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The fusion of multi-source heterogeneous data in high-speed transportation networks is essential for real-
time congestion detection and rapid police response. Existing methods remain limited in data consistency,
spatio-temporal pattern extraction, and path planning stability. This study proposes a congestion detection
and police response framework driven by multi-source heterogeneous data. A dataset integrating flow
sensors, road cameras, and Internet of Vehicles signals is constructed, with unified node, edge, and
temporal features modeled through graph mapping. A spatio-temporal graph convolutional network
(STGCN) with attention is employed to capture dependencies and enhance key road section representations,
while a multi-task framework enables deep congestion pattern extraction. For response, geometric
constraints guide path decoding, and proximal policy optimization (PPO)-based reinforcement learning
achieves dynamic police dispatch. Experiments on a real expressway network with 6,120 roads and 580,000
samples show 92.4% + 0.5 Accuracy, 89.6% + 0.6 Topology Score, and 91.7% + 0.6 F1-Response Score,
surpassing baselines. The novelty lies in STGCN-based cross-modal fusion, geometric constraints, and the
integration of PPO-based reinforcement learning. Rather than being a first-time application, the
contribution is reflected in the technical integration of GNN with RL and the incorporation of constraint
modeling for traffic police response, which distinguishes this framework from prior studies in emergency
dispatch.

Povzetek: Clanek predstavi vecizvorski sistem za zaznavo zastojev in dinamicno napotitev policije, ki
zdruzuje STGCN s pozornostjo, vecopravilno ucenje ter PPO-utrjevalno ucenje. Na omrezju s 6.120 cestami
doseze odlicne rezultate.

Graph Neural Networks (GNN) enable non-Euclidean
modeling, capturing spatiotemporal dependencies through
With the rise of multi-source heterogeneous data and node aggregation and convolution [4]. Attention

1 Introduction

intelligent analysis, traffic congestion detection and police
response are shifting from statistical models to deep
learning and graph neural networks. High-speed
transportation networks are large-scale, with complex
correlations and strong spatiotemporal  dynamics.
Traditional single-detector or local statistical methods face
deficiencies in accuracy and timeliness [1]. In multi-source
environments (e.g., vehicle networking, road monitoring,
geomagnetic sensors), temporal consistency and spatial
topology remain underutilized, limiting congestion
detection and response efficiency [2].

Previous studies wused speed monitoring, flow
prediction, or pattern matching, but results degrade under
non-stationary traffic due to noise and local modeling [3].
Police responses often rely on fixed routes or experience,
making dynamic adaptation difficult and causing delays
and resource waste. Thus, an intelligent framework
integrating multi-source data is required for precise
congestion detection and dynamic route optimization.

mechanisms highlight key sections and congestion chains,
while reinforcement learning (RL) provides feedback-
driven path optimization under complex constraints [5].
This paper proposes a framework of “multi-source
fusion — graph feature extraction — congestion detection —
police response optimization.” At the data level,
multimodal fusion structures vehicle networking, video,
and sensor data. At the feature level, congestion detection
combines GNN and attention with multi-task learning. Path
modeling introduces graph encoding with topological
constraints to ensure rational scheduling. At the
optimization stage, RL guides dynamic strategy for timely
and accurate response. The key issues that this paper aims
to address include: RQ1: Can multi-source data effectively
model the spatio-temporal structure of high-speed
transportation networks through GNN? RQ2: Can the
attention mechanism and multi-tasking drive enhance the
stability and accuracy of congestion detection? RQ3: Can
reinforcement learning optimize the path planning of police
response? The research innovation lies in: First, proposing
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a multi-module framework that collaborates graph
convolution, attention, and reinforcement learning; Second,
introduce  topological constraints and  feedback
mechanisms to enhance the consistency of modeling logic;
Thirdly, the innovation lies not in the first use of GNN and
reinforcement learning for traffic policing, but in the
integration of graph convolution, attention mechanisms,
and reinforcement learning under topological and
constraint-based modeling. This technical synergy
provides a new direction for intelligent transportation and
emergency governance.

2 Relevant work

In the research of traffic congestion detection and police
response, multi-source heterogeneous data-driven methods
have gradually become an important direction to break
through the bottlenecks of traditional methods. Existing
research mainly focuses on emergency dispatch
optimization, multimodal data modeling, spatio-temporal
feature extraction, and large-scale prediction methods, etc.

In the field of emergency dispatch research, Liu et al.
(2020) proposed an ambulance dispatch framework based
on deep reinforcement learning, which achieves optimal
route decision-making by simulating complex traffic
environments, effectively shortening the emergency
response time and verifying the feasibility of reinforcement
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learning in police and emergency dispatch [6]. Sun and Liu
(2025) utilized multimodal fusion and heterogeneous graph
neural networks to detect and predict traffic anomalies on
expressways, achieving high accuracy and stability in
multi-source heterogeneous environments, providing a
reference for modeling complex events in traffic scenarios
[7]

In the field of multi-source data fusion and travel time
estimation, Shi et al. (2017) proposed a heterogeneous data
fusion method, combining loop detectors, GPS and floating
vehicle data to model the travel time distribution under
congestion conditions, thereby enhancing the adaptability
to complex traffic scenarios [8]. Reis (2025) combines
Internet of Things (iot) and artificial intelligence
technologies to explore the fusion of multimodal data in
green travel, effectively enhancing the safety and
sustainability of the transportation system [9].

In the field of spatio-temporal feature extraction and
congestion modeling, Guo et al. (2024) proposed a
heterogeneous  feature fusion network for road
segmentation tasks, enhancing the topological consistency
expression of traffic scenarios through a bidirectional
feature transformation mechanism [10].To more intuitively
demonstrate the differences between the existing research
and the work of this paper, the core features of the main
methods are summarized in Table 1.

Table 1: Comparison of typical methods

Method Name Year / Dataset Core Method Metrics Limitation
. Weak cross-modal
E%I]QL-Dlspatch \Zlgrzli(%ﬂ/eEmergency Deep RL for dispatch Acc = 89% integration; low
timeliness
. Limited feature
Hetero-GNN [7] 2025 / Highway Heterogeneous GNN Acc = 88% interaction; weak
multimodal fusion
topology
: 2024 | Road Heterogeneous feature N Poor generalization;
FusionNet [10] segmentation fusion Topo ~ 86% low responsiveness
: : Weak topology
: 2020 / Congestion Attention-based P
ST-Point [11] - F1~=85% propagation; poor
event spatiotemporal model scalability
: : . . Unstable path
Multi-Retentive 2024 | Large-scale Multi-modal retentive - PN M
[12] prediction network Acc=90% ?ep;;m'r;%t'on’ limited
GNN+RL (This 2025 / Highway GCN + attention + RL Acc 92.4% / Topo Validation scope
paper) trunk network co-optimization 89.6% /F191.7% limited to one region

Existing research has made progress in multi-source
data fusion, spatio-temporal feature modeling, and
emergency scheduling optimization. However, problems
such as insufficient real-time adaptability, limited path
generation, and imperfect multimodal feature interaction
mechanisms still exist. This paper will combine graph
neural networks and reinforcement learning to explore the
paths of cross-modal fusion, key feature extraction and
strategy optimization, and promote the intelligent
development of high-speed traffic congestion detection and
police response systems.

3 Traffic congestion feature detection
mechanism driven by multi-source
heterogeneous data

3.1 Construction of traffic flow network
graph and setting of node features

The construction of the graph structure of the traffic flow
network relies on the data expression requirements of the
graph neural network, which needs to encode the road
network, traffic flow and multi-source sensor data into a
node-edge structure. In the context of expressways, nodes
represent the locations of road intersections, monitoring
points or detectors, while edges indicate the connection
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relationships of road sections and the direction of traffic
flow. The graph structure form is defined as G:(V’E),
where \ is the set of nodes and E is the set of edges.
Each node generates an initial feature vector by extracting
traffic attributes and geometric information, which is
specifically defined as:

Xi:{qi ’Vi 1di ’Ci } (1)

Among them, 9 is the traffic flow at node i ,

measured in vehicles per hour. Vi is the average speed of

vehicles at node !, measured in kilometers per hour. di is
the road density at node I', calculated as the ratio of traffic

flow to speed. G is the road section type encoded as a one-

hot vector for node !, representing road types (e.g.,
expressways, ramps, main roads). Flow and speed are
collected and normalized by loop detectors and vehicle
network signals. Density is calculated based on the ratio of
flow to speed, and the type of road section is provided by
the traffic geographic information system. After the above
features are concatenated, node input vectors are formed to
ensure the uniformity of feature dimensions.

To enhance the geometric consistency of graph
construction, the establishment of edges is based on road
connection relationships and traffic flow directions,
combined with GIS databases and sensor annotations to
generate, ensuring the structural connectivity of the
network. The spatial positional relationship between nodes
is position-embedded through normalized coordinate
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differences to enhance the perception ability of graph
convolution on geometric topology:
X — X =Y.
Pi=| = R 1 S
w H

X. V.
J’yJ) are the

coordinates of node ) respectively, andW’ H is the
width and height of the regional range, which are used to
normalize the characteristics of the road network at

Among them, (Xi’yi) and

different scales. %isYi are the geographic coordinates of

node ! .W’ H are the width and height of the region, used
to normalize the coordinates. This formula eliminates the
influence of different urban road scales on the model input
during the graph construction stage.

As shown in Figure 1, the construction process of the
traffic  flow network includes: multi-source data
collection—road network mapping—node setting—edge
relationship generation — node feature vector construction.
Data collection comes from loop detectors, surveillance
cameras, GPS signals from the Internet of Vehicles, and
historical accident records. Node setting is accomplished
through mapping the traffic topology to the positions of
monitoring points. The edge relations are automatically
reasoned and corrected under the constraints of road
connection logic and traffic rules. Finally, a unified node
feature vector matrix is generated as the input of the graph
neural network.

Multi-source data
acquisition

Road network
mapping

Node setting

Construction of node
feature vectors

Edge relation
generation

Figure 1: Flowchart of traffic flow network construction

In feature quantization, traffic flow and speed are
normalized to the interval [0,1], road density is calculated
based on the ratio of flow to speed, and road section types
are mapped to 4-dimensional unique heat vectors. Location
embedding ensures the comparability of transportation
networks in different cities and on different road scales.
The above design ensures the integrity and reproducibility
of node features, providing a solid foundation for the
subsequent extraction of spatio-temporal congestion
patterns.

The traffic network is modeled as a spatio-temporal
graph. After normalization, node features (speed, flow,
occupancy) are scaled to [0,1]; e.g., 90 km/h and 1800
veh/h become (0.75, 0.6). In Equation (2), www and hhh
denote lane width (3.5 m) and section length (500 m),
ensuring consistent scaling.

To further clarify the process, the following pseudo-
code and feature table are provided:

Pseudo-code for Graph Construction:
for each road_section in road_network:

node = create_node(road_section)
features = [flow, speed, density, road_type]
normalize(features)
add_to_graph(node, features)
for each connection in road_network:
edge = create_edge(connection)
weight = compute_weight(connection)
add_to_graph(edge, weight)

To clearly present the design of node and edge features
in the constructed traffic flow graph, the detailed
dimensions and normalization methods are summarized in
Table 2.
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Table 2: Node and edge feature dimensions

Feature Dimension Normalization
Traffic flow 1 Min-max [0,1]
Speed 1 Min-max [0,1]
Density 1 Ir:a:g\é\l/ Speed
Road type 4 One-hot
Geometric 1 Normalized
distance coords

3.2 Spatio-temporal congestion pattern
extraction based on graph convolution

In high-speed transportation networks, flow and speed
between nodes show strong spatiotemporal dependence and
irregularity, which traditional Euclidean convolution
kernels cannot capture. Graph convolutional neural
networks exploit adjacency in non-Euclidean node—edge
structures to extract traffic flow patterns. Propagation is
performed on the constructed traffic graph using node
connections and traffic features.Three adjacency matrices
(distance, flow, function) are trained jointly with shared
parameters. Fusion weights are learned automatically by
backpropagation for adaptive integration.

The core of graph convolution is the neighborhood
aggregation mechanism. The representation vector of each
node is updated by the features of its adjacent nodes. The
formula is as follows:

1 1

HIY — 5 D2AD 2HWW | 3)

Among them, Ajs the adjacency matrix including self-

[
loops. D s the degree matrix. H() is the feature

representation of theI layer node, W(I) is the trainable
weight matrix., and 9 is the activation function, such as
ReLU.This formula realizes feature propagation and update
through the normalized adjacency matrix, ensuring the
integration of local node features and road network
structure information.

To enhance the extraction ability of multi-scale
congestion patterns, Multi-channel GCN is introduced to
handle feature channels under different adjacency
relationships in parallel paths, and the final fusion
expression is:

K
H=>a,-GCN(X) ©®
k=1

Among them, i is the weight coefficient for the K

channel, representing the contribution of the k channel to

the final fusion. Nk(.) represents the graph
convolution operation for the k channel, based on
different adjacency matrices. and X s the initial node

feature matrix. In the experiment, k :3settings were
used, and adjacency matrices were constructed based on
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different traffic flow relationships, road geometric
distances, and multi-source sensor data. The fusion
operation ensures that different feature channels contribute
effectively to the final traffic flow prediction.

This study combines Graph Convolutional Networks
(GCNSs) with temporal models like STGCN, LSTM, and
DCRNN for spatiotemporal modeling. STGCN integrates
temporal data with graph convolutions, using a time

window L to capture the past L time steps. LSTM models
long-term  temporal dependencies, while DCRNN
combines graph convolution with RNNs to capture
dynamic spatiotemporal changes.We used 580K time series
samples, converting traffic flow and speed into node

features for STGCN. The time delay L captures
dependencies from previous steps, with a sampling
frequency set to one per hour. Our GNN model operates on
a spatiotemporal graph, updating features based on both
spatial and temporal relationships.

Adjacency matrices were numerically constructed
based on three principles:(1) Flow correlation coefficients
between nodes (Pearson > 0.6);(2) Geometric distance
thresholding (<2 km);(3) Multi-source sensor co-
occurrence frequency.Each adjacency matrix was row-
normalized to ensure stability in spatio-temporal
propagation.

This method can capture congestion evolution patterns
from different dimensions while maintaining the
topological integrity of the traffic network, and identify the
relationship between traffic flow propagation and speed
attenuation between key sections. Multi-channel feature
fusion not only enhances the detection sensitivity for
sudden congestion but also improves the modeling ability
for periodic traffic fluctuations, providing spatio-temporal
feature support for the subsequent optimization of police
response paths.

3.3 Introduce an attention mechanism to
enhance the recognition of key sections

In the high-speed transportation network, the importance of
different road sections in congestion transmission and
police response varies significantly. Main roads, accident-
prone areas and bottleneck intersections often play a core
role in the overall congestion chain, while branch roads or
low-traffic sections have a relatively small impact. If an
equal-weight strategy is adopted for all neighboring nodes
during the feature aggregation process, the model cannot
highlight the importance of key road sections, thereby
weakening the accuracy of congestion detection and police
response. To this end, the Graph Attention Mechanism is
introduced. By dynamically allocating the weights of
neighboring nodes, the focusing ability on high-traffic and
low-speed road sections is strengthened, and the
identification and modeling of key road sections are
achieved. During the feature update process, the

representation of node I'can be defined as:

h=ol > B;-Wh,|

jeN(i)
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!

Among them, " is the updated feature vector of node

i ; N(I)is the neighbor set of node i ;W is a trainable

weight matrix; hj is the traffic feature input for neighboring
node J ;ﬂij is the attention weight; O is the nonlinear
activation function. This formula enhances the congestion
feature expression ability of the traffic network by
introducing dynamic weights and emphasizing the
contribution of key nodes to the overall network state
update during the feature propagation process. The

B

calculation method of attention weight /1 is as follows:

-1

9; Y
- - I (6
Zien(i) Y 'le )

ij =

Among them, qj represents the traffic flow of

. -1
V.
Section J during the sampling period; ! represents the

. - oq vt
inverse of the average speed of Section J . '/ !

represents the congestion intensity indicator. High traffic
volume corresponds to low speed, resulting in more severe

B

from neighbor node J o node!. To normalize the attention
weight across all neighboring nodes, we apply the softmax
function:

congestion. is the importance weight of the update

__oolov)
T e eXp(qJ' ’V}l)
Where the softmax function ensures that the attention

weights are normalized, so the sum of all Bi for node ! is
1. This makes the attention coefficients probabilistic,
ensuring that the model learns the relative importance of
each neighbor node during feature propagation.This
formula utilizes the combined characteristics of flow and
speed to dynamically highlight the sections with significant
congestion, enabling the model to adaptively focus on
bottleneck nodes during feature aggregation and improving
the accuracy of congestion propagation path modeling.
The feature extraction method based on the attention
mechanism enables the model to more sensitively capture
high-influence nodes in the traffic network and reduce the
interference of non-critical road sections on the overall
detection results. Combining multi-source heterogeneous
traffic data, this mechanism demonstrates higher sensitivity
and robustness in the identification of key nodes and the
prediction of congestion propagation chains, providing

(7

Informatica 49 (2025) 395-408 399

more discriminative input features for the subsequent
optimization of police response paths.

3.4 Multi-task-driven congestion feature
extraction process

Single-task supervision cannot capture the complex spatio-
temporal features of congestion in high-speed
transportation networks. Using only traffic classification or
speed prediction limits the expression of nonlinear
propagation. A multi-task framework with classification,
edge prediction, and regression aligns with RQ2 on
stability and accuracy. Attention supports RQ1 by
enhancing spatio-temporal features, while reinforcement
learning addresses RQ3 through optimized dispatch,
ensuring goal-method alignment.This mechanism can
optimize multiple task losses in parallel based on the shared
graph convolution parameters, enabling intermediate
features to form more discriminative embedded
representations at the semantic, topological and numerical
levels. The multi-task loss function is defined as:

L= ﬂchls + ﬂzLedge + ﬂ?»Lreg ®)

Among them, LC'S represents the cross-entropy loss of
congestion classification, which is used to determine

whether a road section is in a congested state; Ledge
represents the edge prediction loss of key sections. Binary
cross-entropy is adopted to calculate the congestion
propagation prediction error between adjacent sections.

L. . . L
"0 is the regression loss of node traffic indicators. The
mean square error is used to evaluate the deviation between

the predicted speed and the actual speed. A,42,/3 is the
weight coefficient. In the experiment, it is adjusted within
the range of {0.2,0.5,1.0} through grid search, and the
optimal combination is selected on the validation set. This
formula maintains a balance in the three aspects of
classification, connection prediction and numerical
regression through the collaborative optimization of three
types of sub-tasks.

To verify the effectiveness of the multi-task
mechanism, a comparative experiment between single-task
training and multi-task training was designed. Single-task
training independently models congestion classification,
edge prediction, and speed regression respectively, and
takes the average result. Multi-task training jointly
optimizes three types of tasks within the same model. The
comparison results are shown in Table 3.

Table 3: Comparison of congestion detection performance under different training mechanisms

Training Method '(A:\gggfggi;/)?o/(g)lassification Edge Prediction F1 Score (Slgﬁﬁ)Regression MSE
Single-Task Training 85.1 0.703 4.12

Multi-Task Joint

Training 90.4 0.782 3.05
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The experimental results show that the multi-task
mechanism outperforms the single-task training in all three
indicators, especially with significant improvements in the
tasks of edge prediction on key sections and speed
regression. It is demonstrated that the multi-task joint loss
can effectively guide the model to capture the
spatiotemporal dependency of the traffic network, forming
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a more stable and discriminative feature expression,
providing a solid data support for congestion propagation
identification and police response optimization.To ensure
robustness, three weight settings{0.2,0.5,1.0} were tested.
Results show that multi-task optimization consistently
surpassed single-task baselines, with balanced weights
yielding the best performance (Figure 2).
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Weight Setting

Multi-task Accuracy
Multi-task F1 (x100)

—=—- Single-task Accuracy

Single-task F1 (x100)
—— Multi-task MSE
——- Single-task MSE

Figure 2: Performance comparison of multi-task training under different weight settings against single-task baseline.

4 Traffic congestion modeling and
route planning for police response

4.1 Construction of traffic network node
paths and modeling of congestion
propagation

In the modeling of high-speed traffic congestion detection
and police response, the construction of node paths in the
traffic network not only determines the direction of
information dissemination, but also directly affects the
simulation accuracy of congestion propagation and the
rationality of police dispatch paths. If the path construction
ignores the traffic topology and the law of flow propagation,
it is very likely to cause deviations in the model's
bottleneck identification and response planning. Therefore,
it is necessary to introduce geometric distance, traffic
weight and rule constraints in the process of path
generation to ensure that the path system not only conforms
to the geometric features of the road, but also can truly
reflect the congestion transmission chain.

The reinforcement learning framework is detailed
below with pseudo-code:

Pseudo-code for RL Path Planning:
initialize policy_network, value_network
for episode in range(max_episodes):

state = env.reset()
while not done:

action = policy_network(state)

next_state, reward = env.step(action)

update(policy_network, value_network, reward)

state = next_state

Ablation experiments compared PPO-based RL with
Greedy Decoding. RL achieved higher Accuracy (+4.3%),
improved Topology Score (+3.1%), and reduced average

response delay (-1.2 s), demonstrating the superiority of
reinforcement learning over heuristic decoding.

Path generation is based on the node set and edge set
in the transportation network, abstracting intersections or
checkpoints as nodes and road connections and traffic
directions as edges. The constructed directed graph needs

to take into account both the geometric length of the
road and the flow carrying characteristics simultaneously,
thereby defining the optimal path set between nodes. Let

the traffic network diagram be G:(V'E)
optimization objective be formalized as:

P*=argmin 3 [a~dij+(l—a)~:] 9)

(i.)eP

, and the path

* d.
Among them, P"is the optimal path set; "
represents the geometric distance between sections I'and

i f.

J . "represents the traffic volume of the road section; a
is the regulating coefficient, which is used to balance the
two types of characteristics: geometric and flow. In the
experiment, & was adjusted through grid search (value
range {0.3,0.5,0.7,1.0}). The results showed that when

a= 0-5_0-7, the consistency of path propagation and
the accuracy of congestion detection were the best.
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To ensure that the path generation conforms to the real
traffic logic, rule base constraints are introduced, including
road directionality, priority lanes for police vehicles, and
information on the closure of accident points. During the
path search process, the improved Dijkstra algorithm is
adopted. Constraint rules are embedded in the calculation
of the shortest path to automatically eliminate non-
compliant path branches. In this way, the generated path is
not only geometrically reasonable but also executable in
terms of congestion propagation and police dispatch.

As shown in Figure 3, the path construction process
covers six main steps:(DInput of the traffic network map,
including intersections, road sections and multi-source
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sensor data;(2)Rule library loading, importing road
direction, accident nodes and police priority
constraints;(3)Node and edge feature extraction to obtain
indicators such as spatial position, traffic flow, and
speed;(@)Edge weight matrix construction, combining
geometric distance with traffic weight;(5)Consistency
check to eliminate path branches that do not conform to
traffic logic or scheduling constraints;(6)Path search and
output: Generate the optimal path set using an improved
graph search algorithm.

Input of traffic
network map

Rule library
loading

Node and edge
feature extraction

Y

Path search and
output

N Consistency check

Construction of
edge weight
matrix

Iy

Figure 3: Modeling process of traffic network node path construction and congestion propagation

This path construction method provides ordered input
for the subsequent congestion propagation prediction and
police dispatch modeling, ensuring the effective
transmission of features in the graph neural network.
Through the joint modeling of geometric distance and flow
constraints, the path can more truly reflect the dynamic
process of congestion formation and diffusion. Meanwhile,
the embedded rule base enables police responses to
generate feasible paths based on the actual traffic
conditions, thereby shortening the response time and
improving the utilization rate of resources, providing a
solid modeling foundation for congestion detection and
police dispatch in high-speed traffic environments.Blocked
roads were excluded from the adjacency matrix, and police
priority was encoded by lower traversal costs for
emergency lanes.

4.2 Design of graph feature encoding and
police dispatch path decoding

In the modeling of high-speed traffic congestion detection
and police response, the goal of graph feature coding is to
transform the spatial topology of the traffic network and
multi-source dynamic data into a unified embedded
representation. In the input graph structure, each node
corresponds to a traffic intersection, and its initial features
consist of geographical coordinates, flow rate, speed and
semantic labels. Through graph convolution operations, the
model can aggregate information within the local
neighborhood range, thereby obtaining high-dimensional
features that reflect the laws of traffic propagation. The
update formula for graph feature encoding is as follows:

141 | I

W' =l Wh" + > wh" (10)
jeN(i)

(1+2)
Among them, is the feature representation of

. 1)

node Iat the | +Liayer, h is the input feature of node
. . O
i at the | 1ayer, N(I)isthe neighbor set of node !, 1 s

the feature of neighbor node J ,W is the shared weight
matrix, and 9 is the nonlinear activation function.The

congestion coefficientCIJ is computed as a rolling average
of flow and speed between nodes, updated every 30 s to
reflect real-time traffic.This formula is used in the
encoding stage to perform weighted fusion of the traffic
features of the node itself and its neighbors, achieving
representation learning of the spatio-temporal dependency
relationship of the traffic network.

In the path decoding stage of police dispatch, it is
necessary to generate a reasonable police dispatch route
based on the encoded node embedding. Path selection
should not only take into account the geometric distance
but also combine the real-time congestion level to ensure
response efficiency and execution feasibility. The
probability function of path decoding is expressed as:

exp(— 4,d;; _/lzcij)
Ple. |=
(e”) ZkeN(i)eXp(_ﬂldik_ﬂ’ZCik) (a
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Ple.

Among them, ( ”) is the path probability of
. : d.

choosing from node !to node J , and ""Yis the geometric

C. . . .
"1 is the real-time congestion

A2

distance of the road section.

coefficient of the road section, is the adjustment

parameter, and N(I)is the neighbor set of node ! . This
formula is used in the path decoding stage to conduct
probabilistic screening of candidate road sections. While
ensuring the rationality of the spatial topology, it highlights
the priority selection logic of "short distance and low
congestion”, thereby optimizing the overall efficiency of
police dispatch.

In summary, the graph feature encoding module is
responsible for extracting spatio-temporal dependencies
from multi-source heterogeneous traffic data, while the
path decoding module generates highly consistent police
dispatch routes based on this and in combination with
constraint conditions. The two form an encoder-decoding
closed loop, which not only enhances the expressive ability
of traffic congestion transmission characteristics but also
provides a stable foundation for the path optimization of
police response.

4.3 Reconstruction of police response paths
based on constraint conditions

In high-speed transportation networks, the rationality of
police response paths not only depends on the modeling of
spatio-temporal features by graph neural networks, but also
requires the correction of candidate paths through
constraint conditions to ensure the geometric feasibility
and traffic logic consistency of the generated routes. If
there are no constraints, the police path may deviate from
cross-regional jumps, congestion and detours, or over-
reliance on the shortest distance. To this end, this study
introduces a joint optimization mechanism of geometric
constraints and flow constraints in the path reconstruction
stage, so that the final output path not only conforms to the
spatial topology but also takes into account the
characteristics of congestion propagation. First, define the
distance constraint loss of the path to ensure that the police
path approaches the optimal solution geometrically:

1 d df
Lyise = 7= Z(dijpre _di;e ) (12)
|E| (fxe
.pred
Among them, "
ref

predicted path, "

is the distance of edge (I'J) in the

is the reference distance in the actual

traffic network, and E is the set of path edges. This
formula is used to constrain the deviation between the
predicted path and the actual geometric road section,
ensuring the spatial rationality of the overall route.

Based on the distance constraint, the flow consistency
constraint is introduced to avoid excessive concentration of
path selection on high-traffic congestion sections:
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|T||I—‘

pred obs Y
flow Z)( _fij ) (13)
__pred
Among them,
obs

the predicted path,

is the flow value of edge (I’J) in

is the real-time flow observed by

the traffic sensor, and E is the set of path edges. This
formula avoids abnormal choices in the path reconstruction
results that do not conform to the law of congestion
propagation by constraining the traffic distribution of the
predicted path to be close to the true monitoring value. To
enhance path coherence, this study adds node smoothing
constraints to penalize the discontinuity of adjacent nodes
in the path direction'

ZH( "

ieV

ref )+ (yipred _ yiref 1‘2 (14)

smooth

( _pred ypred)
Among them, e is the predicted

. ref )
coordinate of node ! , ’yi is the reference node

coordinate, andV is the set of path nodes; This formula is
used to suppress node offset and sudden direction changes,
maintaining the continuity and stability of the path in terms
of geometric structure. The final joint loss function
integrates the above three types of constraints:

Ltotal = aLdist + ﬂLrow + 'smooth (1 5)

Among them, apy is the weight coefficient. In the
experiment, the optimal combination is determined through
grid search to ensure the balance of the three types of
constraints. This formula plays a role in both the training
and inference phases. By continuously optimizing the
model parameters through backpropagation, the path
reconstruction maintains consistency in three aspects:
spatial geometry, flow distribution, and node continuity.

The experimental results show that when the constraint
mechanism is enabled, the model performance is
significantly improved. Among them, the Topology Score
increased from 85.1%+0.6 without constraints to
89.3%+0.5, and the Response F1-Score increased from
86.7%=0.7 without constraints to 91.7%=0.6. The results
show that the introduction of geometric constraints and
flow constraints effectively enhances the reliability and
feasibility of the police dispatch path, and maintains good
stability under different experimental conditions.

4.4 Path planning and reinforcement
learning strategy guidance mechanism

Path planning in high-speed transportation networks is
critical for dispatch efficiency. Traditional methods using
fixed shortest-path searches are inadequate for dynamic
congestion. This study introduces a reinforcement learning
(RL) network with Proximal Policy Optimization (PPO),
chosen for its stability and efficiency in continuous action
spaces, balancing exploration and exploitation.The RL
network optimizes path selection using traffic network
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topology and multi-source data. A reward shaping
mechanism rewards congestion-minimizing paths and
penalizes suboptimal ones, with parameters adjusted
through grid search. An epsilon-greedy strategy is used,
with a learning rate of 0.001 and batch size 64.The network
consists of two hidden layers with 512 units each and a
ReLU activation function. The output layer has 64 units,
corresponding to action choices. Adam optimizer is used,
with Advantage normalization and experience replay for
stability and efficiency.The model is trained for 200 epochs
with a discount factor of 0.95. Inference latency is reduced
to 3.5 seconds. Ablation studies show improvements in
Accuracy, Topology Score, and F1-Response Score.
Convergence is monitored using training loss and
validation accuracy, with early stopping ensuring stable
learning.A non-RL baseline (Dijkstra) and a DQN variant
were tested. Both showed slower convergence and weaker
adaptability, confirming PPO’s advantage in dynamic
traffic environments.

In the policy network, the state is defined as the current
position of the police vehicle and the path it has traveled,
and the action space is all reachable adjacent road sections.

Through the strategy function ﬂ(a|s), the model selects
an edge as the next jump at each moment, with the goal of
maximizing the global path return. The path score function
is defined as:

Informatica 49 (2025) 395-408 403

R(r)=>(-ed, - fc, + 1) (16)

t=1

Among them, 7 represents the complete path

trajectory, dt is the distance of the tstep section, C is

the congestion coefficient at the corresponding time, Y% is

the smoothness score of the section, and %’ By is the
adjustment coefficient. This formula is used to calculate the
cumulative return of the path, comprehensively considering
the driving distance, congestion degree and traffic
smoothness, to guide the policy network to generate the
optimal path.

During the training process, the policy network adopts
an update method based on policy gradients, combined
with a reward shaping approach: if the path selection
conforms to the traffic topology and low-congestion rules,
a positive reward is given; If detour, topological jump or
high congestion section selection occurs, penalties will be
imposed to enhance the priority of reasonable paths. To
further enhance the robustness of the strategy, a graph
attention mechanism is introduced into the network
structure to highlight the importance of key intersections
and high-traffic nodes for path selection. To verify the
guiding role of the policy network in path planning, Table
4 summarizes the key indicators adopted in path planning
and their explanations.

Table 4: Key indicators in the path planning and strategy guidance mechanism

Metric Name Symbol Description
The average travel distance of police response paths, used to measure
Average Path Length Lavg dispatch e(f]ficiency p P p
: The proportion of highly congested road segments in the path; higher values

Congestion Penalty Value Peong indicate a greater likelihood of selecting obstructed routes
Path Consistency Score Seons ;I;rrl]% PJSQ%E]OFOOI]DathS that satisfy traffic topology and rule constraints,

. . . Estimated dispatch time based on predicted speed and congestion delay,
Response Time Estimation Tresp used to evaluate real-time response performance

The optimization results of the policy network show
that after adopting the reinforcement learning guidance
mechanism, the average path length is shortened by
approximately 7.3%, the congestion penalty value is
reduced by 0.12+0.04, the path consistency score is
increased to 0.91+0.03, and the average response time is
shortened to 3.5+0.6 minutes. The results show that the
reinforcement learning strategy can dynamically balance
the two types of demands of "shortest distance™ and "low
congestion”, and output a better police dispatch path in a
complex traffic environment.

5 Model training process and
validation analysis

5.1 Construction and format conversion
process of multi-source heterogeneous
datasets

The dataset used in this experiment is sourced from the
actual highway backbone network, containing 6,120 road
samples: 3,520 traffic flow and speed alignment samples,
1,740 vehicular network trajectory and congestion-labeled
samples, and 860 police response and arrival time records.
The details of the dataset are provided below:

Table 5: Dataset overview

Item Description

Nodes 6,120

Edges sDthJlCrt]Strdeby road network

Time Steps 580,000

Time Resolution Hourly sampling

Congestion Defined by flow and speed
Events thresholds (e.g., <30 km/h)
Congestion Label Marked if speed <30 km/h
Video Data Traffic cameras, H.264 encoding
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Missing values and noise were handled using linear
interpolation for traffic flow and speed. Noise from sensors

was smoothed with low-pass filtering and moving averages.

Ethical approval for police response records was obtained
to ensure compliance with data privacy regulations.The
dataset was split chronologically into training (70%),
validation (15%), and test (15%) sets. To ensure statistical
validity, the experiment used a random seed (1234) and
repeated each run 10 times. Statistical analysis showed a
95% confidence interval of 0.5, with all results
statistically significant (p < 0.05) based on t-tests.

The transportation network is represented as triple

(VEX)

intersections or monitoring points. E is the edge set,

where v is a set of nodes, representing

representing the road connection relationship; X is the
node feature matrix, combining location, flow, speed and
congestion marking information. The form of node features
is defined as follows:

“« = lon;, lat; flow, peed,
"{L'M'F_ S
lon;, lat; represents the longitude and

LM

,Iabelij (17)

max

Among them,

latitude coordinates of node ! , is the normalization

ﬂOWi is the flow rate value, F"HX is the

coefficient,
maximum flow rate in the sample set, Speedi is the speed
value, Smﬂx is the maximum speed, and Iabeli is the

congestion label (0/1). This formula is used in the graph
construction process to unify the expression of node
features, ensuring that the model can simultaneously
capture geographical locations, traffic conditions and
congestion patterns.

In terms of data partitioning, the dataset is divided into
a training set (70%), a validation set (15%), and a test set
(15%) in chronological order to ensure that information
leakage is avoided during the experimental process. The
edge index matrix is stored in an adjacency list structure,
and the node feature matrix and edge weight matrix are
synchronously input into the graph neural network as the
basis for training and prediction.

To ensure the reproducibility of the experiment, the
following is a pseudo-code example of the data loading and
training loop:

for epoch in range(max_epochs):

for batch in traffic_loader:

graph = build_graph(batch)

output = GNN_model(graph)

loss = compute_loss(output, target)

optimizer.zero_grad()

loss.backward()

optimizer.step()

score = evaluate(GNN_model, val_loader)

update_best_model(GNN_maodel, score)

Pseudo-code demonstrates the processes of data
loading, graph construction, forward computation, loss
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backhaul, and validation evaluation, embodying the
standard training logic from data to model.

The experimental results show that after using the
graph structure constructed with the above multi-source
heterogeneous data, the model achieves 92.4%=0.5 in the
Accuracy of congestion detection and 89.6%+0.6 in the
Topology Score of police response path prediction, both of
which are significantly better than the baseline model
without format conversion. This process provides a stable
data foundation and a unified structural expression for the
subsequent path reconstruction and strategy network
optimization.

5.2 Model training process and
hyperparameter configuration
description

This study used a multi-source heterogeneous traffic
dataset with 6,120 samples, divided into 4,284 training sets,
918 validation sets, and 918 test sets. The average number
of nodes per graph was 56.3, with edge relationships
ranging from 85 to 110. Graph neural networks (GNN)
were employed for path planning and police response
modeling to enhance accuracy and stability.Traffic flow
features were normalized to [0,1], and video frames resized
to 256x256. Node attributes included location, flow, and
road types, while edge features captured geometric
distances and flow correlations. The dataset was split as
70%/15%/15% for training, validation, and testing. A batch
size of 16 and 80 epochs were used, with Adam optimizer
at a learning rate of 0.001 and CosineAnnealing for
dynamic adjustments.The GNN had three layers, with 64
and 128 units per layer, using ReLU activation. Xavier
initialization and a weight decay of 0.0001 were applied,
and early stopping was used if no improvement occurred
over five epochs. The average batch size maintained 56.3
nodes for consistency.The model was trained on PyTorch
Geometric with an RTX 4090 GPU for acceleration.
Simplified Pseudo-code for Training and Evaluation:
# Initialize model and optimizer
model, optimizer =
Adam(model.parameters(), Ir=0.001)
# Training loop
for epoch in range(epochs):
for batch in train_loader:
loss=criterion(model(build_graph(batch)),
batch['labels'])
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Early stopping check
if no improvement in val_loss for 5 epochs:
break
# Evaluation
for batch in test_loader:
loss=criterion(model(build_graph(batch)),
batch['labels'])

GNN_Model(),
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To highlight the significance of key sections in path
prediction, a structural loss function based on path weights
is introduced:

1 .
Lpathzﬁ(zwij<dij_dij (18)

i,j)eE
d, .
Among them, " represents the traffic delay between

actual road segments, ' is the predicted value of the
model, and Wi is the dynamic weight generated by the
policy network, reflecting the importance of this edge in
the path connectivity. This loss function enhances the
rationality of the overall path reconstruction by
emphasizing the prediction accuracy of key sections and
avoiding the model's excessive reliance on low-importance
edges. On this basis, to control the model complexity and
prevent overfitting, the final training objective function is
defined as:

L= Lo+ 4O (19)

Among them, C is the set of trainable parameters of

the model, and A is the regularization coefficient, which
controls the update amplitude of the parameters to prevent
unstable convergence caused by excessive gradients. This
formula constrains the parameter range while ensuring the
model accuracy, thereby improving the generalization
performance of training.

In terms of network structure, the model adopts a three-
layer graph convolution stacked architecture, with output
channels of 64, 64, and 128 in sequence. The activation
function uses ReLU, and BatchNorm is introduced after
each layer of convolution to ensure numerical stability.
Dropout (at a ratio of 0.3) is introduced between the second
and third layers to alleviate overfitting. The attention
mechanism allocates node weights after the convolutional

layer to enhance the recognition ability of key road sections.

The decoding part adopts a graph autoencoder structure,
embedding and mapping the encoded nodes into the path
space, and optimizing the decoding results through the
reinforcement learning module.

For fair comparison, baseline models were configured
as follows:(1)Baseline CNN: learning rate = 0.001, batch
size = 64, epochs = 100.(2)Baseline LSTM: hidden units =
128, dropout = 0.3.(3)Baseline GCN: three layers with 64—
128 hidden units, ReLU activation.All baseline models
were trained under the same conditions as our framework.
Each experiment was repeated 12 independent times with
different random seeds. Results are reported as mean + 95%
Cl, and statistical significance was assessed using two-
sample t-tests. The GCN backbone consists of three layers
with [64, 64, 128] channels. To justify this depth, both
shallower (2-layer) and deeper (4-layer) versions were
tested. Results indicated that the 3-layer structure achieved
the best balance between accuracy and computational cost.
A convergence curve (loss vs. epoch) is included in Figure
4 to illustrate stable training dynamics.
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2-layer GCN
0.9 3-layer GCN
—— 4-layer GCN

6 1‘0 210 3‘0 4‘0 5‘0
Epoch
Figure 4: Convergence curves of GCN with

different depths (2-layer, 3-layer, 4-layer)

Through multiple sets of hyperparameter comparison
experiments, it was ultimately determined that the
combination of a learning rate of 0.001, a Dropout ratio of
0.3, and a regularization coefficient of A=10—4 is the
optimal. Under this configuration, the Topology Score of
the model on the validation set reached 89.6%=0.5, and the
F1-Response Score reached 91.2%+0.6, demonstrating
good convergence and stability, providing a solid
foundation for the subsequent performance evaluation.

5.3 Model comparison and applicability
analysis

In this study, three types of model structures were
compared on multi-source heterogeneous datasets, namely
the convolutional Baseline model (Baseline-CNN) that
only relies on image features, the GCN-Net that introduces
graph structures, and the GNN+Strategy that fuses path
strategy networks. To objectively evaluate the performance

of the model, let the comprehensive index S be the mean
of Accuracy, Topology Score and F1-Response Score:
A+T+F
S= T (20)

Among them, A represents Accuracy, which
measures the recognition accuracy of nodes and road

sections; T represents Topology Score, which is used to
evaluate the matching degree of the topological

relationship of the traffic network; F represents F1-
Response Score, reflecting the comprehensive performance
of congestion detection and police response. This indicator
is used in the experiment to uniformly compare the overall
performance of different models.

The test results are shown in Figure 5. The Baseline-
CNN has an Accuracy of 82.4% + 0.6, the Topology Score
is 74.1% + 0.7, and the F1-Response Score is 79.6% + 0.8.
However, the performance of these metrics lacks precise
definitions, leading to unclear interpretations. For instance,
Topology Score needs a clear explanation of what
constitutes a topology match. Similarly, for F1-Response,
the positive class must be explicitly defined. After the
introduction of graph convolution, GCN-Net was
significantly improved. The Accuracy reached 88.9% * 0.5,
the Topology Score was 82.3% + 0.6, and the F1-Response
Score increased to 85.9% + 0.5. The GNN+Strategy model,
which integrates multi-source heterogeneous data and path
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planning strategies, performs the best, achieving an
Accuracy of 92.4% + 0.5, with a Topology Score of 89.6%
+ 0.5, and the F1-Response Score reached 91.7% + 0.6. The
overall trend shows that GNN+Strategy outperforms the

H Baseline-CNN
92,4

GCN-Net
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former two models in all three metrics, with improvements
of Accuracy +9.9%, Topology Score +7.3%, and F1-
Response Score +5.8% respectively.

B GNN+Strategy
89,6

88 9 82 3 85 9 917

Accuracy (%)

Topology Score (%)

F1-Response Score (%)

Figure 5: Bar chart of model structure comparison

To further verify the significance of the results, a two-
sample t-test was conducted on the results of three
independent experiments. Table 6 summarizes the

significant differences among the various methods. The
results show that GNN+Strategy achieves significant levels
in all three indicators compared with the other two methods
(p <0.05).

Table 6: Statistical significance test results for performance comparison of different methods

Indicator Baseline-CNN vs GCN- GCN-Net vs Baseline-CNN vs
Net GNN+Strategy GNN+Strategy
Accuracy p<0.01 p <0.05 p <0.001
Topology Score p<0.01 p <0.05 p <0.001
F1-Response Score p<0.01 p <0.05 p <0.001

The experimental results show that the proposed
GNN+Strategy model has higher stability and applicability
in complex high-speed traffic scenarios. Especially in
scenarios such as multi-traffic interweaving, non-repetitive
congestion, and emergency dispatching, the topological
error rate drops by nearly 35%, and the police response
delay is shortened by approximately 18%. This indicates
that this method can not only accurately detect spatio-
temporal congestion patterns, but also provide efficient
path optimization support for police dispatching.

5.4 Performance indicators and detection
accuracy evaluation

To comprehensively verify the effectiveness of the
proposed multi-source heterogeneous data-driven high-
speed traffic congestion detection and police response
modeling method, this section adopts the ablation
experiment approach to evaluate the core module. Under
the conditions of a unified experimental platform and
dataset, the attention mechanism, path planning strategy
and geometric constraint modules were removed in
sequence and compared with the complete model
respectively to clarify the contribution of each module to
the overall performance. The evaluation dimensions

include three core indicators: Accuracy, Topology Score
and F1-Response Score, and the performance is uniformly
characterized through weighted comprehensive indicator

M.
M=a-A+p-T+y-F (21)

Among them, A represents the classification accuracy
rate, which measures the system's ability to identify

congested nodes;T represents Topology Score, reflecting

the consistency maintained by the traffic topology; F
represents F1-Response Score, which is used to evaluate
the comprehensive balance of police response detection;

ap.y is the weight coefficient, set at 0.4, 0.3, and 0.3
respectively, to highlight the priority of accuracy in
emergency decision-making. This indicator is weighted
and integrated on the basis of multi-dimensional indicators,
making the assessment more in line with the actual
application requirements. Table 7 summarizes the
comparison between the complete and ablation models,
reported as mean + standard deviation across three runs. In
addition to metric M, macro-F1, micro-F1, and confusion
matrix are included to provide a more interpretable
evaluation.

Table 7: Comparison results of ablation experiment performance

. Accuracy Topology F1-Response Macro-F1 Micro-F1
Model Setting (%) Score (%) Score (%) (%) (%) M
Without Attention
Mechanism 88.5+0.5 82.1+0.6 84.3+0.6 83.9+0.7 845+0.6 85.1
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Without Path Planning

Strateqy 89.1+0.4 83.6+0.5 85.2+0.5 84.7+0.6 85.3+0.5 86.2
Without Geometric

Constraint 90.2+0.5 85.0+£0.6 86.1+0.6 85.6+0.6 86.4+0.5 87.5
Full Model

(GNN+Strategy) 92.4+0.5 89.6+0.5 91.7+0.6 90.8+0.5 91.5+05 91.4

Table 7 shows that the complete model achieves the
best performance, with M reaching 91.4. Removing the
attention mechanism reduces Accuracy by 3.9% and lowers
Macro-F1 and Micro-F1 by about 7%, underscoring its role
in key section recognition. Excluding the path planning
strategy decreases the Topology Score by 6.0% and both
Macro-F1 and Micro-F1 by over 6%, confirming the
necessity of path constraints. Eliminating geometric
constraints leads to declines in Topology Score (—4.6%),
F1-Response (—5.6%), and F1 metrics (=5%),
highlighting the importance of geometric consistency for
stable response paths.

Overall, all three types of modules contribute to
performance, but the attention mechanism is the most
crucial for improving accuracy. The path planning strategy
ensures topological consistency, and geometric constraints
enhance global stability. The multi-module synergy
enables the model to exhibit superior detection and
response capabilities under multi-source heterogeneous
data, significantly outperforming the weakened ablation
version, verifying the effectiveness and robustness of the
proposed method.To ensure reproducibility, all code and
processed datasets are released in an anonymized
repository. Data format specifications and synthetic
samples are included, enabling independent verification
without compromising data privacy.

5.5 Discussion

The proposed framework is compared with prior methods
in Table 1. Unlike DRL-Dispatch, which depends only on
reinforcement learning, our model combines GNN
encoding with RL decision-making, yielding +3.4% higher
accuracy and shorter response delay. Compared with
Hetero-GNN, which lacks strong topology awareness,
spatio-temporal graph convolution in our framework
captures traffic dependencies more effectively. Traditional
CNN-based baselines fail to emphasize critical bottleneck
sections, while our attention mechanism improves the
Topology Score by 7.3%.

The performance gain stems from three design
aspects:(1)Spatio-temporal GNN encoding for structured
traffic dynamics.(2)Attention-based feature extraction
highlighting  congestion  chains.(3)RL-guided  path
decoding with geometric constraints for real-time
response.These choices explain the improvements in
accuracy, topology preservation, and dispatch timeliness,
confirming the practical value of the proposed system.

6 Conclusions and prospects

The multi-source heterogeneous data-driven high-speed
traffic congestion detection and police response modeling
method proposed in this study constructs an overall

framework of "multimodal data fusion - graph convolution
feature extraction - multi-task congestion detection - police
path optimization". In the feature modeling stage, the graph
convolutional network effectively captures the spatio-
temporal dependencies among road flow, speed and
topology. The attention mechanism further highlights the
features of key road sections, enabling precise
identification of the congestion propagation chain. In the
path planning and response stage, the combination of
geometric constraints and policy networks ensures the
coherence and dynamic adaptability of the path. The
experimental results show that this method outperforms the
baseline model in terms of Accuracy, Topology Score and
F1-Response Score. Among them, the Accuracy increases
to 92.4%=0.5 and the Topology Score reaches 89.6%=0.6.
The stability and robustness of the method in a complex
road network environment were verified.

Despite this, the research still has deficiencies: First,
the data sets mainly come from the main highway network,
and their cross-regional and cross-scenario applicability
has not been fully verified; Secondly, reinforcement
learning strategies have slow convergence speed and local
optimum risk under extreme congestion conditions, which
affects the real-time response efficiency. In the future, it
can be expanded in three directions: First, introduce multi-
source heterogeneous data across cities and scenarios to
enhance the generalization ability of the model; Second,
combine self-supervised learning with large-scale pre-
trained models to reduce the reliance on artificial feature
construction; Thirdly, explore the integration of graph
neural networks and multi-agent reinforcement learning to
achieve collaborative planning and dynamic collaboration
of multiple vehicles in police dispatching, thereby further
expanding the application wvalue in intelligent
transportation and emergency management.
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