
Informatica 40 (2016) 19–27 19

Jason Interpreter, Enterprise Edition

Dejan Mitrović and Mirjana Ivanović
Department of Mathematics and Informatics, Faculty of Sciences
University of Novi Sad, Novi Sad, Serbia
E-mail: {dejan, mira}@dmi.uns.ac.rs

Rafael H. Bordini
Postgraduate Programme in Computer Science – School of Informatics (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
E-mail: r.bordini@pucrs.br

Costin Bădică
Computer and Information Technology Department
Faculty of Automatics, Computers and Electronics, University of Craiova, Romania
E-mail: cbadica@software.ucv.ro

Keywords: intelligent agents, Java EE, Jason, AgentSpeak

Received: July 24, 2015

The Enterprise edition of the Java platform has been endorsed by both small and large enterprises, as it
enables the development of large-scale, reliable, and secure software solutions. In the world of agent de-
velopment, on the other hand, AgentSpeak, and its practical interpreter Jason, represent one of the most
popular tools for writing complex, reasoning agents. This paper presents a framework that integrates the
two approaches to distributed software development, and supports a seamless deployment of Jason agents
in enterprise environments. The proposed framework offers many technical advantages, including auto-
mated agent load-balancing and fault-tolerance. The end-goal of this research, however, is to try and bridge
the gap between the agent technology and modern enterprise applications.

Povzetek: Predstavljena je izpopolnjena platforma za agente v Jasonu z namenom izdelave agentnih ap-
likacij.

1 Introduction

Java platform, Enterprise Edition (Java EE), is designed
to support the development of scalable, secure, and reli-
able software products [11]. It is built around the idea of
code reuse, and incorporates many libraries, frameworks,
and technical solutions. As such, Java EE is often utilized
as the main software development platform by small and
large enterprises.

When it comes to agent development, most existing mul-
tiagent frameworks are written using the Standard Edition
of Java (Java SE) [6]. On the other hand, as discussed in
[14, 24], the use of Java EE can significantly reduce the ef-
fort needed to develop efficient multiagent frameworks. In
addition, it can simplify the process of integrating agents
into enterprise applications.

Extensible Java EE-based Agent Framework (XJAF)
[16, 14, 24] is a multiagent framework built on top of Java
EE. It utilizes technical solutions of Java EE in order to
support scalable and reliable multiagent systems. More
concretely, XJAF runs on top of computer clusters in or-
der to provide high-availability of deployed applications,
which is concerned with scalability and uninterrupted de-
livery of services, i.e. regardless of software or hardware

failures [25].
Although the Java programming language is well-suited

for many scenarios, the process of writing complex, rea-
soning agents often requires a special, agent-oriented pro-
graming language (AOPL) [6]. An AOPL provides pro-
gramming constructs that enable developers to apply and
use advanced multiagent concepts in practice. One of the
most popular AOPLs is AgentSpeak, which directly sup-
ports the popular Belief-Desire-Intention agent architecture
[21, 19]. To a great degree, the language owes its popular-
ity to the Jason interpreter [4, 5]. Jason is a practical and
efficient Java-based interpreter for an extended version of
AgentSpeak, with a highly-customizable architecture.

This paper presents our most recent research efforts
aimed at extending Jason with the support for enterprise
environments. The new edition of Jason, named Jason In-
terpreter, Enterprise Edition (Jason EE), is integrated into
XJAF, and uses its agent-oriented abstractions of Java EE
technologies. This integration results in several advan-
tages. First and foremost, being enterprise components
themselves, Jason EE agents can interact with other parts of
regular enterprise applications in a straightforward fashion.
For example, a Jason EE agent can easily interact with web
services or expose its capabilities in form of a web service,



20 Informatica 40 (2016) 19–27 D. Mitrović et al.

manage data in a remote (relational or NoSQL) database,
etc. This integration could, therefore, help bridging the gap
between agent technology and business, enterprise applica-
tions.

On the technical side, Jason EE provides agent load-
balancing, thread pooling, and fault-tolerance. Load-
balancing is concerned with automatic distribution of
agents across the computer cluster [15]. It spreads the
computational load, and enables Jason EE to run large
number of agents. Thread pooling stems from the use of
XJAF as the underlying multiagent framework. In XJAF,
there is no thread-to-agent mapping [16]. An agent is as-
signed a thread whenever it needs to perform some process-
ing. In the worst-case scenario, when all agents need to
run simultaneously, there will be as many threads as there
are agents, but the underlying enterprise application server
tries to reduce resource consumption otherwise. As a re-
sult, XJAF and Jason EE can run many more agents on
a single machine than a Java Virtual Machine (JVM) can
support threads.

Finally, fault-tolerance is concerned with state replica-
tion and error recovery. It handles not only agents, but other
Jason (EE) components as well, including Execution con-
trol and Environment [5]. Whenever a state of an object
changes, it is replicated to a predefined number of nodes.
In case the host node fails, the object is transparently re-
stored on one of the remaining nodes and all calls to it are
redirected there.

Along with these advantages comes one disadvantage.
Since Java EE is more complicated than Java SE, the
process of developing Jason EE applications is inherently
more complicated, when compared to the process of devel-
oping standard Jason applications.

The idea of executing Jason agents in Java EE environ-
ments was originally presented in [13]. While it only dealt
with mapping agents to Enterprise JavaBeans, this paper
proposes Jason EE as a fully-featured redesign of Jason,
suitable for enterprise environments.

The rest of the paper is organized as follows. Section 2
provides more details about AgentSpeak and Jason, as well
as XJAF and Enterprise JavaBeans. Detailed insight into
the Jason EE architecture and its components is given in
Section 3. Section 4 presents a case-study that demon-
strates one important technical advantage of Jason EE: state
replication and failover. Related work is presented in Sec-
tion 5, while the final conclusions and future research di-
rections are given in Section 6.

2 Technology overview

In order to fully understand the architecture of Jason EE,
some basic understanding of its underlying technologies is
needed. This section describes AgentSpeak and Jason, as
well as Enterprise JavaBeans, one of the core Java EE tech-
nologies, and XJAF, a multiagent framework which pro-
vides the necessary infrastructure for Jason agents.

2.1 AgentSpeak and Jason

The syntax of AgentSpeak is strongly inspired by Prolog.
Its main data type is the term, which can be a constant (an
atom, a number, or a string), a variable, a structure, or a list
[7, 5]. However, AgentSpeak also includes a variety of new
syntactical (and semantical) elements, in order to simplify
the development of goal-oriented reasoning agents.

AgentSpeak agents are defined in terms of their be-
liefs, goals, and plans [4, 5]. The agent’s belief base
consists of predicates and rules. For example, the pred-
icate ball(8,32) might represent a belief of a foot-
ball playing agent that the ball is at position (8,32).
The rule canKick :- me(X,Y) & ball(A,B) &
dist(X,Y,A,B) < 1 might indicate that the agent can
kick the ball if the distance between itself and the ball is
less than some predefined value.

More information about a belief can be provided us-
ing annotations. Annotation is a user-defined or a built-
in structure attached to the predicate. For example,
ball(8,32)[source(percept)] indicates that the
agent’s belief about the ball’s current position stems from
the perceptual information (i.e. the agent has directly ob-
served the ball).

AgentSpeak supports two types of negations: strong
negation, and negation as failure [5]. The first type, de-
noted by ~, indicates that the agent explicitly believes
something no to be true. In the second type, a belief pre-
ceded by the not operator is true if it cannot be deduced
from the agent’s belief base.

The language supports two types of goals: achievement
and test [4, 5]. Achievement goals are expressed as logical
formulae describing the state of affairs the agent would like
to reach. Test goals, on the other hand, are typically used to
query the belief base, and determine if certain beliefs exist.

Beliefs and goals together describe the agent’s mental
state. Changes in the mental state, i.e. additions or re-
movals of beliefs and goals, trigger the execution of plans.
A plan definition consists of a triggering event, a context,
and the plan body [5]. Whenever the agent’s mental state
changes, all plans with the corresponding triggering event
are marked as relevant. The context of each relevant plan is
then evaluated in order to determine if the plan is applica-
ble. The context is a logical expression which describes be-
liefs, e.g. about the environment, that the agent must hold,
and is especially useful in dynamic environments. The fi-
nal element of a plan, its body, is defined as a sequence of
simple logical expressions, internal or environment actions,
test or achievement goals, as well as mental notes, which
add new beliefs to the belief base [5].

Jason interpreter operates in reasoning cycles, where
each cycle consists of ten steps [5]. First, the agent per-
ceives its environment, processes a single message received
from another agent, filtering out “socially unacceptable”
messages along the way, and updates its belief base accord-
ingly. The remaining six steps represent the core of agent’s
reasoning and acting:



Jason Interpreter, Enterprise Edition Informatica 40 (2016) 19–27 21

– A single event is selected to be processed;

– A set of relevant plans, i.e. plans corresponding to that
event, is selected;

– Of those, a set of applicable plans (or, options) is de-
termined;

– Committing to an applicable plan, creating an inten-
tion;

– Selecting an intention from a stack of pending inten-
tions; and

– Executing one step of the selected intention.

Users can modify the interpreter’s behavior in many of
these steps. For example, the applicable plan will be se-
lected (for the agent to commit to executing it) based on
its order in the source file (similarly as in Prolog). This
behavior can be changed by modifying the corresponding
selection function.

The work presented in this paper deals with a differ-
ent aspect of modifying Jason. The goal is to enable
AgentSpeak/Jason agents to operate in enterprise applica-
tions, by providing customized multiagent infrastructure,
agent architecture, execution control, and environment, as
discussed in Section 3.

2.2 Enterprise JavaBeans
Enterprise JavaBeans (EJBs, or simply, beans) represent
one of the core Java EE technologies. They are server-side
components that encompass the business logic of an appli-
cation. An EJB is described as a managed component, as
its life-cycle, concurrent access, transactional integrity, etc.
is controlled by an enterprise application server.

There exist two main categories of EJBs: message-
driven and session. Message-driven beans act as mes-
sage receivers in the context of the Java Message Ser-
vice (JMS)1, an additional Java EE technology for asyn-
chronous communication. Session beans are further classi-
fied as singleton, stateless, and stateful.

As its name suggests, there is only a single instance of
a singleton session bean per Java Virtual Machine (JVM).
Stateless session beans do not preserve conversational state
with the client, and are best-suited for operations that can
be performed in a single method call. Stateful sessions
beans, on the other hand, are used when the client requires
an ongoing, more complex conversation.

From the point of view of runtime efficiency, the best
performance is achieved with stateless beans. When a
client request is received, the enterprise application server
can freely construct a new stateless bean on any cluster
node. Once the request is handled, the instance is de-
stroyed. Alternatively, instead of constructing and destroy-
ing stateless bean instances with each request, the server

1http://docs.oracle.com/javaee/6/tutorial/doc/
bncdq.html, retrieved on October 15, 2014.

can be configured to recycle them from a pool. In any case,
the advantage of using stateless beans is that it becomes rel-
atively easy to implement load-balancing techniques in or-
der to efficiently handle large numbers concurrent requests.

Although load-balancing of client requests that target
stateful beans is also applicable, here, the more important
focus is on state replication and failover. The server main-
tains multiple copies of a stateful bean across the cluster.
In case of a node failure, client requests are transparently
redirected to an instance residing in one of the remain-
ing nodes. This functionality enables the development of
highly-available systems, i.e. systems resilient to software
and hardware failures.

As discussed next, session EJBs, mainly stateless and
stateful, can be used to represent agents in enterprise ap-
plications. Stateless beans have a more restricted appli-
cability, and are well-suited for “one-off” agents – agents
that perform one task, and then terminate. More com-
plex behaviors, like those exhibited by Jason agents, can
be achieved by mapping agents to stateful beans.

2.3 XJAF

XJAF is an enterprise-scale multiagent framework [16, 24,
14]. One of the goals behind the development of XJAF was
to show how Java EE technologies can be utilized to easily
provide many functional requirements of multiagent plat-
forms. By integrating enterprise technologies and agents,
XJAF could assist in bridging the gap between the two ap-
proaches to distributed software development.

It is designed as an customizable architecture, in the
sense that its core components, called managers, are rec-
ognized and used solely by their interfaces, while the im-
plementation details can change. Each manager is in charge
of handling a distinct part of the overall architecture. Over
time, several managers have been in use, but the latest ver-
sion [16] includes three: agent, message, and connection
manager.

The agent manager acts as an agent directory and con-
trols the agents’ life-cycles. It represents each agent as an
EJB component, and passes it to the underlying enterprise
application server. The server is then in charge of manag-
ing the concurrent access, maintaining the state integrity of
agents, fault-tolerance, etc. Internally, the agent directory
is managed using the Java Naming and Directory Interface
(JNDI)2.

The message manager is in charge of transporting and
delivering messages. By default, messages are processed
asynchronously. Several utility functions, such as blocking
the receiving of a message, are provided as well, in order
to simplify the agent development. For most of its func-
tionality, the message manager relies on the Java Message
Service technology described earlier.

The latest version of XJAF, available at the XJAF home-

2http://docs.oracle.com/javase/tutorial/jndi/,
retrieved on October 15, 2014.



22 Informatica 40 (2016) 19–27 D. Mitrović et al.

page3, is focused on clustered computing and exploiting its
many benefits [16]. It operates in symmetric clusters, where
each node is connected to and aware of every other node.
A single node is recognized as the master, while the others
are called slaves. The only difference between the master
and a slave is that the master can be used to remotely con-
trol the cluster: start or stop slaves, deploy applications,
etc.

Finally, the connection manager is in charge of connect-
ing physically distributed XJAF clusters in a single com-
putational framework. Basically, it creates another virtual
cluster formed of master nodes. As all parts of the XJAF,
the connection manager relies on another Java EE technol-
ogy for its functioning, JGroups4.

In the context of this paper, XJAF acts as an underly-
ing infrastructure for Jason EE agents. The details of inte-
grating Jason and XJAF/Java EE concepts are described in
details in the next section.

3 Jason EE

Jason is designed as a highly-customizable system. Users
can modify not only the selection functions mentioned
earlier, but also some of the interpreter’s core compo-
nents. The most important customizable components in-
clude Agent architecture, Execution control, and Environ-
ment [5]. Agent architecture represents the agent’s “physi-
cal body” [5]. It enables the agent to perceive its environ-
ment and act upon it, and also to send and receive mes-
sages. The main function of Execution control is to syn-
chronize the reasoning cycles of individual agents, while
the Environment component serves as the basis for simu-
lating real-world or artificial environments.

Another important concept in Jason is the infrastructure
[5]. Infrastructure refers to a multiagent platform that ac-
tually hosts the agents, carries out the transmission and de-
livery of messages, etc. By default, two infrastructures are
provided: Centralised and JADE. Figure 1 depicts main
components of Jason and shows how the Centralised in-
frastructure binds them together5.

Jason EE provides new versions of Jason’s core compo-
nents, and integrates them with an XJAF-based infrastruc-
ture, as described in the rest of this section.

3.1 Jason EE components

Unfortunately, Jason EE and Jason are not (yet) fully com-
patible, due to various technical and “philosophical” differ-
ences between Java EE and Java SE. For example, Java EE
components should never directly create and use threads,

3https://github.com/gcvt/siebog, retrieved on October
15, 2014.

4http://www.jgroups.org/, retrieved on October 15, 2014.
5All class diagrams in this paper have been generated from the source

code of Jason 1.4.1 using ObjectAid UML Explorer for Eclipse: http:
//www.objectaid.com/, retrieved on September 19, 2014.

Figure 1: An overview of the main Jason components and
the Centralised infrastructure that binds them together. The
tight coupling and interdependencies of components might
provide some difficulties in understanding the interpreter at
first.

since these cannot be managed by the enterprise applica-
tion server. In addition, the distributed nature of Java EE
applications and the use of computer clusters pose addi-
tional requirements (e.g. component serialization).

With these differences in mind, the work of developing
Jason EE consisted of three main tasks:

– Providing a new set of base classes for Agent archi-
tecture, Execution control, and Environment;

– Introducing a new set of components that support
these base classes; and

– Integrating the developed architecture with XJAF,
which acts as the underlying infrastructure.

The main components of Jason EE and their distribution
are shown in Figure 2. The first noticeable difference from
the (standard) Jason approach is in the way user-defined
objects are loaded. By default, Jason relies on the Java Re-
flection API for user object construction. In case of Jason
EE, however, this approach would not work. The enterprise
application server views each user application as a distinct
module, and loads it through a separate class-loader. This
means that Jason EE components do not have direct access
to classes defined in user applications. In order to resolve
this issue, Jason EE introduces a new Remote Object Fac-
tory interface. The interface defines a set of methods that
will be called whenever a user-defined object is to be cre-
ated. Each user application needs to realize this interface
in the form of a stateless session bean.

Agent architecture, Execution control and Environments
are all deployed in the enterprise application server, and
executed on top of a computer cluster. Since XJAF is used
as the underlying infrastructure, the same approach of map-
ping agents to EJBs is used in Jason EE. This means that Ja-
son EE agents exhibit the two important features described
previously: automatic load-balancing, and state replication
and failover.



Jason Interpreter, Enterprise Edition Informatica 40 (2016) 19–27 23

Figure 2: Organization and distribution of components in
Jason EE-based applications.

3.2 Custom agent architectures
In Jason, users provide custom implementations of the
Agent architecture by inheriting the base AgArch class
(Figure 1). Some of its more important modifiable meth-
ods include:

– perceive: Perceives the environment, and returns
the list of percepts;

– act: Performs the given action. The action does not
have to be completed in the same method call, and the
feedback (i.e. success or failure information) can be
provided in one of the future reasoning cycles.

– checkMail, sendMsg and broadcast: Used for
inter-agent communication.

– sleep and wake: Suspend and resume the agent’s
execution.

Jason EE provides a slightly different, intermediary class
for the Agent architecture, in order to accommodate for
the enterprise setting. The new class, JasonEEAgArch,
modifies parts of the base AgArch class that are in charge
of interaction with other components. For example, Exe-
cution control is an EJB in Jason EE, and the process of
constructing and using EJBs is slightly different than con-
structing and using regular objects.

In order to connect the new Agent architecture class with
the XJAF-based infrastructure, an additional component is
provided. As shown Figure 2, JasonEEAgArch is em-
bedded within an XJAF agent. The agent controls the ar-
chitecture’s life-cycle and also acts as a layer between the
architecture and the remaining parts of the system. For ex-
ample, it translates XJAF’s FIPA ACL message format into
Jason’s KQML, but also controls the architecture’s reason-
ing cycles, either directly in asynchronous, or indirectly in
synchronous execution mode, as described later.

Jason EE agents are represented as EJB components,
and are created through JNDI lookups. During the lookup
phase, the enterprise application server will choose a node
in the cluster to host the agent instance. From then on, the

agent will have an affinity to that node, meaning that all
invocations will be executed on it. However, whenever the
agent’s internal state changes, it will be copied to a pre-
defined number of other nodes in the cluster. In case the
current host fails, the agent will be restored on one of the
remaining nodes, and continue its execution there.

Unfortunately, the base AgArch class in Jason, which is
also used in Jason EE, is not fully serializable. This means
that the agent’s internal state, including, for example, the
transition system, cannot be fully replicated across cluster
nodes. If the agent’s host fails, the agent will be transpar-
ently restored on one of the remaining nodes, but some of
its parts will need to be re-initialized. The support for full
state replication would require changes in the Jason inter-
preter itself. More details on this issue are given in Section
4.

3.3 Execution control

Jason supports two execution modes [5]: asynchronous and
synchronous. In asynchronous mode, the agent executes its
reasoning cycles continuously, regardless of the behavior of
other agents. In synchronous mode, the agent can continue
to the next reasoning cycle only after all other agents have
completed the current reasoning cycles as well.

The execution control component is used in synchronous
mode only. It maintains the list of active agents, and in-
structs them when to advance to the next reasoning cycle.
This happens either when all agents complete the current
reasoning cycle, or after a specified amount of time has
passed (e.g. in case an agent has died unexpectedly). Users
can provide their own, custom execution modes by inherit-
ing the appropriate base class.

Having one central component that manages the execu-
tion of other components might not seem as a good design
approach for distributed systems, such as Jason EE. How-
ever, the Execution control component can be thought of
as a synchronization barrier. Barriers represent efficient
synchronization approach when distributed or parallel pro-
cesses need to operate in global computational steps [22].
In synchronous execution mode, Jason (EE) agent reaches
the barrier after completing one reasoning cycle, and then
waits until other agents have reached the barrier too.

The sequence diagram shown in Figure 3 outlines the
execution of agent’s reasoning cycles in Jason EE. Once
the agent is created, it registers itself with the Execution
control component. Subsequently, it will receive a signal
to advance to the next reasoning cycle. When finished, the
agents reports back to the Execution control. Once the con-
dition is met (i.e. all agents have reported back, or the time-
out has expired), the process is repeated.

The main technical difficulty in developing this Execu-
tion control for Jason EE is to properly design it for for
clustered environments. That is, there should be a single
instance of the component for the entire cluster, it should
be easily accessible from any node, and should preferably
exhibit state replication and failover. The singleton session



24 Informatica 40 (2016) 19–27 D. Mitrović et al.

Figure 3: Synchronous execution of an agent managed by
the Execution control.

EJB cannot be used, as there exists a single instance of this
object per JVM.

The solution used in Jason EE is to create a single state-
ful EJB component and store it in a global, cluster-wide In-
finispan cache [12] included in the WildFly enterprise ap-
plication server6. As shown earlier in Figure 2, this Ex-
ecution controls runs, figuratively speaking, on top of the
entire cluster, supporting the aforementioned features.

End-users are offered an additional class, named
UserExecutionControl, for customiza-
tion. The Jason’s standard class for this purpose,
ExecutionControl (Figure 1), cannot be used in
Jason EE, for two main reasons. First, the class is not
serializable, and thus cannot be used in the state replication
process. Secondly, the class creates and manages its
own threads. Java EE applications are managed by the
enterprise application server. The server needs the full
control over the application’s resources in order to secure
scalability and high-availability. If an application creates
its own threads, the server looses this control and the
whole concept is undermined7. For these reasons, Jason
EE provides the new base class, i.e. one that satisfies
all the requirements and recommendations for Java EE
applications.

3.4 Environment

The Environment component in Jason provides a model of
a real-world or artificial environment [5]. It is strongly re-
lated to the Agent architecture, in the sense that the archi-
tecture can delegate perception and action execution to the
Environment component. In addition, the Environment can
exhibit “individualized perception” [5], and provide only a
subset of percepts to an agent. This can be useful, for ex-
ample, in evaluating how the agent performs under varying
degrees of available information.

6http://wildfly.org, retrieved on October 15, 2014.
7The Java EE 7 specification defines so-called managed executor ser-

vices which should be used by applications that need to spawn their own
threads.

Figure 4: Diagram of the core classes in Jason
EE. The connection to standard Jason is available
through JasonEEAgArch, ExecutionControl and
Environment, which are sub-types of, respectively, Ja-
son’s AgArch, ExecutionControlInfraTier, and
EnvironmentInfraTier (not shown here for clarity).

Users provide custom environments by redefining meth-
ods of the base Environment class (Figure 1). All of
its methods are dedicated to perception management (re-
trieval, removal, etc.), as well as action execution. For ex-
ample:

– getPercepts: Returns the list of percepts for the
given agent. The list will include only new percepts,
i.e. percepts that have been obtained since the previ-
ous invocation.

– scheduleExecution: Performs an asynchronous
execution of the provided action in the environment.
The agent will be notified of the result later on, once
the execution is completed, either successfully or un-
successfully.

From the technical side, the Jason EE Environment is re-
alized in a similar way as the Execution control component:
in the form of a cluster-wide stateful EJB, with an addi-
tional UserEnvironment class for user customizations.
The final class diagram of Jason EE is shown in Figure 4.
Each deployed Jason EE application includes a single En-
vironment instance, which is given a cluster-wide unique
identifier and kept in a global cache. All agents of that par-
ticular application use the identifier in order to interact with
the Environment. The same is true for Execution control.

The connection with XJAF is made through the
JasonEEAgent component. Being a special XJAF
agent, this component relies on the agent manager for cre-
ating and destroying other (Jason) agents, and on the mes-
sage manager for sending and receiving messages.

The effectiveness of the proposed Jason EE architecture
is demonstrated using two case-studies, described in details
in the following section.



Jason Interpreter, Enterprise Edition Informatica 40 (2016) 19–27 25

4 A case study
The case study presented in this section demonstrates state
replication and failover in practice. Its purpose is to out-
line one of the technical advatages brought by Jason EE.
The benefits of using AgentSpeak and Jason for complex
agent development are presented in e.g. [23]. For XJAF
agent load-balancing in computer clusters, see [16]. The
full source of this case study is available at the XJAF home-
page8.

The case-study includes two highly-available agents.
Each agent has a single belief: a list of strictly monotoni-
cally increasing numbers. The agent periodically prepends
a number n = h+1 to the list, where h is the current head.
Listing 1 shows the AgentSpeak source code of the agent.

Listing 1: AgentSpeak source code of the highly-available
agent used in the case study.

numbers([0]). // inital belief
!addNextNum. // initial goal

+!addNextNum : true <-
?numbers([OldHead | Tail]);
NewHead = OldHead + 1;
NewList = [NewHead, OldHead | Tail];
-+numbers(NewList);
printList(NewList);
!!addNextNum.

The case-study also includes a user-defined Agent archi-
tecture and a user-defined Execution control. The architec-
ture is capable of executing the printList action shown
in Listing 1, while the user-defined Execution control sim-
ply outputs the current reasoning cycle. These components
were developed primarily in order to show how the state
replication and failover work with other Jason EE compo-
nents as well (and not just agents).

A cluster with two virtual nodes, a master and a slave,
was setup, and the load-balancer was configured to put both
agents and the Execution control component on the slave
node. The project was then executed, yielding in the fol-
lowing possible output (filtered for clarity):

Cycle 0 on node slave@192.168.213.129
...
agent0 on slave@192.168.213.129: [1,0]
agent1 on slave@192.168.213.129: [1,0]
Cycle 7 on node slave@192.168.213.129
...
agent0 on slave@192.168.213.129: [2,1,0]
agent1 on slave@192.168.213.129: [2,1,0]
Cycle 15 on node slave@192.168.213.129
...

The slave node was then forcibly terminated. In re-
sponse, all components from the slave have been automati-
cally restored on the master node, and continued to operate
as follows:

8https://github.com/gcvt/siebog, retrieved on October
15, 2014.

Cycle 63 on node master:xjaf-master
...
agent0 on master:xjaf-master: [1,0]
agent1 on master:xjaf-master: [1,0]
Cycle 68 on node master:xjaf-master
...

Here, it can be seen that both the agents and the Exe-
cution control have successfully continued their execution
on the remaining node, confirming that the state replication
and failover in Jason EE works as expected.

However, while the Execution control’s internal state
was successfully restored, the belief base of each agent has
been reset. As noted earlier, some of the important Jason
components, such as the Agent architecture and its transi-
tion system are not serializable. Since these are used in
Jason EE as well, the agent’s internal state cannot be fully
replicated. Currently, Jason EE detects this issue and emits
a warning, but the full support for the agent state replication
requires changes in the Jason implementation.

5 Related work
In general, there are two main approaches for writing soft-
ware agents. The first one is to use an existing program-
ming language, such as Java. For example, in JADE the
process of writing agents consists of inheriting the proper
base classes [1]. More recently, source code annotations
have been proposed as a convenient approach for develop-
ing BDI agents [18]. Extensions to the Java programming
language have been proposed as well [26]. Main advan-
tages of these approaches are a flatter learning curve and
the availability of existing programming libraries and tools.
The main disadvantage is that the agent source code is
“cluttered” with object-oriented programming constructs.

The second approach is to use dedicated, agent-oriented
programming languages. These languages offer program-
ming abstractions that enable straightforward implementa-
tions of advanced multiagent concepts, and hide the overall
complexity of writing intelligent agents. As a result, agent
developers can focus on solving the problem in question,
rather than dealing with class inheritance and method over-
riding.

Over time, a plethora of agent-oriented programming
languages has been developed [6, 3]. Among the most re-
cent is ASTRA9, which combines AgentSpeak and Teleo-
Reactive functions [9, 17]. Among the well-established
languages, besides AgentSpeak, the two notable examples
are Goal-Oriented Agent Language (GOAL)[10], and A
Practical Agent Programming Language (2APL) [8].

In addition to achievement, GOAL adds support for
maintenance goals [10]. An agent uses maintenance goals
to refrain itself from acting, and to keep the current state
of affairs. Agents generally follow the blind commitment

9http://www.astralanguage.com/, retrieved on October 15,
2014.



26 Informatica 40 (2016) 19–27 D. Mitrović et al.

strategy [10, 20]: an active goal will not be dropped until it
is fully completed. Actions are mostly user-provided, and
are guarded by preconditions and postconditions. Action
execution strategy is determined by action rules. An ac-
tion rule defines a mental state that has to hold before the
corresponding action can be considered as a candidate for
execution.

2APL combines declarative and imperative program-
ming styles [8]. It offers several important agent-oriented
programming concepts, including beliefs, goals, events, ac-
tions, and plans. Belief and goals are declarative constructs
that describe the agent’s mental state. Events carry infor-
mation about some change in the environment, and can
trigger the plan execution. Actions describe agent’s capa-
bilities, and are divided into six categories, including belief
updates, goal updates, and abstract actions which act as
procedure calls. Finally, a plan consists of a sequence of
actions, with the addition of conditional statements, loops,
and non-interleaving operators for building atomic plans.

Each of these languages represents a powerful tool for
developing intelligent agents. One of the main reasons
AgentSpeak was selected for the work presented in this
paper is its practical interpreter Jason. As shown, Jason
is highly customizable and portable, allowing AgentSpeak
agents to be executed on different multiagent platforms and
environments. It is worth noting that Jason is not the only
interpreter for AgentSpeak. For example, AF-AgentSpeak
is an implementation of the language for the versatile Agent
Factory framework10.

In addition to Jason EE, two Jason infrastructures are
available. The Centralised infrastructure is a lightweight
and an efficient (performance-wise) solution, but designed
for single-machine deployments only. The JADE infras-
tructure uses JADE as the underlying multiagent platform.
Therefore, it provides all the features available in JADE, in-
cluding distributed execution and platform fault-tolerance
[1]. Jason EE implementation is to a certain degree based
on these solutions. Its main advantages include state repli-
cation and failover demonstrated in Section 4, which is
more advanced than the one offered by JADE, and auto-
mated agent clustering and load-balancing shown in [16].

6 Conclusions and future work
Jason EE represents an enterprise-scale agent development
framework. It combines Java EE, one of the most widely-
used software development platform, with AgentSpeak and
Jason, a popular agent-oriented programming language and
its interpreter, designed for writing complex, reasoning
agents.

As discussed throughout the paper, Jason EE brings sev-
eral important benefits over standard Jason, as well as
other similar solutions. On the technical side, the under-
lying enterprise application server manages the applica-

10http://www.agentfactory.com/, retrieved on October 15,
2014.

tion resources, and provides advanced programming fea-
tures, such as agent load-balancing, scalability, and fault-
tolerance. This enables agent developers to focus on solv-
ing the problem at hand, without having to bother with
technical difficulties. The end-goal of the presented re-
search, however, is to enable seamless integration of in-
telligent agents in modern enterprise applications, and to
bridge the gap between the two approaches to distributed
software development.

For the future, several research and development direc-
tions of Jason EE are planned. First of all, as discussed in
Section 3, changes in the Jason implementation itself are
required. These would allow not only the complete state
replication and failover of agents, but also the full portabil-
ity of Jason and Jason EE applications. In the longer run,
the remaining two components of the JaCaMo project will
be re-designed for enterprise environments: the CArtAgO
artifacts modeling framework, and the Moise framework
for virtual multiagent organizations [2].

Acknowledgement

This work was partially supported by the Ministry of Edu-
cation, Science and Technological Development of the Re-
public of Serbia, through project no. OI174023: “Intel-
ligent techniques and their integration into wide-spectrum
decision support.”

References

[1] F. Bellifemine, G. Caire, and D. Greenwood. Devel-
oping Multi-Agent Systems with JADE. John Wiley &
Sons, 2007.

[2] O. Boissier, R. H. Bordini, J. F. Hubner, A. Ricci,
and A. Santi. Multi-agent oriented programming
with JaCaMo. Science of Computer Programming,
78(6):747–761, 2013.

[3] R. H. Bordini, L. Braubach, M. Dastani, A. E. Fallah-
Seghrouchni, J. J. Gomez-Sanz, J. Leite, G. M. P.
O’Hare, A. Pokahr, and A. Ricci. A survey of pro-
gramming languages and platforms for multi-agent
systems. Informatica (Slovenia), 30(1):33–44, 2006.

[4] R. H. Bordini and J. F. Hubner. BDI agent program-
ming in AgentSpeak using Jason. In F. Toni and
P. Torroni, editors, Computational Logic in Multi-
Agent Systems, volume 3900 of Lecture Notes in
Computer Science, pages 143–164. Springer Berlin
Heidelberg, 2006.

[5] R. H. Bordini, J. F. Hubner, and M. Wooldridge. Pro-
gramming multi-agent systems in AgentSpeak using
Jason. Wiley Series in Agent Technology. John Wi-
ley & Sons Ltd, 2007.



Jason Interpreter, Enterprise Edition Informatica 40 (2016) 19–27 27

[6] C. Bădică, Z. Budimac, H.-D. Burkhard, and
M. Ivanović. Software agents: Languages, tools, plat-
forms. Computer Science and Information Systems,
8(2):255–298, 2011.

[7] W. F. Clocksin and C. S. Mellish. Programming in
Prolog: using the ISO standard. Springer, 5 edition,
2003.

[8] M. Dastani. 2APL: a practical agent programming
language. Autonomous Agents and Multi-Agent Sys-
tems, 16(3):214–248, 2008.

[9] A. Dhaon and R. Collier. Multiple inheritance in
AgentSpeak(L)-style programming languages. In
Proceedings of the 4th International Workshop on
Programming based on Actors, Agents and Decen-
tralized Control. 2014.

[10] K. V. Hindriks. Programming rational agents in
GOAL. In A. El Fallah Seghrouchni, J. Dix,
M. Dastani, and R. H. Bordini, editors, Multi-Agent
Programming: Languages, Tools and Applications,
pages 119–157. Springer US, 2009.

[11] Java EE at a glance. http://www.oracle.com/
technetwork/java/javaee/overview/
index.html. Retrieved on October 15, 2014.

[12] F. Marchioni and M. Surtani. Infinispan data grid
platform. Packt Publishing Ltd., 2012.

[13] D. Mitrović, M. Ivanović, and C. Bădică. Jason agents
in Java EE environments. In E. Petre and M. Brezo-
van, editors, 3rd Workshop on Applications of Soft-
ware Agents (WASA 2013), held within 17th Inter-
national Conference on System Theory, Control and
Computing (ICSTCC 2013), pages 768–771, Sinaia,
Romania, October 2013.

[14] D. Mitrović, M. Ivanović, Z. Budimac, and M. Vi-
daković. Supporting heterogeneous agent mobility
with ALAS. Computer Science and Information Sys-
tems, 9(3):1203–1229, 2012.

[15] D. Mitrović, M. Ivanović, and Z. Geler. Agent-based
distributed computing for dynamic networks. Infor-
mation Technology and Control, 43(1):88–97, 2014.

[16] D. Mitrović, M. Ivanović, M. Vidaković, and Z. Budi-
mac. Extensible Java EE-based agent framework in
clustered environments. In J. Mueller, M. Weyrich,
and A. L. C. Bazzan, editors, 12th German Con-
ference on Multiagent System Technologies, volume
8732 of Lecture Notes in Computer Science, pages
202–215. Springer International Publishing, 2014.

[17] N. J. Nilsson. Teleo-reactive programs for agent
control. Journal of Artificial Intelligence Research,
1:139–158, 1994.

[18] A. Pokahr, L. Braubach, C. Haubeck, and J. Ladi-
ges. Programming BDI agents with pure Java. In
J. P. Müller, M. Weyrich, and A. L. C. Bazzan, ed-
itors, Multiagent System Technologies, volume 8732
of Lecture Notes in Computer Science, pages 216–
233. Springer International Publishing, 2014.

[19] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In W. V. de Velde and
J. Perrame, editors, Agents Breaking Away: Proceed-
ings of the 7th European workshop on Modelling au-
tonomous agents in a multi-agent world (MAAMAW
’96), volume 1038 of Lecture Notes in Artificial Intel-
ligence, pages 42–55. Springer-Verlag, 1996.

[20] A. S. Rao and M. P. Georgeff. Intentions and rational
commitment. Technical Report 8, Australian Artifi-
cial Intelligence Institute, 1993.

[21] A. S. Rao and M. P. Georgeff. BDI agents: from the-
ory to practice. In V. Lesser and L. Gasser, editors,
Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS’95), pages 312–319,
1995.

[22] L. G. Valiant. A bridging model for parallel compu-
tation. Communications of the ACM, 33(8):103–111,
1990.

[23] S. Vester, N. S. Boss, A. S. Jensen, and J. Villad-
sen. Improving multi-agent systems using Jason.
Annals of Mathematics and Artificial Intelligence,
61(4):297–307, April 2011.

[24] M. Vidaković, M. Ivanović, D. Mitrović, and Z. Budi-
mac. Extensible Java EE-based agent framework –
past, present, future. In M. Ganzha and L. C. Jain, edi-
tors, Multiagent Systems and Applications, volume 45
of Intelligent Systems Reference Library, pages 55–
88. Springer Berlin Heidelberg, 2013.

[25] WildFly 8 high availability guide. https:
//docs.jboss.org/author/display/
WFLY8/High+Availability+Guide. Re-
trieved on October 15, 2014.

[26] M. Winikoff. Jack intelligent agents: An industrial
strength platform. In R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, editors, Multi-
Agent Programming, volume 15 of Multiagent Sys-
tems, Artificial Societies, and Simulated Organiza-
tions, pages 175–193. Springer US, 2005.



28 Informatica 40 (2016) 19–27 D. Mitrović et al.


