
 Informatica 41 (2017) 233–252 233

Formal Development of Multi-Agent Systems with FPASSI: Towards

Formalizing PASSI Methodology using Rewriting Logic

Mihoub Mazouz

Department of Mathematics and Computer Science, RELA(CS)2 Laboratory

University of Larbi Ben M’Hidi, Oum El Bouaghi, Algeria

E-mail: mazouz_mihoub@hotmail.fr

Farid Mokhati

Department of Mathematics and Computer Science, RELA(CS)2 Laboratory

University of Larbi Ben M’Hidi, Oum El Bouaghi, Algeria

E-mail: mokhati@yahoo.fr

Mourad Badri

Department of Mathematics and Computer Science, Glog Laboratory

University of Quebec, Trois-Rivières, Canada

E-mail: Mourad.Badri@uqtr.ca

Keywords: formal development of MAS, PASSI, validation, verification, rewriting logic, maude, maude-strategy,

model-to-text transformation

Received: June 20, 2016

Agent technology has proved its ability and efficiency in modelling complex distributed applications.

During the last two decades, several MAS development methodologies have been proposed like, for

instance, Gaia, Tropos and PASSI. Although these methodologies have made significant contributions to

meet several challenges in the MAS development field, most of them do not use formal techniques. Formal

methods, as it is well known, play a significant role in developing more reliable and robust MAS. This

paper presents the Formal-PASSI methodology. Formal-PASSI is an extension of the well-known PASSI

methodology. The extension consists mainly of the integration of a new formal model to the design process.

The new model is based on the Maude language and its extension Maude-Strategy. It aims at offering a

formal description of the MAS under development by a Model-to-Text transformation. The generated

formal description is then used to validate some PASSI behavioural diagrams and check properties of

both single & multi-agent abstraction levels before passing to the code model. The integration of formal

methods into PASSI design process seems a good way to ensure the development of high quality agent-

based applications. The proposed approach is supported by a tool (F-PTK) that we have developed and

illustrated throughout the ATM case study.

Povzetek: V članku je predstavljena formalna PASSI MAS metodologija, tj. multi-agentna metodologija.

1 Introduction
Current computing systems became increasingly complex

with high safety requirements. Agent technology has

proved its ability and efficiency in modelling complex

distributed applications. As well as any other technology,

the emergence of the agent technology pushes the research

community to propose new methodologies, languages and

tools to support it and to enable a wider spread in the

industry sector. Many methodologies like PASSI [1,2],

Gaia [3,4], ADELFE [5,6,7], Prometheus [8], Tropos [9]

and INGENIAS [10] have been proposed to facilitate and

to assist the development of Multi-Agent Systems (MAS).

Although these methodologies have made real progress in

the MAS development field, proposing new

methodologies that assist agent-based systems

development is still insufficient for industrial adoption

[11].

The development of such systems requires solid bases

in terms of specification. Existing methodologies use

abstract and/or semi-formal specifications. Although such

types of specifications offer several advantages such as the

readability and the facility of comprehension, they have

drawbacks like ambiguity and inconsistency, which are

manually difficult to detect. However, formal

specifications face these drawbacks and enable the

description of the system under development in a precise

and unambiguous way. Using formal methods is essential

to produce high quality agent-based systems at the end of

the development process. In particular, integrating formal

methods into the development process of MAS

methodologies leads to the production of reliable systems.

In order to overcome the problems quoted above,

many proposals are trying to use formal methods in agent-

mailto:mokhati@yahoo.fr

234 Informatica 41 (2017) 233–252 M. Mazouz et al.

oriented software engineering (AOSE) (see Section 2).

However, most of them present several limitations,

especially; they do not use formal methods within an

entire design process. Moreover, many of them are not

supported by adequate tools.

PASSI (Process for Agent Societies Specification and

Implementation) [1, 2] is a step-by-step requirement-to-

code methodology for designing and developing agent-

oriented systems that integrates concepts from both

Object-Oriented Software Engineering (OOSE) and MAS

using UML (Unified Modelling Language) notation.

PASSI covers almost of development process stages, and

can be used to assist the development of general-purpose

agent-oriented systems although it has evolved from a

long period experiment to the development of embedded

robotics applications [12]. However, being PASSI based

on a semi-formal language such as UML makes the

validation and verification activities less efficient.

In this paper, we propose F-PASSI (Formal-PASSI),

a formalization of the PASSI methodology by adding a

new formal model into its design process. The extension

is based on rewriting logic [13, 14] and particularly the

Maude language [15,16] (and its extension Maude-

Strategy [17]). The integrated model aims at offering a

Maude-based formal description of the MAS under

development to enrich the semantic of its UML-based

design. The produced formal description is then exploited

to validate PASSI behavioural diagrams (some of them

until now) by formal simulation thanks to Maude, and

Maude LTL model-checker [18] in order to verify system

properties in both single/multi agent abstract levels. A tool

was developed to support our approach.

The remainder of this paper is organized as follows:

In section 2, we give an overview of major related works.

In section 3, we give a brief description of rewriting logic

as well as Maude language (and its extension Maude-

Strategy). In section 4, a brief description of the PASSI

methodology is given. We introduce, in section 5, the

proposed formal extension for PASSI. Our developed tool

is shown in section 6. In section 7, the ATM case study is

used to illustrate our approach. Finally, section 8 gives

some conclusions and future work directions.

2 Related works
Using formal methods in multi-agent systems

development is a challenge raised by many researchers in

MAS area. El Fallah-Seghrouchni et al. have presented a

classification of the proposed works on formal

development of MAS [19]. According to the authors, three

alternatives can be captured from the literature: (A)

Formal derivation: which is a kind of model-to-code

transformation and aims at realizing MAS based on a

given specification. (B) Enhancement of an existing

methodology by integrating formal meanings to its design.

(C) Proposing a new one. The fact that our work can be

considered as an integration of formal methods to an

existing methodology, PASSI, makes our focus in this

section on works belonging to the second category.

1 http://staruml.io

In [20, 21], Ball et al. have presented an incremental

development process using Event-B [22] for multi-agent

systems. The proposed process can be divided into two

stages. In the first one, informal models based on agent

concepts are constructed. In the second stage, based on the

informal models, the Event-B models are constructed by

the developer, which is provided by guidance to make the

transformation from informal design to formal models

straightforward. The constructed Event-B models are

refined and decomposed into specifications of roles. In

[23], a set of modelling patterns providing fault-tolerance

in Event-B models of multi-agent interactions are

presented. Another work proposing a new formal

methodology is ForMAAD [24, 25]. ForMAAD is a

model driven approach for designing agent-based

application. It uses Agent Modelling Language (AML)

[26] to model architectural and behavioural concepts

associated with multi-agent systems; and Temporal Z [27]

to guarantee a formal verification of the models.

Extensions of StartUML1 tool are made to support the

models they proposed.
Two works using formal methods for the Tropos

methodology [9] can be emphasized here. First, Fuxman

et al. [28] have proposed an extension of Tropos, Formal

Tropos, with a formal specification of early requirements.

For that, Formal Tropos language is defined by integrating

the primitive concepts of Tropos with a temporal

specification language inspired by KAOS [29]. After the

translation (using the implemented T-tool2) of the

requirements specification written by the analyst into an

intermediate language, an enhanced version of NuSMV

model checker [30] performs consistency checking (“the

specification admits valid scenarios”), possibility

checking (“there is some scenarios for the system that

respect certain possibility properties”) and assertion

validation (“all scenarios for the system respect certain

assertion properties”). Secondly, in [31], a mapping of 𝛽-

Tropos concepts [32] into the computational logic-based

framework SCIFF [33] is defined and important formal

properties (soundness, completeness and termination) are

identified and discussed. The formal specifications are

verified using SCIFF engine. Instead of writing it

manually, as in the last works, the formal specification is

produced in a systematic way in Formal-PASSI thanks to

F-PTK (Formal-PASSI Tool Kit), the tool we have

developed, this makes it, unlike Formal Tropos, less based

on the subjective judgment of the developer. Also, in

Formal-PASSI, the formal specification combines, in

addition to the domain knowledge, the structure and

behaviour of agents composing the MAS to be exploited

later to validate and verify its correctness.

Instead of proposing new formal methodologies for

MAS development or enhancing existing ones, other

researchers have used formal methods, separately from

any methodology, for particular design aspects. Fadil et al.

[34] have used the B method [35, 36] to formally model

interactions between agents in order to check and then

prove the initial UML specification. The approach was

2 http://disi.unitn.it/~ft/ft_tool.html

Formal Development of Multi-Agent Systems with... Informatica 41 (2017) 233–252 235

illustrated using Contact-Net protocol as a case study.

Jemni Ben Ayed et al. [37] have presented a specification

and verification technique for interaction protocols in

MAS by combining AUML (Agent UML) [38] and Event-

B method [22]. In their technique, the interaction protocol

is modelled in an AUML protocol diagram and translated

in Event B. The required IPs (Interaction Protocols) safety

and liveliness properties are added to the derived

specification for verification using the B4free tool1.
As B method, the Z language [39] and its extension

Temporal Z [27] have been the subject of many works. In

[40], the authors have presented a formal approach using

Temporal Z in two phases. In the specification phase, user

requirements are described in an abstract way avoiding the

description of implementation details. Then, based on a

succession of refinements, the design phase aims at

inventing a set of inter-agent (collective) behaviours as

well as intra-agent (individual) behaviours, which have to

satisfy the user requirements. Other works address the use

of formal methods in runtime to verify some properties

(that are not verifiable in design phase) as in [41], where a

JADE-based formal verification methodology for MAS in

semi-runtime approach has been proposed. The proposed

verification process used timed trace theory to detect time

constraint failures.

Lapouchnian et al. [42] have proposed a combined

agent-oriented requirements engineering approach using

informal i* [43] models, ConGolog [44] and (its

extension) CASL [45] formal specifications. Social

dependencies between agents are modelled using the i*

framework. This framework is used to perform an analysis

of opportunities and vulnerabilities. The models are

gradually made more precise by using annotated models

(Annotations are introduced in [46] and extended in [47]).

After that, complex processes can be formally modelled

using ConGolog or CASL with subsequent verification or

simulation.

In [48], the authors have presented an extension of G-

net formalism [49] (a type of high level Petri net) called

Agent-oriented G-net to serve as high level design of

intelligent agents by means of their internal states, their

environment, their interactions, etc. Based on this high

level design, agent architecture and detailed design for

agent implementation can be derived using the ADK tool

they developed. Stamatopoulou et al. [50] have presented

an open framework facilitating formal modelling of multi-

agent systems called OPERAS by employing two existing

formal methods: X-machines [51] and PPS (Population P

Systems) [52]. By using this framework, agent’s

behaviour can be formally modelled and controlled over

its internal states, as well as the mutations that occur in the

structure of a MAS. The authors have applied the

framework to swarm systems.

Compared to the works discussed above, the approach

we propose: (1) integrates formal methods, not separately

from any methodology, but into an entire design process

(PASSI design process), (2) is based on a powerful formal

language, Maude, which offers many tools as Maude LTL

model checker [18], (3) checks the specified properties

1 http://www.b4free.com

before passing to code details, (4) is supported by a tool

(F-PTK) which offers many services such as automating

the production of the Maude-based formal description of

the MAS under development by means of its structure

(Agents, roles, tasks, action tasks) and the domain

knowledge.

3 Rewriting Logic, Maude &

Maude-Strategy

3.1 Rewriting Logic

The rewriting logic was introduced by Jose Meseguer [13,

14] to describe concurrent systems. It makes it possible to

think in a correct manner on the concurrent systems

having states and evolving in terms of transitions. Indeed,

the rewriting logic unifies several formal models which

express concurrency as labelled transition systems [53],

Petri nets [54] and CCS [55]. The basic statements of this

logic are called rewriting rules and have the form: t → t'

if C, where t and t' are algebraic terms describing a partial

state of the concurrent system. A rewriting rule, in this

case, describes a change of a partial state towards another

if a certain condition C is true. Formally, a theory of

rewriting is a triplet R = (∑,E,R) where:

 (∑, E) an equational theory with function

symbols ∑ and equations E;

 R a set of labelled rewrite rules. These rules are

of the form: 𝑡 → 𝑡′ (unconditional rewriting rules)

or 𝑡 → 𝑡′ 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (conditional rewriting

rules).

The unconditional rewriting rules indicate that: the term 𝑡

becomes 𝑡′, but, the conditional rewriting rules indicate

that: 𝑡 becomes 𝑡′ if a certain condition is true. A theory of

rewriting has a set of inference rules [13, 14]:

 Reflexivity: For each [t] ∈ T∑, E (X),
[𝑡]→[𝑡′]

 Congruency: For each 𝑓 ∈ ∑ 𝑛, 𝑛 ∈ 𝑁
[𝑡1] → [𝑡′1] … [𝑡𝑛] → [𝑡′𝑛]

[𝑓(𝑡1, … , 𝑡𝑛)] → [𝑓(𝑡′1, … , 𝑡′𝑛)]

 Replacement: For each rewriting rule:

r: [t(x1,…, xn)] → [t’(x1,…, xn)] in R,
[𝑤1] → [𝑤1

′] … [𝑤𝑛] → [𝑤𝑛
′]

[𝑡(�̅� 𝑥⁄)] → [𝑡′(�̅�′ 𝑥⁄)]

Such as 𝑡(�̅� 𝑥⁄) indicates the simultaneous

substitution of wi for xi in t.

 Transitivity:
[𝑡1]→[𝑡2] [𝑡2]→[𝑡3]

[𝑡1]→[𝑡3]
.

Figure 1 visualizes each one of these rules.

236 Informatica 41 (2017) 233–252 M. Mazouz et al.

Figure 1: Visualization of inference rules of a rewriting

theory [14].

Among the languages implementing the rewriting

logic, we quote CafeOBJ1 [56] and Maude [15, 16].

3.2 Maude language

Defined by J. Meseguer, the Maude language [15, 16] is

one of the most powerful implementations of the rewriting

logic. Maude is a high level, very powerful, declarative

language for the construction of the various kinds of

applications based on both equational and rewriting

logics. It offers few syntactic constructions and well-

defined semantics. The basic unit of specification and

programming in Maude is the module. In fact, there are

three types of modules:

Functional modules: Define the sorts of data and the

operations on these data through equational theories. The

sorts of data are composed of elements which can be called

by terms. A functional module is declared according to the

following syntax:

fmod MODULE-NAME is

 …

endfm

System modules: Specify a rewriting theory. A system

module has sorts, operations and can have equations and

rewriting rules, which can be conditional. A System

module is declared as follows:

mod MODULE-NAME is

 …

endm

The addition that a system module offers (compared to a

functional module), is the ability of specifying rewriting

rules. The unconditional rules are declared as follows:

rl [<Label>] : <Term1> => <Term2> .

The conditional rewriting rules can have very general

conditions implying equations and other rewritings. In

their representation in Maude, the conditional rules are

declared as follows:

crl [<Label>] : <Term1> => <Term2>

 if <Condition-1> and .. and <Condition-k> .

Object-oriented modules: Compared to system modules,

object-oriented modules offer a more suitable syntax to

1 https://cafeobj.org/

describe the basic entities of the object paradigm as,

among others: classes, objects, messages and

configurations. An object-oriented module is declared

according to the following syntax:

omod MODULE-NAME is

 …

endom

Figures 2, 3 and 4 show an example for each Maude’s

module type (independent modules).

Figure 2: Example of a functional module.

Figure 3: Example of a system module [16].

Figure 4: Example of an Object-oriented module.

It is important to note that there exist two separated

levels in the current version of Maude (Maude 2.7): Core

Maude and Full Maude.

Core Maude: It is the basic level of Maude, programmed

directly in C++. It implements all the basic functionalities

of the language, the functional modules and the system

modules;

Full Maude: Full Maude is the higher level. Programmed

in Core Maude, it is actually used with object-oriented

programming paradigm and using it offers the possibility

of using object-oriented modules. All commands and

modules in Full Maude must be declared between

brackets.

fmod COORD-COMPLEX-TYPE is

 inc FLOAT .

 inc BOOL .

 sort Coord .

 op _;_ : Float Float -> Coord .

 op empty : -> Coord .

 op getLatitude : Coord -> Float .

 op getLongitude : Coord -> Float .

 op equals : Coord Coord -> Bool .

 vars Lat Lon x1 y1 x2 y2 : Float .

 eq getLatitude (Lat ; Lon) = Lat .

 eq getLongitude (Lat ; Lon) = Lon .

 eq equals (x1 ; y1 , x2 ; y2) = if (x1 == x2) and

(y1 == y2) then true else false fi .

endfm

mod BB-TEST is

 sort Expression .

 ops a b bingo : -> Expression .

 op f : Expression Expression ->

 Expression .

 rl a => b .

 rl b => a .

 rl f(b, b) => bingo .

endm

omod ACCOUNT-CONCEPT is

 pr STRING .

 class Account | accountN : String, owner : Oid .

endom

Formal Development of Multi-Agent Systems with... Informatica 41 (2017) 233–252 237

Among Maude’s characteristics that justify our choice of

Maude, we quote:

 Easy: Programming with Maude is easy because it is

a declarative language and it offers few and very

simple syntactic constructions which are easy to be

understood;

 Having a strong semantics: Based on a solid logic:

rewriting logic;

 Expressive: Determinist and concurrent, non-

determinist calculations can be expressed easily

respectively by equations in functional modules and

rewriting rules in system modules in Maude.

 Wide spectrum: It supports the formal specification,

prototyping and concurrent programming.

 Multi-Paradigm: It combines functional,

concurrent and object paradigms.

 Executable: A Maude specification is directly

executable;

 Equipped with many tools: It offers to its users a

set of tools1 like: Declarative Debugger2, the Anima

tool3 and The Maude LTL model checker [18].

Also, many extensions of Maude are developed as Real-

Time Maude [57], and Maude Strategy Language [17].

3.3 Maude-Strategy

The Maude-Strategy [17] is an extension of Maude

Language written in Maude itself. It was defined in order

to explicitly control the way in which the rewriting rules

are applied. The originality of Maude-Strategy language is

to make it possible to specify the strategy of applying the

defined rewriting rules, which makes it possible to clearly

separate the transformation rules and their control. When

we don’t have such a language that can specify strategies

controlling the order of applying the rewriting rules

separately, the order of their application is often coded in

the rewriting rules themselves, which makes more

complex and less readable the program to be written. The

treatment and control operations are mixed. The strategies

are defined by using the modules of strategies.

It is possible to define many modules of strategies for

only one system module (or object-oriented module) in

order to express the various possible forms of rewritings.

A Strategy E is described as an operation that, when it is

applied to a given term t, produces consequently a set of

terms (Eventually empty):

@ : Strat × 𝑇∑(X) → P(𝑇∑(X))

This operation is extended to sets of terms so that:

if T⊆ P(𝑇∑(X)) and E ∈ Strat then E @ T = ⋃ 𝑆 @ 𝑡 .𝑡∈𝑇

For space reason, only a subset of strategies [17] is

described:

Identity and Failure (Idle and fail): The first two basic

strategies are the identity and the failure, defined by Idle

and fail. The application of the identity strategy turns over

the unchanged term:

 Idle @ t = {t}

1http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools
2 http://maude.sip.ucm.es/debugging/

The application of the strategy failure turns over the empty

set as a result:

Fail @ t = ∅

Elementary strategies: Starting from the labels of rules, it

is thus possible to build strategies, which turn over one or

more results, to schedule the application of the rules and

to repeat as a long time as possible the application of a rule

or a strategy. A labelled rule is thus regarded as an

elementary strategy and the result of the application of a

labelled rule L on a term t turns over the set reached terms

by applying the rule L. If no rule labelled by L can be

applied, it is said that the strategy failed.

Regular expressions: The expression of elementary

strategies can be combined by using operators of

concatenation (;), of union (|), of iteration (E* for zero or

more iterations, E+ for one or more iteration).

op _;_ : Strat Strat -> Strat [assoc] .

op _|_ : Strat Strat -> Strat [assoc comm] .

op _* : Strat -> Strat .

op _+ : Strat -> Strat .

The application of the concatenation (;) of two strategies

E and E’ on a term t has as a result all the results of

application of E’ on the whole of all results of the

application of E on t:

[(E ; E’) @ t] = [E’ @ [E @ t]

On the other hand, the application of the union (|) of two

strategies E and E’ on a term t has as a result the whole of

results of application of both E and E’ separately on the

term t:

[(E | E’) @ t] = [E @ t] ∪ [E’ @ t]

The operators of iteration (E* and E+) are used to define

strategies, which concatenate successively the same

strategy: [E+ @ t] = ⋃ [𝐸𝑖 @ 𝑡]𝑖≥1 where E1 = E and

En = (E ; En−1) for n > 1.

[E*@ t] = [(idle | E+) @ t].

The operators of iteration (E* and E+) are used to define

strategies, which concatenate successively the same

strategy: [E+ @ t] = ⋃ [𝐸𝑖 @ 𝑡]𝑖≥1 where E1 = E

and En = (E ; En−1) for n > 1.

[E*@ t] = [(idle | E+) @ t].

Conditional strategies: Moreover, Maude-Strategy

defines operators of choice which take the following

general form: if E then E’ else E’’ (where E ? E' : E'')

This form when it is applied on a term t acts like the

following: The strategy E is initially applied to t, if E is

evaluated successfully (E @ t ≠ ∅), the strategy E' is

applied on the set of terms which results from the

evaluation of E, if not E @ t = ∅, E'' is applied to the

initial term t. Among the derived operators from this

general form, we distinguish the operator orelse which

acts like the following: When E is applied successfully,

3 http://safe-tools.dsic.upv.es/anima/

http://maude.sip.ucm.es/debugging/
http://safe-tools.dsic.upv.es/anima/
http://safe-tools.dsic.upv.es/anima/

238 Informatica 41 (2017) 233–252 M. Mazouz et al.

the result is obtained, but if that is failed, then E' is applied

to the initial term. In other words: E orelse E' = if E then

idle else E'.

Figure 5 illustrates a Strategy module. In this module,

four strategies are identified: Branch0, Branch1, Branch2

and Protocol. For example, the strategy “Branch1”

specifies that the rewriting rule labelled by “Send-The-

Nearest-Ambulance” must be applied in parallel with the

sequence of the two rules labelled respectively by

“Transformation-1” and “Send-Police-Patrol”.

Figure 5: Example of a strategy module.

4 PASSI Methodology
PASSI (Process for Agent Societies Specification and

Implementation) [1, 2], is a step-by-step requirement-to-

code methodology for designing and developing agent-

oriented systems. It integrates concepts from both OOSE

and artificial intelligence approaches using UML notation.

It refers to the most diffused standards: (A)UML, FIPA,

JAVA, RDF and it is composed of a complete incremental

and iterative design process and modelling language that

is an extension of UML. PASSI is based on reuse that is

performed through design patterns and supported by the

PTK tool (PASSI Tool Kit) [58]:

Figure 6: PASSI methodology [1, 2].

As Figure 6 shows, PASSI methodology is composed

of five models and a test activity, each model contains one

or more phases:

 System Requirements Model: It is composed of four (4)

phases. The functional requirements of the MAS are

captured through a use case diagram (Domain Description

phase). The agents carrying out these requirements are

then identified (Agents Identification phase) via packaged

use case diagram where each agent (package) is

responsible of one or more requirement(s) (use case(s)).

Roles played by agents in different scenarios are identified

(Roles Identification phase) using sequence diagram

where each life line signifies one played role by following

the syntax: <Role> : <AgentName> and each scenario is

explored by one sequence diagram. Finally, the 4th phase

(Tasks specification) aims at specifying the different tasks

of an agent and the relationships between them (internal

tasks) and other agent’s tasks (external tasks).

 Agent Society Model: It is composed of four (4) phases.

The knowledge (about the domain) of agents composing

the system is described through an ontology (Concepts,

predicates and actions) that is specified by a class diagram

(Domain Ontology Description phase). Communications

between agents are described also by a class diagram

(Communication Ontological Description phase) where

agents are specified by classes and each communication

between two agents is specified by an association class

(with three attributes Ontology, Language, Protocol). The

identified roles are described (Roles Description phase) by

means of their own tasks, one class for each role, one

operation for each task, and one package for each agent.

Roles can be connected by relationships of type:

[ROLE_CHANGE], [SERVICE_DEPENDENCY] or

[RESSOURCE or COMMUNICATION_AVAILABILITY].

If the protocols used during communications are not

standard, they will be specified via AUML sequence

diagram (Protocols Description phase).

Agent Implementation Model: It is composed of two (2)

phases. In this model, the structure of the system

(Multi/Single-agent Structure Definition phase) is defined

using a class diagram showing all agents composing the

system by classes and theirs tasks by operations (for multi-

agent point of view) and showing tasks by classes and their

actions by operations (for single-agent point of view). The

behaviour of the system (Multi/Single-agent Behaviour

Description phase) is described by a specific activity

diagram for multi-Agent point of view, and by state

machine or other formalisms as flow charts for single-

agent behaviour description [1].

Code Model: It is composed of two (2) phases. In the first

phase (Code Reuse), design patterns already developed

can be used directly. In the second phase (Code

Production), a skeleton of the system’s source code is

automatically generated by the PTK and a manual

completion of the generated code is then achieved by the

developer.

Deployment Model: It is composed of one phase

(Deployment Configuration). A deployment diagram is

used to describe the allocation of agents to different

processing units and any constraints on agent migration

and mobility.

(smod BUISNESS-PROCESS-PROTOCOL is

 strat Branch0 : @ Configuration .

 sd Branch0 := (First-Order ; Is-Reported) .

 strat Branch1 : @ Configuration .

 sd Branch1 := (Send-The-Nearest-Ambulance |

 (Transformation-1 ; Send-Police-Patrol))! .

 strat Branch2 : @ Configuration .

 sd Branch2 := (Book-The-Nearest-Hospital ;

 Branch1 ; Mark-Accident-As-Reported) .

 strat Protocol : @ Configuration .

 sd Protocol := (Branch0 ; (Transformation-2 orelse

 Branch2)) .

endsm)

Formal Development of Multi-Agent Systems with... Informatica 41 (2017) 233–252 239

Test activity is divided into two different levels: 1)

single-agent test: when a framework built on top of JADE

is implemented [59]. The principal framework classes are:

“Test” class for testing a specific task of an agent;

“TestGroup” class for testing all tasks composing a

specific agent. 2) society test: at this level, integration

verification is carried out together with the validation of

the overall results of the current iteration [1].
The meta-model adopted for PASSI MAS is divided

into three areas [2]: (1) Problem domain: where the

elements describing the requirements that will be achieved

by the future system are included. These elements are

directly connected to the System Requirements Model. (2)

Agency domain: where the elements describing the multi-

agent society in terms of environment (defined by a set of

ontological elements) and the social aspect of agents

(interaction between them) are included. The items of this

area are connected directly to the Agent Society Model.

(3) Solution domain: where the elements describing the

architectural solution (respecting the architecture of FIPA)

of the problem in terms of agent classes, task class, agent

code and task code are included. The elements of this area

are connected directly to the two models: Agent

Implementation and Code.

5 Formal PASSI
The PASSI methodology is based on a semi-formal

notation (UML). This makes the designed diagrams prone

of containing incoherencies or inconsistencies and makes

the testing activity less efficient. We have proposed

Formal PASSI (see Figure 7), an extension of PASSI

methodology, in order to formalize its diagrams, and to

give the designer the ability to apply some formal

techniques such as model-checking on the formal

specification. As Figure 7 shows, a new model (Formal

Model, in yellow color) is integrated in PASSI design

process. The formal model is based on the rewriting logic

and its Maude language (and its extension Maude-

Strategy). It aims at offering a formal description of the

MAS under development. This formal description is then

exploited to apply formal validation and verification.

Formal Model is composed of four (4) phases:

Figure 7: Formal PASSI methodology.

240 Informatica 41 (2017) 233–252 M. Mazouz et al.

5.1 Formal Description Production

In this phase, a Maude specification is generated from

some PASSI diagrams: Domain Ontology Description,

Roles Description, Single-Agent Structure Definition,

Multi-Agent Behaviour Description and Single-Agent

Behaviour Description. In the end of this phase, a Maude

formal description that covers the agent’s shared

knowledge (domain ontology), the structure and the

behaviour of the system in both multi/single abstraction

levels will be available to be exploited in the next phases.

The Generation is considered as a Model-to-Text

transformation and automatically performed thanks to

F-PTK (see section 6). Figure 8 shows the generated

modules

The Domain Ontology Description diagram is

represented formally in Maude as follows: 1) A concept

having the name “ConceptName” is translated as a class

defined in an object-oriented module with the name

“CONCEPT-NAME-CONCEPT”. 2) A predicate having

the name “PredicateName” is translated as a class defined

in an object-oriented module with the name

“PREDICATE-NAME-PREDICATE”. 3) An action

having the name “ActionName” is translated as a class

defined in an object-oriented module with the name

“ACTION-NAME-ACTION”. All the modules

representing the ontology elements (concepts, predicates

and actions) are imported in a functional module called

“DOMAIN-ONTOLOGY-DESCRIPTION”.

According to PASSI terminology, an agent-based

application is composed of agents, agents play roles, roles

consist of tasks and tasks consist of actions. Table.1

represents the basic concepts that PASSI methodology is

based on (TASK, ROLE and AGENT) and their

representation in Maude.

Figure 9 shows the functional module AGENTS-STATES

which defines the sort AgentState representing an agent

state, and defines two (2) operators: Created and

Initialized representing the common states for all agents.

Figure 9: AGENTS-STATES module.

(fmod AGENT-STATES is

 sort AgentState .

 *** Commun agent states

 ops Created Initialized : -> AgentState .

endfm)

Figure 8: Generated modules.

Formal Development of Multi-Agent Systems with... Informatica 41 (2017) 233–252 241

 Table 1: PASSI basic concepts and their Maude representations.

A Single Agent Structure Definition diagram of an agent

called “AgentName” is represented formally in Maude by

an object-oriented module with the name “AGENT-
NAME-SINGLE-AGENT-STRUCTURE-DEFINITION”.
Modules representing all the roles played by such agent,

must be imported, also, all modules representing tasks

composing a role must be imported in the role module. All

states defined in the Single Agent Behaviour Description

diagram for an agent “AgentName” are represented in a

functional module with the name “AGENT-NAME-

AGENT-STATES”.

As mentioned in [2], TaskActions in Multi-Agent

Behaviour Description diagram are related by Invocation,

Done, NewTask and Message relationships. These

relationships are defined in the M-A-B-D-

RELATIONSHIPS (see Figure 10). Besides these

relationships, the module defines types as:

OntologyElement that can be a concept, a predicate or an

action; Performative that signifies the communication

performative mentioned in a message relationship. In

order to express that a Task has been instantiated,

a TaskAction has been executed and that a message has

been sent, we have defined respectively three messages

TaskInstantiated, TaskActionExecuted and MessageSent.

The FinalState message expresses a final state of a

scenario.

The Multi-Agent Behaviour Description diagram is

translated in Maude by the object-oriented module

“MULTI-AGENT-BEHAVIOUR-DESCRIPTION”. In

this module, all modules representing the structure of

agents as well as all functional modules representing their

states in addition to the M-A-B-D-RELATIONSHIPS

module are imported.

All execution paths of MABD diagram are

automatically captured (thanks to F-PTK tool) and

represented as strategies thanks to Maude-Strategy in a

strategic module with the name “MULTI-AGENT-

BEHAVIOUR-DESCRIPTION-PATHS”.

PASSI

Basic

Concepts

Maude Representation Description

Task

(Super

class)

(omod PASSI-TASK is

 inc STRING .

 class Task | superClassTaskName :

String .

 op noneTask : -> Cid .

 op noneAction : -> Msg .
 *** JADE commun methods for all

 ***subclass Tasks

 msgs action done : ParametersList

 -> Msg .

endom)

This module defines the Task class that represents the task

concept. As tasks will be interpreted next, in code level, by

behaviours (according to JADE framework), the

superClassTaskName attribute expresses the type of the

behaviour (like, for instance, OneShotBehaviour,

CyclicBehaviour). NoneTask and noneAction express the

fact that the agent did not perform yet neither task nor

action. The common methods: action, and done (according

to JADE framework) for all subclass tasks are expressed

through messages.

Role

(Super

class)

(fmod PASSI-ROLE is

 sorts Role, NextPlayedRole .

 op noneRole : -> Role .
*** Specifying that the agent is in

***initialization step, no role played yet

endfm)

The Role concept is represented by a functional module in

which a sort called Role is defined. In this module,

NextPlayedRole sort is also defined to express the

[ROLE_CHANGE] relationship specified during Roles

Description phase. To express that the agent didn’t play any

role yet, the operator noneRole is defined.

Agent

(Super

class)

(omod PASSI-AGENT is

 pr PASSI-ROLE .

 pr PASSI-TASK .

 pr AGENT-STATES .

 *** PASSI Agent class declaration

 class Agent | playsRole : Role,

 performsTask : Task ,

 executesTaskAction : Msg,

 currentState : AgentState .

 *** JADE commun methods for all

 *** subclass agents

msgs setup registerToDF takeDown :

ParametersList -> Msg .

endom)

The Agent concept is represented by an object-oriented

module in which a class called Agent having four (4)

attributes is defined: 1) playsRole: of sort Role (defined in

the imported PASSI-ROLE module), signifies which role is

played by the agent in a given moment. 2) performsTask:

of sort Task (defined in the imported PASSI-TASK

module), signifies which task the agent is performing in a

given moment. 3) executesTaskAction: of sort Msg

(predefined in Full-Maude), signifies which action the

agent is executing in a given moment. 4) currentState: of

sort AgentState (defined in the imported AGENTS-

STATES module, see Figure 9), identifies the state of the

agent in a given moment among all its possible states

specified in the Single Agent Behaviour Description

diagram. The common methods: setup, registerToDF and

takedown (according to JADE framework) for all agents

subclasses are expressed through messages.

242 Informatica 41 (2017) 233–252 M. Mazouz et al.

 Figure 10: M-A-B-D-RELATIONS module.

Despite the many potential benefits that formal

specifications offer, they suffer from two major limits,

scalability and familiarity of the developers using them

with the logics/languages on which the formal methods

are based on. The first limit pushes the researchers’

community to make formal methods applicable not only

to small-scale applications but also to large-scale

applications. The second means that the developers using

formal methods need to have a high degree of

mathematical maturity as well as languages the formal

methods they use are based on. To overcome these limits

in our approach, we have developed a tool, Formal-PASSI

Toolkit (see section 6). In one hand, the developed tool

should contribute to scale up our approach. In the other

hand, it limits the intervention of developers in the

specification of properties to be checked, and let them deal

with the semi-formal notation (UML notation) that PASSI

is based on.

5.2 Formal Validation

The particularity of the generated formal description,

knowing that it is developed using objects, messages, and

rewriting rules, is that it is executable. As Maude is a very

versatile environment in terms of simulation, it is possible

to define a customized initial state (initial configuration)

and to execute this configuration of the system. Two

diagrams (until now) are considered by the validation:

Single and Multi-Agents Behaviour Description diagrams.

For the first one, the validation process begins by

introducing one or more initial configuration(s) of an

agent with its knowledge (ontology elements). For the

second diagram (MABD diagram), the validation process

1 https://www.embarcadero.com/fr/products/cbuilder

begins by introducing one or more initial configuration(s)

composed of all agents and the knowledge they need.

After executing the simulation, the developer has to read

the obtained results from the given initial configuration(s)

and judge if it is expected or not. If the given result(s) is

(are) undesirable(s), he should take a look to the SABD

diagram and/or MABD diagram for a certain

modification.

5.3 Formal Specification of System

Properties

In this phase, the designer (that is supposed to be familiar

with Linear Temporal Logic and Maude language) has to

specify formally some properties (desirables or not) of the

MAS (Multi-agent abstract level) and of individual agents

(Single-agent abstract level) to be checked in the next

phase. A list of properties related specifically to multi-

agent systems will be the subject of a future paper. For

that, as a starting point, all states of an agent

“AgentName1” should be specified as elementary

predicates in a system module “AGENT-NAME1-

PREDICATES”. Since a MAS is composed of agents, a

property of a MAS is constructed by the composition of

elementary predicates (each of them expresses an agent in

one of its states) via LTL operators.

5.4 Formal Verification

During this phase, a model checking of some PASSI

behavioural diagrams is performed. Model checking aims

at applying an exhaustive analysis of all possible

execution paths of a system, and to determine if some

properties (identified in the previous phase) are satisfied

or not. Applying this technique on the formal description,

generated previously, is very important to verify

Multi/Single-A-B-D diagrams. This would have the

advantage of applying model checking before passing to

Code Model and to avoid propagation of subtle errors

introduced at the level of the three models (System

requirement model, Agent society model and

Implementation Model), with the remainder of the

development process (Code Model, Agent Test activity,

Deployment Model and Society Test activity).

6 Formal PASSI Toolkit
To make F-PASSI valid and its adoption wider by

researchers (and possibly industry with more big

dimension MASs), we must offer users the tool(s) to

support it. For that, we have developed a prototype toolkit,

F-PTK (Formal PASSI-Toolkit), using C++ Builder XE71

IDE. Figure 11 shows the developed toolkit.

Among the options offered by F-PTK in its version

1.0, we mention: (1) Edit the different PASSI diagrams,

(2) Detect automatically the different paths defined in the

Multi-Agent Behaviour Description diagram and translate

it as Maude-Strategies to be used in the formal validation

phase, (3) Check the consistency of the diagrams, (4)

Serialize these diagrams for later use (to XML file), (5)

(omod M-A-B-D-RELATIONS is

 inc CONFIGURATION .

 inc STRING .

 pr PASSI-ROLE .

 pr PASSI-TASK .

 sorts OntologyElement Performative .

 subsort Cid < OntologyElement .

 subsort String < Performative .

 sorts Initiator Participant .

 subsort Cid < Initiator .

 subsort Cid < Participant .

*** Relations among task actions
 msgs invocation Done : Msg -> Msg .

*** <Task class name> Relation among tasks>
 msg newTask : Task -> Msg .

*** <OntologyElement class name>
 msg message : OntologyElement Performative -> Msg .

 *** Action Task Agent

 msg TaskActionExecuted : Msg Cid Cid -> Msg .

*** Task Role Agent

 msg TaskInstantiated : Cid Role Cid -> Msg .

 msg MessageSent : Initiator Participant

 OntologyElement Performative -> Msg .

 msg FinalState : ParametersList -> Msg .

endom)

Formal Development of Multi-Agent Systems with... Informatica 41 (2017) 233–252 243

Generate the Maude-based formal description of the

MAS, (6) Save the generated formal description as an

XML file, (7) Validate the generated description, and (8)

Verify the generated description after giving the properties

to be checked

In addition to the fact that F-PTK supports Formal-

PASSI, it is characterized mainly from PTK [58] by being

based on our proposed traceability meta-model for PASSI

methodology [60]. This will guide developers when

designing the different diagrams and facilitate theirs tasks.

7 Case study
Our proposed extension will be made concrete and

illustrated using the ATM (Automated Teller Machine)

case study. The MAS to be designed will control a

simulated automated teller machine having a magnetic

stripe reader to read an ATM card, a customer console to

interact with customers, a slot to deposit envelopes, a

dispenser for cash and a printer to print customer receipts.

A customer should insert an ATM card and enter a PIN

(Personal Identification Number). The Card information

and the entered PIN will be sent to the bank for validation

before each session. After validating the customer’s card

and PIN, the customer will then be able to perform one or

more transactions. The customer could regain its card

when he/she desires no further transaction, or when he/she

decides to abort the transaction in progress. The designed

ATM provides the following basic services: (1) Perform a

cash withdrawal from the account related to the inserted

card; (2) Perform a deposit to any account related to the

inserted card; (3) Perform a transfer of money between

any two accounts linked to the inserted card; (4) Perform

a balance inquiry of any account related to the inserted

card; (5) Abort a transaction in progress if the “Cancel”

key is pressed by the customer.

7.1 Our design of the ATM case study

through PASSI

In this section, we show our own design of the ATM case

study described above. For space limitation reasons, only

some of the diagrams adopted in our formalization

approach (until now) are showed or discussed.

Agents Identification (AI): Three agents are identified:

(1) Mediator Agent: It is responsible of displaying

information on the ATM screen (about ATM available

options, information after a successful transaction, etc.),

reading customer’s ATM card. (2) Transaction Manager

Agent: It is responsible of performing transactions,

reporting transactions, printing receipts for successful

transaction. (3) Security Responsible Agent: It is

responsible of checking customer’s card, authenticating

the customer, ensuring privacy when a transaction is in

progress.

Domain Ontology Description (DOD): In this step, the

knowledge of the domain is described from an ontological

perspective. For example, the concept “Transaction” is

identified with its identifier, its date, its time, etc. The fact

of being “withdrawal”, “Inquiry”, Transfer” and

“Deposit” kinds of transaction, this made them identified

as concepts inheriting the “Transaction” concept. Also, the

Figure 11: Formal PASSI Toolkit1.0.

244 Informatica 41 (2017) 233–252 M. Mazouz et al.

predicate “IsTransactionPerformed” is identified to know

if the transaction is successfully performed

(isTransPerfValue=true) or not (isTransPerfValue=false).

Roles Description (RD): In this step, the roles played by

agents are packaged (see Figure 12). For the

“TransactionManager” agent, two roles are identified:

“Performer” which represents the case in which the agent

is performing a transaction, “Reporter” which describes

the case in which the agent is reporting a transaction.

Whereas, three roles are identified for both of

“SecurityResponsible” and “Mediator” agents.

“AccountChecker”, “Authenticator” and “Saver” for the

first one, “CardReader”, “AmountChecker” and

“Dispenser” for the last.

Single-Agent Structure Definition (SASD): The

“TransactionManager” agent has ten tasks to perform

when playing its roles. Among them, we mention for

example, the “AbortTransaction” task, which is performed

when the ATM customer presses the “Cancel” button to

abort the transaction in progress. However, the

“AskForDispensing” task, is performed to ask the

“Mediator” agent to dispense the customer’s desired

amount.

Multi-Agent Behaviour Description (MABD): Figure 13

shows a part of the Multi-Agent Behaviour Description

diagram we design for our case study. The figure shows

how task actions are executed, the different messages sent

between different agents or tasks. For example, the

message (Notification, Inform) is sent by the “Security-

Responsible” agent (its “sendReportNotification” task

action) to the “Transaction-Manager” agent (its

“receiveReportNotification” task action).

Figure 12: Roles Description diagram of ATM case study.

Formal Development of Multi-Agent Systems with... Informatica 41 (2017) 233–252 245

Figure 13: A part of Multi-Agent Behaviour Description diagram of ATM case.

Single-Agent Behaviour Description diagram: Figure 14

shows a finite state machine representing the behaviour of

the agent “Transaction Manager”. We identified twelve

(12) states for this agent. For example, after asking the

Mediator agent for dispensing money (“AskingFor-

MoneyDispensing” state), the TransactionManager agent

will be in the “NotifyingForTransactionEnd” state by

executing “notifyEndOfTransaction(aNotification :

Notification)” task action.

Figure 14: Single-Agent Behaviour Description diagram of ATM case study -Transaction Manager-Agent-.

246 Informatica 41 (2017) 233–252 M. Mazouz et al.

7.2 Formal Model for ATM

Formal Description Production

Using F-PTK, a Maude specification of the MAS under

development is produced. As we have mentioned before,

the domain ontology elements (concepts, predicates and

actions) are translated in Maude as classes defined in

object-oriented modules. The following figure (Figure 15)

shows the corresponding Maude-representation of the

“IsAuthenticated” predicate. The attribute “isAuthValue”

of Boolean type, expresses if the customer having the

account “accountNum” is authenticated or not.

Figure 15: ”IsAuthenticated” predicate in Maude.

The structure of the “TransactionManager” agent is

represented in Maude, as Figure 16 shows, by an object-

oriented module. A class with the same name as the

agent’s name is defined (line: 979). This class (as any

other agent’s class) has to inherit (line: 980) the “Agent”

class (defined in AGENT-PASSI module, see Table.1).

The roles played by this agent (Performer and Reporter)

are captured from Roles Description diagram, and the

modules in which they are defined are imported (lines:

973,974) as well as the module representing the domain

ontology (line: 976).

Figure 16: Single-Agent Structure Definition module of

the Agent Transaction Manager.

Figure 17 demonstrates the module representing the

MULTI-AGENT-BEHAVIOUR-DESCRIPTION diagram.

This module imports the following modules: 1) MULTI-

AGENT-STRUCTURE-DEFINITION module (line:

1014). 2) M-A-B-D-RELATIONSHIPS module (line:

1016). 3) All modules representing the states of agents

composing the MAS (lines: 1018, 1019 and 1020).

Figure 17: MULTI-AGENT-STRUCTURE-DEFINITION

module and a part of MULTI-AGENT-BEHAVIOUR-

DESCRIPTION module.

All relationships relating Task Actions appearing in the

Multi-Agent Behaviour Description diagram are translated

as rewriting rules. The execution of each rewriting rule

affects the agents’ states and the used ontology elements.

Figure.18 shows a rewriting rule (labelled by: MABD-

35, line: 1433) which represents the execution of the task

action “notifiyForAuthenticationResult” in the case of

invalid PIN entered. In which case, the “Security

Responsible” agent’s state is changed from

“AuthenticatingTheCustomer” to

“SendingAuthenticationResult” (lines: 1438 and 1446),

also, the predicate object “IsAuthent” with the value false,

and a notification object “notif” with the content “Your

Pin is invalid, please enter a correct one” are generated

(lines: 1441,1442-1443).

Figure.19 shows a part of strategies captured from the

MABD diagram and defined in the strategic module

MULTI-AGENT-BEHAVIOUR-DESCRIPTION-

PATHS.

Formal Validation

Once the Maude-based formal description of the MAS is

generated, a formal validation by simulation becomes

possible. Figure 20 shows an initial configuration in which

a customer called “Mazouz Salim” (line: 2321) chooses to

perform a withdraw transaction of an amount of : € 500,00

(line: 2323). The three (3) agents are, in first time,

initialized (lines: 2326, 2328 and 2331).

(omod IS-AUTHENTICATED-PREDICATE is

 pr BOOL .

 pr STRING .

 class IsAuthenticated | isAuthValue : Bool,

 accountNUM : String .

endom)

(fmod MULTI-AGENT-STRUCTURE-DEFINITION is

 inc MEDIATOR-SINGLE-AGENT-STRUCTURE-DEFINITION .

 inc SECURITY-RESPONSIBLE-SINGLE-AGENT-

 STRUCTURE-DEFINITION .

 inc TRANSACTION-MANAGER-SINGLE-AGENT-

 STRUCTURE-DEFINITION .

endfm)

(omod MULTI-AGENT-BEHAVIOUR-DESCRIPTION is
 inc MULTI-AGENT-STRUCTURE-DEFINITION .***line : 1014

 inc M-A-B-D-RELATIONS . ***line : 1016

 inc MEDIATOR-AGENT-STATES . ***line : 1018

 inc TRANSACTION-MANAGER-AGENT-STATES .***line: 1019

 inc SECURITY-RESPONSIBLE-AGENT-STATES . ***line : 1020

 …

endom)

(omod TRANSACTION-MANAGER-SINGLE

 -AGENT-STRUCTURE-DEFINITION is

 pr PASSI-AGENT . *** line 970

 pr MESSAGE .

 *** Roles modules importation

 pr PERFORMER-ROLE . *** line 973

 pr REPORTER-ROLE . *** line 974

 *** The "Domain Ontology Description"

 *** module importation

 pr DOMAIN-ONTOLOGY-DESCRIPTION .*** line 976

 *** Modules importation for different Maude types

 *** Agent class declaration

 class TransactionManager | transaction : Oid .*** line 979

 subclass TransactionManager < Agent . *** line 980

endom)

Formal Development of Multi-Agent Systems with... Informatica 41 (2017) 233–252 247

Figure 18: A rewriting rule of the MABD module.

Figure 19: A part of the strategic module representing the

different paths of Multi-Agent Behaviour Description diagram.

Figure 20: An initial configuration.

The results of simulating the initial configuration

(Figure.20) by executing the strategy “Path1” (see lines:

2215, 2216 and 2217 in Figure 19) are showed in Figure

21. This strategy illustrates the case, in which, the inserted

customer’s card was valid, the customer has been

authenticated and the withdrawal transaction has been

successfully performed.

The results of this phase gives the developer more

information about agents by means of their states, the roles

they played, tasks they performed, and task actions they

executed in addition to the current values of ontology

element’s attributes. For example, the predicate

“isCardVal” (framed by the black in Figure 21) gives us

the information that the card inserted by the customer was

rl[MABD-35] : *** line :1433

 invocation(notifyForAuthenticationResult(notif))

 < custPIN : CustomerPIN | customerAccountNO : accno, PIN : pin, customerName : custName >

 < secRes: SecurityResponsible | playsRole : Authenticator, performsTask : Authenticate,

 executesTaskAction : authenticate(EmptyParametersList),

 currentState: AuthenticatingTheCustomer > ***line : 1438

 =>

 message(Notification, "Inform")

 < “isAuthent” : IsAuthenticated | isAuthValue : false, accountNUM : accno > ***line : 1441

 < “notif” : Notification | notifID : notID, ***line : 1442

 content : "Your Pin is invalid, please enter a correct one" > , ***line : 1443

 < secRes : SecurityResponsible | playsRole : Authenticator, performsTask : Authenticate,

 executesTaskAction : notifyForAuthenticationResult(notif),

 currentState : SendingAuthenticationResult > . ***line : 1446

(smod MULTI-AGENT-BEHAVIOUR-DESCRIPTION-PATHS is

 strat Root : @ Configuration .

 sd Root := (MABD-01 ; MABD-02 ; MABD-03 ; MABD-04 ;

 MABD-05 ; MABD-06 ; MABD-07 ; MABD-08 ;

 MABD-09).

 …

 strat Parall1-1 : @ Configuration .

 sd Parall1-1 := (Branch1-6 | Branch1-7)! .

 *** Case of well passed scenario

 strat Path1 : @ Configuration . *** line 2215

 sd Path1 := (Root ; Branch1-1 ; Branch1-2 ; Branch1-3 ; *** line 2216

 Branch1-4 ; Branch1-5 ; Parall1-1 ; Branch1-8) . *** line 2217

 …

endsm)

248 Informatica 41 (2017) 233–252 M. Mazouz et al.

valid. <"isCardVal" : IsCardValid | cardNo :

"b2307025156", isCardValValue : true>.

Formal Specification of System Properties

In this phase, some of MAS properties are identified and

then specified in Linear Temporal Logic as predicates in

Maude. Table 2 shows some properties for the ATM case

study and their specification in LTL logic. Three of these

properties (desirable properties) should be satisfied by the

MAS, whilst, the others are undesirable and the MAS

should not satisfy them.

Figure 21: Result of the simulation (Scenario well passed)

By the command (srew initialConfig using Path1 .)

N° Property in LTL Description
Desirable

Property

Single/Multi-

Agent

1

MedAgent-ReadingCustomerChoice(

medAgent)

|-> <> MedAgent-

AskingForATransaction(

medAgent)

This property expresses the fact that if the

Mediator Agent reads the customer choice

(ReadingCustomer-Choice state), then it will

eventually send a transaction order to the

TransactionManager agent soon.

Yes
Single-Agent:

Mediator

2

TransManAgent-

ReceivingTransactionOrder(

transactionMan)

|-> TransManAgent-

PerformingTheTransaction(

transactionMan)

This property expresses the fact that if the

TransactionManager Agent receives a

transaction order (ReceivingTransactionOrder

state), then the state Performing-

TheTransaction expressing that it is

performing the transaction will be true soon.

Yes

Single-Agent:

TransactionMana

ger

3

SecResAgent-

ReceivingCardCheckingOrder(

secRes)

->

O SecResAgent-

NotifyingCardCheckingResult (secRes)

This property expresses the fact that if the

Security Responsible agent receives a card

checking order, it will notify directly the

results of checking (without checking it first).
No

Single-Agent:

Security

Responsible

4

MedAgent-AskingForATransaction(

medAgent) ->

O TransManAgent-

ReceivingTransactionOrder(

traManagerAgent)

This property expresses the fact that if the

Mediator agent sends a transaction order to the

TransactionManager agent, the last one will be

in ReceivingTransactionOrder state.

Yes Multi-Agent

5
[] (MedAgent-ReadingCustomerChoice(

medAgent) |-> TransManAgent-

NotifyingForTransactionEnd(traManager

Agent))

This property expresses the situation:

Always, if the MediatorAgent is reading the

customer choice, the TransactionManager

agent will notify for the end of the transaction.

No Multi-Agent

Table 2: Some specified properties for the ATM case study.

Formal Development of Multi-Agent Systems with... Informatica 41 (2017) 233–252 249

Formal Verification

After the specification of properties (Table 2), a

verification by means of model checking technique is

applied. Figure 22 illustrates the results given by Maude-

Model checker on different initial configurations. In the

case of desirable properties unsatisfied or undesirable

properties satisfied (like the third and the fifth properties

in the table above), the developer has to review the

corresponding diagrams for modification.

Figure 22: Results of applying model checking.

8 Conclusion and future work
Several methodologies supporting MAS development

have been proposed in the literature. Only few of them

have addressed the use of formal techniques in the

development process. Despite the fact that PASSI

methodology have many advantages such as the coverage

of most development phases, the design of FIPA-based

MASs1, the use of the common modelling language

(UML) and the plenty of documentations (Web site2, lots

of published papers), it lacks formal foundations. In this

paper, we have presented an extension for PASSI

methodology to support formal development of MAS. The

extension is made by integrating a new model (Formal

Model) into the PASSI design process. The integrated

model is based on the rewriting logic and its language

Maude (and its extension Maude-Strategy). It aims at

offering a Maude specification of the MAS under

development. Having the formal specification gives the

developer the possibility to validate by simulation (thanks

to Maude) of both single & multi-agent behaviour

1 http://www.fipa.org/resources/methodologies.html

descriptions. In addition, some properties (of both single

& multi-agent abstract levels) have to be specified in

Maude by the developer to check it by LTL Maude model

checker. Unlike many works in the literature, our work

consists of integrating formal techniques not only in some

design pieces separately of any development

methodology, but in an entire design process (of PASSI

methodology). This integration enhances PASSI

methodology and leads, at the end of the design process,

to the development of more reliable, robust and correct

MASs. Moreover, supporting Formal PASSI by a tool (F-

PTK) facilitates the tasks of the developer and would

contribute to scale up our approach. Formal PASSI uses

formal (rewriting logic-based) and semi-formal (UML

notation) specifications, this benefits of the advantages of

the two specifications. Our work is still in progress. As a

future work, we plan to: (1) Introduce more PASSI

diagrams in the formalization approach, (2) Formalize

PASSI’s predefined patterns using Maude, (3) Define and

check MAS specific properties, (4) Enhance the F-PTK by

adding the possibility of visualizing and animating the

2 http://www.pa.ica r.cnr.it/passi/Passi/PassiIndex.html

http://www.pa.ica/

250 Informatica 41 (2017) 233–252 M. Mazouz et al.

Formal Validation results to make them more readable,

(5) Propose (or use) a graphical notation to describe LTL’s

operators in order to facilitate the Formal Specification of

System Properties phase for developers who are not

familiar with LTL.

References
[1] Cossentino, M. (2005). From requirements to code

with the PASSI methodology. In B. Henderson-

Sellers & P. Giorgini (Eds.), Agent-oriented

methodologies. Hershey, PA, USA: Idea Group

Publishing: Chap. IV, pp. 79–106.

[2] Cossentino, M. and V. Seidita (2014). PASSI:

Process for Agent Societies Specification and

Implementation. Handbook on Agent-Oriented

Design Processes. M. Cossentino, V. Hilaire, A.

Molesini and V. Seidita, Springer Berlin Heidelberg:

287-329.

[3] Cernuzzi, L., T. Juan, L. Sterling and F. Zambonelli

(2004). The Gaia Methodology. Methodologies and

Software Engineering for Agent Systems: The

Agent-Oriented Software Engineering Handbook. F.

Bergenti, M.-P. Gleizes and F. Zambonelli. Boston,

MA, Springer US: 69-88.

[4] Cernuzzi, L., A. Molesini and A. Omicini (2014).

The Gaia Methodology Process. Handbook on

Agent-Oriented Design Processes. M. Cossentino,

V. Hilaire, A. Molesini and V. Seidita. Berlin,

Heidelberg, Springer Berlin Heidelberg: 141-172.

[5] Bernon, C., M.-P. Gleizes, S. Peyruqueou and G.

Picard (2003). ADELFE: A Methodology for

Adaptive Multi-agent Systems Engineering.

Engineering Societies in the Agents World III: Third

International Workshop, ESAW 2002 Madrid,

Spain, September 16–17, 2002 Revised Papers. P.

Petta, R. Tolksdorf and F. Zambonelli. Berlin,

Heidelberg, Springer Berlin Heidelberg: 156-169.

[6] Bonjean, N., W. Mefteh, M. P. Gleizes, C. Maurel

and F. Migeon (2014). ADELFE 2.0. Handbook on

Agent-Oriented Design Processes. M. Cossentino,

V. Hilaire, A. Molesini and V. Seidita. Berlin,

Heidelberg, Springer Berlin Heidelberg: 19-63.

[7] Mefteh, W., F. Migeon, M.-P. Gleizes and F.

Gargouri (2015). ADELFE 3.0 Design, Building

Adaptive Multi Agent Systems Based on Simulation

a Case Study. Computational Collective

Intelligence: 7th International Conference, ICCCI

2015, Madrid, Spain, September 21-23, 2015,

Proceedings, Part I. M. Núñez, T. N. Nguyen, D.

Camacho and B. Trawiński. Cham, Springer

International Publishing: 19-28.

[8] Winikoff, M. and L. Padgham (2004). The

Prometheus Methodology. Methodologies and

Software Engineering for Agent Systems: The

Agent-Oriented Software Engineering Handbook. F.

Bergenti, M.-P. Gleizes and F. Zambonelli. Boston,

MA, Springer US: 217-234.

[9] Giorgini, P., M. Kolp, J. Mylopoulos and M. Pistore

(2004). The Tropos Methodology. Methodologies

and Software Engineering for Agent Systems. F.

Bergenti, M.-P. Gleizes and F. Zambonelli, Springer

US. 11: 89-106.

[10] Pavón, J. and J. Gómez-Sanz (2003). Agent Oriented

Software Engineering with INGENIAS. Multi-Agent

Systems and Applications III: 3rd International

Central and Eastern European Conference on Multi-

Agent Systems, CEEMAS 2003 Prague, Czech

Republic, June 16–18, 2003 Proceedings. V. Mařík,

M. Pěchouček and J. Müller. Berlin, Heidelberg,

Springer Berlin Heidelberg: 394-403.

[11] Winikoff, M. (2010). Assurance of Agent Systems:

What Role Should Formal Verification Play?

Specification and Verification of Multi-agent

Systems. M. Dastani, V. K. Hindriks and C. J.-J.

Meyer. Boston, MA, Springer US: 353-383.

[12] Cossentino, M. and C. Potts (2002). PASSI: A

process for specifying and implementing multi-agent

systems using UML. Retrieved October 8: 2007.

[13] Basin, D., M. Clavel and J. Meseguer (2000).

Rewriting Logic as a Metalogical Framework. FST

TCS 2000: Foundations of Software Technology and

Theoretical Computer Science: 20th Conference

New Delhi, India, December 13–15, 2000

Proceedings. S. Kapoor and S. Prasad. Berlin,

Heidelberg, Springer Berlin Heidelberg: 55-80.

[14] Meseguer, J. (2005). A Rewriting Logic Sampler.

Theoretical Aspects of Computing. ICTAC 2005:

Second International Colloquium, Hanoi, Vietnam,

October 17-21, 2005. Proceedings. D. Hung and M.

Wirsing. Berlin, Heidelberg, Springer Berlin

Heidelberg: 1-28.

[15] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Martı́-

Oliet, J. Meseguer and J. F. Quesada (2002). Maude:

specification and programming in rewriting logic.

Theoretical Computer Science 285(2): 187-243.

[16] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Martí-

Oliet, José, Meseguer and C. Talcott (2007). All

about maude - a high-performance logical

framework: how to specify, program and verify

systems in rewriting logic, Springer-Verlag.

[17] N. Martí-Oliet, José, Meseguer and A. Verdejo

(2005). Towards a Strategy Language for Maude.

Electron. Notes Theor. Comput. Sci. 117: 417-441.

[18] Eker, S., J. Meseguer and A. Sridharanarayanan

(2003). The Maude LTL Model Checker and Its

Implementation. Model Checking Software: 10th

International SPIN Workshop Portland, OR, USA,

May 9–10, 2003 Proceedings. T. Ball and S. K.

Rajamani. Berlin, Heidelberg, Springer Berlin

Heidelberg: 230-234.

[19] El Fallah-Seghrouchni, A., J. J. Gomez-Sanz and M.

P. Singh (2011). Formal Methods in Agent-Oriented

Software Engineering. Agent-Oriented Software

Engineering X: 10th International Workshop, AOSE

2009, Budapest, Hungary, May 11-12, 2009,

Revised Selected Papers. M.-P. Gleizes and J. J.

Gomez-Sanz. Berlin, Heidelberg, Springer Berlin

Heidelberg: 213-228.

[20] Ball, E. (2008). An Incremental Process for the

Development of Multi-agent Systems in Event-B.

Doctoral thesis, University of Southampton.

Formal Development of Multi-Agent Systems with... Informatica 41 (2017) 233–252 251

[21] Ball, E. and M. Butler (2006). Using Decomposition

to Model Multi-agent Interaction Protocols in Event-

B. FM'06 Doctoral Symposium, Springer.

[22] Abrial, J.-R. (2010). Modelling in Event-B: System

and Software Engineering, Cambridge University

Press.

[23] Ball, E. and M. Butler (2009). Event-B Patterns for

Specifying Fault-Tolerance in Multi-agent

Interaction. Methods, Models and Tools for Fault

Tolerance. M. Butler, C. Jones, A. Romanovsky and

E. Troubitsyna. Berlin, Heidelberg, Springer Berlin

Heidelberg: 104-129.

[24] Hadj-Kacem, A., A. Regayeg and M. Jmaiel (2007).

ForMAAD: A formal method for agent-based

application design. Web Intelli. and Agent Sys. 5(4):

435-454.

[25] Graja, Z., A. Regayeg and A. H. Kacem (2011).

ForMAAD : Towards a Model Driven Approach for

Agent Based Application Design. Agent-Oriented

Software Engineering XI: 11th International

Workshop, AOSE 2010, Toronto, Canada, May 10-

11, 2010, Revised Selected Papers. D. Weyns and

M.-P. Gleizes. Berlin, Heidelberg, Springer Berlin

Heidelberg: 148-164.

[26] Cervenka, R. and I. Trencansky (2007). The Agent

Modelling Language - AML: A Comprehensive

Approach to Modelling Multi-Agent Systems.

Birkhäuser Basel.

[27] Regayeg, A., Hadj-Kacem, A., Jmaiel, M. (2004).

Specification and Verification of Multi-Agent

Applications using Temporal Z. In Proceedings of

the IEEE/WIC/ACM International Conference on

Intelligent Agent Technology 2004 (IAT'2004),

Beijing, China: 260–266.

[28] Fuxman, A., M. Pistore, J. Mylopoulos and P.

Traverso (2001). Model checking early requirements

specifications in Tropos. Requirements Engineering,

2001. Proceedings. Fifth IEEE International

Symposium on, IEEE.

[29] Dardenne, A., A. v. Lamsweerde and S. Fickas

(1993). Goal-directed requirements acquisition.

Selected Papers of the Sixth International Workshop

on Software Specification and Design, Elsevier

Science Publishers B. V.: 3-50.

[30] Cimatti, A., E. Clarke, F. Giunchiglia and M. Roveri

(2000). NUSMV: a new symbolic model checker.

International Journal on Software Tools for

Technology Transfer 2(4): 410-425.

[31] Montali, M., P. Torroni, N. Zannone, P. Mello and

V. Bryl (2011). Engineering and verifying agent-

oriented requirements augmented by business

constraints with 𝛽-Tropos. Autonomous Agents and

Multi-Agent Systems 23(2): 193-223.

[32] Bryl, V., P. Mello, M. Montali, P. Torroni and N.

Zannone (2008). 𝛽-Tropos. Computational Logic in

Multi-Agent Systems: 8th International Workshop,

CLIMA VIII, Porto, Portugal, September 10-11,

2007. Revised Selected and Invited Papers. F. Sadri

and K. Satoh. Berlin, Heidelberg, Springer Berlin

Heidelberg: 157-176.

[33] Alberti, M., F. Chesani, M. Gavanelli, E. Lamma, P.

Mello and P. Torroni (2008). Verifiable agent

interaction in abductive logic programming: The

SCIFF framework. ACM Trans. Comput. Logic

9(4): 1-43.

[34] Fadil, H. and J.-L. Koning (2005). A Formal

Approach to Model Multiagent Interactions Using

the B Formal Method. Advanced Distributed

Systems: 5th International School and Symposium,

ISSADS 2005, Guadalajara, Mexico, January 24-28,

2005, Revised Selected Papers. F. F. Ramos, V.

Larios Rosillo and H. Unger. Berlin, Heidelberg,

Springer Berlin Heidelberg: 516-528.

[35] Abrial, J.-R. (1996). The B-book: assigning

programs to meanings. Cambridge University Press.

[36] Robinson, K. (1997). The B method and the B toolkit.

Algebraic Methodology and Software Technology:

6th International Conference, AMAST'97 Sydney,

Australia, December13–17, 1997 Proceedings. M.

Johnson. Berlin, Heidelberg, Springer Berlin

Heidelberg: 576-580.

[37] Jemni Ben Ayed, L. and F. Siala (2008).

Specification and Verification of Multi-agent

Systems Interaction Protocols Using a Combination

of AUML and Event B. Interactive Systems. Design,

Specification, and Verification: 15th International

Workshop, DSV-IS 2008 Kingston, Canada, July 16-

18, 2008 Revised Papers. T. C. N. Graham and P.

Palanque. Berlin, Heidelberg, Springer Berlin

Heidelberg: 102-107.

[38] Bauer, B., J. P. Müller and J. Odell (2001). Agent

UML: A Formalism for Specifying Multiagent

Software Systems. Agent-Oriented Software

Engineering: First International Workshop, AOSE

2000 Limerick, Ireland, June 10, 2000 Revised

Papers. P. Ciancarini and M. J. Wooldridge. Berlin,

Heidelberg, Springer Berlin Heidelberg: 91-103.

[39] Alagar, V. S. and K. Periyasamy (1998). The Z

Notation. Specification of Software Systems. New

York, NY, Springer New York: 281-360.

[40] Regayeg , A., Hadj Kacem ,A., Jmaiel, M, (2005).

Towards a formal methodology for developing

multi-agent applications using temporal Z. The 3rd

ACS/IEEE International Conference on Computer

Systems and Applications (AICCSA'05), Cairo,

Egypt.

[41] Roungroongsom, C. and D. Pradubsuwun (2015).

Formal Verification of Multi-agent System Based on

JADE: A Semi-runtime Approach. Recent Advances

in Information and Communication Technology

2015: Proceedings of the 11th International

Conference on Computing and Information

Technology (IC2IT). H. Unger, P. Meesad and S.

Boonkrong. Cham, Springer International

Publishing: 297-306.

[42] Lapouchnian, A. and Y. Lespérance (2009). Using

the ConGolog and CASL Formal Agent Specification

Languages for the Analysis, Verification, and

Simulation of i* Models. Conceptual Modelling:

Foundations and Applications: Essays in Honor of

John Mylopoulos. A. T. Borgida, V. K. Chaudhri, P.

https://www.researchgate.net/researcher/70517265_Amira_Regayeg
https://www.researchgate.net/profile/Ahmed_Hadj_Kacem
https://www.researchgate.net/profile/Mohamed_Jmaiel

252 Informatica 41 (2017) 233–252 M. Mazouz et al.

Giorgini and E. S. Yu. Berlin, Heidelberg, Springer

Berlin Heidelberg: 483-503.

[43] Yu, E. S.-K. (1996). Modelling strategic

relationships for process reengineering. University

of Toronto.

[44] De Giacomo, G., Y. Lespérance and H. J. Levesque

(2000). ConGolog, a concurrent programming

language based on the situation calculus. Artificial

Intelligence 121(1): 109-169.

[45] Shapiro, S., Y. Lespérance and H. J. Levesque

(2002). The cognitive agents specification language

and verification environment for multiagent systems.

Proceedings of the first international joint

conference on Autonomous agents and multiagent

systems: part 1. Bologna, Italy, ACM: 19-26.

[46] Wang, X. and Y. Lespérance (2001). Agent-oriented

requirements engineering using ConGolog and i*.

Agent-Oriented Information Systems Workshop

(AOIS-2001). Montreal, Canada: 59-78.

[47] Lapouchnian, A. and Y. Lespérance (2006).

Modelling Mental States in Agent-Oriented

Requirements Engineering. Advanced Information

Systems Engineering: 18th International

Conference, CAiSE 2006, Luxembourg,

Luxembourg, June 5-9, 2006. Proceedings. E.

Dubois and K. Pohl. Berlin, Heidelberg, Springer

Berlin Heidelberg: 480-494.

[48] Xu, H. and S. M. Shatz (2003). ADK: An Agent

Development Kit Based on a Formal Design Model

for Multi-Agent Systems. Automated Software

Engineering 10(4): 337-365.

[49] Deng, Y., S. K. Chang, J. C. A. Figueired and A.

Perkusich (1993). Integrating software engineering

methods and Petri nets for the specification and

prototyping of complex information systems.

Application and Theory of Petri Nets 1993: 14th

International Conference Chicago, Illinois, USA,

June 21–25, 1993 Proceedings. M. Ajmone Marsan.

Berlin, Heidelberg, Springer Berlin Heidelberg: 206-

223.

[50] Stamatopoulou, I., P. Kefalas and M. Gheorghe

(2008). OPERAS: A Framework for the Formal

Modelling of Multi-Agent Systems and Its

Application to Swarm-Based Systems. Engineering

Societies in the Agents World VIII: 8th International

Workshop, ESAW 2007, Athens, Greece, October

22-24, 2007, Revised Selected Papers. A. Artikis, G.

M. P. O’Hare, K. Stathis and G. Vouros. Berlin,

Heidelberg, Springer Berlin Heidelberg: 158-174.

[51] Eilenberg, S. (1974). Automata, Languages, and

Machines. Academic Press, Inc.

[52] Bernardini, F. and Gheorghe, M (2004). Population

P Systems. Journal of Universal Computer Science

10(5): 509–539.

[53] Keller, R. M. (1976). Formal verification of parallel

programs. Commun. ACM 19(7): 371-384.

[54] Murata, T. (1989). Petri nets: Properties, analysis

and applications. Proceedings of the IEEE 77(4):

541-580.

[55] Milner, R. (1982). A Calculus of Communicating

Systems. Springer-Verlag New York, Inc.

[56] Diaconescu, R. and Futatsugi, K. (1998). CafeOBJ

Report: The Language, Proof Techniques, and

Methodologies for Object-Oriented Algebraic

Specification. AMAST Series in Computing, vol. 6.

World Scientific.

[57] Ölveczky, P. C. and J. Meseguer (2008). The Real-

Time Maude Tool. Tools and Algorithms for the

Construction and Analysis of Systems: 14th

International Conference, TACAS 2008, Held as

Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29-April 6, 2008. Proceedings. C.

R. Ramakrishnan and J. Rehof. Berlin, Heidelberg,

Springer Berlin Heidelberg: 332-336.

[58] Chella, A., M. Cossentino and L. Sabatucci (2004).

Tools and patterns in designing multi-agent systems

with PASSI. WSEAS Transactions on

Communications 3(1): 352-358.

[59] Caire, G., M. Cossentino, A. Negri, A. Poggi and P.

Turci (2004). Multi-agent systems implementation

and testing, na.

[60] Mazouz, M., F. Mokhati and M. Badri (2015).

Towards an Explicit Bidirectional Requirement-to-

Code Traceability Meta-model for the PASSI

Methodology. Proceedings of the International

Conference on Agents and Artificial (ICAART-

2015), Lisbon, Portugal: 203-209.

