
 Informatica 31 (2007) 93–104 93

Designing New Ways for Selling Airline Tickets
Mladenka Vukmirović
Industry Development Department, Montenegro Airlines
Beogradska 10, 81000 Podgorica, Montenegro

Michał Szymczak
Department of Mathematics and Computer Science
Adam Mickiewicz University
Umultowska 87, 61-614 Poznań, Poland

Maciej Gawinecki
Systems Research Institute, Polish Academy of Science
Newelska 6, 01-447 Warsaw, Poland

Maria Ganzha,
Elblag University of Humanities and Economics, Elbląg, Poland
ul. Lotnicza 2, 82-300 Elbląg, Poland
and
Systems Research Institute, Polish Academy of Science
Newelska 6, 01-447 Warsaw, Poland

Marcin Paprzycki
Computer Science Institute, SWPS
Chodakowska 19/31, 03-815 Warsaw, Poland
and
Systems Research Institute, Polish Academy of Science
Newelska 6, 01-447 Warsaw, Poland

Keywords: software agents, air-travel ontology, travel support system, e-commerce, e-auctions, OTA, IATA

Received: October 12, 2006

Large body of recent work has been devoted to multi-agent systems utilized in e-commerce; in
particular, autonomous software agents participating in auctions. In this context we modify a model
agent-based e-commerce system so that it can serve as an airline ticket auctioning system. Such a
system can be then combined with a Travel Support System that utilizes ontologically demarcated travel-
content. To achieve this goal, air travel data has to be demarcated utilizing an air travel ontology that
has to support existing domain-specific real-world standards. One of such standards that steadily gains
popularity in the air travel industry (and other travel areas) is the Open Travel Alliance (OTA)
messaging system that defines, among others, the way that entities should communicate about air travel
related issues. The aim of this paper is to outline our efforts leading toward creating an agent-based
system for selling airline tickets that utilizes an air-travel ontology that matches the OTA messaging
specification as well as satisfies procedures described in IATA manuals.
Povzetek: Opisan je večagentni system za prodajo letalskih kart.

1 Introduction
Broadly understood e-commerce is often closely
associated with software agents, which are to facilitate
higher quality information, personalized
recommendations, decision support, knowledge
discovery etc. [27]. When developed and implemented,
agent systems are to be, among others, adaptive,
proactive and accessible from a broad variety of devices
[42]; and as such are to deal autonomously with
information overload (e.g. large number of e-shops
offering the same product under slightly different
conditions—price, delivery conditions, warranty etc.).

Moreover, recent advances in auction theory have
produced a general methodology for describing price
negotiations [8, 9]. Combination of these factors gave
new impetus to research on automating e-commerce [24].
In this context, we have started working on two
independent research projects. The first one is devoted to
the development of a model agent-based e-commerce
system [2–5, 12 and references to our work cited in these
papers]. In this system, we model a distributed
marketplace where buyer agents approach e-stores and
engage in price negotiations with seller agents. What
makes our work unique is, among others, an attempt at
conceptualizing not only price negotiations, but also a
complete process from the moment when User-Cuyer

94 Informatica 31 (2007) 93–104 M. Vukmirovič et al.

“decides” to make a purchase of product P to the
successful purchase (or to a decision that such a purchase
is impossible – e.g. due to the market conditions). The
second project is an agent-based Travel Support System
(TSS) [13, 39, 40]. In the TSS, travelers are to find
complete support of their needs including, among others,
items like restaurant information, historical points of
interest, local weather etc. The central part of the TSS is
a Jena-based repository [20, 21] that contains travel-
related data is represented as RDF demarcated instances
of a travel ontology [13]. Specifically, we have
developed a complete ontology of a hotel (understood as
a travel-related entity) and a restaurant; and then merged
them [35]. The overarching goal of the design of the TSS
was delivery of personalized information to users [13].
More recently we have asked, what would happen if our
model e-commerce system had to be used in a more
realistic scenario, where instead of an unspecified
product P, airline tickets were to be sold and the system
would have to interact with an actual airline reservation
system. As a result we have proposed an augmented
system in which two additional agents: a FlightOffer

Agent (FOA) and a Reservation Agent were created to
interact with Global Distribution Systems (GDS), e.g.
AMADEUS or SABRE [1, 33] and facilitate delivery of
all necessary air-travel related information.
In the next step we have considered how this augmented
system could be integrated with the TSS. Since in the
TSS travel data is stored as instances of travel ontologies
(currently hotel and restaurant data), air travel related
data should be also stored in the same way. Furthermore,
air travel ontology that is to be used within the system
should be tightly integrated with ontologies already
existing in the system. After a thorough analysis of
existing air-travel ontologies we have decided to develop
our own [40].
The aim of this paper is to summarize our research
results up to date. In the next section we present the
augmented ticket auctioning system. We follow (in
Sections 3 and 4) with a list of existing travel-related
ontologies and a summary of the Open Travel Alliance
(OTA) messaging system. OTA messages are then used
as a starting point to design an air travel ontology, which
is outlined in the next section.

Figure 1: Airline ticket auctioning system – use case diagram.

2 Airline ticket auction system

Before proceeding with the description of the system, let
us point some of the assumptions made in our work. (1)
In our original agent-based e-commerce system e-stores
were “drivers” within the marketplace. In other words,
buyers could purchase only products that were available
for sale through existing e-stores. We have decided, in
the initial phase of our work on airline ticket selling
system, to accept this approach (while planning to
remove this limitation in the future). Therefore, in the
augmented system, multiple “travel agencies” sell tickets

to a variety of “popular destinations.” They obey basic
rules of airline ticket trading, but it is only “them” who
decides which tickets to sell. Specifically, if the user of
the system would like to fly from Tulsa, OK to San
Diego, CA, she may not find such a connection. At the
same time, connections between Amsterdam and Detroit,
MI may be sold by every e-store. While this assumption
may seem limiting, we would like to point out that
success of priceline.com (and other auction places that
sell airline tickets) makes our model scenario “realistic
enough.” (2) While we are utilizing the CIC Agent that
stores “yellow-pages” (what?) and “white-pages” (who?)
information as the approach to matchmaking [38], we see
possible interesting extensions of its role in the system. It

DESIGNING NEW WAYS FOR SELLING... Informatica 31 (2007) 93–104 95

could be possible to allow the CIC Agent to study market
trends and sell this information to interested travel
agencies. (3) In all situations where it was possible we
utilize existing structures that have been described in [2–
5, 10] and interested readers should consult these sources
for further details.
Let us represent design of the system through its UML
use case diagram in Figure 1 (detailed descriptions of the
system can be found in [39]). We can distinguish three
major parts of the system. (1) The Information center
area where white-page and yellow-page information is
stored and serviced by the CIC Agent. As specified
above, currently, User-Merchants request that their e-
stores sell tickets only for specific routes that they
believe to be profitable. Each such route is advertised
through the CIC. Every time the Client Agent is
searching for an airline ticket for its User-Client it
communicates with the CIC to find out which e-travel
agencies sell it. (2) The Purchasing side where agents
and activities representing the User-Client are
represented. Here the User-Client informs its Client
Agent which tickets she would like to purchase. While
the Client Agent should be viewed as an incarnation of a
Personal Agent [24] that knows preferences of its User-
Client and autonomously acts on her behalf, their exact
interrelations will be established in the future. Client
Agent obtains from the CIC information which e-travel
agencies sell requested tickets and sends a Buyer Agent
to each one of them. Buyer Agents engage in price
negotiations with Seller Agents. Successful price
negotiations results in a reservation. Client Agent decides
which agency to make a purchase from and, if the
reservation did not expire and the tickets are still
available in the GDS, they are purchased. (3) The Seller
side involves Shop Agent acting on behalf of its User-
Merchant and attempting at selling air tickets for routes
defined by her. It interacts with the FlightOffer Agent in
creating a list of specific offers that are registered with
the CIC. Upon successful price negotiation the
Reservation Agent creates and manages a reservation
and, if this is to be the case, is responsible for completing
the purchase. Observe that both the FlightOffer Agent
and the Reservation Agent interact directly with the GDS.
In this way they act as “wrapper agents” translating data
between the outside world (the GDS) and the system. Let
us now describe in more details the roles of these agents
that have been added, or that act differently than in the
original e-commerce system.

2.1 Shop Agent
Shop Agent (SA) acts as the representative of the User-
Merchant and, at the same, time participates in the
Selling function of the system. As specified above, in our
current system design, it is the User-Merchant who
specifies the input provided to the system. Specifically,

for each route that is to be offered, she specifies:
departure airport code, destination airport code, booking
class, fare basis code, and the initial rule by which seats
are to be offered for sale. For example, if User-Merchant
wants to sell out seats that would have been offered for
Advanced Purchase Excursion Fare—APEX [18, 19] but
time limit for this fare has expired, User-Merchant would
specify the number and the period for which she wants to
offer seats on specific flights. This info would be used in
availability check and price retrieval. The time-period
would be needed to set bounds within which flights
should be offered. Optionally User-Merchant can specify
flight number as well. This narrows down the availability
list and may be necessary in the case when there is more
then one flight per day between two given destinations.
Furthermore this can be used also in the case when, for
instance, user-merchant wants to offer seats on morning
flights, but not on evening flights. In this case she can
specify which flight number(s) can be chosen from. In
this way, all other possible flight numbers are excluded.
Obviously, it is possible to extend functionality of our
system. For instance, while at present our system acts
only as a “distributor” of a predefined set of tickets, it is
possible to modify it in such a way that the SA could start
distributing (acquire and put for auction) also tickets for
routes that User-Clients are looking for. Since the CIC
agent stores information about all unfulfilled User-Client
queries, an SA could be enabled to obtain an access to
this data (e.g. purchase it), analyze it and decide that, for
instance, there is a growing need for tickets between
Podgorica and Beijing and offer these for sale.
Statechart diagram of the Shop agent is depicted in
Figure 2. At first the SA creates the Gatekeeper Agent
(which plays here exactly the same role as described in
[6]) and waits for a User-Merchant order. After receiving
such an order the SA creates FlightOffer Agent, which
communicates with the GDS and gathers needed
information to create list of offers for the Shop Agent
(one FlightOffer Agent is created for each route to be
serviced and exists for as long as tickets for a given route
are sold by the SA). List of offers includes information
about every itinerary: data about both (inbound and
outbound) flight numbers, number of seats and class of
service for both flights etc. Shop Agent creates also Seller
Agent(s), “introduces” them to the Gatekeeper, and
enters a complex state called Selling. Note here that
Seller Agents play exactly the same role as that described
in [6]; they are to interact with incoming Buyer Agents
and through some form of price negotiation mechanism
(e.g. an auction) select the Buyer that may purchase the
ticket. In the Selling state the SA is listening to its Seller
Agent(s). After receiving a message from one of the
Seller Agents – informing about the result of price
negotiations – the Shop Agent acts depending on content
of that message.

96 Informatica 31 (2007) 93–104 M. Vukmirovič et al.

Figure 2: Shop Agent statechart diagram.

1. If the Seller informs the SA about a winner of price
negotiations the Shop Agent waits for the corresponding
Buyer Agent to confirm that it plans to actually buy the
ticket (see also [10] for more details). Here, we have to
stress, that in our general e-commerce model it is natural
that multiple Buyer Agents visit multiple e-stores [10].
Specifically, separate Buyer visits each e-travel agency
that offers ticket(s) satisfying needed itinerary. The end
of price negotiation means that the Buyer should consult
with the Client Agent. Therefore, the SA does not know if
the winner of price negotiations will actually attempt at
making a purchase.
2. If the Buyer Agent confirms it wants to buy a ticket,
the Shop Agent creates a Reservation Agent (RA), which
communicates with the GDS to make a reservation.
There are then the following possibilities:

– If the RA was able to reserve tickets (it is
possible that while the negotiations were taking
place all tickets available in a given class of service
etc. are already gone), it sends the reservation data to
the Shop Agent. Upon reception of the data (all
communication in the system is carried using ACL
messages) the Shop Agent transfers it further to the
Buyer Agent and carries out standard procedures
involved in completing the sale (Figure 1, state “Sale
finalization”).
– In the opposite case (the RA was not able to
secure the reservation) the Shop Agent notifies the
Buyer Agent that reservation is impossible and kills
the Reservation Agent.

3. If the Buyer Agent sends message that it does not want
to make a purchase, this fact is registered in a local
Knowledge Database. More precisely, all information

about processes that take place within the shop when it is
attempting to sell tickets is recorded in the Knowledge
Database. In the future, this information will be used by
the SA to adapt its behavior. Currently we denote this fact
by introducing the Decision Making box, which denotes
multi-criterial decision making. For instance, one of
important factors that influences the way that the SA
interacts with incoming BAs is trust (see for instance [7,
28]). It should also be mentioned that in our system we
utilize a modified negotiation framework [3, 4, 6]
introduced originally by Bartollini, Jennings and Preist
[8, 9]. In this framework, the negotiation process was
divided into a generic negotiation protocol and a
negotiation template that contains parameters of a given
negotiation. These parameters specify, among others, the
price negotiation mechanism itself. Observe, in Figure 2,
that one of possible results of Decision Making is change
of the negotiation template. In other words, the SA may
decide that since only very few tickets are left but there is
also only very short time to sell them, it will deeply
discount them and sell them with a fixed price, or
through a very short time lasting English auction with a
low threshold value and a relatively large increment.
4. If there is no winner, the Shop Agent writes
information into the Knowledge Database and starts to
analyze the current situation (the Decision Making box in
Figure 2). As a result it may change the negotiation
template, or request another itinerary from the
FlightOffer Agent. Finally, it may establish that for that
given route (User-Merchant order) either there is nothing
more to do (all tickets have been sold) or that nothing can
be done (the remaining tickets cannot be sold in the
current condition of the market). Then it will remove all

DESIGNING NEW WAYS FOR SELLING... Informatica 31 (2007) 93–104 97

“servant” agents servicing that route and inform its User-
Merchant about the situation. It is important to note that
we assume that in all price negotiation mechanisms the
Seller institutes a time limit for negotiations. This
moment is presented within the Shop Agent diagram as a
sub-state “Counting time” (within the Selling state). If
the Seller does not sell any tickets within that time the
Shop Agent, again, registers this information in the

Knowledge Database, kills this Seller and notifies its
user-merchant accordingly. Following, the SA enters the
Multi-criterial Decision Making state. As described
above, here it can decide, among others, to sell more
seats on some specific itinerary or to change the template
of negotiations or to conclude that nothing more can be
sold and its existence should be completed.

Figure 3: FlightOffer Agent statechart diagram.

2.2 FlightOffer and Reservation Agents
These two agents have been added to the system and
their role is to communicate with the GDS. The
statechart diagram of the FlightOffer Agent is
presented in Figure 3.
This agent communicates with the GDS to find
information about flights that satisfy conditions
specified by the User-Merchant. If such flights are
available the FlightOffer Agent prepares (process
represented by actions that are enclosed within multi-
state boxes Checking availability, Find Class of
service capacity, Price retrieval and Analyzing
module) a List of Offers for the Shop Agent. All the
multi-state states—Checking availability, Find Class
of service capacity, Price retrieval and Analyzing
module—involve communication with the GDS. In
Figure 4 we present the statechart of the Price
retrieval sub-state to illustrate the nature of proposed
communications between the FlightOffer Agent and
the GDS. Upon obtaining all the necessary
information form the GDS it sends the information to
the Shop Agent. Note that the role of the Analyzing
module is to check the request of the User-Merchant
against the data retrieved from the GDS to assure
consistency of the final offer (e.g. if the User-
Merchant requested 10 seats, but only 5 are available
then only 5 can be in the offer). The second agent that
communicates with the GDS is the Reservation Agent.
It is created by the Shop Agent after receiving, from

the Buyer Agent, confirmation of willingness to make
a purchase. Its function is to make an actual
reservation within the GDS server. In case of
successful completion of its task the Reservation
Agent transfers all reservation’s data to the Shop
Agent. If the reservation is impossible it informs about
it the Shop Agent. Both cases mean that its job is
complete and it then self-destructs.

Figure 4: FlightOffer Agent’s Price retrieval sub-state

statechart diagram

Let us now consider the question of integrating this
system with the Travel Support System (TSS). While
there is a number of interesting questions that would
have to be addressed, the one that we are concerned
with in this paper is as follows. In the TSS all data is
stored in the system in a semantically demarcated

98 Informatica 31 (2007) 93–104 M. Vukmirovič et al.

fashion. Furthermore, we envision the augmented
e-commerce system as comprising a number of e-
travel agencies that utilize methods developed there to
sell airline tickets for selected routes. In this case we
have to deal with the following situation. Data stored
in and provided by the GDS is not ontologically
demarcated. Hotel and restaurant information stored in
the travel agency is ontologically demarcated.
Therefore, to be able to combine these two systems
one has to provide travel agencies in the e-commerce
system with: (1) air-travel ontology, that should be
integrated with the two already developed ontologies,
and (2) way of translating data provided by the GDS
into an appropriate form for the travel agency and the
GDS to “understand” each-other. In the remaining
parts of this paper we address the first issue, while in
the concluding remarks we sketch our proposed
solution of the second one.

3 General and travel ontologies
As the first step in the direction of being able to utilize
an air travel ontology, we have researched the existing
available ontologies.

While the largest general ontology building
projects, such as (1) the Cyc project [31], (2) WordNet
[41], (3) Suggested Upper Merged Ontology (SUMO)
[36], and (4) SENSUS [34] do not provide us with an
“ontology of travel,” there exist a number of smaller
scale attempts at defining such an ontology. (1)
Mondeca´s [30] tourism ontology defines tourism
concepts based on the WTO thesaurus. (2) The Travel
Agent Game in Agentcities (TAGA) is an agent
framework for simulating the global travel market on
the Web. Its purpose is to demonstrate Agentcities and
Semantic Web technologies [37]. In addition to the
FIPA content language ontology, TAGA defines (a)
basic travel concepts such as itineraries, customers,
travel services, and service reservations, and (b)
different types of auctions, roles participants play in
them, and protocols used. (3) Harmonize is an attempt
at ontology-mediated integration of tourism systems
following different standards [15]. Its goal is to allow
organizations to exchange information without
changing data structures. The Harmonize project also
involves sub-domains that are only partially related to
the world of travel: geographical and geo-spatial
concepts, means of transportation, political, temporal,
activity/interest, gastronomy etc. These sub-domain
concepts can be used within the travel system
(directly, as needed) or incorporated into the ontology
constructed for the system. It is claimed that the next
generation of “eTourism” will be powered by the
Semantic Web technology (resulting in an eTourism
Semantic Web portal which will connect the
customers and virtual travel agents from anywhere at
anytime). Goes with out saying that this is a very
interesting project, however, airline ticket sales are not
included in the current version of Harmonize
ontology. (4) Finally, a number of “minimalist” travel
ontologies can be found within the DAML language

portal [11]. For instance, the Itinerary-ont is an
ontology for representing travel itineraries. It reuses
the airport codes ontology and involves definitions of
terms like Aircraft, Class, Flight etc. Another example
is the Trip Report Ontology that defines Airfare,
Amount, Date, etc., and models on-line sale.

The complete list of pros and cons for ontologies
listed above may be found in [40]. There, we report
results of our in-depth analysis of the possibility to
utilize any of them in airline ticket sales. Overall, none
of them had a fully developed air travel part and that
could also interface with an actual GDS, and therefore
we had to develop our own, based on the Open Travel
Alliance messaging system.

4 OTA and OTA Air Messages

The Open Travel Alliance (OTA) is a non-profit
organization working to establish a common
electronic vocabulary for exchange of travel
information. Such an exchange is to take form of
standardized eXtensible Markup Language (XML)
messages. OTA specifications have been designed to
serve: (a) as a common language for travel-related
terminology, and (b) as a mechanism for exchange of
information between travel industry members [14].
The OTA Air Messages standard, which is of
particular interest in our work, specifies structure and
elements of different scenarios involved in selling air
travel tickets. Let us note that since this is a
specification of messaging, it does not cover any
other operations involved in selling air-tickets (e.g.
airfare calculations). These operations have to be
treated separately. OTA messages have been
proposed as pairs of request and response messages
(RQ / RS below). Let us summarize their main
features (their complete description can be found in
[32]).
OTA_AirAvailRQ/RS – establishes airline flight
availability for a city pair, specific date, specific
number and type of passengers. The request can also
be narrowed to a specific airline, flight or booking
class. Optional requested information can include:
time / time window, connecting cities, client
preferences (airlines, cabin, flight types etc.). The
response message (RS) contains flight availability.
Furthermore, a set of origin and destination options is
returned, each of which contains one or more
(connecting) flights that serve that city pair. For each
flight information about: origin and destination
airports, departure and arrival date/times, booking
class availability, equipment, meal information and
code-share information is returned.
OTA_AirBookRQ/RS – requests to book a specific
itinerary for one or more identified passengers. The
message contains optional pricing information,
allowing the booking class availability and pricing to
be rechecked as part of the booking process. Optional
requested information can include: seat and meal
requests, Special Service Requests (SSR), Other
Service Information (OSI), remarks, fulfillment

DESIGNING NEW WAYS FOR SELLING... Informatica 31 (2007) 93–104 99

information – payment, delivery details, type of ticket
desired. If booking is successful, the RS message
contains the itinerary (including the directional
indicator, status of booking, and number of
passengers), passenger and pricing information sent
in the request, along with a booking reference number
(PNR Locator) and the ticketing information. The RS
echoes back received information with additional
information – booking reference from the GDS
through which reservation was created.
OTA_AirFareDisplayRQ/RS – allows a client to
request information on fares, which exist between a
city pair for a particular date or date range. No
inventory check for available seats on flights is
performed by the server before the RS is send back.
The request can optionally contain information
indicating that a more specific response
(e.g. passenger information, specific flight
information and information on the types of fares that
the client is interested in) is required. The RS
message repeats FareDisplayInfo elements, each of
which contains information on a specific fare contract
including airline, travel dates, restrictions and pricing.
It can also return information on other types of fares
that exist, but have not been included in the response.
OTA_AirFlifoRQ/RS – requests updated information
on the operation of a specific flight (it requires the
airline, flight number and departure date; the
departure and arrival airport locations can be also be
included). The RS includes real-time flight departure
and arrival information. It also includes: departure
airport, arrival airport, marketing and operating
airline names; when applicable, flight number, type
of equipment, status of current operation, reason for
delay or cancellation, airport location for diversion of
flight, current departure and arrival date and time,
scheduled departure and arrival date and time,
duration of flight, flight mileage, baggage claim
location.
OTA_AirLowFareSearchRQ/RS – requests priced
itinerary options for flights between specific city
pairs on certain dates for a specific number and types
of passengers. Optional requested information can
include: time / time window, connection points, client
preferences (airlines, cabin, flight types etc.), flight
type (nonstop or direct), number of itinerary options
desired. The RS contains a number of Priced
Itinerary options. Each includes: a set of available
flights matching the client’s request, pricing
information including taxes and full fare breakdown
for each passenger type, ticketing information – ticket
advisory information and ticketing time limits, fare
basis codes and the information necessary to make a
rules entry.
OTA_AirPriceRQ/RS – requests pricing information
for specific flights on certain dates for a specific
number and type of passengers. The message allows
for optional information such as fare restriction
preferences and negotiated fare contract codes to be
included. The pricing request contains information
necessary to perform an availability / sell from

availability / price series of entries for an airline CRS
or GDS. The RS contains a Priced Itinerary that
includes: set of flights, pricing information including
taxes and full fare breakdown for each passenger
type, ticketing information, fare basis codes and the
information necessary to make a fare rules entry.
OTA_AirRulesRQ/RS – requests text rules for a
specific fare basis code for an airline and a city pair
for a specific date. Negotiated fare contract codes can
be included in the request. The RS contains a set of,
human readable, rules, identified by their codes.
OTA_AirSchedulesRQ/RS – provides customer, or a
third party, with ability to view flight schedules. It
requires specification of the departure and arrival
cities and a specific date. It offers flight information
on airlines that provide service between requested
cities and could be used when customer: (1) wants to
determine what airlines offer service to/from specific
destinations, (2) is looking for a specific flight
number – by entering the arrival and departure cities,
and the approximate arrival or departure time,
specific flight number can be found, (3) needs to
determine the days of the week that service is
scheduled to and from requested destinations, (4)
wants to determine aircraft type used to fly that route.
Message may request other information that
customers are interested in: meal service, duration of
flight, on-time statistics and if smoking is allowed. In
addition, these messages provide foundation for
electronic timetables.
OTA_AirSeatMapRQ/RS – displays seats available
on a given flight, as well as their location within the
aircraft. It is used o make seat assignments as it
identifies all information necessary to request and
return an available seat map for a particular flight.
Types of information for the seat map request
include: airline, flight number, date of travel, class of
service and frequent flier status. The RS includes:
flight, aircraft and seat description information.
OTA_AirBookModifyRQ/OTA_AirBookRS –
requests to modify an existing booking file. It
contains all elements of the OTA_AirBookRQ plus a
general type of modification, i.e. name change, split,
cancel or other; as indicated with the attribute
ModificationType. The modification operation on
different elements is either indicated with the existing
attribute Status (for air segments, SSR’s and seat
requests) or with attribute Operation of type
ActionType for other elements (i.e. other service
information, remarks or AirTraveler elements). In the
AirBookModifyRQ, all data to be changed is
submitted and in the AirReservation element all
existing data may be submitted. This allows the
receiving system to perform a consistency check
before updating the booking file (but to keep the
message small, this part can be omitted). Changes to
a booking (1) may result in required updates of the
ticket (e.g. revalidation), (2) may imply charges for
the change, (3) the pricing may change, and/or (4)
some fees may need to be collected. Pricing and
fulfillment details required to achieve results of

100 Informatica 31 (2007) 93–104 M. Vukmirovič et al.

AirBookModify ticketing, are out of scope and are
omitted. The RS confirms changes in the itinerary.

5 Proposed ontology

As indicated above, in Section 3 and in our research
[33, 34] we have established that existing air-travel
ontologies have been designed mostly as “academic”
demonstrator systems – rather than with the goal of
actually working within the context of real-life airline
reservation systems – and this explains lack of
important features when it comes to dealing with
genuine air travel data. According to our best
knowledge, the only project that actually involves
airline industry is the OTA specification (which, as
stated above, is only a messaging specification).
Therefore, we decided to create new ontology that
would: (1) utilize International Air Transport
Association (IATA) [14-19] mandated data
descriptions and recommended practices; (2) utilize
as much as possible from existing travel ontologies –
as long as they follow IATA practices, (3) match
features included in the OTA specification, and (4) be
synchronized with our existing travel ontology. To
achieve this goal we have applied a bottom-up
approach and our initial goal was to model
reservations as defined in the AMADEUS global
distribution system.
In the proposed ontology we have divided main
classes into following groups: AirTravelCodes,
AirTravel, AirInfrastructureCodes and
AirInfrastructure. AirInfrastructure group encloses
most basic terms related to air travel industry such as
Airline, Airplane and Airport. While all three are
defined in line with specifications presented in [14,
15, 19], the latter one (Airport) is a subclass of our
OutdoorLocation class that was designed for the TSS
[11]. In this way it is possible for the traveler to
obtain more data regarding the airport than the city
name, which usually is the only information that can
be obtained from other airline travel related
ontologies. Specifically, the TSS offers
OutdoorLocation class that includes, among others,
such details as geographical, urban location, address
details, nearby attractions etc. To illustrate the results,
let us present here the n-triples for this class:

base:OutdoorLocation a rdfs:Class;
 rdfs:subClassOf geo:SpatialThing;
 rdfs:comment "Outdoor location.
Geographical and urban references.".

base:address a rdf:Property;
 rdfs:comment "Address details.";
 rdfs:domain base:OutdoorLocation;
 rdfs:range adrec:AddressRecord.

base:attractionCategory a rdf:Property;
 rdfs:comment "Nearby attractions.";
 rdfs:domain base:OutdoorLocation;
 rdfs:range base:AttractionCategoryCode.

base:indexPoint a rdf:Property;
 rdfs:comment "Reference map point.";
 rdfs:domain base:OutdoorLocation;

 rdfs:range base:IndexPointCode.

base:indexPointDist a rdf:Property;
 rdfs:comment "Distance from the reference
map point.";
 rdfs:domain base:OutdoorLocation;
 rdfs:range base:IndexPointCode.

base:locationCategory a rdf:Property;
 rdfs:comment "Location category.";
 rdfs:domain base:OutdoorLocation;
 rdfs:range base:LocationCategoryCode.

base:neighbourhood a rdf:Property;
 rdfs:label "Neighbourhood";
 rdfs:comment "The neighborhood of the
Outdoor
 location.";
 rdfs:range xsd:string;
 rdfs:domain base:OutdoorLocation.

base:crossStreet a rdf:Property;
 rdfs:label "Cross street";
 rdfs:comment "The nearest street that
crosses the street that the restaurant is
on.";
 rdfs:range xsd:string;
 rdfs:domain base:OutdoorLocation.

base:AttractionCategoryCode a rdfs:Class;
 rdfs:comment "Possible categories of places
which might be of interest for
visitors/guests and can be found in the
neighborhood." .

base:IndexPointCode a rdfs:Class;
 rdfs:comment "Possible reference map
points.".

base:LocationCategoryCode a rdfs:Class;
 rdfs:comment "Possible location
categories.".

As our system needs recognition of IATA codes to
fulfill its aim, we have added three-letter IATA
airport code as a property of our class. These codes
are represented with a separate class AirportCode that
was based upon the DAML AirportCodes class from
the Itinerary-ont ontology, shortly described in
Section 3. In this way we were able to offer more
complete information about airport and to include
information that other ontologies also provide.
Following is the N3 notation based depiction of the
Airport class:

base:Airport a rdfs:Class;
 rdfs:subClassOf loc:OutdoorLocation;
 rdfs:comment "Used for airport's city and
geographical location description".

base:airportCode a rdf:Property;
 rdfs:domain base:Airport;
 rdfs:range apc:AirportCode.

For the sake of clarity, let us provide the definition
and some instances of our AirportCode class.

base:AirportCode a rdfs:Class;
rdfs:comment "Represents three letter code of
an airport".

#instances of AirportCode class
base:TGD a base:AirportCode.

DESIGNING NEW WAYS FOR SELLING... Informatica 31 (2007) 93–104 101

base:WAW a base:AirportCode.
base:LIS a base:AirportCode.
base:MOW a base:AirportCode.

AirInfrastructureCodes group contains, used in other
classes, codes for airports and countries. Included
classes are ISOCountryCode and AirportCode.
AirTravelCodes group comprises industry codes used
in GDSs and CRSs for the itinerary reservation and
the ticket issuance: IATATicketIndicator,
IATAStatusCode, CabinClass, BookingClass,
IATAFareBasis, MealCode, SSRCode, SSRMealCode,
TicketDestignator (details can be found in [16-21]).
Finally, the AirTravel group takes care of upper-level
terms that define more complex objects used in the
air travel systems. Following classes are included in
this group: OfficeID, TerminalID, AgentCredentials –
that define credentials of the GDS/CRS user,
AvailabilityDisplay – that defines available flight
options for a certain route, Flight – with usual
properties together with status statistics,
IATAItinerary – that defines itinerary for the
passenger, PNR – Passenger Name Record or, simply
described, a reservation with all details of the
passenger, the itinerary, special requests and the
GDS/CRS locator code, Pricing – that describes
available prices for a certain route with or without
taxes included, SeatMapPlan – for a certain flight,

Tariff - with Category properties that are coded as in
the ATPCO's (Airline Tariff Publishing Company)
recommendation, and TimetableDisplay – with
timetable of different airlines for a certain route.
As stated above some classes were inherited or used
as upper level classes from the TSS. These classes
were: OutdoorLocation, IATADiscountCodes*,
MeanOfPayment, FareTax, Discounts,
DiscountCodes, IATATaxCodes*, NameRecord, and
PersonTitle. Marked with * are classes that were sub
classed from classes inherited from the TSS.
One additional, very important, concept in traveling
is currency. At first we designed a very simple class
that contained only the currency code. Promptly this
showed to be insufficient as air travel currency
application involved some complicated restrictions.
As in the case of air travel ontology, we made an
effort to find an already existing ontology of
currency, and inject it into our project. We studied
several currency ontologies (more details can be
found in [35]) and found out that ontology used in
Cambia web-service [10] was the most appropriate
one. Unfortunately, it was rather broad, and
furthermore we had to modify it so that it could be
used for currency conversion guided by the IATA
conversion rules [21].

OTA message OTA message element Related properties of Tariff
class from our ontology

OTA_AirFareDisplayRS FareDisplayInfo attributes: Tariff class properties:

• FareApplicationType • FareAplicationType
• ResBookDesigCode • bk range BookingClass

• MilageIndicator • milageInd

• FareStatus • fareStatus

FareReference farebasis range IATAFareBasis class

RuleInfo subelements Tariff class properties (rules):

• MinimumStay • _06 range StayLength class

• MaximumStay • _07 range StayLength class

FilingAirline carrier range Airline class

DepartureLocation attribute LocationCode origin range Airport class

ArrivalLocation attribute LocationCode destination range Airport class

Restriction attributes Tariff class properties

• GlobalIndicatorCode • globaldirection

• MaximumPermittedMilage • mpm

PricingInfo attributes Tariff class properties

• NegotiatedFare • _35

• PassengerTypeCode • paxtype

• TicketingDestignatorCode • bk

BaseFare attributes Tariff class properties

• Amount • ow, rt
• CurrencyCode • currency range Currency class

• DecimalPlaces Defined under Currency class

Table 1: Matching the OTA message with the air-travel ontology.

102 Informatica 31 (2007) 93–104 M. Vukmirovič et al.

Figure 5: Protégé display of Tariff class.

Let us stress that since the OTA was defined as a
messaging system used for information exchange, while
the proposed ontology was created with intention to
describe persistent data in our system, therefore quite
often more then one class from our ontology has to be
used in association with a single OTA message. As
request (RQ) messages contains only data used to make a
query, let us illustrate how the RS message matches with
the proposed ontology in the case of the
OTA_FareDisplaylRS. In our ontology an equivalent
class is Tariff. In Table 1 we depict how elements of the
message match elements of our ontology. Furthermore,
Figure 5 shows relations of the Tariff class with other
classes (Airline, Airport, IATAFareBasis, StayLength,
BookingClass) from our ontology.
Finally, one of the major advantages of utilizing the
ontology technologies to demarcate electronic data is that
it provides us with a highly readable, customizable and
scalable knowledge (data) model. This allows us, among
others, to swiftly browse the travel related content, based
on the ontology concept references. Figure 6 presents
such references between Hotel, Airport, Restaurant,
OutdoorLocation, Currency and Person concepts.
Obviously, the TSS ontology and its air-ticketing-
dedicated extension contain far larger number of inter-
concept references; however, presenting them within a
single figure would greatly limit its readability.

6 Concluding remarks
In this paper we have summarized results obtained thus
far in our attempt in developing an agent-based airline
ticket selling system. We have started from presenting an
augmented version of a model agent-based e-commerce
system and followed with a suggestion that such a system

should be merged with an agent-based Travel Support
System that we are also developing. To achieve this goal
it was necessary to develop ontology of air travel. Based
on our analysis of existing travel ontologies we have
decided to develop our own ontology that is based on
IATA manuals and OTA messaging system. As a result,
in this paper we have illustrated how an ontology can be
extracted from OTA messages. Overall, when completed
(currently, the proposed merged travel ontology it is
available for comments at: http://agentlab.swps.edu.pl)
our (air) travel ontology should be capable of being used
to interface our Travel Support System with an actual
GDS (which is one of important goals of our project).
Let us note that there exist already GDS’s that allow
communication using OTA messaging. Leading this
development, AMADEUS in its newly created platform
called ‘Results CMS’ aimed at lowering cost of
operations and offered OTA messaging as a way to
distribute airline inventory to external travel sites and
dynamic package providers. Therefore, as the next step
of our research, we plan to develop two parsers. Let us
assume that a query that is related to air-travel has been
formulated in our system. Obviously, this will be a
SPARQL query (as SPARQL is our language of choice
to query ontologically demarcated content stored in Jena
repository). This query will then be translated into an
OTA message and submitted to the GDS. Such a
translation will be based on our air-travel ontology. As a
response, the GDS will send an OTA response message,
containing requested information. This message will be
then parsed and information translated into instances of
our air-travel ontology. We will then use our display
system [25] to present them to the user. We will report
on our progress in subsequent publications.

DESIGNING NEW WAYS FOR SELLING... Informatica 31 (2007) 93–104 103

Figure 6: Ontology concept references

Acknowledgement
We want to thank Mr Zoran Djurišić, the President of
Board of Directors of Montenegro Airlines for his
support of this research. Work of Maria Ganzha, Maciej
Gawinecki and Marcin Paprzycki was partially
sponsored by the EU IRG grant – project E-CAP.

References
[1] AMADEUS, http://www.amadeus.com/
[2] Bădică, C., Badita, A., Ganzha, M., Iordache, A.,

Paprzycki M.: Implementing Rule-based
Mechanisms for Agent-based Price Negotiations. In:
Proceedings of the SAC’2005 Conference (in press)

[3] Bădică, C., Ganzha, M., Paprzycki, M., Pîrv˘anescu,
A.: Combining Rule-Based and Plug-in Components
in Agents for Flexible Dynamic Negotiations. In: M.
P˘echou˘cek, P. Petta, and L.Z. Varga (Eds.):
Proceedings of CEEMAS’05, Budapest, Hungary.
LNAI 3690, Springer-Verlag, pp.555-558, 2005.

[4] Bădică, C., Ganzha, M., Paprzycki, M., Pîrvănescu,
A.: Experimenting With a Multi-Agent E-Commerce
Environment. In: V. Malyshkin (Ed.): Proceedings
of PaCT’2005, Krasnoyarsk, Russia. LNCS 3606,
Springer-Verlag, pp.393-402, 2005.

[5] Bădică, C., Bădită, A., Ganzha, M., Paprzycki, M.,
Developing a Model Agent-based E-commerce
System, in: Jie Lu et. al. (eds.) E-Service
Intelligence - Methodologies, Technologies and
Applications (to appear)

[6] Bădică C., Ganzha M., Paprzycki M., UML Models
of Agents in a Multi-Agent Ecommerce System. In:

Proceedings of the ICEBE 2005 Conference, IEEE
Press, Los Alamitos, CA, 56-61

[7] Costin Bădică, Maria Ganzha, Maciej Gawinecki,
Pawel Kobzdej, Marcin Paprzycki (2006) Towards
Trust Management in an Agent-based E-commerce
System - Initial Considerations. In: A. Zgrzywa (ed.)
Proceedings of the MISSI 2006 Conference,
Wroclaw University of Technlogy Press, Wroclaw,
Poland, 225-236

[8] Bartolini, C., Preist, C., Jennings, N.R.: Architecting
for Reuse: A Software Framework forAutomated
Negotiation. In: Proceedings of AOSE’2002: Int.
Workshop on Agent-Oriented Software Engineering,
Bologna, Italy, LNCS 2585, Springer Verlag, pp.88-
100, 2002.

[9] Bartolini, C., Preist, C., Jennings, N.R.: A Software
Framework for Automated Negotiation.In:
Proceedings of SELMAS’2004. LNCS 3390,
Springer-Verlag, pp.213-235, 2005.

[10] Cambia Service, http://zurich.agentcities.whitestein.
ch/Services/Cambia.html

[11] DAML Ontologies, http://www.daml.org
[12] Ganzha, M., Paprzycki, M., Pîrvănescu, A., Bădică,

C, Abraham, A.: JADE-based Multi-Agent E-
commerce Environment: Initial Implementation, In:
Analele Universită¸tii dinTimi¸soara, Seria
Matematică-Informatică, 2005 (to appear).

[13] Gordon M., Paprzycki M., Designing Agent Based
Travel Support System. In: Proceedings of the
ISPDC 2005 conference, IEEE Computer Society
Press, Los Alamitos, CA, 2005, 207-214

[14] http://www.opentravel.org/about.cfm
[15] Harmonize, http://deri.at/research/projects/e-tourism

104 Informatica 31 (2007) 93–104 M. Vukmirovič et al.

[16] IATA Airline Coding Directory – Airline
Designators, 70th Edition

[17] IATA City Code Directory, 43rd Edition, Effective 9
December 2005 – 31 December 2006

[18] IATA Passenger Services Conference Resolutions
Manual, 24th Edition, Effective 1 June 2005 – 31
May 2006

[19] IATA Passenger Tariff Coordination Conferences
Manual, Composite, Dec 9, 2005 until Dec 31, 2006

[20] IATA Reservation Service Manual, 23rd Edition
[21] IATA Standard Schedules Information Manual, Mar

1, 2006 until Sep 30, 2006
[22] Jena 2 Ontology API – General concepts,

http://jena.sourceforge.net/ontology/index.html#gen
eralConcepts

[23] Jena Documentation, http://jena.sourceforge.net/
documentation.html

[24] Kowalczyk, R., Ulieru, M., Unland, R.: Integrating
Mobile and Intelligent Agents in Advanced E-
commerce: A Survey. In: Agent Technologies,
Infrastructures, Tools, and Applications for E-
Services, Proceedings NODe’2002 Agent-Related
Workshops, Erfurt, Germany. LNAI 2592, Springer-
Verlag, pp.295-313, 2002.

[25] Maciej Gawinecki, Minor Gordon, Paweł
Kaczmarek, Marcin Paprzycki (2003) The Problem
of Agent-Client Communication on the Internet.
Scalable Computing: Practice and Experience, 6(1),
2005, 111-123

[26] Maes P., Agents that Reduce Work and Information
Overload. Communications of the ACM, 37, 7,
1994, 31-40

[27] Maes, P., Guttman, R.H.,Moukas, A.G.: Agents that
Buy and Sell: Transforming Commerce as we Know
It. In Communications of the ACM, Vol.42, No.3,
pp.81-91, 1999.

[28] Maria Ganzha, Maciej Gawinecki, Pawel Kobzdej,
Marcin Paprzycki, Costin Bădică (2006)
Functionalizing trust in a model agent based e-
commerce system. In: M. Bohanec et. al. (eds.),
Proceedings of the 2006 Information Society
Multiconference, Josef Stefan Institute Press, 22-26]

[29] Mladenka Vukmirović, Marcin Paprzycki, Michał
Szymczak (2006) Designing ontology for the Open
Travel Alliance Airline Messaging Specification,
In: M. Bohanec et. al. (eds.), Proceedings of the
2006 Information Society Multiconference, Josef
Stefan Institute Press, 101-105]

[30] Mondeca, http://www.mondeca.com
[31] OpenCyc, http://www.opencyc.org
[32] OpenTravelTM Alliance, Message Users Guide.

2005B Version 1.0, 2 December 2005
[33] SABRE, http://www.sabre.com/
[34] SENSUS, http://www.isi.edu/natural-

language/projects/ONTOLOGIES.html
[35] Szymczak M., Gawinecki M., Vukmirović M.,

Paprzycki M., Ontological reusability in state-of-the-
art semantic languages, Proceedings of the XVIII
Summer School of PIPS (to appear)

[36] SUMO, http://www.ontologyportal.org
[37] TAGA, http://www.agentcities.org

[38] Trastour, D., Bartolini, C., Preist, C.: Semantic Web
Support for the Business-to-Business E-Commerce
Lifecycle. In: Proceedings of the WWW’02:
International World Wide Web Conference, Hawaii,
USA. ACM Press, New York, USA, pp.89-98, 2002.

[39] Vukmirović M., Ganzha M., Paprzycki M.:
Developing a Model Agent-based Airline Ticket
Auctioning System. In: Proceedings for the IIPWM
Conference, LNAI

[40] Vukmirović M., Szymczak M., Ganzha M.,
Paprzycki M.: Utilizing Ontologies in an Agent-
based Airline Ticket Auctioning System. In:
Proceedings of the 28th ITI Conference, IEEE
Computer Society Press, Cavtat, Dubrovnik, Croatia,
385-390

[41] WordNet, http://www.daml.org/ontologies/196
[42] Wooldridge, M.: An Introduction to MultiAgent

Systems, John Wiley & Sons, 2002.

