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This paper presents a Multi-Agent System (MAS) approach for designing an air pollution simulator. The 

aim is to simulate the concentration of air pollutants emitted from sources (e.g. factories) and to 

investigate the emergence of cooperation between the emission source managers and the impact this has 

on air quality. The emission sources are controlled by agents. The agents try to achieve their goals (i.e. 

increase production, which has the side effect of raising air pollution) and also cooperate with others 

agents by altering their emission rate according to the air quality. The agents play an adapted version of 

the evolutionary N-Person Prisoners’ Dilemma game in a non-deterministic environment; they have two 

decisions: decrease or increase the emission. The rewards/penalties are influenced by the pollutant 

concentration which is, in turn, determined using climatic parameters. In order to give predictions 

about the concentration of pollutants: Particulates Matter (PM10), Sulphur Oxide and Dioxide (SOx), 

Nitrogen Oxides (NOx) and Ozone: (O3), a two stage prediction method is used, a GPD (Gaussian 

Plume Dispersion) model and an ANN (Artificial Neural Network) prediction model. The prediction is 

calculated using the dispersal information and real data about climatic parameters (wind speed, 

humidity, temperature and rainfall). Every agent cooperates with its neighbours that emit the same 

pollutant, and it learns how to adapt its strategy to gain more reward. When the pollution level exceeds 

the maximum allowed level, agents are penalised according to their participation. The system has been 

tested using real data from the region of Annaba (North-East Algeria). It helped to investigate how the 

regulations enhance the cooperation and may help controlling the air quality. The designed system 

helps the environmental agencies to assess their air pollution controlling policies. 

Povzetek: V prispevku je predstavljen večagentni sistem za simulacijo onesnaženja zraka. 

 

1 Introduction
The question about how humans should moderate their 

exploitation of environmental resources has occupied 

researchers for decades [1]. Promoting social and 

economic growth without affecting the environmental 

equilibrium is important for maintaining sustainable 

development. This paper addresses the relation between 

human behaviours and their impact on air quality in 

socio-environmental systems. Air pollution is a major 

concern in many cities in the world, especially in 

developing countries. It has a direct influence on our 

health and quality of life [2]. The degradation in air 

quality should be estimated before the establishment or 

the expansion of urban or industrial activities. Air 

pollution simulation and decision support tools can help 

decision-makers to establish policies for environmental 

management and to predict the impact of their decisions 

on the environment and ecosystem. Many modelling 

approaches have been proposed to study air pollution. 

Most of them, ([3], [4], [5]) to cite a few, are mainly 

focused on the physical and chemical aspects of air 

pollution; the concentration and dispersal of pollutant. 

These models do not take into consideration human-

decision factors. Air pollution is by nature distributed 

and includes the interaction of individuals involved in the 

exploitation of a dynamic ecological resource which is 

the air. The anthropogenic activities (road traffic, 
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industrial and agricultural activities) are among the major 

sources of air pollution. All of these activities are 

controlled by humans; therefore, including the human 

decision factors in the modelling of air pollution is 

essential. 

MAS (Multi-Agent System) based models are an 

appropriate method for modelling socio-environmental 

issues [6]. They allow us to model the behaviours of 

human actors sharing the exploitation of environmental 

resources. [7] presents a review of recent MAS models 

used to investigate socio-environmental problems. The 

models are classified according to: the decision making 

mechanism, the use or not of real data, the objective of 

the simulation, and the space and time representation. 

[8], [9] used a MAS approach to investigate the air 

pollution emission resulting from road activities; they 

used a traffic flow simulation and linked it to emission 

calculation. [10] used the same approach to study the 

effect of transport regulation on air pollution emission. 

[11] present a MAS designed for monitoring air quality 

in Athens, Greece. The MAS is a set of agents that 

control a network of sensors installed in an urban region. 

They verify and collect the data measured by sensors. 

[12] present a MAS to find the dispersion of air pollution 

in urban region. The pollution sources (polluters) are 

represented by homogeneous agents that emit pollution 

in their respective areas. Each agent pollutes with an 

emission rate. As the simulation runs, clusters are formed 

with different values of pollution concentration. At the 

end, a single cluster is formed, thus, the dispersion of 

pollution is estimated.  

The managers of emission sources share the 

exploitation of the air by emitting pollutants. We aim to 

simulate their different personalities (e.g. eco-friendly, 

selfish) and investigate the relationship between the 

emergence of cooperation and its impact on air quality. 

The main questions addressed in this paper are: How do 

emission source controllers cooperate, are they able to 

achieve their goals while preserving a reasonable air 

quality? What regulatory rules should be adopted to 

enhance the cooperation and sustain the air quality? To 

investigate these questions we have designed a MAS 

simulation tool that helps to investigate the emergence of 

cooperation and its effects on air quality. The proposed 

simulator models the population of emission source 

controllers as a network of agents playing an 

Evolutionary NPPD (N-Person Prisoners’ Dilemma) 

game. Evolutionary NPPD has been widely used for 

studying the emergence of cooperative behaviour among 

a population of selfish agents, how agents exhibit 

altruistic behaviours and under which condition 

cooperation will be sustained. 

NPPD is a mathematical model, which models the 

conflict between players sharing the use of a common 

resource. Initially, it was formulated for two players 

where each one has to take two possible actions (defect 

or cooperate), and then receive a payoff according to 

their joint actions. A version for N-Persons has been 

proposed [13] where the payoff is calculated according to 

the number of agents choosing to cooperate; the payoff 

function is given in (1) 

 

𝑢(𝑛𝑐𝑝) = {

𝑏∗𝑛𝑐𝑝

𝑁
− 𝑐                         𝑖𝑓 𝑠 = 0

𝑏∗𝑛𝑐𝑝

𝑁
                                𝑖𝑓 𝑠 = 1

 (1) 

With 𝑏 > 𝑐 > 0 𝑎𝑛𝑑   𝑐 >
𝑏

𝑁
, s is the action taken by 

the agent s ϵ{0,1} (where 0 means cooperate and 1 

means defect), ncp is the number of players who chose to 

cooperate, N is the size of the player population and b is 

the defection temptation, the constant c is used to ensure 

that the cooperation reward is less than the defection 

reward. 

[14], [15], studied the emergence of cooperation in a 

NPPD. The authors used different agent personalities and 

neighbourhoods in order to investigate their impact on 

the evolution of the game outcome. The experiment used 

different agent types with different initial co-operators 

ratio; this showed that for the case where all agents are 

Pavlovians (repeating actions that give them more 

satisfaction), the aggregate outcome of the game can be 

predicted for any number of agents and any payoff 

function. The choice of the agent’s neighbours also has a 

big influence on the game equilibrium. [16] investigated 

the effect of social welfare preference on the emergence 

of cooperation among agents placed on a BA [17] 

network. The authors proposed a model where some of 

the agents also take into consideration social welfare and 

not only their payoff received from the game. Agents do 

not only care about their own payoff, but also the payoff 

of their neighbours.  

[18] describes the use of a NPPD game to investigate 

the cooperation in a socio geographic community. The 

use of NPDD for environmental modelling has proved to 

be suitable since the exploitation of a shared ecological 

resource can be formulated as a tragedy of the common 

[19]. Each actor tends to maximise its profits by 

exploiting a shared ecological resource. Thus, a tragedy 

of the common arises. [20] uses a PD model to review 

Porters’ hypothesis, which studies the relationship 

between productivity and eco-friendly technologies. The 

work models how strict environmental regulations can 

enhance innovation for a less polluting technology. Firms 

have two actions which are: to invest in a new less 

polluting process or to continue using the old one and be 

penalised according to the governmental regulations. [21] 

used a version of NPPD to investigate the cooperation in 

international environmental negotiation to reduce CO2 

emissions. [22] presents an evolutionary game theory 

approach to study the influence of the ecological 

dynamic and payoff structures over the emergence of 

cooperative behaviour between landowners. The 

landowners are modelled as selfish agents aiming to 

maximize their profit by managing the number of deer on 

their lands. The main novelty of our approach is the 

inclusion of human decisions as a key element for 

simulating the air pollution evolution. We model the 

managers of the emission sources of pollutants as 

autonomous agents. These agents aim to maximise their 

own profit and we investigate this effect on air quality. 

The designed system helps investigating the efficiency of 

the regulatory rules used by air pollution controlling 



A Multi-Agent Based Approach for Simulating… Informatica 42 (2018) 199–209 201 

agencies for maintaining the air quality. This is very 

important because it helps the environmental agencies to 

assess their air pollution controlling policies. 

The paper is organised as follows: The methodology 

is presented in section (2) that describes a MAS approach 

for designing an air pollution agent based simulator. 

Subsection (2.1) presents the representation of space and 

time. Subsection (2.2) describes the dispersion model and 

the Artificial Neural Network (ANN) prediction model. 

The agent decision-making mechanism is given in (2.3). 

A test scenario is presented in section (3). Results are 

detailed and discussed in section (4). The paper ends 

with conclusions and the possible further directions of 

our work. 

2 Model approach and architecture 

Many conceptualizations have been proposed to 

represent a socio-environmental system [22]. Generally, 

a socio-environmental simulation system can be 

represented as an interconnection of three components 

(or subsystems); each one is represented by a set of 

variables (attributes) forming its state at time t. The 

ecological component models the biotic (living) and 

abiotic (non-living) parts. The economic component 

represents the economic view point and groups the 

economic variables. The social component represents the 

human social networks such as decision-makers, firms, 

government agencies and consumers. A change in the 

state variable of each component affects other systems’ 

state variables. For example, the increase in demand for a 

certain kind of fish, leads fishermen to intensify their 

exploitation; this in turn results in changes to the 

biodiversity. We present a generic formalization of a 

socio-environmental system. A coupled social and 

environmental system can be expressed as a set of 

economic, social and ecologic state variables. The state 

of the system at time step t can be formulated as (2). 

𝐸𝑆𝑡 =< 𝐸𝑐𝑡 , 𝑆𝑐𝑡 , 𝐸𝑛𝑣𝑐𝑡 > (2) 

Where Ec, Sc and Envc represent, the sets of economic, 

social and environmental state variables, respectively:  
𝐸𝑐𝑡 =< 𝐸𝑐1,𝑡 , … , 𝐸𝑐𝑙,𝑡 >, 𝑆𝑐𝑡 =< 𝑆𝑐1,𝑡, … , 𝑆𝑐𝑚,𝑡 >

𝐸𝑛𝑣𝑐𝑡 =< 𝐸𝑛𝑣𝑐1,𝑡, … , 𝐸𝑛𝑣𝑐𝑛,𝑡 >(3) 

In our case, the environment state variables at time step t 

are: 𝐸𝑛𝑣𝑐𝑡 =< 𝑐0,𝑡 , . . 𝑐𝑛,𝑡 , 𝑊𝑆𝑡 , 𝐻𝑢𝑡 , 𝑇𝑡 , 𝑅𝐹𝑡 > (4) 

ci,t is the concentration of the pollutant i, WS: wind 

speed, T: temperature, Hu: humidity and RF represents 

the rainfall, at time t. Assuming that the source of 

pollution at time t is modelled as: 

𝑆𝑡 =< 𝑒𝑟𝑡 , 𝑡𝑐, 𝑋, 𝑌, 𝑍 >     (5) 

The source produces the pollutant tc with the rate er at 

the geo-position (X,Y,Z). Sources are controlled by 

agents. Every agent has to make a decision on which 

action to choose among all possible actions according to 

the state of the environment ES and its internal state at t. 

Let A be the set of actions 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑧}, the result 

of an action is the change in the emission rate of the 

pollutant from the controlled source. We can define this 

as a function that takes the agent’s action and as a result 

gives the new emission rate (6). 

𝐹: 𝐴 → ℝ    (6). 

Let 𝜋𝑡 be the action vector done by N agents at time t: 

𝜋𝑡 =< 𝐴0𝑡 , . . 𝐴𝑛𝑡 >   (7) 

Let Q be the set of possible air quality index values: 

𝑄 = {𝑣𝑒𝑟𝑦_𝑏𝑎𝑑, 𝑏𝑎𝑑, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑔𝑜𝑜𝑑, 𝑣𝑒𝑟𝑦_𝑔𝑜𝑜𝑑}, 

each of these indexes has its numerical equivalent in 

terms of pollutant concentration, as shown in table 1. 

 

SOx 

µg 

NOx 

µg 

O3 µg PM10 

µg 

Indices Category  

0 – 30 0-45 0-45 0-20 1 Very 

Good 

30-60 45-80 45-80 20-40 2 Good 

60-125 80-200 80-150 40-100 3 Average 

125-

250 

200-

400 

150-

270 

100-200 4 Bad 

>250 >400 >270 >200 5 Very Bad 

Table 1: Air pollution quality. 

The air quality can be modelled as a graph with T as 

transition function: 

𝑇(𝜋𝑡 , 𝐸𝑆𝑡 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑞) ⟶ 𝑛𝑒𝑤_𝑞,
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑞 𝑎𝑛𝑑 𝑛𝑒𝑤_𝑞 ∈ 𝑄 (8) 

T takes as arguments the state of the system ESt and 

the set of actions done by N agents and accordingly it 

moves the system from the current state (current_q) to a 

new state (new_q). Under some conditions current_q 

may be equal to new_q, which means that actions of the 

agents do not change the air quality under some climatic 

conditions. 

Our simulation approach can be schematised as 

shown in figure 1. Agents’ actions affect the emission 

rate of the sources. Then the dispersion algorithm is used 

to compute the dispersion, the aggregated value of 

pollutant concentration is used with climatic parameters 

to forecast the next 2 hours air pollution concentration 

and air quality. According to these forecasts, agents are 

rewarded or penalised. Agents then adapt their strategies 

to earn more reward and reduce penalties. 

 

Figure 1: The simulation process, using the dispersion 

model and the prediction model. 
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2.1 The spatial and temporal scale of the 

simulation model 

The simulation uses a discrete representation of time 

where each simulation step represents by default 6 hours 

of real time. The simulation’s duration is defined in the 

interface and depends on the objective of the simulation 

(short or long term prediction). 

Our model is based on the hypothesis that the action 

of the emission controllers (reducing or increasing 

emissions) has an impact within k time-steps. k is a 

parameter whose value is provided by the user according 

to the scenario and available data. 

Since the simulation step k can be changed, we can 

represent a long term simulation horizon by giving k a 

higher value. So for example we can represent 1 step as 

24 hours meaning that industrial polluters can take 

several days to adjust their production volumes. Setting k 

even higher, such as 2 weeks or 1 month would require 

data, which is not available, to see the evolution of the 

AQ. 

The environment is modelled as a set of 3D boxes, 

each one represents one km3. It can be represented as: 

𝐵𝑋 = {𝑏𝑥0, … , 𝑏𝑥𝑚}, every box is localised in the geo-

position point gp(x,y,z) and has attributes representing 

the concentration of air pollutants (cp0,…,cpv) and air 

quality, These attributes are used when agents are 

penalized according to the pollution level in the box 

where they are situated. In this case the position of the 

emission source in a box is relevant. Sources located in 

the same box are considered to be neighbours. 

2.2 Dispersion and prediction models 

The dispersion model helps to measure how the pollutant 

will spread in the air. It is calculated according to the 

distance from the point source, the wind speed and 

direction. We used a GPD (Gaussian Plum Dispersion 

model), which is frequently used in atmospheric 

dispersion [24]. The dispersion model is run in a steady 

way, which means that no parameter (wind speed, 

emission rate and wind direction) is changed during the 

simulation step. This provides a series of snapshots of the 

situation at each step. These snapshots are then fed into 

the ANN model to obtain a prediction about the 

concentration. Since we cannot combine the two models 

in a continuous way our solution of taking a series of 

snapshots and feeding it to the ANN mimics a continuous 

process. The GPD simulates the dispersal from a point 

source emission according to the emission rate (9). 

𝐶(𝑥, 𝑦, 𝑧, 𝐻) =
𝑒𝑟𝑖,𝑡∗𝐷

2𝜋𝑈𝑡 𝜎𝑦𝜎𝑧
∗ 𝑒

−
𝑦2

2∗𝜎𝑦
2

∗ [(𝑒
−(

(𝑧−𝐻)2

2𝜎𝑧
2 )

) +

(𝑒
−(

(𝑧+𝐻)2

2𝜎𝑧
2 )

)]  (9) 

This means that the concentration of the pollutant at 

point (x,y,z) is calculated according to : 

eri,t: the emission rate in kilograms per hour of the 

source i in time step t. 

Ui: the wind speed in metres per second at time step 

t, σyσz: the standard deviation of the concentration 

distributions in a crosswind in a vertical direction, these 

two parameters are chosen according to the stability class 

‘C’ in the Guifford-Pasquill scale [25], and H is the 

height of the source from the ground. The decay term D 

is given in [26] and computed according to (10).  

𝐷 = {𝑒(1/(𝑅∗
𝑥

𝑈
)), 𝑖𝑓 𝑅 > 0

1, 𝑖𝑓 𝑅 = 0
,   (10) 

Where x is the downwind distance, u is the wind 

speed and R is the decay coefficient. The values for R are 

adopted from [27] for NOx (0.45 h-1) and SOx (0.31 h-1), 

PM10 is not considered (R=0 and D=1). 

For simplification and due to lack of wind direction 

data, we assume that the wind direction does not change 

during the simulation step. The resulting pollution level 

from each source is aggregated and the average of each 

box is computed. Then the dispersion value of the 

pollutant is passed to an ANN prediction model as 

described in [28]. The ANN prediction models are 

designed to give a forecast of the five air pollutants and 

the air quality. This includes an uncertainty aspect caused 

by the weather conditions [29]. The ANN predictor uses 

the aggregated air pollution concentration value given by 

the dispersion model of each source and the four climatic 

parameters: wind speed, humidity, temperature and rain 

fall. These parameters greatly influence the pollutant 

concentration in the air [30]. 

O3 is a secondary pollutant, which means that it is 

not emitted by sources, but results from the 

photochemical interaction between SOx, COx, and 

organic components. Therefore, we used SOx and COx 

dispersion information to predict the O3 concentration. 

For each pollutant a RBF (Radial Basis Function) 

network is designed and trained. The RBF is composed 

of three layers, the first layer is connected to the input of 

the network and its output is connected to the hidden 

layer, the neurones in the hidden layer have the RBF as 

the activation function. The outputs of the hidden layer 

are linearly combined to obtain the output of the 

network. Using a training data set, the objective is to find 

the optimal combination between the number of neurons 

in the hidden layer and the weight of each input. By 

increasing the number of the neurons in the hidden layer 

the algorithm [31] gives the optimal topology of the 

network. This is why many topologies are tested and 

only the best of them are taken. During the training step, 

each network receives as input a vector of the climatic 

condition parameters and the concentration of the 

pollutant at time t. Each network generates the desired 

output that is the value of pollutant concentration at time 

t+PredictionHorizon. The forecast given by each 

network is passed as input to predict the air quality index 

using a MLP (Multi-Layered Perceptron).  The MLP 

network is trained using the local air quality standards as 

shown in table 1. Air quality predictions for the different 

pollutants are obtained on a t+12 hours basis and give 

the most probable air quality category. The MLP model 

receives the predicted values of the five pollutants, COx, 

NOx, O3, PM10, and SOx, and predicts the index values 

for air quality ranging from 1 to 5, with 1 being very 

good and 5 being very bad. To train the MLP network we 

used a Levenberg-Marquardt back-propagation 
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algorithm. The MLP network final topology, obtained 

after several trials, is: 5 neurons in the first hidden layer, 

10 in the second and finally a linear neuron for the output 

layer. 

The accuracy of the ANN models are given in table 

2, and is calculated using one year’s worth of data 

according to RMSE (Rooted Mean Squared Error) 

formulated in (11): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖−𝑅𝑖)2𝑙𝑛𝑔

𝑖=1

𝑙𝑛𝑔
             (11). 

Where lng is the length of the vectors, P and R are 

the predicted and measured values, respectively. The 

performances are computed using a validation data set 

that was not used in the training of the ANN models.  

Model 

Topology 

[#  of input neuron 

-# of hidden neuron] 

Validation error  

( RMSE) 

PM10 [10-320] 16.1945 µg/m 3 

SOX [10-90] 3.1618 µg/m3 

NOX [10- 105] 9.7277 µg/m3 

COx [10-45] 0.1220 µg/m3 

O3 [10-180] 39.8238 µg/m3 

Table 2: Validation error of the ANN prediction models 

using the validation data set. 

2.3 Decision-making mechanism  

Based on its internal state and the state of the 

environment, an agent has to choose an action to perform 

among all possible actions in order to reach its goals. 

This process is called decision-making. [32] presents a 

review of methods used for modelling decision-making 

in a coupled environmental and social system. Our 

system supports two cooperation strategies (centralized 

and evolutionary game) each one defines a decision-

making mechanism. The centralized strategy (CS) is 

based on defining a central agent that represents the air 

pollution controlling agency. The central agent takes 

decisions according to the current air pollution level. The 

second strategy is based on an evolutionary game, where 

agents are rewarded and penalized according to the 

pollution levels; they make decisions according to their 

rewards. In our system, the cooperation strategy is 

defined within the simulation parameters. 

2.3.1 Centralized Strategy (CS) 

The task of maintaining the air quality is assigned to an 

agent, which represents the air pollution control agency. 

It uses the GPD and ANN models to predict the air 

quality and pollutant levels, and according to the 

predictions it sends a reduce emission message to the 

emission agents. Then it will check the air quality. It will 

continue doing this until the air quality is improved to 

reach the air quality index goal. The central agent has  

absolute authority and its orders are executed by the 

emission source controllers. Agents communicate their 

emission rate at each simulation step to the central agent. 

This strategy is based on the communication between 

agents. We assume that agents are rational and have an 

environmental-responsible personality; this means they 

favour air quality improvement over their own interests 

and communicate their exact emission rate to the central 

agent. 

2.3.2 Evolutionary Game Cooperating 

Strategy 

In the EG strategy, every agent has its own goals 

(earning more rewards and keeping its emission rate 

high) and shares a global goal of maintaining air quality 

with other agents. The appreciation function defined as: 

𝑎𝑝𝑝: 𝑄 → 𝑅, allows comparing the air quality state at 

each step of the simulation. A global goal GG can be 

defined as (12). This means finding a set of actions 𝜋𝑡 to 

be performed by agents at time t, which allows the 

system to move to a new state of air quality 𝑞𝑡+1 that is 

better than the current state.  

𝐺𝐺𝑡 = {𝑇(𝜋𝑡 , 𝑞𝑡 , 𝑞𝑡+1), 𝑎𝑝𝑝(𝑞𝑡+1) > 𝑎𝑝𝑝(𝑞𝑡)}  (12) 

An agent participates with other agents in the NPPD 

game, its own goal is to maximise its reward earned from 

the game. We adopted the approach of [33], where agents 

keep traces of their L previous steps (actions, rewards 

and its neighbours’ rewards). To update the probabilities 

to increase or decrease the emission, we used [18] 

method. At each time step t the agent computes its 

weighted payoff, according to (13), and tries to maximise 

it (as its utility function) by taking it into consideration 

when computing its probability to increase or decrease its 

emission rate, respectively according to (14) and (15). 

𝑊𝑃𝑖(𝑡) = ∑ 𝑤𝑖 ∗ 𝑀𝑖(𝑡)𝐿
𝑖=1                           (13) 

Where: wi is the weighting parameter where 

∑ 𝑤𝑛𝑏𝑟
𝐿−1
𝑛𝑏𝑟=1 = 1 and ∀ 𝑖, 𝑗 (𝑖 < 𝑗 → 𝑤𝑖 > 𝑤𝑗), Mi(t) is 

the payoff for the agent i for the time step t. 

 

{
𝑃𝑐𝑖(𝑡 + 1) = 𝑃𝑐𝑖(𝑡) + (1 − 𝑃𝑐𝑖(𝑡) ∗ 𝛼𝑖(𝑡) , 𝑖𝑓 𝑆𝑖 = 0 𝑎𝑛𝑑 𝑊𝑃𝑖(𝑡) > 0

𝑃𝑐𝑖(𝑡 + 1) = (1 − 𝛼𝑖(𝑡) ) ∗ 𝑃𝑐𝑖(𝑡),             𝑖𝑓  𝑆𝑖 = 0 𝑎𝑛𝑑 𝑊𝑃𝑖(𝑡) ≤ 0

(14) 

{
𝑃𝑑𝑖(𝑡 + 1) = 𝑃𝑑𝑖(𝑡) + (1 − 𝑃𝑑𝑖(𝑡) ∗ 𝛼𝑖(𝑡) , 𝑖𝑓  𝑆𝑖 = 1 𝑎𝑛𝑑 𝑊𝑃𝑖(𝑡) > 0

𝑃𝑑𝑖(𝑡 + 1) = (1 − 𝛼𝑖(𝑡) ) ∗ 𝑃𝑑𝑖(𝑡),               𝑖𝑓  𝑆𝑖 = 1 𝑎𝑛𝑑 𝑊𝑃𝑖(𝑡) ≤ 0

     (15) 

Where: Pci and Pdi are respectively the probability to 

decrease (s=0) and increase (s=1) emissions for agent i, 

αi(t) is the learning rate of agent i at time step t, s is the 

strategy played at time t. The learning rate is updated 

according to (17): 

𝐷𝑖 = ∑ {
0 𝑖𝑓 𝑋𝑖,𝑗 = 𝑋𝑖,𝑗+1

1 𝑖𝑓 𝑋𝑖,𝑗 ≠ 𝑋𝑖,𝑗+1

𝐿−1
𝑗=1              (16) 

{

𝛼𝑖(𝑡 + 1) = 𝛼𝑖(𝑡) + 0.015          𝑖𝑓 𝐷𝑖 = 0

𝛼𝑖(𝑡 + 1) = 𝛼𝑖(𝑡) + 0.010  𝑖𝑓 𝐷𝑖 > 𝐿 − 1

𝛼𝑖(𝑡 + 1) = 𝛼𝑖(𝑡) − 0.010  𝑖𝑓 𝐷𝑖 ≤ 𝐿 − 1

        (17) 

 

Where Di is the i-th agent actions homogeneity indicator, 

at time step t, Xi,j is j-th action of the agent i. Di is used to 

compare the last L actions of the agent. This is used to 

keep the agent from changing its actions. Agents are 

influenced by their neighbours, at each time; the average 

reward of the neighbours is calculated according to (18). 

𝑛𝑃𝑖(𝑡)  =  (∑ 𝑀𝑗(𝑡))/
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑖
𝑗=1

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑖  (18) 
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Where Mj(t) is the payoff of the neighbour j and 

numberOfneighboursi is the number of neighbours for the 

i-th agent. We keep a trace of the nP of the L previous 

simulation steps and we compute their average in avgnP. 

The agent then uses the probabilities Pc, Pd and the 

average reward of its neighbours to choose an action 

according to (19): 

{
𝑖𝑓 𝑆𝑖(𝑡) = 0, 𝑆𝑖(𝑡 + 1) = {

1 , 𝑖𝑓 𝑊𝑃𝑖 < 𝑎𝑣𝑔𝑁𝑃𝑖  𝑎𝑛𝑑 𝑃𝑑𝑖(𝑡 + 1) > 𝑃𝑐𝑖(𝑡 + 1),
0, 𝑒𝑙𝑠𝑒

𝑖𝑓 𝑆𝑖(𝑡) = 1, 𝑆𝑖(𝑡 + 1) = {
0 , 𝑖𝑓 𝑊𝑃𝑖 < 𝑎𝑣𝑔𝑁𝑃𝑖  𝑎𝑛𝑑 𝑃𝑐𝑖(𝑡 + 1) > 𝑃𝑑𝑖(𝑡 + 1),

1, 𝑒𝑙𝑠𝑒

(19) 

At each simulation step, every agent gets a reward or 

penalty according to its actions and according to the 

pollution level. We have adopted the payoff curve (1) 

with b=2 and c=-0.5, but in the general case these 

parameters can be defined by the user. When the 

pollution level is higher than the maximum allowed 

value, the participation of the agent to the current level of 

the pollution 𝜎𝑖(𝑡) is computed according to (20). 

 

𝜎𝑖(𝑡) =
𝐸𝑅𝑖(𝑡)

𝑃𝐿𝑒(𝑡)−𝑃𝐿𝑚𝑎𝑥
, 𝑃𝐿𝑒(𝑡) > 𝑃𝐿𝑚𝑎𝑥           (20) 

 

Where, ERi(t) is the emission rate of the i-th agent at 

time t, PLe(t) is the pollution level of the pollutant e at 

time t and PLmax is the maximum allowed value for the 

pollutant level according to the regulation and local 

standards. The penalty for agent i at time step t is 

calculated according to (21):  

𝐸𝑐𝑜𝐹𝑎𝑐𝑡𝑜𝑟𝑖(𝑡) = 𝐸𝑐𝑜𝐹𝑎𝑐𝑡𝑜𝑟𝑖(𝑡 − 1) + (1 −
1

𝑒𝜎𝑖(𝑡)) (21) 

Two penalising strategies were used; the first uses (21) 

and is a cumulative penalty. This means that the penalties 

from each step are kept and the agent is penalised as long 

as it continues to increase its emission. The second 

penalising method is not cumulative, and agents are 

penalised just according to the current simulation step. 

The reward of agent i, at the current time step t is 

computed according to (22), we compute the number of 

agents who choose to decrease their emission denoted 

ncp, after that we compute u use as defined in equation 

(1). 

𝑀𝑖(𝑡) = {
𝑢(𝑛𝑐𝑝)                                                 𝑖𝑓 𝑠𝑖 = 0

𝑢(𝑛𝑐𝑝) − 𝐸𝑐𝑜𝐹𝑎𝑐𝑡𝑜𝑟𝑖(𝑡)                𝑖𝑓 𝑠𝑖 = 1
 (22) 

3 Simulation scenarios using data 

from the region of Annaba 
Annaba is a very industrialized region specialising in 

steel industries. The steel complex of Hadjar is located 

12 kilometres south of the city of Annaba. The air 

pollution spreads over a radius of 6 km. According to 

[34], the complex annually releases into the atmosphere: 

36890 tons of particles, 845 t of NOX, 30895 t of COx, 

2260 t of SOx and 3093 t of NOx. The petrochemical 

station (ASMIDAL) produces fertilizers and pesticide 

products that have a big influence on air quality. 5 

industrial zones, that contain hundreds of factories, are 

very close to the urban area and have a large impact on 

air pollution. The seaport is located in the centre of the 

city and attracts a lot of heavy transport, which also leads 

to deterioration in the air quality. 

The local pollution agency network provided hourly data 

for a two-year period from 01/01/2003 to 31/12/2004. 

The concentrations of air pollutants that have been 

continuously monitored are: Ozone (O3), Particulate 

Matter (PM10), Nitrogen Oxides (NOx), and Sulphur 

Oxides (SOx). The dataset also includes four 

meteorological parameters: Wind Speed (WS), 

Temperature (T) and relative Humidity (H). Daily 

rainfall measurements (RF) were also provided by the 

water management agency. The 2003 dataset was used 

for training the ANN and the 2004 dataset was used for 

validation; this helped us to assess the performance of the 

model. The pollutant concentration measurements are in 

microgram/m3 and they have been normalised using 

equation (23).  

𝑉′𝑝 =
𝑉𝑝

(max (𝑉𝑝)−min (𝑉𝑝)
     (23) 

Where Vp is a parameter vector, min and max are 

functions that return the minimum and maximum values 

of the vector. Negative values, resulting from faulty 

measurements, were replaced using the mean of the 

previous and next values. It is impossible to discard 

faulty values since gaps in the time series will result in a 

data shift that affects the ANN training process leading to 

poor generalisation properties. Similarly, faulty (blank) 

measures for pollutants and weather parameters were 

replaced by an average of the v-q and u+q previous and 

future values respectively, with u being the faulty sample 

and q the number of values to take into consideration. 

This ensures the continuity and consistency of the time 

series and allows efficient training of the ANN 

predictors.  Table 3 presents the statistical properties of 

the available data for different pollutants and weather 

parameters, for some parameters data are not available 

(N/A). 

We defined a simulation scenario for the Annaba region 

using the parameters in table 4. The goal levels for 

pollutants concentration were fixed according to the air 

quality index goal. For this scenario we aimed to reach a 

very good air quality level (Goal air quality index=1). 

The initial values (at t=0) for pollutant concentration and 

climatic parameters were fixed according to the dataset. 

 

Parameter 
2003 
mean 

2004 
mean 

2003 
STD 

2004 
STD 

Max 
value 

PM10 µg/m3 51.70 27.76 51.66 26.38 508 

NOx µg/m3 14.50 N/A 25.01 N/A 435.0 

SOx µg/m3 7.60 N/A 14.78 N/A 190.0 

CO µg/m3 1.31 N/A 0.52 N/A 12.2 

O3 µg/m3 N/A 42.27 N/A 64.58 688.0 

Wind Speed 
µg/m3 

2.65 2.12 1.78 1.27 9.6 

Humidity (%) 63.52 71.92 16.50 14.33 93.0 

Temperature 
(°C) 

18.96 16.82 7.76 6.30 42.1 

Rainfall (mm) N/A 2.96 N/A 9.27 73.9 

Table 3: Statistical properties of the used dataset. 
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For the EG strategies we fixed the initial proportion of 

cooperating agents (agents choosing to decrease 

emissions) to 0.5, this means that 50% of the agents 

decrease their emission at t=0. The value of this 

parameter was chosen following the work of [14] and 

[15]. The proportion will change during the simulation 

according to the game outcome. The prediction was for 

the next 2 hours, the same as the simulation step. Each 

source emits according to its emission rate which cannot 

be higher than the maximum level defined in the 

simulation scenario. The position of sources was 

randomly generated and many sources are located in the 

same box. 

Parameter Name Value  

Polluting activities and 

 Policy parameters 

Number of PM10 sources 100 

Number of SOX sources 100 

Number of NOx sources 100 

Number of CO sources 100 

Max emission rate 2000 (gram/hour). 

Goal PM10 level 20 µ gram/m3 

Goal SOx level 30 µ gram/m3 

Goal NOx level 45 µ gram/m3 

Goal O3 level 45 µ gram/m3 

Number of memory steps (L) 4 steps 

Initial proportion of cooperating agents 0.5 

Environment parameters  

Number of boxes 20 

Temperature at t=0 12.7 (°C) 

Humidity at t=0 71.0 % 

Wind Speed t=0 2.4 m/s 

PM10 at t=0 13.0 µ gram/m3 

SOX at t=0 17.0 µ gram/m3 

NOX at t=0 2.0 µ gram /m3 

CO at t=0 0.5 µ gram /m3 

O3 at t=0 29.0 µgram /m3 

Air Quality at t=0 2 ( Good) 

Total simulation time 4900 hours 

K Simulation step 1 step = 2 hours 

Prediction horizon Next 2 hours 

Table 4: Parameter values of the simulation scenario. 

4 Results and discussion 
We have built a simulator using the approach described 

above. We used the JADE agent framework [35] and 

ANN models from Encog [36]. We have defined 5 

strategies: EG-CP (Evolutionary Game with Cumulative 

Penalty), EG-NCP (Evolutionary Game with No 

Cumulative Penalties), EG-NP (Evolutionary Game with 

No Penalty), CS (Centralized Strategy) and NC (No-

Cooperation). The last one is used for comparison 

purposes. Using the parameters shown in table 4, we 

chose a strategy and ran the simulation 16 times. We then 

changed the strategy and ran the simulation again 16 

times; since we have 5 strategies we obtain 80 

simulations. The most explicative results are presented. 

For the CS and NC cases the simulator showed similar 

results for each run. For the EG strategies there were 

small differences between runs, especially concerning the 

proportion of cooperating agents. These changes are due 

to the random values used in the initialisation of some 

variables (neighbours rewards, first chosen action, 

weights, k last actions and rewards). The comparison is 

done according to the air quality index. Results are 

expressed in terms of the number of occurrences of air 

quality index as illustrated in figure 2, for example the 

number of times the air quality index equals 1 (very 

good). Figure 3, shows the evolution of the air quality 

index over time. The CS gives the best performance. 

With the CS the air quality index moves rapidly from bad 

to average and then to good and finally stabilises at very-

good (which is the goal fixed in the simulation scenario). 

The EG-CP moves the index from bad to average, when 

the equilibrium is reached it stabilises in good and never 

reaches a very-good index. The EG-NCP strategy moves 

the air quality from bad to average and never improves. 

When penalties are not used (EG-NP) the air quality 

stabilises at bad. When cooperation is not used (NC), 

agents act selfishly and do not care about the pollution, 

therefore, the air quality oscillates between bad and very-

bad. As the agents reach their maximum emission rate 

we can observe an oscillation, which is caused by the 

climatic conditions. The only thing that affects the 

pollutant concentration is the climatic conditions (the 

emission rate is constant); these have a big influence and 

are captured with the ANN model.  

 
Figure 2: Air quality index using 5 different cooperation 

strategies. 

 

 
Figure 3: Air Quality index for 4900 hours. 
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Figure 4: Concentration of PM10 for the four tested cooperation strategies compared with the no-cooperation strategy. 

 

 
Figure 5 : Concentration of SOX (a), NOx (b) and O3 (c) using the four strategies and the no-cooperation scenario. 

 

Figure 4 shows the evolution of the PM10 

concentration during the simulation time. The PM10 

concentration shows many peaks compared with the 

other pollutants under the same climatic conditions. 

This is due to the dry nature of the weather in the 

Annaba area, with wildfires, and sandstorms coming 

from the great Sahara desert. These events have a big 

effect on the PM10 concentration but not on the other 

pollutants. The CS strategy takes less time to control 

the pollution level and keep it below the goal level 

defined in the simulation parameters. All of the EG 

strategies take longer, keeping it close to the goal 

level, but without ever reaching it. The penalising 

regulations have a big effect on the PM10 level. As 

illustrated, the EG-CP (cumulative penalising method) 

controls the pollution better than the non-cumulative 

one, and both methods perform better than the no-

penalising strategy. The no-cooperation is presented in 

order to show the impact of cooperation on the PM10 

level. Figure 5 shows the evolution of the SOx, NOx 

and Ozone concentrations during the simulation time 

using four different cooperation strategies. The CS 

strategy gives the best performance since the pollution 

concentration rapidly decreases. The EG strategies 

show the same performance as for PM10 and the 

pollution level is widely influenced by the selected 

penalising method. The CP strategy appears to be the 

best one followed by the NCP. The pollution slowly 

decreases, but not enough to reach the goal level if 

penalisation is not used.  

Figure 6: Proportions of cooperating agents for EG-CP, 

EG-NCP and EG-NP. 

 

Figure 7: The proportion of cooperating agents according 

to the emitted pollutant for the EG-CP strategy. 
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Figure 8: The proportion of cooperating agents for the 

EG-NCP strategy. 

 

Figure 9: The proportions of cooperating agents, for 

the 4 groups of agents, when penalisation is not used. 

The NC strategy gives the worst levels; when all 

agents are emitting pollution using their maximum 

emission rate, the pollutant level reaches alarming 

values and peak periods occur. 

Figure 6 shows how the penalising method affects the 

proportion of cooperating agents. For the case of EG-

CP the game equilibrium is reached at time step 387 

and stabilises when the proportion of cooperating 

agents is between 0.93 and 0.95. The EG-NCP 

strategy stabilises early at time step 196 and oscillates 

between a cooperation ratio of 0.73 and 0.80, after 

which the equilibrium is fixed at 0.77. The EG-NP is 

the slowest; the equilibrium is reached at time step 808 

with a cooperation ratio of 0.57. This happens because 

the agents are not penalised since the strategy does not 

include penalising methods. Figures 7, 8 and 9 show, 

respectively, the proportion of cooperating agents 

according to the pollutant for the three penalising 

strategies EG-CP, EG-NCP and EG-NP. The PM10 

agents gives the highest cooperation ratio. This is 

because many peaks occur with this pollutant and the 

others pollutants cooperating ratio (NOx and SOx) are 

influenced by the O3 concentration. The more the 

pollutant exceeds the allowed level, the greater the 

proportion of co-operators. The equilibriums are 

disturbed by the pollution level, because, when the 

pollution has not yet reached the goal level, agents 

agents start being penalised, and thus they tend to 

cooperate more. 

5 Conclusions 
Anthropogenic activities are among the main 

causes of pollution and environmental problems. 

These activities have to be included in the simulation 

models. Modelling the interaction between social and 

ecological components is a very important aspect. A 

MAS approach allows us to model the social network 

of human-beings sharing the exploitation of common 

environmental resources. Manipulating the behaviour 

at an individual and group level helps to gain more 

knowledge about the impact of human decision-

making on pollution and makes the simulation more 

realistic. Studies treating air pollution are usually 

concerned with the physical aspects (concentration 

and dispersion of pollutant), and do not include 

human-decision factors on the emission sources.. In 

our approach, we model the decision-making activity 

of the air pollution emission source managers. This 

helps to investigate the conditions and regulations that 

may enhance and maintain the air quality. 

We used a two stage air pollution modelling 

method: a GPD dispersion model and an ANN 

forecasting model. The ANN predictor uses climatic 

parameters and dispersal information provided by the 

GPD model to make predictions. This helped to 

introduce the effect of uncertainty caused by the 

weather and made the simulation more realistic. Five 

cooperation strategies were tested. The centralized 

cooperation strategy (CS) showed the best 

performance, surpassing the reward/penalty strategies. 

However, the CS strategy needs an effective 

communication network between emission sources 

controllers and the regulation agency. Also, we 

assume that emission controllers communicate exactly 

their emission rate, which is not always the case. The 

reward/penalty strategies seem to be more realistic; 

penalising the polluting agents according to their 

participation during peak periods has a big influence 

on their behaviours. As shown in the simulation 

results, it helps reducing the pollution level and affects 

the evolution of the pollutant. Thus, air pollution 

regulations have a big impact on pushing the emission 

source controllers to take their polluting activity 

seriously; this is especially important during the peak 

periods where climatic conditions cause the pollutants 

to stagnate.  

To summarise our study helps to: (1) Model and 

introduce human decision-making concerning 

emission sources and the process of simulating air 

pollution evolution. (2) Evaluate the possible 

cooperation between the actors concerned in managing 

the air quality. (3) Have a prediction about the 

efficiency of regulation rules for preserving the air 

quality. (4) Investigate the impact on air quality of the 

decision to expand or establish a new emission points. 

Our work aims to provide a decision-making tool 

to the air pollution control agencies that will help them 

evaluate the regulations and policies concerning air 

pollution control. The current version of the system 

deals only with point emission sources. In future 
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versions we aim to include line and area sources. Line 

sources model the road activities, whereas area 

sources model the waste management and agricultural 

sources of pollution. If data becomes available in 

future it could be interesting to experiment with 

different time representations. Fortunately the multi-

agent system approach allows us to easily change to a 

different scale of time representation in the same 

simulation. We can envisage using one time 

representation for decisions and another for 

monitoring. The first can help us to see long term 

impacts (e.g. investing in less polluting activities), and 

the second can help to see the short term changes. 

The simulator may also be enhanced by including 

topographic aspects of regions since this has a big 

influence on the dispersion of air pollutants. In 

addition, including more agent personalities and 

exploring other cooperation strategies are also among 

our future plans. Our system is designed in a generic 

way and it could be adapted for other types of 

pollution such as water pollution. This could be done 

by changing the current dispersion and the prediction 

models to a water pollution dispersion model. 
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