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The fusion of multi-source heterogeneous data in high-speed transportation networks is essential for real-

time congestion detection and rapid police response. Existing methods remain limited in data consistency, 

spatio-temporal pattern extraction, and path planning stability. This study proposes a congestion detection 

and police response framework driven by multi-source heterogeneous data. A dataset integrating flow 

sensors, road cameras, and Internet of Vehicles signals is constructed, with unified node, edge, and 

temporal features modeled through graph mapping. A spatio-temporal graph convolutional network 

(STGCN) with attention is employed to capture dependencies and enhance key road section representations, 

while a multi-task framework enables deep congestion pattern extraction. For response, geometric 

constraints guide path decoding, and proximal policy optimization (PPO)-based reinforcement learning 

achieves dynamic police dispatch. Experiments on a real expressway network with 6,120 roads and 580,000 

samples show 92.4% ± 0.5 Accuracy, 89.6% ± 0.6 Topology Score, and 91.7% ± 0.6 F1-Response Score, 

surpassing baselines. The novelty lies in STGCN-based cross-modal fusion, geometric constraints, and the 

integration of PPO-based reinforcement learning. Rather than being a first-time application, the 

contribution is reflected in the technical integration of GNN with RL and the incorporation of constraint 

modeling for traffic police response, which distinguishes this framework from prior studies in emergency 

dispatch. 

Povzetek: Članek predstavi večizvorski sistem za zaznavo zastojev in dinamično napotitev policije, ki 

združuje STGCN s pozornostjo, večopravilno učenje ter PPO-utrjevalno učenje. Na omrežju s 6.120 cestami 

doseže odlične rezultate. 

 

1  Introduction 

With the rise of multi-source heterogeneous data and 

intelligent analysis, traffic congestion detection and police 

response are shifting from statistical models to deep 

learning and graph neural networks. High-speed 

transportation networks are large-scale, with complex 

correlations and strong spatiotemporal dynamics. 

Traditional single-detector or local statistical methods face 

deficiencies in accuracy and timeliness [1]. In multi-source 

environments (e.g., vehicle networking, road monitoring, 

geomagnetic sensors), temporal consistency and spatial 

topology remain underutilized, limiting congestion 

detection and response efficiency [2]. 

Previous studies used speed monitoring, flow 

prediction, or pattern matching, but results degrade under 

non-stationary traffic due to noise and local modeling [3]. 

Police responses often rely on fixed routes or experience, 

making dynamic adaptation difficult and causing delays 

and resource waste. Thus, an intelligent framework 

integrating multi-source data is required for precise 

congestion detection and dynamic route optimization. 

Graph Neural Networks (GNN) enable non-Euclidean 

modeling, capturing spatiotemporal dependencies through 

node aggregation and convolution [4]. Attention 

mechanisms highlight key sections and congestion chains, 

while reinforcement learning (RL) provides feedback-

driven path optimization under complex constraints [5].  

This paper proposes a framework of “multi-source 

fusion – graph feature extraction – congestion detection – 

police response optimization.” At the data level, 

multimodal fusion structures vehicle networking, video, 

and sensor data. At the feature level, congestion detection 

combines GNN and attention with multi-task learning. Path 

modeling introduces graph encoding with topological 

constraints to ensure rational scheduling. At the 

optimization stage, RL guides dynamic strategy for timely 

and accurate response. The key issues that this paper aims 

to address include: RQ1: Can multi-source data effectively 

model the spatio-temporal structure of high-speed 

transportation networks through GNN? RQ2: Can the 

attention mechanism and multi-tasking drive enhance the 

stability and accuracy of congestion detection? RQ3: Can 

reinforcement learning optimize the path planning of police 

response? The research innovation lies in: First, proposing 
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a multi-module framework that collaborates graph 

convolution, attention, and reinforcement learning; Second, 

introduce topological constraints and feedback 

mechanisms to enhance the consistency of modeling logic; 

Thirdly, the innovation lies not in the first use of GNN and 

reinforcement learning for traffic policing, but in the 

integration of graph convolution, attention mechanisms, 

and reinforcement learning under topological and 

constraint-based modeling. This technical synergy 

provides a new direction for intelligent transportation and 

emergency governance. 

2  Relevant work 

In the research of traffic congestion detection and police 

response, multi-source heterogeneous data-driven methods 

have gradually become an important direction to break 

through the bottlenecks of traditional methods. Existing 

research mainly focuses on emergency dispatch 

optimization, multimodal data modeling, spatio-temporal 

feature extraction, and large-scale prediction methods, etc. 

In the field of emergency dispatch research, Liu et al. 

(2020) proposed an ambulance dispatch framework based 

on deep reinforcement learning, which achieves optimal 

route decision-making by simulating complex traffic 

environments, effectively shortening the emergency 

response time and verifying the feasibility of reinforcement 

learning in police and emergency dispatch [6]. Sun and Liu 

(2025) utilized multimodal fusion and heterogeneous graph 

neural networks to detect and predict traffic anomalies on 

expressways, achieving high accuracy and stability in 

multi-source heterogeneous environments, providing a 

reference for modeling complex events in traffic scenarios 

[7]. 

In the field of multi-source data fusion and travel time 

estimation, Shi et al. (2017) proposed a heterogeneous data 

fusion method, combining loop detectors, GPS and floating 

vehicle data to model the travel time distribution under 

congestion conditions, thereby enhancing the adaptability 

to complex traffic scenarios [8]. Reis (2025) combines 

Internet of Things (iot) and artificial intelligence 

technologies to explore the fusion of multimodal data in 

green travel, effectively enhancing the safety and 

sustainability of the transportation system [9]. 

In the field of spatio-temporal feature extraction and 

congestion modeling, Guo et al. (2024) proposed a 

heterogeneous feature fusion network for road 

segmentation tasks, enhancing the topological consistency 

expression of traffic scenarios through a bidirectional 

feature transformation mechanism [10].To more intuitively 

demonstrate the differences between the existing research 

and the work of this paper, the core features of the main 

methods are summarized in Table 1. 

 
Table 1: Comparison of typical methods 

Method Name Year / Dataset Core Method Metrics Limitation 

DRL-Dispatch 
[6] 

2020 / Emergency 
vehicle 

Deep RL for dispatch Acc ≈ 89% 
Weak cross-modal 
integration; low 
timeliness 

Hetero-GNN [7] 
2025 / Highway 
multimodal 

Heterogeneous GNN 
fusion 

Acc ≈ 88% 
Limited feature 
interaction; weak 
topology 

FusionNet [10] 
2024 / Road 
segmentation 

Heterogeneous feature 
fusion 

Topo ≈ 86% 
Poor generalization; 
low responsiveness 

ST-Point [11] 
2020 / Congestion 
event 

Attention-based 
spatiotemporal model 

F1 ≈ 85% 
Weak topology 
propagation; poor 
scalability 

Multi-Retentive 
[12] 

2024 / Large-scale 
prediction 

Multi-modal retentive 
network 

Acc ≈ 90% 
Unstable path 
optimization; limited 
real-time 

GNN+RL (This 
paper) 

2025 / Highway 
trunk network 

GCN + attention + RL 
co-optimization 

Acc 92.4% / Topo 
89.6% / F1 91.7% 

Validation scope 
limited to one region 

Existing research has made progress in multi-source 

data fusion, spatio-temporal feature modeling, and 

emergency scheduling optimization. However, problems 

such as insufficient real-time adaptability, limited path 

generation, and imperfect multimodal feature interaction 

mechanisms still exist. This paper will combine graph 

neural networks and reinforcement learning to explore the 

paths of cross-modal fusion, key feature extraction and 

strategy optimization, and promote the intelligent 

development of high-speed traffic congestion detection and 

police response systems. 

 

3  Traffic congestion feature detection 
mechanism driven by multi-source 
heterogeneous data 

3.1  Construction of traffic flow network 
graph and setting of node features 

The construction of the graph structure of the traffic flow 

network relies on the data expression requirements of the 

graph neural network, which needs to encode the road 

network, traffic flow and multi-source sensor data into a 

node-edge structure. In the context of expressways, nodes 

represent the locations of road intersections, monitoring 

points or detectors, while edges indicate the connection 



Graph Neural Network and Reinforcement Learning–Based Framework… Informatica 49 (2025) 395–408 397 

 
 

relationships of road sections and the direction of traffic 

flow. The graph structure form is defined as 
G=(V,E)

, 

where V is the set of nodes and E  is the set of edges. 

Each node generates an initial feature vector by extracting 

traffic attributes and geometric information, which is 

specifically defined as: 

},c,d,v={qX iiiii                (1)  

Among them, iq
 is the traffic flow at node i , 

measured in vehicles per hour. iv
is the average speed of 

vehicles at node i , measured in kilometers per hour. id
is 

the road density at node i , calculated as the ratio of traffic 

flow to speed. ic
is the road section type encoded as a one-

hot vector for node i , representing road types (e.g., 

expressways, ramps, main roads). Flow and speed are 

collected and normalized by loop detectors and vehicle 

network signals. Density is calculated based on the ratio of 

flow to speed, and the type of road section is provided by 

the traffic geographic information system. After the above 

features are concatenated, node input vectors are formed to 

ensure the uniformity of feature dimensions. 

To enhance the geometric consistency of graph 

construction, the establishment of edges is based on road 

connection relationships and traffic flow directions, 

combined with GIS databases and sensor annotations to 

generate, ensuring the structural connectivity of the 

network. The spatial positional relationship between nodes 

is position-embedded through normalized coordinate 

differences to enhance the perception ability of graph 

convolution on geometric topology: 
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Among them, 
( )ii yx ,

and
( )

jj yx ,
are the 

coordinates of node 
ji,

respectively, and
HW ,

is the 

width and height of the regional range, which are used to 

normalize the characteristics of the road network at 

different scales. ii yx ,
are the geographic coordinates of 

node i .
HW ,

are the width and height of the region, used 

to normalize the coordinates. This formula eliminates the 

influence of different urban road scales on the model input 

during the graph construction stage. 

As shown in Figure 1, the construction process of the 

traffic flow network includes: multi-source data 

collection→road network mapping→node setting→edge 

relationship generation → node feature vector construction. 

Data collection comes from loop detectors, surveillance 

cameras, GPS signals from the Internet of Vehicles, and 

historical accident records. Node setting is accomplished 

through mapping the traffic topology to the positions of 

monitoring points. The edge relations are automatically 

reasoned and corrected under the constraints of road 

connection logic and traffic rules. Finally, a unified node 

feature vector matrix is generated as the input of the graph 

neural network.

 
Figure 1: Flowchart of traffic flow network construction 

 
In feature quantization, traffic flow and speed are 

normalized to the interval [0,1], road density is calculated 

based on the ratio of flow to speed, and road section types 

are mapped to 4-dimensional unique heat vectors. Location 

embedding ensures the comparability of transportation 

networks in different cities and on different road scales. 

The above design ensures the integrity and reproducibility 

of node features, providing a solid foundation for the 

subsequent extraction of spatio-temporal congestion 

patterns. 

The traffic network is modeled as a spatio-temporal 

graph. After normalization, node features (speed, flow, 

occupancy) are scaled to [0,1]; e.g., 90 km/h and 1800 

veh/h become (0.75, 0.6). In Equation (2), www and hhh 

denote lane width (3.5 m) and section length (500 m), 

ensuring consistent scaling. 

To further clarify the process, the following pseudo-

code and feature table are provided: 

Pseudo-code for Graph Construction: 

for each road_section in road_network: 

 node = create_node(road_section) 

 features = [flow, speed, density, road_type] 

 normalize(features) 

 add_to_graph(node, features) 

for each connection in road_network: 

 edge = create_edge(connection) 

 weight = compute_weight(connection) 

 add_to_graph(edge, weight) 

To clearly present the design of node and edge features 

in the constructed traffic flow graph, the detailed 

dimensions and normalization methods are summarized in 

Table 2. 

 

Multi-source data 

acquisition 

Construction of node 

feature vectors 

Edge relation 

generation  

Node setting 
Road network 

mapping 

(2) 
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Table 2: Node and edge feature dimensions 

Feature Dimension Normalization 

Traffic flow 1 Min-max [0,1] 

Speed 1 Min-max [0,1] 

Density 1 
Flow/Speed 
ratio 

Road type 4 One-hot 

Geometric 
distance 

1 
Normalized 
coords 

3.2  Spatio-temporal congestion pattern 
extraction based on graph convolution 

In high-speed transportation networks, flow and speed 

between nodes show strong spatiotemporal dependence and 

irregularity, which traditional Euclidean convolution 

kernels cannot capture. Graph convolutional neural 

networks exploit adjacency in non-Euclidean node–edge 

structures to extract traffic flow patterns. Propagation is 

performed on the constructed traffic graph using node 

connections and traffic features.Three adjacency matrices 

(distance, flow, function) are trained jointly with shared 

parameters. Fusion weights are learned automatically by 

backpropagation for adaptive integration. 

The core of graph convolution is the neighborhood 

aggregation mechanism. The representation vector of each 

node is updated by the features of its adjacent nodes. The 

formula is as follows: 
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Among them, A
~

is the adjacency matrix including self-

loops. D
~

 is the degree matrix.
( )lH  is the feature 

representation of the l layer node, 
( )lW

 is the trainable 

weight matrix., and   is the activation function, such as 

ReLU.This formula realizes feature propagation and update 

through the normalized adjacency matrix, ensuring the 

integration of local node features and road network 

structure information. 

To enhance the extraction ability of multi-scale 

congestion patterns, Multi-channel GCN is introduced to 

handle feature channels under different adjacency 

relationships in parallel paths, and the final fusion 

expression is: 
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Among them, k is the weight coefficient for the k

channel, representing the contribution of the k   channel to 

the final fusion. 
( )kGCN

represents the graph 

convolution operation for the k  channel, based on 

different adjacency matrices. and X  is the initial node 

feature matrix. In the experiment, 3=k settings were 

used, and adjacency matrices were constructed based on 

different traffic flow relationships, road geometric 

distances, and multi-source sensor data. The fusion 

operation ensures that different feature channels contribute 

effectively to the final traffic flow prediction. 

This study combines Graph Convolutional Networks 

(GCNs) with temporal models like STGCN, LSTM, and 

DCRNN for spatiotemporal modeling. STGCN integrates 

temporal data with graph convolutions, using a time 

window L  to capture the past L  time steps. LSTM models 

long-term temporal dependencies, while DCRNN 

combines graph convolution with RNNs to capture 

dynamic spatiotemporal changes.We used 580K time series 

samples, converting traffic flow and speed into node 

features for STGCN. The time delay L  captures 

dependencies from previous steps, with a sampling 

frequency set to one per hour. Our GNN model operates on 

a spatiotemporal graph, updating features based on both 

spatial and temporal relationships. 

Adjacency matrices were numerically constructed 

based on three principles:(1) Flow correlation coefficients 

between nodes (Pearson > 0.6);(2) Geometric distance 

thresholding (<2 km);(3) Multi-source sensor co-

occurrence frequency.Each adjacency matrix was row-

normalized to ensure stability in spatio-temporal 

propagation. 

This method can capture congestion evolution patterns 

from different dimensions while maintaining the 

topological integrity of the traffic network, and identify the 

relationship between traffic flow propagation and speed 

attenuation between key sections. Multi-channel feature 

fusion not only enhances the detection sensitivity for 

sudden congestion but also improves the modeling ability 

for periodic traffic fluctuations, providing spatio-temporal 

feature support for the subsequent optimization of police 

response paths. 

3.3  Introduce an attention mechanism to 
enhance the recognition of key sections 

In the high-speed transportation network, the importance of 

different road sections in congestion transmission and 

police response varies significantly. Main roads, accident-

prone areas and bottleneck intersections often play a core 

role in the overall congestion chain, while branch roads or 

low-traffic sections have a relatively small impact. If an 

equal-weight strategy is adopted for all neighboring nodes 

during the feature aggregation process, the model cannot 

highlight the importance of key road sections, thereby 

weakening the accuracy of congestion detection and police 

response. To this end, the Graph Attention Mechanism is 

introduced. By dynamically allocating the weights of 

neighboring nodes, the focusing ability on high-traffic and 

low-speed road sections is strengthened, and the 

identification and modeling of key road sections are 

achieved. During the feature update process, the 

representation of node i can be defined as: 

( )
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(4) 

(5) 
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Among them, ih
is the updated feature vector of node 

i ;
( )iN

is the neighbor set of node i ; W is a trainable 

weight matrix; jh
is the traffic feature input for neighboring 

node
j

; ij
is the attention weight;   is the nonlinear 

activation function. This formula enhances the congestion 

feature expression ability of the traffic network by 

introducing dynamic weights and emphasizing the 

contribution of key nodes to the overall network state 

update during the feature propagation process. The 

calculation method of attention weight ij
is as follows: 
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Among them, jq
 represents the traffic flow of 

Section 
j

during the sampling period;

1−

jv
represents the 

inverse of the average speed of Section
j

.

1− jj vq

represents the congestion intensity indicator. High traffic 

volume corresponds to low speed, resulting in more severe 

congestion. ij
 is the importance weight of the update 

from neighbor node 
j

o node i . To normalize the attention 

weight across all neighboring nodes, we apply the softmax 

function: 
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Where the softmax function ensures that the attention 

weights are normalized, so the sum of all ij
for node i  is 

1. This makes the attention coefficients probabilistic, 

ensuring that the model learns the relative importance of 

each neighbor node during feature propagation.This 

formula utilizes the combined characteristics of flow and 

speed to dynamically highlight the sections with significant 

congestion, enabling the model to adaptively focus on 

bottleneck nodes during feature aggregation and improving 

the accuracy of congestion propagation path modeling. 

The feature extraction method based on the attention 

mechanism enables the model to more sensitively capture 

high-influence nodes in the traffic network and reduce the 

interference of non-critical road sections on the overall 

detection results. Combining multi-source heterogeneous 

traffic data, this mechanism demonstrates higher sensitivity 

and robustness in the identification of key nodes and the 

prediction of congestion propagation chains, providing 

more discriminative input features for the subsequent 

optimization of police response paths. 

3.4  Multi-task-driven congestion feature 
extraction process 

Single-task supervision cannot capture the complex spatio-

temporal features of congestion in high-speed 

transportation networks. Using only traffic classification or 

speed prediction limits the expression of nonlinear 

propagation. A multi-task framework with classification, 

edge prediction, and regression aligns with RQ2 on 

stability and accuracy. Attention supports RQ1 by 

enhancing spatio-temporal features, while reinforcement 

learning addresses RQ3 through optimized dispatch, 

ensuring goal–method alignment.This mechanism can 

optimize multiple task losses in parallel based on the shared 

graph convolution parameters, enabling intermediate 

features to form more discriminative embedded 

representations at the semantic, topological and numerical 

levels. The multi-task loss function is defined as: 

 

regedgecls LLLL 321  ++=
           

Among them, clsL
represents the cross-entropy loss of 

congestion classification, which is used to determine 

whether a road section is in a congested state; edgeL

represents the edge prediction loss of key sections. Binary 

cross-entropy is adopted to calculate the congestion 

propagation prediction error between adjacent sections.

regL
 is the regression loss of node traffic indicators. The 

mean square error is used to evaluate the deviation between 

the predicted speed and the actual speed. 321 ,λ,λλ  is the 

weight coefficient. In the experiment, it is adjusted within 

the range of {0.2,0.5,1.0} through grid search, and the 

optimal combination is selected on the validation set. This 

formula maintains a balance in the three aspects of 

classification, connection prediction and numerical 

regression through the collaborative optimization of three 

types of sub-tasks. 

To verify the effectiveness of the multi-task 

mechanism, a comparative experiment between single-task 

training and multi-task training was designed. Single-task 

training independently models congestion classification, 

edge prediction, and speed regression respectively, and 

takes the average result. Multi-task training jointly 

optimizes three types of tasks within the same model. The 

comparison results are shown in Table 3. 

 
Table 3: Comparison of congestion detection performance under different training mechanisms 

 

Training Method 
Congestion Classification 
Accuracy (%) 

Edge Prediction F1 Score 
Speed Regression MSE 
(km/h) 

Single-Task Training 85.1 0.703 4.12 

Multi-Task Joint 
Training 

90.4 0.782 3.05 

(6) 

(7) 

(8) 
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The experimental results show that the multi-task 

mechanism outperforms the single-task training in all three 

indicators, especially with significant improvements in the 

tasks of edge prediction on key sections and speed 

regression. It is demonstrated that the multi-task joint loss 

can effectively guide the model to capture the 

spatiotemporal dependency of the traffic network, forming 

a more stable and discriminative feature expression, 

providing a solid data support for congestion propagation 

identification and police response optimization.To ensure 

robustness, three weight settings{0.2,0.5,1.0} were tested. 

Results show that multi-task optimization consistently 

surpassed single-task baselines, with balanced weights 

yielding the best performance (Figure 2). 

 
Figure 2: Performance comparison of multi-task training under different weight settings against single-task baseline. 

 

4  Traffic congestion modeling and 
route planning for police response 

4.1  Construction of traffic network node 
paths and modeling of congestion 
propagation 

In the modeling of high-speed traffic congestion detection 

and police response, the construction of node paths in the 

traffic network not only determines the direction of 

information dissemination, but also directly affects the 

simulation accuracy of congestion propagation and the 

rationality of police dispatch paths. If the path construction 

ignores the traffic topology and the law of flow propagation, 

it is very likely to cause deviations in the model's 

bottleneck identification and response planning. Therefore, 

it is necessary to introduce geometric distance, traffic 

weight and rule constraints in the process of path 

generation to ensure that the path system not only conforms 

to the geometric features of the road, but also can truly 

reflect the congestion transmission chain. 

The reinforcement learning framework is detailed 

below with pseudo-code: 

Pseudo-code for RL Path Planning: 

initialize policy_network, value_network 

for episode in range(max_episodes): 

 state = env.reset() 

 while not done: 

  action = policy_network(state) 

  next_state, reward = env.step(action) 

  update(policy_network, value_network, reward) 

  state = next_state 

Ablation experiments compared PPO-based RL with 

Greedy Decoding. RL achieved higher Accuracy (+4.3%), 

improved Topology Score (+3.1%), and reduced average  

 

 

response delay (-1.2 s), demonstrating the superiority of 

reinforcement learning over heuristic decoding. 

Path generation is based on the node set and edge set 

in the transportation network, abstracting intersections or 

checkpoints as nodes and road connections and traffic 

directions as edges. The constructed directed graph needs  

 

to take into account both the geometric length of the 

road and the flow carrying characteristics simultaneously, 

thereby defining the optimal path set between nodes. Let 

the traffic network diagram be
G=(V,E)

, and the path 

optimization objective be formalized as: 

( )
( )







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




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


−+=

Pji ij

ij
P f

dP
,

1
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Among them, 
P is the optimal path set; ijd

represents the geometric distance between sections i and

j
. ijf

represents the traffic volume of the road section;   

is the regulating coefficient, which is used to balance the 

two types of characteristics: geometric and flow. In the 

experiment,  was adjusted through grid search (value 

range {0.3,0.5,0.7,1.0}). The results showed that when

7.05.0 −= , the consistency of path propagation and 

the accuracy of congestion detection were the best. 

(9) 
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To ensure that the path generation conforms to the real 

traffic logic, rule base constraints are introduced, including 

road directionality, priority lanes for police vehicles, and 

information on the closure of accident points. During the 

path search process, the improved Dijkstra algorithm is 

adopted. Constraint rules are embedded in the calculation 

of the shortest path to automatically eliminate non-

compliant path branches. In this way, the generated path is 

not only geometrically reasonable but also executable in 

terms of congestion propagation and police dispatch. 

As shown in Figure 3, the path construction process 

covers six main steps:①Input of the traffic network map, 

including intersections, road sections and multi-source 

sensor data;②Rule library loading, importing road 

direction, accident nodes and police priority 

constraints;③Node and edge feature extraction to obtain 

indicators such as spatial position, traffic flow, and 

speed;④Edge weight matrix construction, combining 

geometric distance with traffic weight;⑤Consistency 

check to eliminate path branches that do not conform to 

traffic logic or scheduling constraints;⑥Path search and 

output: Generate the optimal path set using an improved 

graph search algorithm.

 

 

 

 
 

Figure 3: Modeling process of traffic network node path construction and congestion propagation 
 

This path construction method provides ordered input 

for the subsequent congestion propagation prediction and 

police dispatch modeling, ensuring the effective 

transmission of features in the graph neural network. 

Through the joint modeling of geometric distance and flow 

constraints, the path can more truly reflect the dynamic 

process of congestion formation and diffusion. Meanwhile, 

the embedded rule base enables police responses to 

generate feasible paths based on the actual traffic 

conditions, thereby shortening the response time and 

improving the utilization rate of resources, providing a 

solid modeling foundation for congestion detection and 

police dispatch in high-speed traffic environments.Blocked 

roads were excluded from the adjacency matrix, and police 

priority was encoded by lower traversal costs for 

emergency lanes. 

4.2  Design of graph feature encoding and 
police dispatch path decoding 

In the modeling of high-speed traffic congestion detection 

and police response, the goal of graph feature coding is to 

transform the spatial topology of the traffic network and 

multi-source dynamic data into a unified embedded 

representation. In the input graph structure, each node 

corresponds to a traffic intersection, and its initial features 

consist of geographical coordinates, flow rate, speed and 

semantic labels. Through graph convolution operations, the 

model can aggregate information within the local 

neighborhood range, thereby obtaining high-dimensional 

features that reflect the laws of traffic propagation. The 

update formula for graph feature encoding is as follows: 
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Among them,

( )1+l

ih
is the feature representation of 

node i at the 1+l layer, 

( )l
ih

is the input feature of node 

i at the l layer, 
( )iN

is the neighbor set of node i ,

( )l

jh
 is 

the feature of neighbor node
j

,W  is the shared weight 

matrix, and  is the nonlinear activation function.The 

congestion coefficient ijC
is computed as a rolling average 

of flow and speed between nodes, updated every 30 s to 

reflect real-time traffic.This formula is used in the 

encoding stage to perform weighted fusion of the traffic 

features of the node itself and its neighbors, achieving 

representation learning of the spatio-temporal dependency 

relationship of the traffic network. 

In the path decoding stage of police dispatch, it is 

necessary to generate a reasonable police dispatch route 

based on the encoded node embedding. Path selection 

should not only take into account the geometric distance 

but also combine the real-time congestion level to ensure 

response efficiency and execution feasibility. The 

probability function of path decoding is expressed as: 

( )
( )

( ) ( )ikikiNk

ijij
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cd
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Rule library 

loading  

Input of traffic 

network map  
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Among them,
( )

ijeP
 is the path probability of 

choosing from node i to node
j

, and ijd
is the geometric 

distance of the road section. ijc
 is the real-time congestion 

coefficient of the road section, 21,λλ is the adjustment 

parameter, and 
( )iN

is the neighbor set of node i . This 

formula is used in the path decoding stage to conduct 

probabilistic screening of candidate road sections. While 

ensuring the rationality of the spatial topology, it highlights 

the priority selection logic of "short distance and low 

congestion", thereby optimizing the overall efficiency of 

police dispatch. 

In summary, the graph feature encoding module is 

responsible for extracting spatio-temporal dependencies 

from multi-source heterogeneous traffic data, while the 

path decoding module generates highly consistent police 

dispatch routes based on this and in combination with 

constraint conditions. The two form an encoder-decoding 

closed loop, which not only enhances the expressive ability 

of traffic congestion transmission characteristics but also 

provides a stable foundation for the path optimization of 

police response. 

4.3  Reconstruction of police response paths 
based on constraint conditions 

In high-speed transportation networks, the rationality of 

police response paths not only depends on the modeling of 

spatio-temporal features by graph neural networks, but also 

requires the correction of candidate paths through 

constraint conditions to ensure the geometric feasibility 

and traffic logic consistency of the generated routes. If 

there are no constraints, the police path may deviate from 

cross-regional jumps, congestion and detours, or over-

reliance on the shortest distance. To this end, this study 

introduces a joint optimization mechanism of geometric 

constraints and flow constraints in the path reconstruction 

stage, so that the final output path not only conforms to the 

spatial topology but also takes into account the 

characteristics of congestion propagation. First, define the 

distance constraint loss of the path to ensure that the police 

path approaches the optimal solution geometrically: 

( )
( )



−=
Eji

redf

ij

pred

ijdist dd
E

L
,

21

          

Among them, 

pred

ijd
is the distance of edge

(i,j)
in the 

predicted path, 

ref

ijd
 is the reference distance in the actual 

traffic network, and E  is the set of path edges. This 

formula is used to constrain the deviation between the 

predicted path and the actual geometric road section, 

ensuring the spatial rationality of the overall route. 

Based on the distance constraint, the flow consistency 

constraint is introduced to avoid excessive concentration of 

path selection on high-traffic congestion sections: 

( )
( )

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−=
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ijflow ff
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Among them, 

pred

ijf
is the flow value of edge 

(i,j)
in 

the predicted path, 

obs

ijf
 is the real-time flow observed by 

the traffic sensor, and E  is the set of path edges. This 

formula avoids abnormal choices in the path reconstruction 

results that do not conform to the law of congestion 

propagation by constraining the traffic distribution of the 

predicted path to be close to the true monitoring value. To 

enhance path coherence, this study adds node smoothing 

constraints to penalize the discontinuity of adjacent nodes 

in the path direction: 

( ) ( )
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Among them,
( )pred

i

pred

i yx ,
is the predicted 

coordinate of node i ,
( )ref

i

ref

i yx ,
is the reference node 

coordinate, andV is the set of path nodes; This formula is 

used to suppress node offset and sudden direction changes, 

maintaining the continuity and stability of the path in terms 

of geometric structure. The final joint loss function 

integrates the above three types of constraints: 

smoothflowdisttotal LLLL  ++=
        

Among them, 
α,β,

is the weight coefficient. In the 

experiment, the optimal combination is determined through 

grid search to ensure the balance of the three types of 

constraints. This formula plays a role in both the training 

and inference phases. By continuously optimizing the 

model parameters through backpropagation, the path 

reconstruction maintains consistency in three aspects: 

spatial geometry, flow distribution, and node continuity. 

The experimental results show that when the constraint 

mechanism is enabled, the model performance is 

significantly improved. Among them, the Topology Score 

increased from 85.1%±0.6 without constraints to 

89.3%±0.5, and the Response F1-Score increased from 

86.7%±0.7 without constraints to 91.7%±0.6. The results 

show that the introduction of geometric constraints and 

flow constraints effectively enhances the reliability and 

feasibility of the police dispatch path, and maintains good 

stability under different experimental conditions. 

4.4  Path planning and reinforcement 
learning strategy guidance mechanism 

Path planning in high-speed transportation networks is 

critical for dispatch efficiency. Traditional methods using 

fixed shortest-path searches are inadequate for dynamic 

congestion. This study introduces a reinforcement learning 

(RL) network with Proximal Policy Optimization (PPO), 

chosen for its stability and efficiency in continuous action 

spaces, balancing exploration and exploitation.The RL 

network optimizes path selection using traffic network 

(14) 

(13) 
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topology and multi-source data. A reward shaping 

mechanism rewards congestion-minimizing paths and 

penalizes suboptimal ones, with parameters adjusted 

through grid search. An epsilon-greedy strategy is used, 

with a learning rate of 0.001 and batch size 64.The network 

consists of two hidden layers with 512 units each and a 

ReLU activation function. The output layer has 64 units, 

corresponding to action choices. Adam optimizer is used, 

with Advantage normalization and experience replay for 

stability and efficiency.The model is trained for 200 epochs 

with a discount factor of 0.95. Inference latency is reduced 

to 3.5 seconds. Ablation studies show improvements in 

Accuracy, Topology Score, and F1-Response Score. 

Convergence is monitored using training loss and 

validation accuracy, with early stopping ensuring stable 

learning.A non-RL baseline (Dijkstra) and a DQN variant 

were tested. Both showed slower convergence and weaker 

adaptability, confirming PPO’s advantage in dynamic 

traffic environments. 

In the policy network, the state is defined as the current 

position of the police vehicle and the path it has traveled, 

and the action space is all reachable adjacent road sections. 

Through the strategy function 
( )sa

, the model selects 

an edge as the next jump at each moment, with the goal of 

maximizing the global path return. The path score function 

is defined as: 

( ) ( )
=

+−−=
T

t

ttt qcdR
1


        

Among them,   represents the complete path 

trajectory, td
is the distance of the t step section, tc

 is 

the congestion coefficient at the corresponding time, tq
 is 

the smoothness score of the section, and
 ，，

 is the 

adjustment coefficient. This formula is used to calculate the 

cumulative return of the path, comprehensively considering 

the driving distance, congestion degree and traffic 

smoothness, to guide the policy network to generate the 

optimal path. 

During the training process, the policy network adopts 

an update method based on policy gradients, combined 

with a reward shaping approach: if the path selection 

conforms to the traffic topology and low-congestion rules, 

a positive reward is given; If detour, topological jump or 

high congestion section selection occurs, penalties will be 

imposed to enhance the priority of reasonable paths. To 

further enhance the robustness of the strategy, a graph 

attention mechanism is introduced into the network 

structure to highlight the importance of key intersections 

and high-traffic nodes for path selection. To verify the 

guiding role of the policy network in path planning, Table 

4 summarizes the key indicators adopted in path planning 

and their explanations.
 

Table 4: Key indicators in the path planning and strategy guidance mechanism 
 

Metric Name Symbol Description 

Average Path Length Lavg 
The average travel distance of police response paths, used to measure 
dispatch efficiency 

Congestion Penalty Value Pcong 
The proportion of highly congested road segments in the path; higher values 
indicate a greater likelihood of selecting obstructed routes 

Path Consistency Score Scons 
The proportion of paths that satisfy traffic topology and rule constraints, 
ranging from [0,1] 

Response Time Estimation Tresp 
Estimated dispatch time based on predicted speed and congestion delay, 
used to evaluate real-time response performance 

The optimization results of the policy network show 

that after adopting the reinforcement learning guidance 

mechanism, the average path length is shortened by 

approximately 7.3%, the congestion penalty value is 

reduced by 0.12±0.04, the path consistency score is 

increased to 0.91±0.03, and the average response time is 

shortened to 3.5±0.6 minutes. The results show that the 

reinforcement learning strategy can dynamically balance 

the two types of demands of "shortest distance" and "low 

congestion", and output a better police dispatch path in a 

complex traffic environment. 

5  Model training process and 
validation analysis 

5.1  Construction and format conversion 
process of multi-source heterogeneous 
datasets 

The dataset used in this experiment is sourced from the 

actual highway backbone network, containing 6,120 road 

samples: 3,520 traffic flow and speed alignment samples, 

1,740 vehicular network trajectory and congestion-labeled 

samples, and 860 police response and arrival time records. 

The details of the dataset are provided below: 

 

Table 5: Dataset overview 

 

Item Description 

Nodes 6,120 

Edges 
Defined by road network 
structure 

Time Steps 580,000 

Time Resolution Hourly sampling 

Congestion 
Events 

Defined by flow and speed 
thresholds (e.g., <30 km/h) 

Congestion Label Marked if speed <30 km/h 

Video Data Traffic cameras, H.264 encoding 

(16) 
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Missing values and noise were handled using linear 

interpolation for traffic flow and speed. Noise from sensors 

was smoothed with low-pass filtering and moving averages. 

Ethical approval for police response records was obtained 

to ensure compliance with data privacy regulations.The 

dataset was split chronologically into training (70%), 

validation (15%), and test (15%) sets. To ensure statistical 

validity, the experiment used a random seed (1234) and 

repeated each run 10 times. Statistical analysis showed a 

95% confidence interval of ±0.5, with all results 

statistically significant (p < 0.05) based on t-tests. 

The transportation network is represented as triple

(V,E,X)
, where V  is a set of nodes, representing 

intersections or monitoring points. E  is the edge set, 

representing the road connection relationship; X is the 

node feature matrix, combining location, flow, speed and 

congestion marking information. The form of node features 

is defined as follows: 











= i

iiii
i label

S

peed

F

flow

M

lat

L

lon
x ,,,,

maxmax      

Among them, ii latlon ,
represents the longitude and 

latitude coordinates of node i ,
ML,

 is the normalization 

coefficient, iflow
is the flow rate value, maxF

 is the 

maximum flow rate in the sample set, ispeed
 is the speed 

value, maxS
 is the maximum speed, and ilabel

 is the 

congestion label (0/1). This formula is used in the graph 

construction process to unify the expression of node 

features, ensuring that the model can simultaneously 

capture geographical locations, traffic conditions and 

congestion patterns. 

In terms of data partitioning, the dataset is divided into 

a training set (70%), a validation set (15%), and a test set 

(15%) in chronological order to ensure that information 

leakage is avoided during the experimental process. The 

edge index matrix is stored in an adjacency list structure, 

and the node feature matrix and edge weight matrix are 

synchronously input into the graph neural network as the 

basis for training and prediction. 

To ensure the reproducibility of the experiment, the 

following is a pseudo-code example of the data loading and 

training loop: 

for epoch in range(max_epochs): 

for batch in traffic_loader: 

graph = build_graph(batch) 

output = GNN_model(graph) 

loss = compute_loss(output, target) 

optimizer.zero_grad() 

loss.backward() 

optimizer.step() 

score = evaluate(GNN_model, val_loader) 

update_best_model(GNN_model, score) 

Pseudo-code demonstrates the processes of data 

loading, graph construction, forward computation, loss 

backhaul, and validation evaluation, embodying the 

standard training logic from data to model. 

The experimental results show that after using the 

graph structure constructed with the above multi-source 

heterogeneous data, the model achieves 92.4%±0.5 in the 

Accuracy of congestion detection and 89.6%±0.6 in the 

Topology Score of police response path prediction, both of 

which are significantly better than the baseline model 

without format conversion. This process provides a stable 

data foundation and a unified structural expression for the 

subsequent path reconstruction and strategy network 

optimization. 

5.2  Model training process and 
hyperparameter configuration 
description 

This study used a multi-source heterogeneous traffic 

dataset with 6,120 samples, divided into 4,284 training sets, 

918 validation sets, and 918 test sets. The average number 

of nodes per graph was 56.3, with edge relationships 

ranging from 85 to 110. Graph neural networks (GNN) 

were employed for path planning and police response 

modeling to enhance accuracy and stability.Traffic flow 

features were normalized to [0,1], and video frames resized 

to 256×256. Node attributes included location, flow, and 

road types, while edge features captured geometric 

distances and flow correlations. The dataset was split as 

70%/15%/15% for training, validation, and testing. A batch 

size of 16 and 80 epochs were used, with Adam optimizer 

at a learning rate of 0.001 and CosineAnnealing for 

dynamic adjustments.The GNN had three layers, with 64 

and 128 units per layer, using ReLU activation. Xavier 

initialization and a weight decay of 0.0001 were applied, 

and early stopping was used if no improvement occurred 

over five epochs. The average batch size maintained 56.3 

nodes for consistency.The model was trained on PyTorch 

Geometric with an RTX 4090 GPU for acceleration. 

Simplified Pseudo-code for Training and Evaluation: 

# Initialize model and optimizer 

model, optimizer = GNN_Model(), 

Adam(model.parameters(), lr=0.001) 

# Training loop 

for epoch in range(epochs): 

    for batch in train_loader: 

      loss=criterion(model(build_graph(batch)), 

batch['labels']) 

        optimizer.zero_grad() 

        loss.backward() 

        optimizer.step() 

    # Early stopping check 

    if no improvement in val_loss for 5 epochs: 

        break 

# Evaluation 

for batch in test_loader: 

    loss=criterion(model(build_graph(batch)), 

batch['labels']) 

(17) 
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To highlight the significance of key sections in path 

prediction, a structural loss function based on path weights 

is introduced: 

( )
( )
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Among them, ijd
 represents the traffic delay between 

actual road segments, ijd̂
is the predicted value of the 

model, and ijw
is the dynamic weight generated by the 

policy network, reflecting the importance of this edge in 

the path connectivity. This loss function enhances the 

rationality of the overall path reconstruction by 

emphasizing the prediction accuracy of key sections and 

avoiding the model's excessive reliance on low-importance 

edges. On this basis, to control the model complexity and 

prevent overfitting, the final training objective function is 

defined as: 

     

2
+= pathLL

              

Among them,  is the set of trainable parameters of 

the model, and  is the regularization coefficient, which 

controls the update amplitude of the parameters to prevent 

unstable convergence caused by excessive gradients. This 

formula constrains the parameter range while ensuring the 

model accuracy, thereby improving the generalization 

performance of training. 

In terms of network structure, the model adopts a three-

layer graph convolution stacked architecture, with output 

channels of 64, 64, and 128 in sequence. The activation 

function uses ReLU, and BatchNorm is introduced after 

each layer of convolution to ensure numerical stability. 

Dropout (at a ratio of 0.3) is introduced between the second 

and third layers to alleviate overfitting. The attention 

mechanism allocates node weights after the convolutional 

layer to enhance the recognition ability of key road sections. 

The decoding part adopts a graph autoencoder structure, 

embedding and mapping the encoded nodes into the path 

space, and optimizing the decoding results through the 

reinforcement learning module. 

For fair comparison, baseline models were configured 

as follows:①Baseline CNN: learning rate = 0.001, batch 

size = 64, epochs = 100.②Baseline LSTM: hidden units = 

128, dropout = 0.3.③Baseline GCN: three layers with 64–

128 hidden units, ReLU activation.All baseline models 

were trained under the same conditions as our framework. 

Each experiment was repeated 12 independent times with 

different random seeds. Results are reported as mean ± 95% 

CI, and statistical significance was assessed using two-

sample t-tests.The GCN backbone consists of three layers 

with [64, 64, 128] channels. To justify this depth, both 

shallower (2-layer) and deeper (4-layer) versions were 

tested. Results indicated that the 3-layer structure achieved 

the best balance between accuracy and computational cost. 

A convergence curve (loss vs. epoch) is included in Figure 

4 to illustrate stable training dynamics. 

 
 

 

Through multiple sets of hyperparameter comparison 

experiments, it was ultimately determined that the 

combination of a learning rate of 0.001, a Dropout ratio of 

0.3, and a regularization coefficient of λ=10−4 is the 

optimal. Under this configuration, the Topology Score of 

the model on the validation set reached 89.6%±0.5, and the 

F1-Response Score reached 91.2%±0.6, demonstrating 

good convergence and stability, providing a solid 

foundation for the subsequent performance evaluation. 

5.3  Model comparison and applicability 
analysis 

In this study, three types of model structures were 

compared on multi-source heterogeneous datasets, namely 

the convolutional Baseline model (Baseline-CNN) that 

only relies on image features, the GCN-Net that introduces 

graph structures, and the GNN+Strategy that fuses path 

strategy networks. To objectively evaluate the performance 

of the model, let the comprehensive index S  be the mean 

of Accuracy, Topology Score and F1-Response Score: 

             3

FTA
S

++
=

               

Among them, A represents Accuracy, which 

measures the recognition accuracy of nodes and road 

sections; T represents Topology Score, which is used to 

evaluate the matching degree of the topological 

relationship of the traffic network; F represents F1-

Response Score, reflecting the comprehensive performance 

of congestion detection and police response. This indicator 

is used in the experiment to uniformly compare the overall 

performance of different models. 

The test results are shown in Figure 5. The Baseline-

CNN has an Accuracy of 82.4% ± 0.6, the Topology Score 

is 74.1% ± 0.7, and the F1-Response Score is 79.6% ± 0.8. 

However, the performance of these metrics lacks precise 

definitions, leading to unclear interpretations. For instance, 

Topology Score needs a clear explanation of what 

constitutes a topology match. Similarly, for F1-Response, 

the positive class must be explicitly defined. After the 

introduction of graph convolution, GCN-Net was 

significantly improved. The Accuracy reached 88.9% ± 0.5, 

the Topology Score was 82.3% ± 0.6, and the F1-Response 

Score increased to 85.9% ± 0.5. The GNN+Strategy model, 

which integrates multi-source heterogeneous data and path 

(18) 

(19) 
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Figure 4: Convergence curves of GCN with 

different depths (2-layer, 3-layer, 4-layer) 



406 Informatica 49 (2025) 395–408 S. Xu et al. 

 
 

planning strategies, performs the best, achieving an 

Accuracy of 92.4% ± 0.5, with a Topology Score of 89.6% 

± 0.5, and the F1-Response Score reached 91.7% ± 0.6. The 

overall trend shows that GNN+Strategy outperforms the 

former two models in all three metrics, with improvements 

of Accuracy +9.9%, Topology Score +7.3%, and F1-

Response Score +5.8% respectively.

 
Figure 5: Bar chart of model structure comparison 

 

To further verify the significance of the results, a two-

sample t-test was conducted on the results of three 

independent experiments. Table 6 summarizes the 

significant differences among the various methods. The 

results show that GNN+Strategy achieves significant levels 

in all three indicators compared with the other two methods 

(p < 0.05).
 

Table 6: Statistical significance test results for performance comparison of different methods 
 

Indicator 
Baseline-CNN vs GCN-
Net 

GCN-Net vs 
GNN+Strategy 

Baseline-CNN vs 
GNN+Strategy 

Accuracy p < 0.01 p < 0.05 p < 0.001 

Topology Score p < 0.01 p < 0.05 p < 0.001 

F1-Response Score p < 0.01 p < 0.05 p < 0.001 

The experimental results show that the proposed 

GNN+Strategy model has higher stability and applicability 

in complex high-speed traffic scenarios. Especially in 

scenarios such as multi-traffic interweaving, non-repetitive 

congestion, and emergency dispatching, the topological 

error rate drops by nearly 35%, and the police response 

delay is shortened by approximately 18%. This indicates 

that this method can not only accurately detect spatio-

temporal congestion patterns, but also provide efficient 

path optimization support for police dispatching. 

5.4  Performance indicators and detection 
accuracy evaluation 

To comprehensively verify the effectiveness of the 

proposed multi-source heterogeneous data-driven high-

speed traffic congestion detection and police response 

modeling method, this section adopts the ablation 

experiment approach to evaluate the core module. Under 

the conditions of a unified experimental platform and 

dataset, the attention mechanism, path planning strategy 

and geometric constraint modules were removed in 

sequence and compared with the complete model 

respectively to clarify the contribution of each module to 

the overall performance. The evaluation dimensions 

include three core indicators: Accuracy, Topology Score 

and F1-Response Score, and the performance is uniformly 

characterized through weighted comprehensive indicator

M . 

         
FTAM ++= 

          

Among them, A represents the classification accuracy 

rate, which measures the system's ability to identify 

congested nodes; T  represents Topology Score, reflecting 

the consistency maintained by the traffic topology; F  

represents F1-Response Score, which is used to evaluate 

the comprehensive balance of police response detection; 

α,β,
is the weight coefficient, set at 0.4, 0.3, and 0.3 

respectively, to highlight the priority of accuracy in 

emergency decision-making. This indicator is weighted 

and integrated on the basis of multi-dimensional indicators, 

making the assessment more in line with the actual 

application requirements. Table 7 summarizes the 

comparison between the complete and ablation models, 

reported as mean ± standard deviation across three runs. In 

addition to metric M, macro-F1, micro-F1, and confusion 

matrix are included to provide a more interpretable 

evaluation.

 
Table 7: Comparison results of ablation experiment performance 

 

Model Setting 
Accuracy 
(%) 

Topology 
Score (%) 

F1-Response 
Score (%) 

Macro-F1 
(%) 

Micro-F1 
(%) 

M  

Without Attention 
Mechanism 

88.5 ± 0.5 82.1 ± 0.6 84.3 ± 0.6 83.9 ± 0.7 84.5 ± 0.6 85.1 

82,4
74,1 79,6

88,9 82,3 85,992,4 89,6 91,7

0

50

100

Accuracy (%) Topology Score (%) F1-Response Score (%)

Baseline-CNN GCN-Net GNN+Strategy
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Without Path Planning 
Strategy 

89.1 ± 0.4 83.6 ± 0.5 85.2 ± 0.5 84.7 ± 0.6 85.3 ± 0.5 86.2 

Without Geometric 
Constraint 

90.2 ± 0.5 85.0 ± 0.6 86.1 ± 0.6 85.6 ± 0.6 86.4 ± 0.5 87.5 

Full Model 
(GNN+Strategy) 

92.4 ± 0.5 89.6 ± 0.5 91.7 ± 0.6 90.8 ± 0.5 91.5 ± 0.5 91.4 

Table 7 shows that the complete model achieves the 

best performance, with M reaching 91.4. Removing the 

attention mechanism reduces Accuracy by 3.9% and lowers 

Macro-F1 and Micro-F1 by about 7%, underscoring its role 

in key section recognition. Excluding the path planning 

strategy decreases the Topology Score by 6.0% and both 

Macro-F1 and Micro-F1 by over 6%, confirming the 

necessity of path constraints. Eliminating geometric 

constraints leads to declines in Topology Score (−4.6%), 

F1-Response (−5.6%), and F1 metrics (≈−5%), 

highlighting the importance of geometric consistency for 

stable response paths. 

Overall, all three types of modules contribute to 

performance, but the attention mechanism is the most 

crucial for improving accuracy. The path planning strategy 

ensures topological consistency, and geometric constraints 

enhance global stability. The multi-module synergy 

enables the model to exhibit superior detection and 

response capabilities under multi-source heterogeneous 

data, significantly outperforming the weakened ablation 

version, verifying the effectiveness and robustness of the 

proposed method.To ensure reproducibility, all code and 

processed datasets are released in an anonymized 

repository. Data format specifications and synthetic 

samples are included, enabling independent verification 

without compromising data privacy. 

5.5  Discussion 

The proposed framework is compared with prior methods 

in Table 1. Unlike DRL-Dispatch, which depends only on 

reinforcement learning, our model combines GNN 

encoding with RL decision-making, yielding +3.4% higher 

accuracy and shorter response delay. Compared with 

Hetero-GNN, which lacks strong topology awareness, 

spatio-temporal graph convolution in our framework 

captures traffic dependencies more effectively. Traditional 

CNN-based baselines fail to emphasize critical bottleneck 

sections, while our attention mechanism improves the 

Topology Score by 7.3%. 

The performance gain stems from three design 

aspects:①Spatio-temporal GNN encoding for structured 

traffic dynamics.②Attention-based feature extraction 

highlighting congestion chains.③RL-guided path 

decoding with geometric constraints for real-time 

response.These choices explain the improvements in 

accuracy, topology preservation, and dispatch timeliness, 

confirming the practical value of the proposed system. 

6  Conclusions and prospects 

The multi-source heterogeneous data-driven high-speed 

traffic congestion detection and police response modeling 

method proposed in this study constructs an overall 

framework of "multimodal data fusion - graph convolution 

feature extraction - multi-task congestion detection - police 

path optimization". In the feature modeling stage, the graph 

convolutional network effectively captures the spatio-

temporal dependencies among road flow, speed and 

topology. The attention mechanism further highlights the 

features of key road sections, enabling precise 

identification of the congestion propagation chain. In the 

path planning and response stage, the combination of 

geometric constraints and policy networks ensures the 

coherence and dynamic adaptability of the path. The 

experimental results show that this method outperforms the 

baseline model in terms of Accuracy, Topology Score and 

F1-Response Score. Among them, the Accuracy increases 

to 92.4%±0.5 and the Topology Score reaches 89.6%±0.6. 

The stability and robustness of the method in a complex 

road network environment were verified. 

Despite this, the research still has deficiencies: First, 

the data sets mainly come from the main highway network, 

and their cross-regional and cross-scenario applicability 

has not been fully verified; Secondly, reinforcement 

learning strategies have slow convergence speed and local 

optimum risk under extreme congestion conditions, which 

affects the real-time response efficiency. In the future, it 

can be expanded in three directions: First, introduce multi-

source heterogeneous data across cities and scenarios to 

enhance the generalization ability of the model; Second, 

combine self-supervised learning with large-scale pre-

trained models to reduce the reliance on artificial feature 

construction; Thirdly, explore the integration of graph 

neural networks and multi-agent reinforcement learning to 

achieve collaborative planning and dynamic collaboration 

of multiple vehicles in police dispatching, thereby further 

expanding the application value in intelligent 

transportation and emergency management. 
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