
 Informatica 42 (2018) 167–173 167

Evaluation of Medical Image Algorithms on Multicore Processors

Damir Demirović

Department of Computer Science and Informatics, Faculty of Electrical Engineering,

University of Tuzla, Bosnia and Herzegovina

E-mail: damir.demirovic@untz.ba, http://www.fe.untz.ba

Zekerijah Šabanović

Medical Faculty, University of Tuzla, Bosnia and Herzegovina

E-mail: zekerijah.sabanovic@untz.ba, http://www.medf.untz.ba

Keywords: medical image processing, multicore processor, GPU, GPGPU, filtering, image registration

Received: April 26, 2016

Introduction: In recent time medical image processing and analysis became an essential component

inclinical practice. Medical images contain huge data to process due to increased image resolution.

Thesetasks are inherently parallel in nature, so they naturally fit to parallel processors like Graphics

Processing Unit (GPU). In this work several commonly used image processing algorithms for 2-D and 3-

D were evaluated regarding the computation performance increase using the GPUs and CPUs on a

personal computer. For tested algorithms, GPU outperforms CPU from 1.1 to 422 times.

Povzetek: V zadnjem času je obdelava in analiza medicinskih slik postala bistvena sestavina v klinični

praksi. Medicinske slike vsebujejo ogromne količine podatkov, vendar je procesiranje slik vzporedne

narave, posebej primerno za obdelavo z grafično procesno enoto (GPU). V tem delu smo ocenili več

pogosto uporabljenih algoritmov za obdelavo slik za 2-D in 3-D glede povečanja zmogljivosti računanja

z grafičnimi procesorji na osebnem računalniku. Za testirane algoritme je grafični procesor omogočil

zmanjšanje časa računanja od 1,1 do 422-krat.

1 Introduction
In the last decade parallel processing has become the most

dominant for high-performance computing. Increasing the

processor clock rate in single-core processors has slowed

down due to the problems with heat dissipation.

Application developers cannot count on Moore's law to

make complex algorithms computationally feasible.

Consequences are that they are increasingly shifting the

algorithms to parallel computing architectures [1][2].

These architectures are multicore Central Processing

Units (CPU), Graphical Processing Units (GPU) and

Field-Programmable Gate Array (FPGA).

The amount of data processed in clinical practice is

also increasing. Increased resolution of medical images

and a huge amount of data for processing is exploding.

Trends like 3-D and 4-D imaging technologies used in

treatment planning need a lot of computer power. Due to

its nature, these tasks are inherently data-parallel, i.e. data

from such dataset can be processed in parallel using

multiple threads. GPUs originally designed for

acceleration of computer graphics, become a versatile

platform for running massively parallel computation. This

is due to its nature, like high memory bandwidth, high

computation throughput etc. [2]. In the year, 2004

programmable GPUs were introduced. Firstly, they could

run in parallel custom programs called shaders. This is the

first time to accelerate the non-graphical applications with

GPUs.

Today GPU become a viable alternative to CPUs in

time-consuming tasks. When same computations can be

performed on many image elements in parallel, so it can

easily fit on GPUs. Two dominant parallel computing

platforms are NVidia CUDA and OpenCL.

OpenCL [3] is a software framework for writing

programs that run across heterogeneous platforms like

CPUs, GPUs, digital signal processors (DSPs) and

FPGAs. Heterogeneous refers to systems with more the

one kind of processors or cores. Both CUDA and OpenCL

support heterogeneous computing. OpenCL is based on a

C programming language, and it is an open standard.

NVIDIA CUDA [4] is a parallel computing platform and

Application Programming Interface (API), which supports

programming framework OpenCL.

In [5] authors gave the introduction to the GPU

architecture, and its applications in image processing,

software development, and numerical applications.

In [2] authors review the principles of GPU

computing in the area of medical physics. Segmentation

of anatomical structures from image modalities like

Computed Tomography (CT) and Magnetic Resonance

Imaging (MRI) were given in [6]. Due to its computational

complexity most segmentation procedures require vast

processing power like GPU. A brief literature review of

several segmentation methods is given here.

mailto:damir.demirovic@untz.ba
mailto:ekerijah.sabanovic@untz.ba

168 Informatica 42 (2018) 167–173 D. Demirović et al.

In [7] authors give a review of applications for GPU

in medicine, which covers the past and current trend in this

field, like commonly used method and algorithm which

are specific to individual image modalities. Also, in the

field of medical visualization GPU can be effectively

used.

Algorithm Marching Cubes that extract surfaces from

volumetric data was presented [8]. Fast extraction in

medical applications is necessary, so near real-time

applications are very desirable. Their algorithm

implementation is completely data-parallel, which is ideal

for application on a GPU.

In [10] authors implement widely known Demons

algorithm for medical image registration [16] on a GPU,

for registering 3-D CT lung images. Speedups of 55 times

were reported over non-optimized CPU version.

In [20] authors were using OpenCL to evaluate

reconstruction of 3-D volumetric data from C-arm CT

projections on a variety of high-performance computing

platforms, like FPGAs, graphic cards and multi-core

CPUs.

Three-dimensional reconstruction task in cone-beam

CT, a computation complex algorithm was implemented

using CUDA [21].

Book [9] covers developing data-parallel version of

registration algorithms suitable for execution on GPU.

Our main objective was to compare algorithms using

CPU and GPU, and their assessment on a different

processor architecture. Some of the most used image

processing algorithms, which are suitable for algorithm

parallelization, were evaluated and speedups were

compared to a single core of the CPU. CPU results were

used as a base for comparison of the results from the GPU.

2 Methods
In this work, time-consuming algorithms were evaluated

on a CPU and GPU. Algorithms for 2D and 3D were

tested, and running times were evaluated.

Figure 1: OpenCL platform model [3].

There are several software packages for image

processing and analysis of medical images. For the

purpose of this research, the different software packages

were used, as described as follows.

Plastimatch [11] is an open source software for image

computation. The main focus is high-performance

volumetric registration of medical images, such as X-ray

CT, MRI, and positron emission tomography (PET).

Software features include methods for medical image

registration, segmentation etc.

 OpenMP (Open Multi-Processing) [12] is an

application programming interface (API) that supports

multi-platform shared memory multiprocessing

programming in C, C++, and Fortran, on most platforms,

processor architectures and operating systems, including

Solaris, AIX, HP-UX, Linux, OS X, and Windows.

OpenCL and CUDA allow heterogeneous

programming model, so a typical sequence of operations

is the same in both of them. In both platforms, host refers

to the CPU and its memory, while device refers to GPU

and its memory. Kernels are functions executed on the

device (GPU) in parallel. A typical program has the

following steps: declaring and allocating host and device

memory, initialize host data, transfer data from the host to

the device, execute one or more kernels, transfer results

from device to the host.

OpenCL is portable API, based on the C99 standard

of the C programming language. OpenCL platform model

(Figure 1) consists of a host of several computing devices

which each contain several computing units. Further, a

computing unit contains several processing units. The

serial code runs on a Host (which is a CPU) thread, and

the parallel code executes in many devices (GPUs) threads

across multiple processing elements.

Functions executed on OpenCL devices are called

kernels. Both CUDA and OpenCL support built-in

functions which can take scalar and vector arguments.

Native functions are built-in functions with reduced

precision which is implementation defined, but with

decreased execution time. Built-in functions conform to

IEEE 754 compatible rounding for single precision

floating point calculations.

OpenCV [13] is a library of functions for computer

vision. It is cross platform and released under the BSD

license, written in C++ language, and supports Intel

Integrated Performance Primitives (IPP) optimized

routines, support for GPUs for CUDA and OpenCL.

In this work nine commonly used algorithms were

evaluated. First, algorithms in 2D which can be used for

Capabilities Processor

GPU

GTX

560Ti

CPU

Intel

 i5-2500

OpenCL version 1.1
not

available

Compute capability 2.1
not

available

Double precision Yes Yes

Number of cores 384 4

Max clock freq. (GHz) 1.7 3.7

Global memory (MB) 1023 6

Power rating (W) 170 95

Table 1: Processor specifications.

Evaluation of medical image algorithms on multicore processors Informatica 42 (2018) 167–173 169

filtering medical images were evaluated. Medical image

datasets usually come as volumes like CT image. They

have usually 100 or mores slices, so running times are

exceptionally high, which prevents their clinical usage in

real time.

All experiments presented in this work were evaluated

on a PC computer with Intel CPU and NVidia GPU with

8GB of RAM memory. For the GPU implementation of

algorithms NVIDIA CUDA Toolkit version 7.5 was used.

CPU implementations were implemented using Microsoft

Visual Studio Express 2013. Specifications of the

processors for this research are given in Table 1.

For the purpose of research, we choose nine image

processing algorithms with frequent usage in medical

practice. We have split the analysis of algorithms for 2-D

and 3-D images as described in the following sections.

2.1 2-D algorithms

In medical practice 2-D algorithm can be used on a single

image slice or extracted images from 3-D volumes. For the

purpose of this research, we choose the rotation, Gaussian

filter, Sobel filter, Fast Walsh transform, Farneback

method and Horn-Schunk optical flow.

Image rotation is a geometric operation which maps

the image pixel in an input image onto the position in an

output image by rotating the image around the specified

angle about an origin. Rotation is a case of an affine

transformation, and it is widely used in image processing

(for example image registration).

Figure 2: Image used for all 2-D experiments.

Gaussian filter is the most common used in filtering

and have significant usage in medical applications (for

example in image registration which acts as smoother).

Gaussian filter was evaluated for input image of

2048x2048 with parameters sigma 10 pixels and kernel

size 81. For purpose of these experiments, Gaussian kernel

were implemented on the CPU and the GPU. For CPU, we

used up to 4 threads with standard CPU optimizations. For

these experiments the image showed in Figure 2 was used.

Fast Walsh or Hadamard transform is a special case

of generalized Fourier transforms, which has the same

complexity like Fourier transform but without

multiplications.

Farneback method for computation of optical flow

was presented in [14]. Optical flow was used for the

finding of relative motion between two images. It can be

used to recover motion for example between two organs.

The method is based on approximation of each

neighborhood of two frames by quadratic polynomials,

using the polynomial expansion transform (images are

shown in Figure 3 and Figure 4). Obtained deformation

field is shown in Figure 5 and Figure 6, where colors

correspond to different values of deformation obtained.

Two deformations appear similar but a significant value

difference can be seen in the lower and the right part of

Figure 5. If we take the CPU implementation as the golden

truth, the difference between these two results originates

from a loss of computation precision of the GPU.

Horn-Schunck is optical flow method is a classical

method for finding the apparent motion in images [15].

The method assumes smoothness in the flow over the

whole image and tries to minimize global energy

functional which consists of two parts, intensity and

regularization. The method employs iterative scheme

using Jacobi method. For this experiment, image showed

in Figure 3 and Figure 4 were used. Deformation field

after registration obtained with this algorithm are showed

in Figure 7 and Figure 8. Comparing the obtained

deformation fields from two algorithms we found some

small differences on the pixels on GPU image (Figure 5

and Figure 6).

Figure 3: Static image used for all 3-D experiments.

Results for described 2-D algorithms are given in

Table 2 and corresponding Figure 9. From the results one

can see that almost all algorithms, with exception of image

rotation, execute faster on the GPU, and depending on the

algorithm speedups are from 10x to 84x compared to one

CPU thread. Significant improvements can be also

obtained with some loss of the accuracy. Almost all

algorithms can be run in a real-time on the GPU, and just

one on the CPU.

170 Informatica 42 (2018) 167–173 D. Demirović et al.

Figure 4: Moving image used for all 3-D experiments.

The Sobel operator is a widely used filter in image

processing for edge detection. In 2-D Sobel operator is 3x3

for one dimension, whereas in 3-D 3x3x3 for each of 3

dimensions. The result of Sobel operator is a gradient

vector. The filter is separable so it can be written as

product of two simpler filters.

For this experiment, we used up to four CPU thread

for evaluation. Speedups are given in Table 3 and Figure

10. For the best experiment we can expect the speedup of

38 times for the four CPU cores, or in worst case 141 times

compared to one CPU core. From these results can be

clearly seen that Sobel algorithm can benefit significantly

from implementation on the GPU compared to one CPU

thread.

2.2 3-D algorithms

3-D algorithms in medical practice are very important.

Most of medical images are 3-D volumes and needs to be

preprocessed, analyzed or visualized in some way. In the

next part the five widely used algorithms in 3-D were

evaluated.

For the purpose of this evaluation, we implemented 3-

D Gaussian filter in C programming language. Volume

dimensions for tested images were 482x360x141 with

kernel size of 5 and sigma 0.5 voxels.

The Sobel operator in 2D has the dimension of 3x3,

whereas in 3-D 3x3x3 for each of 3 dimensions. The result

of Sobel operator is a gradient vector. The filter is

separable so it can be written as the product of two simpler

filters, thus reducing the computation time. For this

experiment, the same volume was used as in the previous

experiment.

All 3-D registration was evaluated for the three resolution

levels, with maximal 30, 50 and 50 iterations respectively.

Threading in CUDA, OpenMP, and single thread have

been used. For registration bspline,

Demons, and affine algorithms from Plastimatch were

used. Registration using bsplines falls into a category of

Free-Form Deformations (FFD) in which object to be

registered is embedded into bspline object [19].

Deformation of bspline object represents the

transformation of the registration [17]. Affine image

registration falls into a category of linear registration,

which is a composition of linear transformations with

translations. In this category falls rigid transformations

(translating plus rotations), rigid plus scaling and affine.

Another category of non-linear registration is non-rigid,

deformable, fluid elastic etc. Affine transformation

preserves points, straight lines, and planes. After

transformation set of parallel lines remains parallel. Affine

transformations define translation, scale, shear, and

rotation.

Obtained deformations of Horn-Schunk algorithm are

shown in Figure 7 and Figure 8, where colors correspond

to different values of deformation which was obtained

from algorithms running on the GPU and CPU

respectively. In contrast to the 2-D Farneback method,

some small differences can be spotted between the two

deformation fields, which corresponds to very small error

for the GPU.

All results obtained with 3-D registration are showed

in Table 4 and Figure 11. For these experiments, OpenMP

were used with four CPU threads, except for filtering

algorithms Gaussian and Sobel. Obtained speedups are

from 1x to 422x depending on the algorithm. Lowest

speedup is for the affine registration where CPU version

of the algorithm is little faster. Highest speedup is for

Figure 5: Color representation of deformation field

using Farneback algorithm (GPU).

Figure 6: Color representation of deformation field

using Farneback algorithm (CPU).

Evaluation of medical image algorithms on multicore processors Informatica 42 (2018) 167–173 171

filtering, from 127x to 422x compared with single CPU

thread. Registration algorithm Demons and affine have

little or no speedup for 4x, whereas bspline have a

significantly lower performance in this case. Algorithms

for image registration are highly computing extensive and

obtained speedup is from about 1x for affine to 15x for

Demons algorithm.

It is worth to mention that Demons algorithm uses

Gaussian filter in each iteration to smooth the deformation

field. From the running times for Demons, one can see that

speedup is almost the same for CPU, which indicates the

single thread implementation for this algorithm. Similar to

2-D implementations, there is a trade-off between

precision and running time.

3 Conclusions
In this paper was presented an evaluation of speed gain

using modern GPU cards compared to the standard CPU.

In total, nine common used algorithms on different

processors were evaluated using parallel processing for 2-

D and 3-D. For the CPU up to 4 threads were used,

Figure 9: Speedups for 2-D experiments.

Algorithm GPU (s) CPU (s) speedup (in times)

Image rotation 0.0090 0.10 0.01

Fast Walsh transform 0.0399 3.38 84

Farneback optical flow [14] 0.0116 0.50 43

Horn-Schunk optical flow [15] 1.4200 13.69 10

Table 2: Running times and corresponding GPU Speedups for 2-D experiments.

R
o

tatio
n

So
b

el

Fast W
alsh

Farn
eb

ack

H
o

rn
-Sch

u
n

k

0

20

40

60

80

100

120

140

160

Algorithm

Sp
ee

d
u

p

GPU CPU

Figure 7: Color representation of deformation field using

Horn-Schunk algorithm (GPU).

Figure 8: Color representation of deformation field using

Horn-Schunk algorithm (CPU).

172 Informatica 42 (2018) 167–173 D. Demirović et al.

depending on the algorithm implementation. For the GPU,

algorithms were used with simple naïve implementation,

without optimization and all available cores.

In almost all cases processing times decrease due to

highly parallelizable algorithms. Obtained speedups

varied from 1.1x to 422x depending on the algorithm.

Some of the tested algorithms was not well suited to

parallel implementation, i.e. their running times increased

with larger number of threads. Obtained results on a GPU

suffers small loss of accuracy, and show near real-time

performance.

Future work can evaluate the specific optimizations

for CPU and GPU, instructions like SSE, AVX for CPU.

Native instructions, determining the optimal local and

global block size for CUDA and OpenCL and instructions

with lower precision can be analyzed for the GPU.

Another possibility for detecting and reducing the

bottlenecks in the GPU implementation can be done using

a GPU profiler.

4 References
[1] Xue X, Cheryauka A, Tubbs D. Acceleration of

fluoro-CT reconstruction for a mobile C-Arm on

GPU and FPGA hardware: a simulation study. Proc.

SPIE 6142, Medical Imaging 2006: Physics of

Medical Imaging, 61424L (2 March 2006); 2006.

[2] Pratx G, Xing L. GPU computing in medical

physics: A review. Medical Physics. 2011; 38(5): p.

2685-2697.

[3] Khronos. OpenCL. [Online]. [cited 2016 03 21.

Available from: https://www.khronos.org/opencl/.

[4] NVidia. NVIDIA CUDA. [Online].; 2016 [cited

2016 03 15. Available from: http://www.nvidia.com/

object/cuda_home_new.html.

[5] Couturier R. Designing Scientific Applications on

GPUs: Chapman & Hall CRC; 2013.

[6] Smistad E, Falch TL, Bozorgi M, Elster AC,

Lindseth F. Medical image segmentation on GPUs –

A comprehensive review. Medical Image Analysis.

2015; 20(1): p. 1-18.

[7] Eklund A, Dufort P, Forsberg D, LaConte SM.

Medical image processing on the GPU - past, present

and future. Medical Image Analysis. 2013; 17(8)

[8] Smistad E, Elster AC, Lindseth F. Fast surface

extraction and visualization of medical images using

OpenCL and GPUs. The Joint Workshop on High

Performance and Distributed Computing for

Medical Imaging. 2011; 2011.

[9] Shackleford J, Kandasamy N, Sharp G. High

Performance Deformable Image Registration

Algorithms for Manycore Processors. 1st ed. San

Francisco, CA, USA: Morgan Kaufmann Publishers

Inc.; 2013.

[10] Samant P, Muyan-Ozcelik , Owens JD, Xia J, S. S.

Fast Deformable Registration on the GPU: A CUDA

Implementation of Demons. In proceedings of the

1st technical session on UnConventional High

Performance Computing (UCHPC) in conjunction

with the 6th International Conference on

Computational Science and Its Applications

(ICCSA); 2008; Perugia, Italy. p. 223-233.

[11] Plastimatch. Plastimatch. [Online]; 2016 [cited 2016

04 20]. Available from:http://plastimatch.org/.

Figure 10: Speedups for Sobel algorithm.

Algorithm GPU (s) Number of CPU threads (s) speedup (in times)

1 2 3 4 1 2 3 4

Sobel filter 0.0155 2.2 1.1 0.8 0.6 141 71 51 38

Table 3: Running times (in seconds) and corresponding GPU speedups for 2-D Sobel filter.

1 2 3 4

0

20

40

60

80

100

120

140

160

Num of threads

Sp
ee

d
u

p

GPU CPU

https://www.khronos.org/opencl/
http://www.nvidia.com/%20object/cuda_home_new.html
http://www.nvidia.com/%20object/cuda_home_new.html
http://plastimatch.org/

Evaluation of medical image algorithms on multicore processors Informatica 42 (2018) 167–173 173

[12] OpenMP. http://openmp.org/wp/. [Online].; 2016

[cited 2016 04 02]. Available from:

http://openmp.org/wp/.

[13] OpenCV. OpenCV. [Online].; 2016 [cited 2016 04

15. Available from: http://opencv.org/.

[14] Farneb. Image Analysis: 13th Scandinavian

Conference, SCIA 2003 Halmstad, Sweden, June 29-

July 2, 2003 Proceedings. In Bigun J, Gustavsson T,

editors. Berlin, Heidelberg: Springer Berlin

Heidelberg; 2003. p. 363-370.

[15] Horn BKP, Schunck BG. Determining Optical Flow.

Tech. rep. Cambridge, MA, USA; 1980.

[16] Maintz JBA, Viergever MA. A Survey of Medical

Image Registration. Medical Image Analysis,

Volume 2 , Issue 1 , 1 - 36 1998.

[17] Pennec X, Cachier P, Ayache N. Understanding the

demon’s algorithm: 3D non-rigid registration by

gradient descent. In: Proc. MICCAI’99; 1999.

[18] Thirion JP. Image matching as a diffusion process:

an analogy with Maxwell's demons. Medical Image

Analysis. 1998 sep; 2(3): p. 243-260.

[19] Tustison NJ, Avants BA, Gee JC. Improved FFD B-

Spline Image Registration. Computer Vision, IEEE

International Conference on. 2007; 0: p. 1-8.

[20] Siegl C, Hofmann HG, Keck B, Prümmer M,

Hornegger J. OpenCL: a viable solution for high-

performance medical image reconstruction?

Proceedings of SPIE (Medical Imaging 2011:

Physics of Medical Imaging), Lake Buena Vista,

Florida, USA, 12 - 17 Feb 2011, vol. 7961, pp.

79612Q, 2011

[21] Scherl H, Keck B, Kowarschik M, Hornegger J. Fast

GPU-Based CT Reconstruction using the Common

Unified Device Architecture (CUDA). In Nuclear

Science Symposium Conference Record, 2007. NSS

'07. IEEE; 2007 Oct. p. 4464-4466.

Figure 11: Speedups for 3-D algorithms.

Algorithm GPU (s) Number of CPU threads (s) speedup (in times)

1 4 1 4

Sobel filter 0.0557 23.5 - 422 -

Gaussian filter 0.7860 100.1 - 127 -

Bspline registration [17] 41.4000 323.4 99.6 8 2

Demons registration [18] 6.5100 98.9 99.0 15 15

Affine registration 74.7100 69.2 81.2 0.92 1.1

Table 4: Running times (in seconds) and corresponding GPU speedups for 3-D algorithms.

So
b

el filter

G
au

ssian
 filter

B
sp

lin
e

D
em

o
n

s

A
ffin

e

0

50

100

150

200

250

300

350

400

450

Algorithm

Sp
ee

d
u

p

GPU CPU

http://openmp.org/wp/
http://opencv.org/

174 Informatica 42 (2018) 167–173 D. Demirović et al.

