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The aggregation algorithm, an integral part of our dynamic infrastructure (using an expansion and a con-
traction model) for managing scalable virtual worlds, was proposed in our previous work, to overcome the
limitations of the current methods using static and hierarchical approaches. The basic aim was to get two
contiguous spaces made of smaller regions while distributing the load as balanced as possible among two
servers. This algorithm performs well for the perfect square shaped spaces but fails when it is applied to
spaces of other shapes. The current merging algorithms also assign non-contiguous spaces to servers during
the contraction phase. This is due to the unavailability of an explicit continuity check in both aggregation
and merging algorithms.
In this paper, we provide state-of-the-art in scaling virtual worlds and outline their limitations. It provides
both theoretical arguments and simulation results that contiguous spaces have potential benefits. This work,
then, extends both the aggregation and merging algorithms and incorporates an explicit continuity check
to cope with the issues introduced by allowing non-contiguous spaces. It is demonstrated with the help of
results from our prototype that the extended methods strictly achieves the theoretical goals of the proposed
methods.

Povzetek: Podan je pregled skalirnih metod v navideznih svetovih (VWs) in nov algoritem za razširjanje
in krčenje podprostorov.

1 Introduction

Virtual Worlds (VWs) are the most advanced Virtual Envi-
ronments (VEs) that allow users to immerse into 3D shared
spaces. They provide real or imaginary content and users
in them are represented by digital characters called ava-
tars [14]. VWs are interactive and collaborative environ-
ments that have distinguishing features such as coherence
and persistence. They are general purpose and social in
nature [21, 24]. They have attracted huge attention of indi-
viduals, businesses, and organisations of various domains
such as entertainment, design, government, and research
and development communities. They are becoming a major
tool for collaborative activities [16, 1]. Second Life (SL)
[24, 27] is state-of-the-art in commercial VW development
frameworks and it imitates the physical world. It is extensi-
vely used for content development by various communities
such as business and entertainment industries. The research
and development community has, however, shown more in-
terest in OpenSimulator (OSm) [13, 20] - an open source
alternative to SL.

Scalability is the major issue to dealt with in VEs. Tradi-
tionally, it is achieved by splitting the whole virtual space
and assigning it to a set of dedicated servers for simula-
ting it [19]. Game environments are easily scalable as they
exploit the concept of sharding that allows the duplication
of content [21]. However, the space in VWs, is distribu-
ted using spatial partitioning. VWs do not allow duplica-
tion of content as they have to maintain a unified coherent
space [19, 21]. VWs are very complex as they integrate
in them the challenges of many hard simulation problems
such as large scale, real time computation and communica-
tion using a simulation centric architecture developed for
standard simulation environments [21]. Therefore, they are
much restricted and are able to host only a limited number
of players per Simulator (Sim) [15].

Static and dynamic methods are currently in practice to
assign a virtual space to a given set of servers. While a
system is up and running, a statically assigned space never
changes and manual reconfigurations are required to incor-
porate changes in current allocation. On the other hand,
dynamic spatial partitioning allows re-assignments while
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the system is running. This process, however, is too ex-
pensive as it involves transferring both content and play-
ers. Dynamic techniques are usually categorised into flat
and hierarchical mechanisms. Flat mechanisms use either
a local, global, or an adaptive strategy for load distribu-
tion [4]. Hierarchical approaches adopt a parent child hier-
archy for managing resources. In our previous work, we
developed a hybrid infrastructure comprises an expansion
and a contraction model to cope with the issues in both
static and dynamic mechanisms presented in section 2.1.1
and 2.1.2 [6, 8]. It proposed an aggregation and assign-
ment algorithm [7, 9] for the expansion phase and merging
algorithms for the contraction phase [6]. The major goal of
both types of algorithms was to provide contiguous spaces
for a Sim to host.

In this paper, we present the critical analysis of some of
the well-known static and dynamic methods currently in
use for scalable VEs including our proposed framework. It
provides justification for using the continuity in spaces as-
signed to different Sims. It determines the limitations in
both aggregation and merging algorithms and, then, extend
them to overcome these limitations. Simple illustrations
are used to show that the extended models successfully as-
sign contiguous spaces and avoid non contiguous spaces.

The rest of the paper is structured as follows. Section 2
provides the Literature review, background and motivation
for this work. The justification for using the continuity con-
straint in expansion and contraction phases is provided in
section 3. The basic and extended versions of the expansion
and contraction algorithms and their illustrations with ex-
amples from our prototype are presented in section 4 and 5.
Finally, section 6 concludes the paper and provides future
directions.

2 Background and motivation

2.1 The Literature
The mechanisms for scaling VEs found in the Literature
can be categorised as static, dynamic, and hybrid in nature.
These mechanisms are critically analysed in this section.

2.1.1 Static mechanisms

The underlying infrastructures for SL and OSm called SL
Grid (SLG) [24], and OSm Grid (OSmG) [20] extend the
Butterfly Grid (BG) [17]. They use static assignment for
an improved performance and avoid the expensive trans-
ferring activities. SL architecture is much restricted and it
allows a server (usually, a Simulator (Sim)) to host only
up-to a maximum of four regions. OSm uses the extended
architecture of SL proposed by the Linden Lab [24] and is,
therefore, more open than SL. It allows a Sim to manage
an arbitrary number of regions but the environment remains
static. SL and OSm both lack dynamic adjustments and,
therefore, introduce resource provisioning issues. Resour-
ces in this arrangement are greatly misused. Resources in

some cases, when no players are visiting the content assign
to them, might remain under-utilised - this case is termed
as over-provisioning. On the other hand, system capacity
is restricted as no additional resources are available when
more players are interested to join a space - this is termed
as under-provisioning [29].

2.1.2 Dynamic mechanisms

To cope with the issues in static assignment methods, a
number of dynamic strategies are developed that are bro-
adly categorised as flat and hierarchical in nature. Load ba-
lancing in mechanisms using flat orientation uses either a
local, global or an adaptive strategy. Local strategies (such
as the one adopted in [25]) are not scalable as each server
is capable of sharing its load only with the neighbouring
servers. They fail to scale when neighbouring servers are
also overloaded. Global strategies (such as those used in
[23, 28]) use complex procedures to re-distribute the wor-
kload evenly on all the servers and thus degrade interactive
user experience. They are not suitable for those systems
that involve frequent re-adjustments. Adaptive strategies
adopt the simplicity of the local but the scalability of the
global strategies. They scale better than local strategy as a
server extends sharing its load with the servers next to the
neighbouring servers, in case the neighbouring servers are
also overloaded. Further, they are less complex than global
strategies [22].

VEs prefer using hierarchical approaches which are, ge-
nerally more flexible and scalable than flat mechanisms, as
flat mechanisms put extra burden of user migration on the
system [26]. Hierarchical methods (such as those presented
in [18, 3, 2, 5]), however, suffer from complexity, latencies,
and poor performance as they places no restrictions of the
size of content assigned to a server and the levels in a re-
source management tree [6].

2.1.3 Hybrid mechanism: state-of-the-art in scalable
VWs

In our previous work, we presented a dynamic scalable in-
frastructure and introduced the concept of a hybrid grid in-
frastructure for its implementation. When the load is nor-
mal, this hybrid mechanism behaves like a static grid infra-
structure in which each Sim is hosting its assigned space.
As the load increases, it dynamically adds additional re-
sources at lower levels to cope with increasing load. The
basic aim was to overcome the limitations of existing sta-
tic and dynamic mechanisms. The proposed mechanism
achieves this using an expansion and a contraction model.
The expansion phase includes the split, aggregation, and
assignment methods. The contraction phase provides two
variation for merging process.

In this work, each server in start, handles almost a square
shaped space and a regular square pattern is used to split the
overloaded space. The number of players a server can po-
tentially host is represented by SimCapacity. However, it
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initiates a split operation based on a parameter called Split-
Capacity. MergeCapacity parameter is used by a server to
initiate a merge operation [8].
The Expansion Phase (Splitting)
The Split Process: When a Sim gets overloaded, it divides
its assigned space into an equal sized sub-regions (normally
either 4, 9, or 16 onwards) that achieves regions whose den-
sity is less than the SplitCapacity and thus eases the load
but against a boundary condition. A region representing an
un-partitioned but varied size of space is divided during a
split operation if it is not the ultimate space that cannot be
further partitioned.
The Aggregation Process: uses an aggregation algorithm
[9] to determine two aggregates of the smaller spaces com-
prising an assigned space, provided as input by the Split
Process. It aims to minimise resource utilisation, and com-
munication and implementation cost. It tries to obtain ag-
gregates with fair load by combining adjacent regions and
avoiding the diagonal ones. It combines only those regions
(even those in a diagonal) sharing physical boundaries with
the regions already in an aggregate. The main objective is
to obtain two contiguous areas for assignment to minimise
the number of connections/disconnections between servers
when players move between regions. The levels in the ma-
nagement tree are minimised by placing all servers hand-
ling regions obtained in a split as siblings.

The aggregation algorithm takes input in the form of a
tiled grid. Keeping its goals in mind, it takes any two
consecutive corner regions to start aggregation with. It
uses four aggregation strategies, namely, Row by Row
(RR), Column by Column (CC), Row and Column in
Turn (RCnT), and Row and Column in Turn with Di-
agonal (RCnTwD) which guarantee examining the entire
set of unique and valuable combinations.
The Assignment Process: assigns one of the aggregates
determined in aggregation step to an additional server. The
current implementation transfers the aggregate with less re-
gions and smaller number of players. Each server that is
hosting an aggregate maintains the identity of smaller regi-
ons which are, then, re-assigned at later stages based on an
increase in load until each of them is handled by an indi-
vidual server. The split process is repeated at this stage on
smaller regions unless the boundary conditions are met.
The Contraction Phase
The contraction phase implements the merging process and
it ensures that the resources are utilised as per the require-
ments. Merging is triggered by a server when it notices a
decrease in the number of players it manages. In current
implementation of our work, a Sim is either a parent or a
child. However, only a child Sim initiates a merge process.

Contraction allows two merging strategies called, Parent
Merge (PntMrg) strategy and Child Merge (ChMrg) stra-
tegy. In PntMrg strategy, a child Sim initiates a merge ope-
ration only if it can return its full load to the parent Sim.
However, it is believed that the system potentially holds
the resources for more time and it is not efficient in terms
of resources. This issue is resolved in the ChMrg strategy.

In ChMrg strategy, a child Sim relocates its full load to one
of its siblings, if it is unable to integrate the load with the
parent Sim. When a Sim capacity goes beyond MergeCa-
pacity, then it checks for an appropriate Sim (the parent or
a sibling based on the strategy being used) and the mer-
ging is initiated if and only if, the cumulative load of both
the Sims is less than or equal to the MergeCapacity. In case
of a successful merge, the Sim who initiated the merge re-
leases itself.
The Implementation, Worth and Limitations of Hybrid
Grid Infrastructure

Non existence of a specialised framework for developing
highly scalable VWs motivated us to develop the hybrid
grid infrastructure. The main goals were to assign coherent
contiguous spaces using a resource management tree with
minimum additional levels for an improved communication
and implementation cost while distributing the load as ba-
lanced as possible. We used OSm framework for the imple-
mentation of this work. Since, the basic architecture does
not support dynamic capabilities, we extended the OSm ar-
chitecture to support dynamic scalability [10]. We inves-
tigated the basic capabilities for various activities involved
in the expansion and contraction phases and extended some
of the costly activities [11]. We, then, developed a working
prototype of this infrastructure using OSm framework by
utilising its basic and extended methods [6, 12]. It moves
the players in a transferring region into a transit region du-
ring the re-allocation process.

Our hybrid infrastructure achieved improvements
against both static and dynamic mechanisms in multiple
dimensions described using a set of parameters including
scale, resource utilisation, complexity, communication
and implementation costs, and interactive user experience.
When compared with static assignment method that
assigns multiple regions to a Sim, the proposed method
scale beyond the capacity of static assignment. However,
it scales exactly up-to the same capacity as the static
method in which each Sim hosts a single region. In both
cases, resource utilisation is improved by starting a Sim
with more regions and assigning additional resources
purely on current workload. The proposed mechanism,
therefore, solves over-provision and under-provision of
resources. By adopting a localised decentralised approach
and reducing the levels in the resource management tree,
it greatly reduces complexity, and communication issues.
Since, the players never go off, it improves their interactive
user experience. Various concepts of OSm framework
and the extended methods developed for various activities
involved in re-allocation process greatly reduced the
implementation and transferring costs.

During the implementation of our work, we discovered
that the aggregation algorithm determines the two contigu-
ous spaces when it is applied on a square shaped space.
However, it fails to get contiguous spaces when it is app-
lied to spaces of other shapes. Similarly, the merging al-
gorithms also permit a merge of non-contiguous spaces, a
clear violation of the basic goals set earlier for our scalable
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infrastructure.

2.2 Motivation, goals and contribution
Hybrid grid infrastructure got improvements in multiple as-
pects discussed above, however, the limitations in its cur-
rent implementation greatly restricts its functionality. To
get hold of the benefits of the proposed infrastructure moti-
vated us to extend its aggregation and merging algorithms.
The main goal of this work is to enable these algorithms
to produce contiguous spaces for any shape of spaces com-
prises various regions. It also aims to justify the use of
continuity in assigning spaces to servers.

This work reports justification for the contiguous spaces,
and the extended algorithms for aggregation and merging
followed by their illustrations with results from our imple-
mentation.

(a) (b) (c)

(a)́ (b)́ (c)́

Figure 1: Odd and their equivalent valid aggregates. (a)
Aggregates based on diagonals for a 4-region world; (a)́
Valid aggregates for Figure(a); (b) Aggregates based on a
single diagonal for a 9-region world; (b)́ Valid combinati-
ons for Figure(b); (c) Aggregates based on both diagonals
for a 9-region world; (c)́ Valid combinations for Figure(c).

3 Evaluating continuity model
This section provides justification and the benefits of the
continuity model to be incorporated in basic aggregation
and merging algorithms. It shows how odd and isolated
cases introduce extra burden in terms of communication,
implementation, and user migrations. Three parameters are
used for this evaluation that are: total number of regional
boundaries exposed to the external regions; total number of
isolated regions managed by a single Sim; and number of
user crossings between different Sims.

Three example odd cases (from a wide range of possible
combinations) which are presented in Figure 1(a)-(c) are
used for evaluation and comparison with equivalent valid
aggregates presented in Figure 1(a)́-(c)́. The regions in one
aggregate in Figure 1 are marked black and white in the
second aggregate.

3.1 Theoretical evaluation
Current VWs treat each region as a complete isolated sy-
stem and, therefore, introduce complex boundary crossings
between the regions regardless of the fact that they might be
on a single Sim. The concept of mega-regions is introduced
in OSm to get bigger spaces and reduce intra-sim commu-
nication. It also help in reducing the number of crossings
between the regions. However, the current mega-regions
only integrate the neighbouring and contiguous regions. It
is difficult to take advantage of this exciting feature of OSm
framework when isolated regions are allowed. The inclu-
sion of continuity model in aggregation algorithm thus al-
low us to get benefit of mega-regions during implementa-
tion.

Two parameters that are: the number of isolated spaces
managed by a Sim, and the number of boundaries in an
aggregate exposed to regions of other aggregate are used
to provide theoretical justifications. Table 1 provides re-
sults for these parameters where it can be seen that non-
contiguous spaces normally provide a large number of iso-
lated spaces. However, the inclusion of continuity mo-
del reduced them to only and only two contiguous spa-
ces. Excluded cases greatly increase the implementation
complexity by managing different isolated areas compared
with valid combinations. Similarly, communication and
interaction in valid combinations are significantly reduced
compared with odd cases. It can also be noted that when
a system has more isolated regions, it generally increases
the number of regional boundaries exposed to players of
the external regions. It implies that the players have more
spaces and chances to go across a Sim boundary to anot-
her Sim served by a different server. It potentially increases
communication among regions on the same Sim. The next
section justifies this claim using a simple simulation envi-
ronment in terms of players crossing the boundaries bet-
ween different Sims. Overall, about 50% decrease is achie-
ved in terms of number of exposed boundaries by selecting
valid combinations by the extended algorithm as shown in
Table 1.

3.2 Simulation based evaluation
The most common parameter in scaling a parallel and dis-
tributed system such as a VW is to determine, how much
the distribution process increases the number of crossings
between the servers in a given system.

3.2.1 Simulation environment

The console window is partitioned into regions based on
aggregates and different colours are used to represent the
valid and odd combinations as shown in Figure 1. In each
case, the odd and its corresponding valid combination are
simulated for the same duration against the capacities in-
cluding one, five, and ten randomly distributed objects (re-
presenting players). Each object is allowed to select a
random move in one of the four directions at each step
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Table 1: Comparison of isolated spaces and their exposed boundaries for both odd and valid aggregates.

Case Description Number of isolated spaces Number of Exposed boundaries

1 Odd Combination (Figure 1(a)) 4 4
Valid Combination (Figure 1(a)́) 2 2

2 Odd Combination (Figure 1(b)) 5 8
Valid Combination (Figure 1(b)́) 2 4

3 Odd Combination (Figure 1(c)) 9 12
Valid Combination (Figure 1(c)́) 2 4

where it moves a character in that direction from its current
position. When it reaches either the end of a row or a co-
lumn, it jumps to the other end of the corresponding row or
column. The objects continues following this simple mo-
bility model until the simulation is stopped. A crossing for
a player is recorded when it moves to a different coloured
region from its current region.

Table 2: Comparison of player crossings for both odd and
valid aggregates.

Case Description Number of Players
1 5 10

1 Odd Combination (Figure 1(a)) 5 24 46
Valid Combination (Figure 1(a)́) 2 11 18

2 Odd Combination (Figure 1(b)) 9 51 86
Valid Combination (Figure 1(b)́) 5 21 46

3 Odd Combination (Figure 1(c)) 18 78 138
Valid Combination (Figure 1(c)́) 7 24 51

3.2.2 Evaluation results

Table 2 summarises the simulation results for both odd and
valid combinations. It can be seen in first case, that cros-
sings for odd combination are almost twice the number of
crossings for the valid combination. Case 2, has a similar
outcome, however, the crossings for odd combination are
slightly less than twice the number of crossings for valid
combination. This is due to the player distribution, and the
ratio between isolated spaces and exposed boundaries for
both combinations. It can be seen in case 3, that when there
are more isolated regions and exposed boundaries, there are
more crossings. The crossings for odd case are almost three
times the crossings for valid combinations. Overall, the si-
mulation results revealed that odd cases greatly increases
the crossings between the Sims in addition to the imple-
mentation complexity and communication overhead. In the
next sections, we provide detailed illustrations of the basic
and extended algorithms.

4 The extended aggregation
algorithm

4.1 Limitations in basic algorithm

The basic aim of aggregation algorithm was to aggregate
smaller regions into larger contiguous spaces for assign-
ment. It initially takes regional grids of n×n dimensions
as an input normally based on the split strategies of our
scalable infrastructure. It repeatedly assigns different parts
of the pre-processed space to additional Sims and it has to
cope with varied shapes of spaces. In theory, the current
aggregation algorithm should always yield valid combina-
tions but in fact ‘practically’ it allows odd combinations
for the non-square shaped grids obtained after the first split
and assignment applied to a square grid. During imple-
mentation, it failed to discard odd cases in the following
iterations. In other words, starting with a square grid, the
first iteration determines valid contiguous spaces but in la-
ter iterations, when it is applied to non-square shaped wor-
lds, it allows odd cases. Figure 2 illustrates these cases
with the help of a simple square grid of nine regions (la-
belled A to I). The first iteration of aggregation algorithm
divides this grid into two aggregates (colours are used to
differentiate aggregates from each other) having A and B
in the first and the rest of the regions in the second aggre-
gate (see Figure 2(a)). However, when it is applied to the
second aggregate (a 7-region world) in second iteration, it
selects an aggregate comprises of region C and D, which
are both isolated than each other (an obvious odd case), as
shown in Figure 2(b). This is because the basic algorithm
only uses SplitCapacity constraint but does not check ex-
plicitly the continuity constraint for the space comprises of
smaller sub-regions. An extension to the current algorithm
is presented in the next section to overcome these issues.

4.2 The extended algorithm

In each step of the aggregation process, an additional step
is added to make it sure that both prospective aggregates
produce valid contiguous spaces. This additional step ex-
plicitly use a flood fill algorithm to check continuity in the
aggregated spaces. We use flood fill algorithm that spread
in four ways as the one that spreads in eight ways consider
the diagonals which are major source of odd combinations.
Flood fill algorithms are normally used in bucket fill al-
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(a) (b)

Figure 2: Illustrating limitations in the basic aggregation algorithm: (a) A valid outcome for a square grid of 9 regions;
(b) An invalid outcome for a 7-region world.

gorithms of paint programmes, and they are employed in
board games such as Go and Minesweeper [30]. In each
step, when the possible aggregates are determined by the
aggregation algorithm, it checks these aggregates against
the continuity constraint, and reject them when any of them
are not constituting a valid contiguous space. The extended
algorithm has the capability to determine and exclude odd
cases against any size and shape of a given space.

Figure 3: Expanding a 9-region world with the basic ag-
gregation algorithm.

4.3 Illustration and comparison of basic and
extended algorithms

In this section, we illustrate the limitations in basic aggre-
gation algorithm and the worth of extended algorithm eli-
minating issues in the current algorithm with simple player
distributions. These example illustrations use a SplitCa-
pacity of 40 players and applies the aggregation strategies
to Bottom Left (BL) and Bottom Right (BR) against a 9-
region world in a grid form. This article is illustrating only
the limitations of current algorithm and it is not demonstra-
ting the aggregation strategies which are presented in detail

in [7, 9]. Figure 3 illustrates odd cases allowed by ba-
sic algorithm whose equivalent valid combinations which
are obtained using the extended algorithm are presented
in Figure 4. The partial steps (showing expansion up-to 4
child Sims) shown in these figures are highlighting impor-
tant points during split and assignment processes. A Sim
includes the number of players in each named region that
it hosts, and the regions hosted by other Sims are crossed
with respect to this Sim.

Figure 4: Expanding a 9-region world with the extended
aggregation algorithm.

Figure 3, step-1, shows that the parent Sim is initially
hosting the whole space comprises of nine regions. In step
2, the space is divided into two valid contiguous groups of
regions and then the algorithm assigns the aggregate com-
prises of region A and B to child Sim C1. However, the
remaining steps assign odd combinations such as in, step
3, the parent Sim transfers region C and D to C2. Simi-
larly, the parent Sim in step 4, assigns an aggregate of re-
gion E, F and G to Child C3. Further, the child C3 assign
a valid combination to child C4, but maintains itself a non-
contiguous space, in step 5. It is important to note that only
the RR strategy of the first root obtained the aggregates as-
signed in Figure 3.
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Figure 4 illustrates the extended aggregation algorithm
for exactly the same player distribution used in Figure 3. It
is obvious that the extended algorithm strictly allows only
valid continuous spaces. The algorithm, in step-2, divides
the space into two bigger spaces and assigns the aggregate
comprises of region A and B to child C1, but after veri-
fying the other aggregate being a contiguous one as well.
It can be noted in step 3, that the extended algorithm de-
termines the non-contiguous aggregate comprises of C and
D to be an odd case and it is skipped by the algorithm to
be an acceptable aggregate. The RR strategy was unable
to determine further aggregates for a 7-region world at this
stage and the algorithm, therefore, applied the CC strategy,
which determined a valid aggregate comprises of D and G,
in step-3 and assigned it to C2. Step-4, rejected the assign-
ment of aggregate comprises of region C and E but instead
assigned a contiguous space made of E and H to child C3

determined using the CC strategy. Region C is then assig-
ned during step 5 to child C4.

Figure 5: Contracting a 9-region world with the ba-
sic PntMrg strategy.

5 The extended merging algorithms

5.1 Limitations of the basic algorithms
The current merging process provides two algorithms (im-
plementing a PntMrg and a ChMrg strategy) that differ by

merging preferences either with a parent or a sibling Sim.
Both a child and the parent have the capability to determine
if a merge operation to be initiated when they notice a de-
crease in their current capacities but the merging process is
always initiated by a child Sim in current implementation.
Both the strategies use a MergeCapacity constraint to ini-
tiate a merge. Despite the status of a Sim being parent or
a child, it first determines, if the cumulative load of both
the Sims to combine their load, is less than or equal to the
MergeCapacity. On satisfying this condition, the child Sim
assigns its complete load (both content and players) to the
participating Sim and releases itself.

Both strategies have a flaw (similar to the one for split
discussed earlier) that they allow odd combinations while
integrating the load which violate the basic goals of our
work. The MergeCapacity value of 20 players is conside-
red in this work, a much smaller value to avoid immediate
splits.

Figure 6: Contracting a 9-region world with the exten-
ded PntMrg strategy.

5.2 The extended algorithms
To avoid assigning non-contiguous spaces, this work also
explicitly incorporate an additional step which determines
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that either a combined space of two Sims are constituting a
contiguous space or not using a flood fill algorithm in addi-
tion to the MergeCapacity constraint. A merge is only al-
lowed, if it passes through the continuity check, otherwise,
the merge is rejected. This model might use more than re-
quired number of Sims for a little longer but it achieves the
benefits of assigning contiguous spaces to different Sims.

5.3 Illustration and comparison of basic and
extended algorithms

5.3.1 The Parent Merge (PntMrg) strategy

Figure 5 illustrates the basic PntMrg procedure. No merge
is permitted with the parent Sim in initial two steps,
because the cumulative load in each case is more than
the MergeCapacity. However, it is clear in step 2 that
child Sims C2 and C4 satisfies the merge condition but it is
not allowed in PntMrg strategy. ChildC2 integrates its load
with the parent Sim during step 3. However, it can be seen
that this merge results-in a space comprises of two isola-
ted spaces. In step 4, no merge is allowed though a merge
is possible among child Sims C3 and C4. The aggregated
space after the integration of space maintained by C4 with
the parent Sim in step 5 also gives two isolated sets of regi-
ons. The PntMrg strategy potentially holds more resources
than required for longer time compared with the ChMrg
strategy which tries to overcome this issue.

Figure 6 illustrates the extended PntMrg strategy high-
lighting the avoidance of odd cases allowed by the basic
algorithm as shown earlier in Figure 5. No merge was per-
mitted during the initial three steps. Capacity constraint
did not allow merging of child Sims C1 and C4 with the
parent Sim. The merge between child Sim C2 and pa-
rent Sim at step-3 was rejected due to the continuity con-
straint. Child C4 returned its space to the parent Sim at
step-4. Child Sims C3, C2 and C1 integrated their load
with parent Sim at step 5, 6 and 8 correspondingly. Figure 6
shows that the extended algorithm keep resources for more
time than the basic algorithm as illustrated in Figure 5.

5.3.2 The Child Merge (ChMrg) strategy

Figure 7 illustrates the basic ChMrg procedure. No Merge
was allowed in step-1, due to the MergeCapacity con-
straint. However, C4 was released after merging its load
with C2 at step-2 (a case which was rejected by the PntMrg
strategy) but constituting an obvious odd case. Step-3 and
5 obtained valid combinations (the first between the parent
and C3, and the second one between C1 and C2) of space
after merging, however, it was demonstrated that the ba-
sic ChMrg merging strategy allows odd combination.

Figure 8 illustrates the extended ChMrg algorithm that
consider both the capacity and continuity constraints for
initiating a merge. It always yields contiguous spaces and,
therefore, rejected, a merge between child SimsC2 andC4.
It improves over PntMrg strategy in a sense that it merges
quicker by considering the child Sims as in step 4, where

Figure 7: Contracting a 9-region world with the ba-
sic ChMrg Strategy.

Figure 8: Contracting a 9-region world with the exten-
ded ChMrg strategy.



Load Balancing for Virtual Worlds by. . . Informatica 42 (2018) 107–116 115

two integrations happened, one between the parent and C4

and the other between C1 and C2. However, it potenti-
ally transfers the content and players multiple times which
might degrade the overall system performance.

5.3.3 Discussion

The merging strategies (both PntMrg and ChMrg) demon-
strated in this work have worth and limitations. Both of
them ultimately return the whole world back to the pa-
rent Sim. Normally, a merge operation is initiated when
player capacity is not high. The PntMrg strategy is sim-
ple but takes more time and holds resources for longer than
the ChMrg strategy. The ChMrg strategy copes with the
issues in PntMrg strategy and release resources much quic-
ker. However, the ChMrg strategy potentially transfers re-
gions (both content and players) between Sims multiple ti-
mes and it brings a bad experience to the users. We have
demonstrated both the strategies, and they could be adop-
ted according to requirements. However, the basic strate-
gies were unable to avoid odd cases. Odd combinations are
rejected by both the extended strategies. To manage bigger
worlds and the un-predictable nature of users, we suggest
using ChMrg strategy as PntMrg might be blocked for lon-
ger. However, both have the potential to cope with resource
under-utilisation issues. Further details on this are beyond
the scope of this article and interested readers may read our
detailed work on this in [6].

6 Conclusion
In this article, we presented the extended aggregation and
merging processes, to cope with the limitations in basic ver-
sions of these mechanisms. It provided an overview of our
scalable infrastructure comprises of splitting, merging and
load distribution algorithms in comparison with other me-
chanisms found in the Literature. It examined current and
extended operations for both the aggregation and merging,
and provided a justification for the continuity model in ad-
dition to SplitCapacity and MergeCapacity in their corre-
sponding operations. The extended operations have poten-
tial of getting aggregation and merging robustly and they
are illustrated with some simple examples from the results
obtained from our prototype for scalable virtual worlds.
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