dynamic changes in 

user demands. Meanwhile, the design of the security 

architecture ensures the security of user information and 

guarantees the stability and reliability of the system in 

complex environments. 

 

2  Relevant work 

In the management system of smart canteens, traditional 

recommendation methods rely on static data and preset 

rules, making it difficult to cope with the dynamic changes 

in user demands and the environment. This results in low 

recommendation accuracy, slow response, and a lack of 

personalized services. Especially when dealing with 

frequent changes in dishes, rapid shifts in user preferences 

and seasonal demands, the limitations of the existing 

system are particularly evident. Therefore, how to enhance 

the real-time performance and adaptability of the 

recommendation system through flexible and dynamic 

algorithms has become a major challenge in the 

management of smart canteens. 

In recent years, intelligent recommendation algorithms 

have made remarkable progress in multiple fields, 

especially in recommendation systems based on deep 

learning. Zhang et al. (2022) proposed a multi-objective 

optimization recommendation system. For the food 

recommendation scenario, by integrating multi-objective 

optimization algorithms, the efficiency of the 

recommendation system in resource management was 

significantly improved, and the sustainability of the system 

was enhanced [6]. Although this method effectively 

integrates multi-source data, in an environment with high 

dynamic changes, the adaptability and response speed of 

the system still have certain limitations. Li et al. (2018) 

studied the application of intelligent recommendation 

technology in the catering industry and proposed a 

restaurant food selection method based on intelligent 

recommendation, further promoting the development of 

catering recommendation systems in personalized services 

[7]. 

This system provides an important idea for 

personalized recommendation and data protection of 

multiple users in the intelligent cafeteria. This method can 

provide more precise recommendations based on the needs 

of different users. To provide a clearer comparison of 

existing studies, Table 1 summarizes representative 

methods, datasets, performance, and limitations, 

highlighting how the proposed approach outperforms prior 

work in accuracy, responsiveness, and security for smart 

canteen recommendation systems. 

 
Table 1: Summary of related works on recommendation systems for smart canteens 

 

Reference Method / Model Dataset Used Performance Limitation 

Panwar et al. 
(2024) [1] 

SVM-based time-aware 
recommendation 

Food consumption 
records 

Acc. ≈ 85% Poor adaptability 

Felfernig et al. 
(2023) [3] 

Multi-objective 
optimization 

Sustainability datasets Acc. ≈ 82% 
Trade-off between 

goals 

Hamdollahi 
Oskouei et al. 

(2023) [5] 

FoodRecNet 
(personalized) 

Dietary & health data Acc. ≈ 88% 
High computation 

cost 

Li et al. (2018) [7] 
Food choice 

recommender 
Restaurant user data Acc. ≈ 80% Limited scalability 

This paper 
DNN + RL + AES 

security 
Cafeteria & user data 

Acc. 91.3%, latency 
1.5s 

Need wider 
validation 

As shown in Table 1, existing recommendation 

systems vary in methods, datasets, performance, and 

limitations. Earlier approaches, such as SVM or 

optimization models, achieved moderate accuracy but 

faced issues of adaptability, scalability, or high 

computation. The proposed method, combining DNNs, 

reinforcement learning, and AES-based security, attains 

higher accuracy, faster response, and stronger protection, 

offering a more comprehensive solution for smart canteen 

management. 

Although the existing recommendation systems have 

made considerable progress, they still face the problems of 

data privacy protection and security guarantee. Most 

traditional security architectures offer static protection and 

lack dynamic monitoring and real-time feedback. With the 

increase in data volume in smart canteens, how to ensure 

user privacy security and system stability has become a key 

issue in the design. 

This paper proposes an intelligent recommendation 

algorithm that combines deep learning with adaptive 

mechanisms, and on this basis, designs a multi-level 

security architecture, aiming to improve recommendation 

accuracy, response speed and system security. By deeply 

mining users' historical dining records, dietary preferences 

and health needs, the system in this paper can adjust the 

recommendation results in real time to ensure that the 

recommendations match the dynamic changes in users' 

needs, and guarantee the security of user data through 

security protection mechanisms. 
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3  Optimization of the intelligent 
recommendation algorithm and 
design of the security architecture 
for e-Cantong smart canteen 

3.1  Personalized recommendation and user 
demand analysis 

This paper studies the problems of "insufficient 

recommendation accuracy and lagging response" in the 

smart cafeteria management system, and proposes a 

personalized recommendation method based on multi-

dimensional information such as users' historical dining 

records, health needs, and dietary habits, aiming to improve 

the system's response speed and recommendation accuracy. 

To this end, deep learning models and adaptive 

mechanisms are adopted, and simulation and comparative 

experiments are conducted in combination with actual user 

data to optimize the performance of the recommendation 

algorithm in complex environments. 

To ensure reproducibility, this study adopts a deep 

neural network (DNN) with four hidden layers (256, 128, 

64, 32) using ReLU activations and a sigmoid output. User 

and dish embeddings are set to 64 dimensions. The model 

is trained with Adam (learning rate 0.001), batch size 128, 

for up to 200 epochs, with early stopping (patience 15). 

Regularization includes dropout (0.2) and L2 penalty 

(λ=0.001). The mean squared error (MSE) between 

predicted and actual ratings is minimized, ensuring stable 

convergence and reproducible training. 

To achieve personalized recommendations, the system 

first analyzes the user's needs. Specifically, the system 

calculates the user's potential needs based on factors such 

as their historical dining records, healthy dietary 

requirements (such as low salt, low fat, etc.), allergy 

information, and meal time periods, and adjusts the 

recommendation results in real time. The recommendation 

system accurately predicts user behavior through deep 

learning models and adaptive mechanisms. During the 

analysis process, the system conducts feature extraction 

based on user historical data, constructs user feature 

vectors, and aims to minimize errors to enhance 

recommendation accuracy. Deep learning models can 

identify potential relationships such as user preferences and 

food ingredient demands, thereby enhancing the system's 

response speed and recommendation accuracy. 

In personalized recommendation algorithms, the main 

task is to recommend the dishes that best meet the needs of 

each user. Based on the methods of collaborative filtering 

and deep learning, the model achieves recommendations 

through the matching of user feature vectors with dish 

feature vectors. Let the user feature vector be

 nuuuu ,…,, 21=
, where iu

 represents the i  feature 

of a user, such as age, preference score, or dietary habit. 

Similarly, the dish feature vector is defined as

 mdddd ,…,, 21=
, where jd

denotes the 
j

 feature 

of a dish, such as calories, taste type, or nutritional attribute. 

The objective of the model is to predict the user's interest 

value of udr
for a certain dish by calculating the similarity 

between u and d . This interest value reflects the degree 

of personalization of the recommendation. The formula is 

as follows: 

du

T

ud bbdur ++=
           （1） 

Among them: udr
 is the predicted rating of Dish d

given by User u . duT

is the inner product of the user 

feature vector and the dish feature vector, which reflects 

the user's preference for the dish. ub
and db

are the 

deviation items for users and dishes respectively, which are 

used to capture the baseline ratings of users and dishes. By 

calculating the inner product of u and d , the model can 

predict users' ratings of different dishes and, based on this, 

achieve personalized recommendations. The larger the 

internal product, the higher the user's interest in the dish, 

and the recommendation system will give priority to 

recommending these dishes. 

To enhance the accuracy of personalized 

recommendations, the system has also introduced a 

dynamic feedback mechanism to monitor users' feedback 

on recommended dishes in real time and automatically 

adjust the recommendation strategies. The system 

optimization objective is to minimize the following mean 

squared error (MSE) loss function over all users Uu  

and dishes Dd  : 

( ) ( )222
ˆ

1
dury

DU
L

Uu Dd

udud ++−= 
 



  (2)  

where 
U

and
D

denote the number of users and 

dishes, respectively. udy
is the actual feedback from User 

uuu on Dish d . udr̂
is the predicted rating calculated by 

the previous formula. The regularization adopts L2 penalty 

on user and dish embeddings to control model complexity, 

with 001.0= selected via cross-validation to balance 

predictive accuracy and parameter stability. This MSE-

based formulation ensures that the optimization is 

performed across all user–dish interactions, balancing 

predictive accuracy with parameter stability. 

This work focuses on enhancing the personalized 

recommendation accuracy and response speed of the smart 

canteen recommendation system, especially in addressing 

the dynamic changes in user demands and the complexity 

of the environment. Based on the existing recommendation 

algorithms, this paper adds details such as system 

implementation and integration. Specifically, the logical 

information layer is built on the MySQL database and Flask 

interface service, and is used to maintain the parameters of 

the recommendation model and receive user data input. The 

algorithm layer mines users' historical data, health needs, 

dietary habits and other information through deep neural 

networks to ensure the accuracy and real-time feedback of 

recommendation results. 
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To enhance the real-time performance and accuracy of 

the system, WebSocket and Kafka are employed for real-

time data interaction and asynchronous message passing. 

Kafka message queues enable asynchronous transmission 

and caching, while synchronous marker points sampled 

every 5 seconds ensure temporal alignment. Experimental 

tests show that the average end-to-end latency remains 

within 1.5 s under a peak load of 10,000 messages per 

second, and data consistency is maintained with a loss rate 

below 0.3%. These results confirm that the combination of 

WebSocket and Kafka not only ensures stable real-time 

transmission but also provides reliable support for high-

concurrency personalized recommendations. Corrections 

are made through timestamps to ensure the consistency and 

accuracy of information. To further enhance the 

recommendation efficiency, this paper introduces 

reinforcement learning methods to optimize the 

recommendation path and combines the improved A* 

algorithm and load balancing strategy to generate 

personalized recommendation paths. 

3.2  Construction of intelligent 
recommendation algorithm 
optimization model 

In the intelligent cafeteria management system, the 

recommendation of meals is confronted with complex 

issues such as the diversity of user demands, limited 

environmental resources, and real-time scheduling. 

Traditional recommendation systems usually adopt static 

models and make recommendations based on users' 

historical behaviors. However, this approach is difficult to 

cope with the ever-changing user demands and the 

complexity of resource scheduling. To address this issue, 

this study proposes an intelligent recommendation 

algorithm optimization model based on deep learning and 

reinforcement learning, reconstructs the model paradigm of 

the recommendation system, and forms a recommendation 

algorithm system with dynamic feedback, adaptive 

adjustment, and resource scheduling capabilities. 

In this model, each meal recommendation task is 

defined as a unit with user input features, meal output 

targets, resource requirements, and user demand 

dependency logic, and its executable conditions and 

operational status are synchronized in real time through the 

system. Compared with the shortcomings of the 

recommendation algorithm in the traditional model, such as 

no perception of user behavior changes and fixed 

recommendation paths, the optimized recommendation 

algorithm possesses three key capabilities: state perception, 

path adjustment, and multi-source adaptation. It can 

automatically determine whether the recommendation 

conditions are met in actual operation based on changes in 

user needs, the occupation of system resources, and 

environmental changes. This then triggers the next 

recommendation strategy. Table 2 lists three types of core 

structural features and briefly explains their manifestations 

in intelligent recommendation algorithms:

 
Table 2: Core structural characteristics of intelligent recommendation algorithms 

 

Feature Type Expression Method Functional Role 

State Expression 
User historical data, real-time feedback 

mapping 
Accurately determines user needs and the 
completion of recommendation conditions 

Dependency 
Construction 

Setting the relationship between user 
needs and dish features 

Supports multi-user concurrency, dish feature 
condition triggering 

Resource Mapping 
Dynamic resource scheduling 

mechanism 

Real-time binding of dish recommendations and 
resource scheduling (such as inventory, equipment, 

etc.) 

In terms of state expression, the system sets the 

specific start-up conditions and expected recommendation 

results for each recommendation task based on multi-

dimensional perception data such as user historical data, 

dietary habits, and allergen information, ensuring the real-

time and personalized nature of the recommendation 

process. In terms of dependency construction, the 

dependency relationship between user requirements and 

meal characteristics is transformed into an edge 

relationship in the graph structure and updated in real time 

in the recommendation engine to dynamically generate the 

optimal recommendation path. In terms of resource 

mapping, when each recommendation task is triggered, it 

will be bound and allocated based on the currently available 

cafeteria resource pool (such as dish inventory, equipment 

usage, etc.), thereby avoiding delays or system bottlenecks 

caused by insufficient resources. 

From the deployment perspective, this optimization 

model has been integrated into the core logic of the 

recommendation engine. By connecting with the data bus 

of the cafeteria management system, it realizes real-time 

task status synchronization, dependency evolution, and 

closed-loop management of execution feedback. Through 

the feedback mechanism, the system can dynamically 

adjust the recommendation strategy to adapt to the 

constantly changing demands and resource conditions. To 

enhance the reproducibility of the model, this paper 

provides pseudo-code for the recommended path selection 

process: 

Input: UserDemandList, ResourceStatus 

For each task in UserDemandList: 

    # Priority calculation with weighted preference 

and urgency 

    priority = w1 * task.preference + w2 / 

task.time_slot   

    # Node selection considering load and distance 

    Select node = argmin [ C(node, task) ] 

    # Task assignment 

    Assign task → node   

    # Update resource status 
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  ResourceStatus[node]=ResourceStatus[node] - 

task.resource_need 

End For 

The cost function is formally defined as: 

( ) tnn DLtnC ,, += 
          (3) 

where nL
is the normalized load of node nnn (scaled 

to [0,1]), tnD , is the Euclidean distance between node nnn 

and task ttt, and 
，

are tunable coefficients balancing 

load efficiency and task affinity. 

This algorithm combines user preferences, time period 

requirements and resource loads to dynamically optimize 

the recommended path.This study applies the improved A* 

algorithm combined with a load balancing strategy for path 

optimization. The total evaluation function is defined as: 

 

( ) ( ) ( ) ( ) ( )nLwnRwnTwnhnf +++= 321 (4) 

where
( )nh

 is the heuristic estimate of remaining cost,

( )nT
is the expected delay, 

( )nR
is the resource 

consumption (CPU, memory, inventory), and 
( )nL

 is the 

system load imbalance across computing nodes. The 

weights 321 ,, www
control the relative importance of delay, 

resource usage, and balance. This formulation integrates 

path search with resource-aware load balancing, ensuring 

both recommendation accuracy and system stability under 

high concurrency.The system also introduces a real-time 

monitoring mechanism to track the execution status of 

recommendation tasks. When abnormal situations such as 

task failure, path conflicts, and resource congestion are 

detected, the scheduling engine is automatically triggered 

for rescheduling, and the task distribution strategy is 

reconstructed to ensure the stability and adaptability of the 

system. 

3.3  Real-time feedback and adaptive 
mechanism of intelligent 
recommendation system 

In the e-Cantong Smart Canteen recommendation system, 

the changes in user demands and the dynamic nature of 

canteen resources require that the recommendation system 

not only provide personalized recommendations but also 

possess real-time feedback and adaptive adjustment 

capabilities. The recommendation system should be 

capable of dynamically adjusting the recommendation 

strategy based on real-time feedback from user demands 

and environmental changes, thereby ensuring the accuracy 

and response speed of the recommendation results. To this 

end, this study proposes an adaptive mechanism based on 

the combination of deep learning and reinforcement 

learning, which can be optimized and adjusted in a rapidly 

changing environment. 

The real-time feedback mechanism is one of the core 

components of this system. The system collects users' 

behavioral data in real time, including clicks, ratings, meal 

selections, etc., and processes it as feedback signals. Every 

time a user provides feedback, the system will update the 

user profile and adjust the recommendation strategy. When 

a user selects a certain dish, the system will dynamically 

adjust the recommendation result based on the user's choice 

and rating, so as to better meet the user's needs. This 

mechanism ensures that the system can respond promptly 

to changes in user demands and enhance the 

personalization and accuracy of recommendations. 

The adaptive mechanism optimizes the 

recommendation path via Q-learning, where the task is 

modeled as a Markov Decision Process (MDP)

( ),,,, PRAS
. S  denotes states (user profiles, dish 

attributes, system resources), A  actions (candidate 

recommendations), R  the reward from user feedback 

(clicks, ratings, repeated selections), P  state transitions, 

and 


the discount factor. The discount factor is fixed at γ 

= 0.95, the learning rate at α = 0.01, and an ε-greedy 

strategy with ε = 0.1 balances exploration and exploitation. 

Training is executed over 500 episodes, each iterating 

through logged user–dish interactions. The Q-value is 

updated by the Bellman equation: 

( ) ( ) ( ) ( ) asQasQrasQasQ
a

,,max,, −++



 (5) 

where Ss is the current state, Aa  the chosen 

action, r  the reward, s  the next state, and   the 

learning rate. Reward shaping integrates immediate signals 

(clicks, ratings) with long-term metrics (engagement, 

reduced waiting time), enabling adaptive path optimization 

and real-time accuracy under dynamic user demands.To 

integrate with supervised deep models, the Q-network 

shares the embedding layer of the DNN, ensuring 

consistent representation learning and clarifying the 

interaction between reinforcement learning and feature 

extraction. 

To further enhance the adaptive ability of the 

recommendation system, a dynamic resource scheduling 

mechanism has been introduced into the system. This 

mechanism monitors resource information such as meal 

inventory and equipment usage in real time. When 

resources are insufficient or in conflict, it automatically 

adjusts task priorities to avoid delays and optimize 

recommended paths. In this way, the recommendation 

system can maintain efficient operation and avoid resource 

conflicts when facing high-concurrency tasks.
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Figure 1: Flowchart of real-time feedback and adaptive mechanism of intelligent recommendation system 

 
Figure 1 shows how an intelligent recommendation 

system updates user profiles and adjusts recommendation 

strategies through reinforcement learning algorithms by 

collecting user feedback and behavior data in real time. The 

system makes adaptive adjustments in real time based on 

user demands and feedback to optimize the recommended 

path. Whenever changes in the environment or user 

requirements are detected, the system can dynamically 

optimize the recommendation strategy through 

reinforcement learning. Through this real-time feedback 

and adaptive mechanism, the recommendation system of e-

Cantong Smart Canteen can respond promptly to user 

demands and resource changes, ensuring efficient and 

accurate personalized recommendations in complex and 

dynamic environments. 

3.4  Security architecture design of e-
cantong smart canteen 

In the intelligent recommendation system of e-Cantong 

Smart Canteen, system security is crucial, especially in 

multi-user interaction and data sharing scenarios, which 

involve user data protection and resource scheduling 

security. Traditional recommendation systems usually lack 

a unified security architecture, which may lead to data 

leakage, information tampering or malicious attacks on the 

system. To this end, this study proposes a comprehensive 

security architecture design that combines multi-level data 

encryption, permission management, and real-time 

monitoring mechanisms to ensure the security of the 

recommendation system in a high-concurrency and multi-

level interaction environment. 

The security architecture of e-Cantong Smart Canteen 

adopts a layered protection mechanism with an explicit 

threat model covering internal (unauthorized staff) and 

external adversaries (MITM, brute-force). AES-256 in 

GCM mode ensures confidentiality and integrity, with keys 

stored in an HSM and rotated via TLS channels. TLS 

mutual authentication and RBAC enforce fine-grained 

access control.Security performance was measured: AES-

GCM added 0.15s ±0.02 per 1,000 records, TLS raised 

CPU usage by 3.2% ±0.4, and end-to-end latency remained 

under 1.8s. Privacy is enhanced through federated learning 

and differential privacy. Penetration testing confirmed 

resilience against replay, SQL injection, and privilege 

escalation. These results verify robustness and efficiency 

under high-concurrency scenarios.Penetration testing 

confirmed resilience against replay, SQL injection, and 

privilege escalation. Furthermore, to strengthen privacy, 

we adopt federated learning and differential privacy 

following recent advances in privacy-preserving 

recommender systems [8]. 

At the execution layer, the system introduces security 

mechanisms of identity authentication and permission 

management to ensure that only authorized users and 

devices can access and perform recommended tasks. By 

adopting RBAC and dynamically allocating permissions, it 

ensures that all users and devices in the system have 

appropriate access rights. To prevent data leakage or 

unauthorized access in the recommendation system, the 

system has introduced the following encryption and 

decryption formulas in its encryption mechanism: 

( ) ( )PAESPKED K== ,
         （6） 

Among them, D represents the encrypted user data, 

( )PKE ,
denotes the encryption function, K is the 

encryption key, and P  is the original data. AES-256 in 

CBC mode is employed to ensure confidentiality and 

resistance against brute-force or statistical attacks. A 

hierarchical key management scheme is adopted: master 

keys are securely stored in a Hardware Security Module 

(HSM), while session keys are dynamically generated, 

rotated periodically, and exchanged through a TLS-secured 

channel to minimize exposure.To ensure the system's 

secure access control and the accuracy of task execution, 

the system implements permission management through 

the following permission verification formula: 

( ) ( )
=

==
n

i

ii TrolewRAfV
1

,

     （7） 

Among them, V denotes the result of permission 

verification,
( )RAf ,

is the verification function, A  is 

the user identity, and R represents user role information. 

iw
is the role weight, irole

is the user’s role permission, 

and T is the threshold. Authentication protocols are 

enforced via TLS-based mutual authentication and token 

validation before evaluating role-based access. By 

dynamically adjusting role weights and thresholds, the 

system ensures fine-grained authorization and prevents 

unauthorized access. 

Collect user feedback and behavioral data 

Reinforcement learning algorithms adjust 

recommendation strategies 
Adjust the recommended path and priority 

Update user profiles and demand forecasts 
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To ensure the security of the recommendation system 

in the face of high concurrency and resource conflicts, the 

system also introduces a real-time monitoring mechanism 

to track the operational status of each module. Through log 

auditing and anomaly detection, the system can promptly 

identify potential security threats and take preventive 

measures to avoid the impact of attacks or failures on the 

recommendation system. At regular intervals, the system 

encrypts and backs up user data to ensure rapid recovery in 

case of system failure. 

To ensure the efficiency and security of the system, the 

recommendation system of e-Cantong Smart Canteen 

adopts a step-by-step deployment. Through standardized 

and automated tools, it ensures rapid deployment in 

different environments. The deployment process is carried 

out through the following four steps: ①Data collection and 

secure transmission protocol design: The system connects 

to the sensor devices via the MQTT protocol to collect real-

time data on user behavior, food selection, and device 

status, ensuring smooth data transmission and data security. 

Use encryption protocols to protect privacy and provide 

precise input for subsequent recommendation algorithms. 

User demand Modeling and recommendation path 

optimization: The system builds a demand model based on 

user behavior data and adjusts the recommendation path in 

real time through a dynamic feedback mechanism to ensure 

that the system makes adaptive adjustments according to 

changes in demand and resource status, providing accurate 

recommendation results. Task scheduling and 

recommendation path priority management: The system 

starts the path scheduler and ensures that tasks are executed 

according to priority through the DAG task flowchart, 

optimizing the execution efficiency of the recommendation 

algorithm and ensuring that the system can respond quickly 

and avoid resource conflicts under high concurrency. 

Feedback detection and task recovery mechanism: Through 

the feedback detector, the system monitors the execution 

status of tasks in real time, automatically adjusts task 

priorities or reallocates tasks, ensuring that the system can 

quickly recover under high load or abnormal conditions, 

and guaranteeing the stability of the recommendation 

system. 

4  Results 

4.1  Dataset 

To verify the effectiveness of the intelligent 

recommendation algorithm optimization and security 

architecture design of e-Cantong Smart Canteen, this study 

constructed a multi-dimensional experimental dataset and 

ensured that the recommendation system could accurately 

predict user needs and efficiently schedule resources 

through steps such as data collection, preprocessing, model 

training and validation, performance evaluation, and 

ablation experiments. The dataset construction process is 

as follows:(1) Data collection: Connected to the sensor 

device via the MQTT protocol, real-time collection of user 

behavior data, food selection, device status and other 

information is carried out. The sampling frequency is once 

per second, and data security is ensured through an 

encryption protocol. (2) Data preprocessing: All data 

undergo time series alignment, missing value filling, and 

data standardization processing to ensure data consistency. 

Data cleaning and noise cancellation are used to ensure data 

accuracy. (3) Training and validation of recommendation 

algorithms: Training and validation are conducted using the 

constructed dataset, compared with the benchmark model, 

to test the recommendation effect and real-time 

performance. The adaptability of the system under resource 

changes and demand fluctuations was verified through 100 

rounds of parallel experiments. (4) Performance Evaluation 

and ablation Testing: The system performance is evaluated 

through indicators such as accuracy rate, recall rate, and 

inference delay. Ablation testing is used to verify the role 

of recommended path adjustment, user feedback 

mechanism, and resource scheduling strategy to ensure the 

stable operation of the system under high concurrency and 

abnormal conditions. To support reproducibility, we 

provide a dataset schema and a small anonymized sample. 

The schema covers key fields such as UserID, DishID, 

Timestamp, Rating, InventoryLevel, and EquipmentLoad, 

with data types and update frequencies shown in Table 3. 

A sample of 500 anonymized user records is released in the 

supplementary material, ensuring that preprocessing, 

model training, and evaluation can be replicated without 

exposing personal information. To ensure reproducibility, 

we provide the training and evaluation code, pretrained 

model weights, and dataset generation scripts in a public 

GitHub repository (URL anonymized for review), along 

with detailed usage instructions. The system pipeline is 

illustrated in Figure 2: user requests are transmitted via 

WebSocket or MQTT, ingested by Kafka, and processed by 

the model server. Data are secured with AES-256-GCM 

encryption at rest and TLS in transit, while RBAC is 

enforced at the API gateway and database layers to ensure 

controlled access. 

 
Figure 2: System architecture of the e-Cantong smart canteen 
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System architecture of the e-Cantong Smart Canteen. 

The pipeline covers user interaction via WebSocket/MQTT, 

message handling through Kafka, model server 

computation, and database storage. Security mechanisms 

include AES-256-GCM and TLS encryption, with RBAC 

applied at the API gateway and database layers. 

Experiments used both a public benchmark (FoodRec) and 

a self-constructed dataset, including 3,000 dining records 

and 1M synthetic interactions generated via user-behavior 

simulation validated against cafeteria logs. Data were split 

70/15/15 for training/validation/testing with five-fold 

cross-validation. The synthetic data were generated 

through user-behavior simulation and validated against 

cafeteria logs to ensure realism. The dataset is split into 70% 

training, 15% validation, and 15% testing, with five-fold 

cross-validation applied. To ensure the efficient operation 

of the intelligent recommendation algorithm optimization 

and security architecture design of the e-Cantong Smart 

Canteen, this study constructed a multi-dimensional dataset 

to support algorithm optimization and resource scheduling. 

The dataset includes:(1)User behavior data: 3,000 records 

of historical dining behaviors, ratings, and evaluations, 

used to establish a user demand model and optimize the 

recommendation algorithm.(2)Meal resource status data: 

Records equipment load, inventory, failure rate, etc., 

approximately 120,000 items, playing a key role in the 

feedback mechanism and helping to adjust the 

recommendation path.(3)Production environment and 

material data: including inventory, replenishment cycle, 

transportation delay, etc., totaling 25,000 items, providing 

input for path planning optimization. Table 3 presents the 

structure and application of the dataset, illustrating the role 

of each type of data in the recommendation system:
 

Table 3: Comparison table of dataset structure and usage 
 

Data Type Sample Size Data Fields 
Data Update 
Frequency 

Usage Description 

User Behavior Data 3000 pieces 
User ID, Dish ID, Dining Time, 

Rating, etc. 
Updated every 

second 

Provides input data for 
personalized 

recommendations 

Dish Resource 
Status Data 

120000 
items 

Equipment load, inventory, 
energy consumption, failure 

rate, etc. 

Sampled every 
second 

Real-time feedback on 
resource allocation and 

load changes 

Production 
Environment and 

Material Data 

25000 
pieces 

Inventory level, replenishment 
cycle, transport delay, etc. 

Updated every 5 
minutes 

Path evaluation input 
conditions 

To verify the stability and response capability of the 

recommendation system under high concurrency and large 

data volume conditions, this study designed the following 

experimental datasets to simulate different loads and 

abnormal situations, as shown in Table 4:
 

Table 4: Comparison table of dataset structure and experimental purposes 
 

Data Type 
Sample 

Size 
Data Fields 

Data Update 
Frequency 

Usage Description 

High-Concurrency 
Scenario Data 

1 million 
pieces 

User behavior, dish selection, 
ratings, etc. 

Updated every 
second 

Tests recommendation 
efficiency under high-
concurrency conditions 

Large Data Volume 
Test Data 

500000 
pieces 

Dish inventory, equipment 
load, energy consumption, 

etc. 

Sampled every 
second 

Tests system stability under 
large data volume conditions 

Abnormal 
Environment Data 

10000 
pieces 

Equipment failure, inventory 
shortages, demand surges, 

etc. 

Updated every 
minute 

Verifies the system's path 
recovery ability under 
abnormal conditions 

Information such as recommendation accuracy and 

recommendation delay is used as supervisory variables for 

model accuracy evaluation. During the process of 

optimizing the recommendation path, the system converts 

the dependency relationship between user demands and 

meal selection into a structured model through the 

recommendation path diagram, ensuring that the system 

can achieve real-time adjustment of personalized 

recommendation paths in the face of fluctuations in user 

demands and changes in resources. 

 

 

 

 

4.2  Data preprocessing 

In the intelligent recommendation system of e-Cantong 

Smart Canteen, data preprocessing is the fundamental step 

to ensure the accuracy and response speed of the 

recommendation algorithm. As the system involves 

multiple data types, such as user behavior data and meal 

resource status data, these data are often affected by noise, 

missing values and inconsistency issues. If the original data 

is directly used to train the model, it may lead to a decline 

in algorithm performance. Therefore, it is of vital 

importance to establish a standardized data preprocessing 

mechanism.To ensure reproducibility, we detail the 

hyperparameters and computing environment of our 
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experiments. The complete configuration is summarized in 

Table 5. 

 

Table 5: Hyperparameters and experimental environment 

 

Component Value/Setting 

Embedding 
dimension 

64 

Hidden layers 
[256, 128, 64, 32], ReLU 

activation 

Batch size 128 

Optimizer Adam (learning rate = 0.001) 

Regularization 
Dropout = 0.2, L2 penalty (λ = 

0.001) 

Training epochs 
200 (early stopping patience = 

15) 

Evaluation metrics 
Precision@K, Recall@K, 

NDCG@K, latency 

Hardware 
Intel i7 CPU, NVIDIA GTX 

1660 GPU 

Software 
environment 

Ubuntu 20.04, Python 3.9, 
PyTorch 1.13 

 

This study adopted a four-step processing procedure of 

"data cleaning, missing value filling, feature 

standardization and input regularization". Firstly, clean the 

collected user behavior data and meal resource status data 

to remove duplicates and outliers and reduce noise 

interference. For missing values, interpolation methods are 

used to fill them in to ensure the integrity of the data. Next, 

feature standardization is carried out. The most commonly 

used Min-Max standardization method is adopted to map 

all feature values to the interval [0,1] to avoid the scale 

differences of different features affecting the training of the 

model. The formula is as follows: 

minmax

min

xx

xx
x

−

−
=

           （8） 

Among them, x is the original data, minx
is the 

minimum value of the feature, maxx
is the maximum value 

of the feature, and x  is the standardized data. This 

formula compresses all features into the same range, 

ensuring the uniformity of the data and enabling the model 

to be trained more efficiently. 

In addition, to enhance the robustness and accuracy of 

the recommendation system, this study also adopted data 

augmentation techniques. By processing user behavior data 

through rotation, cropping, noise addition, etc., different 

user demand scenarios are simulated to enhance the 

diversity and representativeness of the data. In terms of tag 

generation, the system generates the corresponding tag 

matrix based on historical dining records and meal 

selection. The definition of the tag matrix is: 

( ) ( ) 












+= 

yx

ii byxKyxIY
,

,,

    （9） 

Among them, iY
is the output, 

( )yxI ,
is the input data, 

( )yxK ,
 is the convolution kernel, ib

 is the bias term, and
 is the activation function. This formula is used to 

convert the input data into a label form suitable for model 

training. In terms of dataset partitioning, this study adopted 

a random sampling method to ensure the diversity of 

samples and scene consistency, avoid overfitting problems 

during training, and enhance the stability of the system in 

dynamic environments. 

4.3  Evaluation indicators 

Accuracy denotes the proportion of correctly predicted user 

choices. Response time is the average inference latency per 

request. Resource utilization is measured by CPU and 

memory usage during inference. Paired t-tests (p < 0.05) 

were applied for significance. To evaluate the intelligent 

recommendation algorithm in this study, the experiment 

compared it from five aspects: recommendation accuracy, 

processing duration, system robustness, response speed and 

resource utilization. The results show that the 

recommendation algorithm proposed in this study performs 

excellently in all indicators and has obvious advantages. 

Recommendation performance is evaluated using 

Precision@5, Recall@5, and NDCG@10. The proposed 

model achieves Precision@5 of 91.3% ±1.2, Recall@5 of 

90.5% ±1.3, and NDCG@10 of 92.1% ±1.1 (all values are 

standard deviations over 10 runs), outperforming 

collaborative filtering baselines (user/item-based CF: 79.5% 

±1.3) and deep learning baselines (NCF, SASRec, 

LightGCN: 85.6% ±1.1).Inference latency is 1.5s ±0.1, 

compared with 3.8s ±0.2 for CF and 2.6s ±0.2 for deep 

models, confirming real-time efficiency. Under 10% 

Gaussian noise, Precision@5 remains 89.4% ±1.5, higher 

than CF (65.2% ±2.0) and deep baselines (75.3% ±1.8), 

proving robustness. Response delay is 0.8s ±0.05, 

significantly lower than CF (2.1s ±0.1) and deep baselines 

(1.5s ±0.1), showing adaptability to high-frequency tasks. 

Average CPU occupancy is 23.7% ±2.5, versus 40.5% ±3.0 

for CF and 30.2% ±2.8 for deep models, demonstrating 

resource efficiency and scalability. 

 
Figure 2: Performance comparison of each model in five key indicators 
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Figure 2 presents the comparative performance of 

different models in five indicators, highlighting the 

advantages of the model in this study in terms of 

recommendation accuracy, processing duration, system 

robustness, response speed, and resource utilization. 

Compared with the existing technologies, the intelligent 

recommendation algorithm in this study has significantly 

improved in real-time recommendation and adaptability in 

complex environments, providing reliable technical 

support for the cafeteria management system and further 

optimizing the operational efficiency and user experience 

of the cafeteria. 

To further validate the effectiveness of the proposed 

system, we compared it with representative SOTA methods 

on the public FoodRec dataset. SVM-based time-aware 

models achieved 84.2% accuracy, optimization-based 

frameworks achieved 86.7%, and FoodRecNet reached 

87.5%. In contrast, the proposed system achieved 91.3% 

accuracy with an average inference latency of 1.5s, and 

maintained 92.1% accuracy under noise. These results 

highlight the superior accuracy, responsiveness, and 

robustness of the proposed approach.All reported ± values 

represent standard deviations over 10 independent runs, 

ensuring statistical reliability. 

4.4  Ablation research 

To verify the contribution of each core module to the 

performance of the intelligent recommendation algorithm, 

this section designs four sets of ablation experiments to 

strip the key mechanisms in the model and analyze their 

impact on recommendation accuracy, response speed and 

resource utilization. The experiment compared the 

execution results of the "complete model" with three 

simplified versions under the same task set, revealing the 

role of each module. 

The experimental configuration includes: ①Remove 

the personalized recommendation module and only use 

static recommendations; ②the requirement analysis 

module is excluded, and there is a lack of real-time data 

updates. Without using a feedback mechanism, the system 

cannot adjust the recommendations. The final version that 

fully integrates personalized recommendations, demand 

analysis and real-time feedback. Each model was run for 

100 rounds, and the results are shown in Table 6.
 

Table 6: Comparison table of key performance indicators for ablation experiment 
 

Ablation Item 
Recommendation 

Accuracy (%) 
Inference Time 

(s) 
Resource Utilization 

(%) 

Without Personalized Recommendation 74.3 ± 1.1 2.5 ± 0.1 65.2 ± 1.8 

Without Demand Analysis 81.6 ± 1.0 2.1 ± 0.1 72.5 ± 1.5 

Without Feedback Mechanism 87.2 ± 1.3 1.9 ± 0.1 79.4 ± 1.7 

Full Model 91.3 ± 1.2 1.5 ± 0.1 87.6 ± 2.0 

Removing personalized recommendations reduces 

accuracy to 74.3% ± 1.1, increases reasoning time to 2.5 ± 

0.1 s, and lowers resource utilization to 65.2% ± 1.8. 

Without the requirement analysis module, accuracy reaches 

81.6% ± 1.0 and inference time is 2.1 ± 0.1 s, but flexibility 

declines. Removing the feedback mechanism yields 87.2% 

± 1.3 accuracy, though resource mismatch remains. The 

“no requirement analysis” model shows limited 

contribution to accuracy improvement. By contrast, the 

complete model achieves 91.3% ± 1.2 accuracy, 1.5 ± 0.1 s 

reasoning time, and 87.6% ± 2.0 utilization. t-tests (p < 

0.05) confirm these differences are statistically significant, 

underscoring the roles of personalized recommendation, 

requirement analysis, and feedback mechanisms. 

5  Discussion 

5.1  Performance comparison with existing 
recommendation systems 

Most existing smart cafeteria recommendation systems use 

SVM-based models, optimization frameworks, or 

FoodRecNet. As shown in Table 1, their performance 

ranges from 80% to 88% Precision@5, but adaptability, 

scalability, and computational efficiency remain limited. 

The proposed system integrates DNNs for feature 

extraction, reinforcement learning for adaptive 

optimization, and AES security for data protection. 

Experiments show Precision@5 of 91.3% ±1.2, Recall@5 

of 90.5% ±1.3, and NDCG@10 of 92.1% ±1.1, with 

inference latency of 1.5s ±0.1 and Precision@5 of 89.4% 

±1.5 under 10% noise. These gains result from Q-learning, 

A* path optimization, and adaptive feedback, enabling 

superior accuracy, responsiveness, and robustness. 

The proposed system demonstrates clear advantages 

across multiple dimensions. In terms of recommendation 

accuracy, it surpasses collaborative filtering baselines 

(79.5% ±1.3) and deep learning baselines such as NCF, 

SASRec, and LightGCN (85.6% ±1.1). In terms of 

efficiency and responsiveness, inference time averages 1.5s 

and response delay 0.8s, compared with 3.8s and 2.6s for 

CF and other deep models. Regarding robustness, under 10% 

Gaussian noise the model maintains Precision@5 of 89.4% 

±1.5, and the outage rate is only 2.5%, compared with 7.2% 

for CF and 5.6% for deep models, demonstrating stability 

in complex environments. 

5.2  Adaptability analysis of intelligent 
recommendation system in cafeteria 
management 

In the management of smart canteens, complex dining 

demands and resource changes pose challenges to the 

adaptability of recommendation systems. When traditional 
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recommendation methods are confronted with diverse user 

demands and fluctuations in meal resources, their accuracy 

and response speed are often affected, making it difficult to 

meet the actual operational requirements. To verify the 

adaptability and stability of the model proposed in this 

paper in a complex cafeteria environment, this study 

designed four typical scenarios: peak hours, food shortages, 

changes in user preferences, and cold starts for new users. 

For each scenario, 100 rounds of experiments were 

conducted, and indicators such as recommendation 

accuracy, response time, and system stability were 

collected. The results are shown in Table 7.
 

Table 7: Comparison of model adaptability performance under different working conditions 
 

Test Scenario 
Recommendation 

Accuracy (%) 
Average Inference Time 

(s) 
System Stability Score (10) 

Peak Hours 91.2 1.4 9.2 

Out of Stock Dishes 89.5 1.7 8.9 

User Preference Change 90.3 1.5 9.0 

New User Cold Start 88.1 2.0 8.6 

The counterintuitive increase in accuracy when 

removing the demand analysis module is due to reduced 

model complexity and overfitting in small-sample 

scenarios, though it comes at the cost of reduced 

adaptability and robustness.During peak hours, the model 

can make efficient recommendations based on users' 

historical behaviors, with an accuracy rate of 91.2%, a 

response time of 1.4 seconds, and a system stability score 

of 9.2, demonstrating excellent performance. In the 

scenario of food shortages, the integration of data 

augmentation and real-time inventory data keeps the 

recommendation results above 90%. Although the 

reasoning time is slightly longer, the stability of the system 

is effectively guaranteed. In scenarios where user 

preferences change, the model quickly adjusts the 

recommendation strategy through an adaptive mechanism. 

The recommendation accuracy rate is 90.3%, the reasoning 

time is 1.5 seconds, and the system stability is high. To 

address the cold-start problem, the system applies a hybrid 

strategy combining content-based filtering with 

demographic features (e.g., age, dietary preference, health 

constraints) to generate recommendations for users without 

history. Accuracy slightly drops to 88.1%, but the model 

still delivers stable results with a score of 8.6, effectively 

mitigating the cold-start effect and meeting real-time 

requirements. 

5.3  System resource overhead and 
feasibility assessment of actual 
deployment 

The intelligent recommendation system of e-Cantong 

Smart Canteen needs to optimize computing resources, 

network bandwidth and hardware configuration to ensure 

efficient operation in a large-scale canteen environment. 

The system includes modules such as personalized 

recommendation, user demand analysis, and real-time 

feedback, handling a large amount of data and computing 

tasks, and has high requirements for resource consumption. 

In the data processing and recommendation algorithm 

stage, the model adopts deep learning technology, 

combined with convolutional neural networks and adaptive 

feedback mechanisms, which can efficiently process user 

behavior data and generate personalized recommendations. 

Equipped with an Intel i7 processor and 16GB of memory, 

the CPU usage is controlled within 40%, and the memory 

consumption is around 2GB, meeting the high-frequency 

recommendation requirements of the cafeteria. The 

inference stage requires relatively high computing 

resources. However, on Gpus such as NVIDIA GTX 1660, 

the inference latency is 1.2 seconds, meeting the real-time 

requirements. In terms of communication, the system 

transmits data through WebSocket, with a bandwidth 

requirement of approximately 6Mbps and a latency 

controlled within 200ms, which is suitable for the internal 

network of the cafeteria and ensures smooth real-time data 

transmission. In terms of engineering deployment, this 

model has good adaptability and supports the deployment 

of canteens of different scales.For medium-sized canteens 

(e.g., with multiple workstations and parallel tasks), the 

overall investment should remain cost-effective and 

seamlessly integrate with the existing catering management 

system.The optimized model reduces hardware 

dependency and provides an efficient and economical 

solution. The model in this paper provides a feasible 

intelligent recommendation system solution by optimizing 

resource consumption and reducing hardware requirements, 

meeting the real-time and stability demands of cafeteria 

operations. 

5.4  The practical application value of the e-
cantong smart canteen model 

To meet the precise recommendation requirements of smart 

canteens in high-frequency ordering and dynamic demand 

prediction, the intelligent recommendation system 

proposed in this paper has demonstrated significant 

application value. In terms of recommendation efficiency, 

by integrating deep learning with adaptive mechanisms, the 

model's reasoning time is controlled within 1.5 seconds, 

and the recommendation accuracy rate remains stable at 

over 91.3%, significantly enhancing the response speed and 

precision of traditional methods. In terms of system 

stability, the model can maintain a high accuracy rate in 

complex scenarios such as peak hours and food shortages, 

with a stability score exceeding 8.5 points. Through real-

time feedback and dynamic adjustment, the model can 

promptly correct the recommendation results, reduce 

misjudgments and interruptions, and ensure the continuity 

and reliability of the cafeteria operation. At the 



376 Informatica 49 (2025) 365–378 Z. Wang 

 
 

management level, the model visually presents 

recommended content through a visual interface, helping 

managers to keep real-time track of operational status and 

optimize menu configuration and resource scheduling 

through data-driven approaches. The system also has strong 

compatibility, capable of seamless integration with existing 

catering management systems, supporting remote 

deployment and modular expansion, and meeting the needs 

of canteens of different scales. Pilot applications have 

shown that this system can enhance the accuracy of 

recommendations, reduce misjudgments, and improve the 

operational efficiency of canteens. The overall application 

potential is huge. By optimizing resource consumption and 

reducing hardware dependence, an efficient and 

economical intelligent recommendation solution has been 

provided for the cafeteria. 

6  Conclusion 

The intelligent recommendation system based on deep 

learning proposed in this paper significantly improves the 

accuracy and response speed of recommendations by 

combining personalized recommendations with adaptive 

feedback mechanisms, and solves the problems of 

insufficient precision and response delay in traditional 

systems. Experiments show that the model's 

recommendation accuracy rate is 91.3%, and the reasoning 

time is controlled within 1.5 seconds, meeting the high-

frequency recommendation requirements of smart canteens. 

The system can operate stably during peak hours and in 

complex scenarios such as food shortages. Through 

adaptive mechanisms and real-time feedback, it promptly 

corrects the recommendation results, reduces 

misjudgments and interruptions, and ensures the stability 

of the cafeteria's operation. The pilot application results 

show that the recommendation accuracy has been improved, 

the reasoning time has been reduced, and the misjudgment 

rate has decreased, demonstrating good practical 

application value. Despite this, the model still faces the 

problem of limited dataset size. In the future, the 

generalization ability of the model can be enhanced by 

expanding diverse datasets. Future research can be carried 

out in three directions: expanding large-scale datasets to 

enhance the generalization ability of the model; Explore 

lightweight networks and distributed computing 

architectures to reduce computing overhead; By integrating 

transfer learning and self-supervised learning methods, the 

adaptability of the model in different scenarios is enhanced. 

Through these improvements, the intelligent 

recommendation system for smart canteens is expected to 

play a greater role in the operation and management of 

canteens, enhancing efficiency and user satisfaction. 
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