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A modification of the Lasso method as a powerful machine learning tool applied to a genome-wide associ-
ation study is proposed in the paper. From the machine learning point of view, a feature selection problem
is solved in the paper, where features are single nucleotide polymorphisms or DNA-markers whose asso-
ciation with a quantitative trait is established. The main idea underlying the modification is to take into
account correlations between DNA-markers and peculiarities of phenotype values by using the Bahadur
representation of joint probabilities of binary random variables. Interactions of DNA-markers called the
epistasis are also considered in the framework of the proposed modification. Various numerical experi-
ments with real datasets illustrate the proposed modification.

Povzetek: Predstavljena je modifikacija metode strojnega učenja, imenovana Lasso.

1 Introduction

One of the important area for a successful application of the
artificial intelligence, in particular, machine learning algo-
rithms, is the computational biology which can be regarded
as a basis for many engineering problems in biotechnology.
An interesting task clearly illustrating the application of ar-
tificial intelligence to biotechnology problems is a genome-
wide association study (GWAS). GWAS examines the as-
sociation between phenotypes or quantitative traits and ge-
netic variants or genotypes across the entire genome. In the
machine learning framework, it can be regarded as one of
the methods for a feature selection problem where features
are the so-called single nucleotide polymorphisms (SNPs)
or DNA-markers. As pointed out in [12, 15], there are some
difficulties of solving this feature selection problem. First
of all, the number of SNPs p is typically 10–100 times the
number of individuals n in the training sample. This is the
so called p > n (or large p small n) problem, which leads
to difficulty of an oversaturated model. Another difficulty
is that SNPs may affect phenotype in a complicated and
unknown manner. For example, some DNA-markers may
interact in their effects on phenotype. This interaction is
called the epistatic effect.

A huge amount of the statistical models and methods sol-
ving the SNP selection problem have been developed the
last decades. A part of methods can be referred to as filter
methods [1, 28] which use statistical properties of SNPs to
filter out poorly informative ones. A review of filter met-
hods in GWAS is proposed by Zhang et al. [53]. The t-test,

Fisher criterion (F -statistics), χ2-statistics, ANOVA tests
are the well-known statistical methods for detecting diffe-
rential SNPs between two samples in training data.

Another part of methods called wrapper methods gene-
rally provides more accurate solutions than the filter met-
hods, but it is computationally demanding [24]. One of
the well-known wrapper methods proposed by Guyon et
al. [17] and called the Recursive Feature Elimination has
been applied to the gene selection problem for cancer clas-
sification.

Filter methods and their modifications as well as wrap-
per methods may be efficient tools for solving the problems
of GWAS. At the same time, a lot of methods of the fea-
ture selection use regression models. One of the pioneering
and the most well-known papers devoted to the use of re-
gression models in SNP selection has been written by Lan-
der and Botstein [27]. Methods for constructing the corre-
sponding regression models can be referred as embedded
methods [25]. They performs feature selection in the pro-
cess of model building and cover a lot of well-known ap-
proaches, including the Ridge regression, Least Absolute
Shrinkage and Lasso techniques [41] which are the most
popular and efficient tools in SNP selection problems. The
main advantage of using the Lasso method is that it per-
forms variable selection and classification or regression si-
multaneously. A lot of approaches using the Lasso met-
hod and its modifications have been developed for solving
the SNP selection problem in the framework of the GWAS
[13, 31, 35, 36, 40, 43]. Hayes [18] provided a comprehen-
sive overview of statistical methods for GWAS in animals,
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plants, and humans. Various approaches to SNP selection
with the Lasso algorithm and other methods can be also
found in papers [16, 22, 33, 46].

The main aim of GWAS is to identify SNPs that are di-
rectly associated with a trait, i.e., the standard GWAS ana-
lyzes each SNP separately in order to identify a set of signi-
ficant SNPs showing genetic variations associated with the
trait. However, an important challenge in the analysis of
genome-wide data sets is taking into account the so-called
epistatic effect when different SNPs interact in their asso-
ciation with phenotype.

Campos et al. [12] explain some shortcomings of the
standard GWAS. They write that the currently identified
SNPs might not fully describe genetic diversity. For in-
stance, these SNPs may not capture some forms of genetic
variability that are due to copy number variation. Moreo-
ver, genetic mechanisms might involve complex interacti-
ons among genes and between genes and environmental
conditions, or epigenetic mechanisms which are not fully
captured by additive models. Many statistical approaches
make sense under the assumption that only a few genes af-
fect genetic predisposition. However, GWAS may be unsa-
tisfactory for many important traits which may be affected
by a large number of small-effect, possibly interacting, ge-
nes. Limitations and pitfalls of prediction analysis in the
framework of the GWAS have been discussed in detail by
Wray et al. [47] where it is shown how naive implementati-
ons can lead to severe bias and misinterpretation of results.

In fact, the epistatic effect can be viewed as gene-gene
interaction when the action of one locus depends on the
genotype of another locus. At the same time, there are dif-
ferent interpretations of the epistatic effect. A fundamental
critical review of different definitions and interpretations
of epistasis is provided by Cordell [11] where it is pointed
out that there are many conflicting definitions of epistasis,
which lead to certain problems in interpretations, namely,
the statistical interaction may not correspond to the biolo-
gical models of epistasis. As indicated by Wan et al. [44],
there are mainly three different definitions of gene-gene in-
teractions: functional, compositional and statistical epista-
sis. We consider only the statistical epistasis which can be
regarded as the statistical deviation from the joined effects
of two SNPs on the phenotype. At that, the individual SNPs
may exhibit no marginal effects.

A lot of methods dealing with epistasis effect have been
developed last decades [3, 30, 52, 49, 50, 51, 54]. Compre-
hensive and interesting reviews of methods detecting inte-
racting the epistatic effect were provided by several authors
[7, 45]).

Analyzing various modifications of the Lasso method
applied to the GWAS problems, we can point out that
many efficient modifications are based on applying spe-
cial forms of the penalty function, which take into account
some additional information about SNP markers and the
corresponding phenotype values. Some interesting algo-
rithms [33, 42] devoted to various penalty functions will
be studied in the next section. The use of a specific addi-

tional information allows us to improve the GWAS and is
considered in the paper.

In the present study, we modify the Lasso method by ta-
king into account some peculiarities of the double haploid
(DH) lines of barley which are very important in the plant
biotechnology. According to the DH method, only two ty-
pes of genotypes occur for a pair of alleles. From a sta-
tistical point of view, we solve a linear regression problem
with binary explanatory variables. Our method is based
on the well-known adaptive Lasso [56] and takes into ac-
count additional information about the correlation between
SNPs, frequencies of alleles and expected phenotype va-
lues. We propose to use the Bahadur representation [2] by
partially applying the ideas provided by Lee and Jun [29]
where the authors propose to apply the Bahadur representa-
tion to classification problems. The Bahadur representation
allows us to compute joint probabilities of SNPs by taking
into account the correlation between binary random varia-
bles. That is another reason why we analyze only DH lines
which produce the binary genotypes. In order to modify
the adaptive Lasso, we propose to assign penalty weights
in accordance with expected values of the phenotype with
respect to a probability mass function somehow defined on
the genotype values. In other words, computing the ex-
pected values of the phenotype in a special way is a main
idea of the proposed method. We show that the proposed
modification is directly extended on the case taking into
account the epistatic effect.

2 The Lasso method
We analyze n double haploid (DH) lines of barley or a po-
pulation from n individuals. From a statistical point of
view, marker genotypes can be treated as qualitative expla-
natory variables, i.e., Xj = (x1j , ..., xnj)

T is a predictor
representing the j-th SNP, j = 1, ..., p. Here xij is a binary
variable, i.e., xij ∈ {0, 1}. A quantitative trait of interest
or a set of the phenotype values yi ∈ R, i = 1, ..., n, can be
regarded as the response vector Y = (y1, ..., yn)

T. We also
denote X = [X1, ..., Xp] is a genotype matrix for n lines
or individuals or a predictor matrix in terms of statistics;
xT
i = (xi1, ..., xip) is a vector of alleles corresponding to

the i-th line, i = 1, ..., n.
First, we focus on the standard linear regression model

y =

p∑
i=1

βiXi + β0 + ε = Xβ+β0 + ε. (1)

Here ε is a noise variable with the zero-valued expectation;
βi is the SNP effect, β = (β1, ..., βp).

Without loss of generality, we assume the predictors and
the response are centered, and the predictors are standardi-
zed, that is

n∑
i=1

yi = 0,

n∑
i=1

xij = 0,

n∑
i=1

x2ij = 1, Xi ∈ Rp.
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This implies that the intercept is not included in the regres-
sion function.

The Lasso is a regularization technique for simultaneous
estimation and variable selection [41]. The Lasso estima-
tes are defined from the following quadratic programming
problem:

β = arg min
β∈Rp

‖Y −Xβ‖2 ,

subject to
p∑
j=1

|βj | ≤ s

for some s > 0. The Lagrange formulation is

β = arg min
β∈Rp

‖Y −Xβ‖2 + λ

p∑
j=1

|βj | ,

where λ is a nonnegative regularization parameter. The se-
cond term is the L1 penalty which is crucial for the success
of the Lasso. The Lasso estimator is usually calculated at a
grid of tuning parameters of λ, and a cross-validation pro-
cedure is subsequently used to select an appropriate value
of λ.

The Lasso penalizes the regression coefficients by their
L1 norm. However, in order to improve the performance
of the Lasso, the regression coefficients can be penalized
individually. As a result, we write the weighted Lasso esti-
mates as follows:

β = arg min
β∈Rp

‖Y −Xβ‖2 + λ

p∑
j=1

wj |βj | ,

where wj > 0, j = 1, ..., p, are weights determined a priori
in accordance with some rules. A larger weight wj corre-
sponds to a higher penalty and discourages the j-th predic-
tor from the model. Conversely, a smaller weight wj exerts
less penalty and encourages selection of the corresponding
predictor [55].

The penalized Lasso can be reformulated as the standard
Lasso problem [6]. If we introduce new covariates and re-
gression coefficients as

x̃ij = xij/wj , i = 1, ..., n, β̃j = βjwj ,

then the weighted Lasso problem can be rewritten as fol-
lows:

β = arg min
β∈Rp

∥∥∥Y − X̃β̃
∥∥∥2 + λ

p∑
j=1

∣∣∣β̃j∣∣∣ ,
where β̃ and X̃ are the vector and the matrix with elements
β̃j and x̃ij , respectively.

Zou [56] proposed one of the methods for determining
the weights wj such that wj = 1/ |βinit,j |, where βinit,j is
a prior estimator of βj , for example, the least square esti-
mator. The corresponding Lasso problem is referred as the
adaptive Lasso, and it has many nice properties improving

the performance of the Lasso. Moreover, it can be a basis
for constructing the boosting Lasso [6].

The Lasso has many interesting properties which make
the method to be very popular. At the same time, Zou and
Hastie [57] point out that in spite of success of the Lasso
it has some limitations, in particular, if there is a group of
variables among which the pairwise correlations are very
high, then the lasso tends to select only one variable from
the group and does not care which one is selected. In other
words, the Lasso tends to put all the weight on the selected
variable. On the one hand, this is a shortcoming. Many
methods have been proposed to overcome this obstacle, for
example, the so-called the elastic net [57] where the esti-
mates are defined by

β = arg min
β∈Rp

∥∥∥Y − X̃β̃
∥∥∥2 + λ1

p∑
j=1

∣∣∣β̃j∣∣∣+ λ2

∥∥∥β̃∥∥∥2 .
However, the elastic net requires to assign an additional pa-
rameter λ2 whose value is a priori unknown. On the other
hand, in contrast to the ridge regression which tends to se-
lect all of the correlated variables and make the correspon-
ding coefficients to be equal, the Lasso selects a group of
correlated variables and “isolates” it.

A special choice of the penalty term on the basis of some
prior information about SNPs or about an exploited ge-
nome selection model itself may lead to a series of useful
or important properties of the regression or classification
model corresponding to the Lasso. Liu et al. [33] tried
to apply the observed fact that there exists a natural grou-
ping structure in SNPs and, more importantly, such groups
are correlated. The authors proposed a new penalization
method for group variable selection which can properly ac-
commodate the correlation between adjacent groups. Their
method referred to as smoothed group Lasso is based on
a combination of the group Lasso penalty and a quadratic
penalty on the difference of regression coefficients of adja-
cent groups. Liu et al. [33] assume that SNPs are divided
into J groups, each with size dj , j = 1, ..., J , according
to their physical locations and correlation patterns. As a
results, the vector β = (β1, ..., βJ) is defined for groups
of SNPs, but not for separate SNPs, βj is the vector of pa-
rameters corresponding to SNPs from the j-th group. The
authors consider the quadratic loss function of the form:

l(β) =

∥∥∥∥∥∥Y −
J∑
j=1

Xjβj

∥∥∥∥∥∥
2

.

Here Xj is an n×dj matrix corresponding to the j-th group
[33]. There are two main difficulties of using the above
considered method. First, it is rather hard from the compu-
tation point of view. Second, we have to know a priori the
grouping structure SNPs.

An interesting approach for dealing with correlated co-
variates was proposed by Tutz and Ulbricht [42]. Their
method utilizes the correlation between predictors expli-
citly in the penalty term. Coefficients which correspond to
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pairs of covariates are weighted according to their marginal
correlation. The correlation based penalty is given by

Qλ(β) = λ

p−1∑
i=1

∑
j>i

{
(βi − βj)2

1− ρij
+

(βi + βj)
2

1 + ρij

}
.

Here ρij denotes the empirical correlation between the i-th
and the j-th predictors. If we have the positive correlation,
i.e., ρij → 1, then the first term in the sum becomes domi-
nant. When ρij → −1, then the second term becomes do-
minant. Both these cases lead to the approximate equality
βi ≈ βj . In case of uncorrelated predictors and ρij → 0,
the corresponding model is reduced to the ridge regression.

Another model proposed by Park and Hastie [38] con-
structs sets of indicators representing all the available fac-
tors and all possible two-way interactions in order to fit
gene-interaction models with the data consisting of ge-
notype measurements and a binary response. The obtained
grouped variables are used in the path-following algorithm
for the group-Lasso method.

In order to take into account different probabilities of fe-
ature values, in particular, to take into account the allele
frequency, Zhou et al. [55] proposed a weighted Lasso
penalty in the Lasso method such that the weights are as-
signed in accordance with the following sources of prior
knowledge. First, Zhou et al. [55] considered genotyping
errors such that the unreliable variants should be penali-
zed more. Second, they pointed out that the allele frequen-
cies can be used in accordance with an idea of Madsen and
Browning [34] where it was proposed to take the weight
w = 2

√
π(1− π) for a variant with population frequency

π by arguing that this scheme assigns smaller penalties to
rarer variants as suggested by classical population genetics
theory.

3 The proposed method

3.1 Motivation for a new penalized method

The considered in previous sections modifications of the
Lasso are efficient tools for solving the GWAS and SNP se-
lection problems. Their performance has been experimen-
tally shown by many authors [13, 22, 23, 31, 33]. Howe-
ver, every real application problem has some peculiarities
whose accounting might improve the regression method.
Let us mention these peculiarities.

1. First of all, our aim is not to find the “best” regression
model for the given information, but to select SNPs
which impact on the smallest (largest) values of the
phenotype, for example, on the heading date early flo-
wering of barley in the studied applications. This does
not mean that the whole fitted regression model is not
important for us. We have to combine two above aims.
This can be done by introducing the weighted Lasso
penalties of a special form. This form has to take into

account in the first place the smallest values of phe-
notype. Smaller values of the phenotype produce lar-
ger weights, whereas larger values of the phenotype
should be also considered. It would seem that we can
assign the weights to phenotype values with respect to
their closeness to the minimal phenotype value. Ho-
wever, the phenotype values are random and depend
on environment conditions. Moreover, the smallest
phenotype value does not mean that its value is cau-
sed by the corresponding genotype. This implies that
we cannot assign weights to the available phenotype
values. The main idea underlying the method is to as-
sign weights to expected values of the phenotype with
respect to a probability mass function somehow defi-
ned on the genotype values.

2. The genotype values corresponding to every SNP in
the studied application make up a binary vector. The
dependence of SNPs leads to dependence of the cor-
responding binary vectors which can be estimated.

3. The allele frequencies and correlations indirectly im-
pact on the smallest values of the phenotype.

3.2 A method for computing weights for the
Lasso

By extending the ideas proposed by aforementioned aut-
hors [34, 42, 55], we define the weighted Lasso penalty in
a new way. The main idea is the following. We define
the average contribution of every SNP to the mean phe-
notype value. These contributions or their function are no-
thing else but the weights wk in the adaptive Lasso. They
have to take into account the probabilities of alleles, the
correlations between SNPs and the phenotype values. The
next question is how to determine the average contribution
of every SNP. It can be carried out as follows:

1. For every genotype vector xj (the j-th line), we com-
pute joint probabilities π(xkj , xij) of all pairs (k, i)
of SNPs by taking into account correlations between
pairs of random variables (SNPs).

2. For every pair (k, i), we compute the mean phenotype
value Rki as the expectation of phenotypes with re-
spect to the joint probabilities π(xkj , xij) over all li-
nes or individuals.

3. The average contribution of every, say k-th, SNP into
the phenotype is computed by averaging the mean
phenotype values Rki over all i = 1, ..., p.

4. The weights or their function for the adaptive Lasso
are defined by the average contributions.

Below we consider every step in detail.
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3.3 Bahadur representation
The main idea for using the joint probability π(xjk, xji) is
to take into account the correlation between SNPs with in-
dices k and i. For every pair of SNPs Xk and Xi, we have
to determine the joint probability π(xkj , xij), i = 1, ..., p,
i 6= k, of the j-th individual. It can be computed by using
the so-called Bahadur representation proposed by Bahadur
[2]. The Bahadur representation takes into account the cor-
relation between binary variables, and it can be written in
the case of two binary variables with numbers k and i as

π(xk, xi) = πxk

k (1− πk)1−xk · πxi
i (1− πi)1−xi

× (1 + ρkiukui) . (2)

Here πk is the probability of an allele for the k-th SNP
or its allele frequency, i.e., πk = Pr{xk = 1}; ρki is the
correlation coefficient between the k-th and the i-th SNPs
which is defined as ρki = E [UkUi], where the random
standardized variable Uk takes the values uk such that there
hold

Uk =
Xk − πk√
πk(1− πk)

, uk =
xk − πk√
πk(1− πk)

.

Note that the first term in the right-hand side of the ex-
pression for π(xk, xi) represents the joint probability mass
function under condition that variables Xk and Xi are sta-
tistically independent. The second term includes the inte-
raction from the first order up to the second. Note also that
Uk should be evaluated by estimating πk.

The corresponding estimates of parameters πk, uk, ρki
denoted as π̂k, ûk, ρ̂ki are computed by means of the follo-
wing expressions:

π̂k =

n∑
l=1

xkl/n, ρ̂ki =

n∑
l=1

ûklûil/n,

where n is the number of individuals and

ûkl =
(xkl − π̂k)√
π̂k(1− π̂k)

is the l-th observed value of variable Uk.
It should be noted that the Bahadur representation can

be written also for joint probabilities of three, four, etc.
variables. [32] mention a property of the Bahadur repre-
sentation such that the joint probability distribution of any
subset x1, x2, ..., xt can be written as follows:

π(x1, ..., xt) =

t∏
i=1

πxi
i (1− πi)1−xi

×

1 +
∑

Q⊂{1,...,t}, |Q|≥2

ρQ
∏
k∈Q

uk

 .

Here ρQ represents ρi1,...,ik if Q = {i1, ..., ik} and |Q|
denotes the number of elements in Q. The main disadvan-
tage of the Bahadur representation is the large number of

parameters and hard computations required for getting the
probabilities. Therefore, we restrict our study only by pro-
babilities of two variables.

It should be noted that the Bahadur representation has
been used in some classification models. One of the inte-
resting models for discriminant analysis of binary data was
proposed by Lee and Jun [29]. The main contribution of
[29] is that they proposed to take into account the corre-
lation between variables or, more exactly, estimates of the
correlation by means of the Bahadur representation.

There are pros and cons of using this model when the
number of variables is larger than the number of observati-
ons. For example, Bickel and Levina [4] suppose that clas-
sification rules ignoring the correlation structure often per-
form better in this case. However, Lee and Jun [29] show
by means of various experimental studies that the correla-
tion should be taken into account in all cases.

In spite of arguments of [29] in defense of the correla-
tion analysis for high-dimensional data, there is a risk of
incorrect estimates of interactions of the large order. More-
over, it is practically impossible to compute the correspon-
ding joint probabilities when the number of SNPs is rather
large. Therefore, we propose an approach which partially
uses joint probabilities of variables and partially takes into
account the correlation between the variables.

3.4 Average contributions of SNPs
In order to determine the average contribution of the k-th
SNP into the mean value of the phenotype, we consider
all possible pairs of SNPs such that one of the SNPs in
every pair is the k-th SNP, i.e., we are interesting in consi-
dering p− 1 pairs of SNPs with numbers (k, 1), ..., (k, k−
1), (k, k + 1), ..., (k, p). Every pair, say (k, i), determines
a mean phenotype value Rki corresponding to this pair of
SNPs as follows:

Rki =

∑n
j=1 π(xkj , xij)yj∑n
j=1 π(xkj , xij)

. (3)

In other words, we can compute the expected phenotype
value under condition that every phenotype value yj is pro-
duced by the subset of the genotypes corresponding to the
k-th and the i-th SNPs. The measure Rki can be regarded
as a contribution of the k-th and the i-th SNPs to the mean
phenotype value.

Then the contribution of the k-th SNP denoted by R̃k
into the mean phenotype value can be determined through
averaging the measures Rki, i.e., it is computed as

R̃k =
1

p− 1

p∑
i=1,i6=k

Rki. (4)

It is obvious that the smaller values of the measure R̃k
give us significant or top ranked SNPs and exert less pen-
altywk, i.e., we can introduce an increasing function g such
that

wk = g (1/ |βinit,k|) .
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One of the possible functions which will be used in nu-
merical experiments is

wk =

(
R̃k −mink=1,...,p R̃k

maxk=1,...,p R̃k −mink=1,...,p R̃k

)−q
. (5)

Here q is a positive real which defines how changes of
the difference between R̃k and mink=1,...,p R̃k impact on
changes of weights wk. The number q can be regarded as a
tuning parameter whose optimal value can be obtained by
means of the cross-validation procedure.

In sum, the obtained weights take into account the cor-
relation between SNPs, the allele frequencies, binary data
and the fact that the smallest (largest) values of the phe-
notype are more important in comparison with other va-
lues because we are looking for the SNPs which impact on
the values of some trait with predefined properties, for ex-
ample, the heading date of barley should be as small as
possible. At the same time, we do not need to directly
use the obtained weights and to implement the adaptive
Lasso algorithm. It has been mentioned in the previous
section that the adaptive Lasso can be transformed to the
standard Lasso by means of introducing new covariates
x̃ij = xij/wj .

Finally, we write the following SNP selection algorithm.

Algorithm 1 The SNP selection algorithm.
Require: Y = (y1, ..., yn)

T is the response vector (phe-
notype values), X = [X1, ..., Xp] is the binary predictor
matrix (genotype values).

Ensure: β = (β1, ..., βp) is the vector of the regression
coefficients (degrees of the SNP effect).
repeat
k ← 1
Compute joint probabilities π(xjk, xji), i = 1, ..., p,
i 6= k, for all j = 1, ..., n, by means of the Bahadur
representation (2)
Compute the mean phenotype values Rki, for all i =
1, ..., p, i 6= k, by means of (3)
Compute the average mean phenotype value R̃k by
means of (4)
Compute the weights wk by means of (5)
Compute new variables x̃ik = xik/wk, i = 1, ..., n.

until k > p
Compute β̃opt by using the standard Lasso with β̃ and X̃

instead of β̃ and X.
Compute βk = β̃k/R̃k, k = 1, ..., p.

Let us indicate the main virtues of the proposed met-
hod. First of all, it does not require to develop special algo-
rithms for solving the optimization problem for computing
the vector of regression coefficients β. The obtained pro-
blem is solved as the standard Lasso algorithm after refor-
mulating the penalized Lasso.

Second, the method is rather general because we could
change the weights in (5) in accordance with our goal. For

example, in one of the applications, we have aimed to mi-
nimize the mean heading date of barley as the mean phe-
notype value. However, we could aim to maximize, for ex-
ample, the amount of grain protein. In this case, we change
(5) by taking decreasing function g as follows:

wk =

(
maxk=1,...,p R̃k − R̃k

maxk=1,...,p R̃k −mink=1,...,p R̃k

)−q
.

Here the larger values of the measure R̃k give us more sig-
nificant SNPs and exert less penalty wk.

Third, we consider not only correlations between SNPs,
but also joint probabilities accounting for correlations. The
joint probabilities are more informative in comparison with
the correlation coefficients.

Fourth, we have simplified procedures for computing the
joint probabilities. This substantially reduces the computa-
tion time.

3.5 The proposed method with epistatic
effect

A lot of studies devoted to the epistatic effect (see, for ex-
ample, [5]) consider extension of the so-called main effect
model (1) on the interaction model which can be written as

Y =

p∑
i=1

βiXi+
∑

i<j, i,j=1,...,p

βijXiXj+β0 + ε. (6)

The second term in (6) corresponds to pairwise interacti-
ons whose number is p(1−p)/2. Here βij is the parameter
characterizing the epistatic interaction effect of a pair SNPs
with indices i and j. Now the weighted Lasso estimates can
be written as follows:

(β, β∗) = arg min
β∈Rp

‖Y −Xβ −X∗β∗‖2

+ λ

p∑
j=1

wj |βj |+ λ
∑

i<j, i,j=1,...,p

wij |βij | ,

where β∗ = (β12, ..., βp−1,p) is the additional vector cha-
racterizing the epistatic interaction effect of every pair of
SNPs; X∗ = (X1X2, ..., Xp−1Xp) is the vector of cova-
riates corresponding to pairwise interactions; wij > 0 are
weights penalizing the additional parameters βij , i < j,
i, j = 1, ..., p, in accordance with the rules of the adaptive
Lasso [55].

It can be seen from the previous section that the weight
or contribution of the pair of the k-th and the i-th SNPs
into the phenotype values can be determined by the mean
phenotype value Rki obtained by means of (3). It is inte-
resting to note that, in contrast to the k-th SNP contribu-
tion R̃k obtained in a heuristic way (5), the valueRki is the
expectation of the phenotype with respect to the probabi-
lity mass function π(xkj , xij)/

∑n
j=1 π(xkj , xij). So, the

weight wij can be directly computed as

wij =

(
Rij −minij Rij

maxij Rij −minij Rij

)−q
.
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In order to take into account the interactions and to im-
plement the method for epistasis detection, we apply a two-
stage procedure (see the Screen and Clean method propo-
sed by Wu et al. [48] for example). The first stage is
for constructing the main effect model and searching for
marginal significant SNPs by using the proposed penalized
Lasso method with weights wk determined from (5). Then
only top ranked SNPs and pairs of SNPs composed from
the significant ones are used in the interaction penalized
Lasso model. The main idea here is to again use the Ba-
hadur representation, namely, the mean phenotype values
Rki computed by means of (3). This is a very important
place because we do not need to repeatedly compute the
mean phenotype values. They have been computed during
construction of the main effect model.

We do not provide here an algorithm for computing the
optimal vectors β and β∗ because it is just a simple exten-
sion of the algorithm given above.

4 Numerical experiments
The Lasso method in numerical experiments is regarded as
a special case of a general problem solved by means of the
R-package “glmnet” developed by Friedman et al. [14].
The tuning parameter λ is computed by using the function
cv.glmnet() with 10-fold cross validation.

Below we use indices of SNPs instead of their full titles
for short.

4.1 Data sets
Numerical experiments are carried out on three populations
of double haploid (DH) lines of barley:

1. The first dataset consists of 93 DH lines of barley
described in [8] and [9]. Phenotyping and genoty-
ping data are available at Oregon Wolfe Barley Data
(OWBD) and GrainGenes Tools. The lines are ana-
lyzed with respect to seven phenotypic traits: spike
length (SL) in cm; grain number (GN); floret number
(FS); hundred grain weight (HGW) in g of 100 grains;
plant height (PH) in cm; spike number (SN); heading
date (HD) in days. The linkage map consists of 1328
markers (SNPs).

2. The second dataset consists of 92 DH lines of
barley obtained from the Dicktoo x Morex cross
and described by several authors [20, 19, 37].
Phenotyping and genotyping data are available at
http://wheat.pw.usda.gov/ggpages/DxM/ . We ana-
lyze the lines with respect to two phenotypic traits:
heading date with and without vernalization with an
8-h light/16-h dark photoperiod regime. The linkage
map consists of 117 markers.

3. The third population dataset includes 150 DH lines
of barley obtained from the Steptoe x Morex cross

[10, 21]. Phenotyping and genotyping data are avai-
lable at http://wheat.pw.usda.gov/ggpages/SxM. The
linkage map consists of 223 markers. The lines are
analyzed with respect to the heading date (HD) trait,
which is measured in 16 environments, and grain yield
(GY) trait, which is measured in 6 environments.

4.2 Missing data
Missing marker data in all the datasets are estimated by
means of the following heuristic procedure which can be
regarded as some modification of the well-known method
of K-nearest neighbors. Suppose the vector Xi correspon-
ding to the i-th SNP has a missing value at the k-th position,
i.e., Xik is missing. By using the specific Hamming dis-
tance between the vectorXi and all vectorsXj , j = 1, ...p,
j 6= i, we select K nearest neighbors Xi1 , ..., XiK or K
closest vectors. In order to take into account the missing
values, they are excluded from computing the Hamming
distance. That is why we use the specific Hamming dis-
tance in order to compare vectors with different numbers
of missing elements, i.e., we compute the distance per one
element of Xi. The imputed value is that represents the
maximum of the K values at the k-th position of all the
nearest neighbors Xi1k, ..., XiKk.

4.3 Error measure
From each of the (synthetic or real) data sets we randomly
select two distinct subsets: a training data set of n exam-
ples to learn the model, and a test data set of ntest instances
to evaluate the performance of the algorithms. The perfor-
mance is assessed by means of the mean square residual
(RMSR), which is defined by

RMSR =

∑ntest

i=1 (yi − f̂(xi))2

ntest
,

where f̂ is the function estimated by the proposed method,
and f̂(xi) is the predicted value of the phenotype value yi
for each i ∈ {1, . . . , ntest}. The error measure RMSR
is computed from repeatedly random drawing training and
test data sets and by averaging over the runs. The smal-
ler the values of the average error measure are, the bet-
ter the corresponding method. We use the one-fold-cross-
validation, i.e., ntest = 1. This is because the number of
lines is very small in comparison with the number of SNPs
and we cannot reduce them.

4.4 The first dataset
First, we investigate DH lines of barley from OWBD. Va-
lues of the RMSR for the first dataset are shown in Table
1, where the first column corresponds to seven traits ana-
lyzed, columns 2-5 illustrate the RMSR by using only 40
top ranked SNPs. At that, we study cases when the accu-
racy is determined for all lines (All lines) and for the first
10 lines with the smallest values of phenotypes (First 10
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lines). Abbreviations S.L. and P.L. denote the standard and
new proposed Lasso methods, respectively. One can see
that the proposed method provides better accuracy for the
most traits. It does not mean that it can be successful in
all cases. It is seen from Table 1 that the proposed met-
hod by traits PH and HD does not outperform the standard
Lasso. Perhaps, another function determining the weights
wk fromRk could provide better results, but we did not find
it. In addition, we can observe from Table 1 that use only
of top ranked SNPs gives outperforming results in compa-
rison with taking all SNPs for modelling GWAS. The same
can be said about considering all lines and the first 10 lines.

Table 2 illustrates how the error measures depend on the
reduced number of top ranked SNPs which are used for
constructing the GWAS for the spike length trait. We take
the fixed value of q = 0.25. It can be seen from Table 2
that the optimal number of top ranked SNPs is 40. It is
interesting to observe also that the standard Lasso weakly
depends on the SNP number.

Table 3 is similar to Table 1, but RMSRs in Table 3 are
obtained by taking into account the epistatic effect. By
comparing Tables 1 and 3, we can see that the consideration
of epistasis allows us to construct a more accurate model.
Moreover, the proposed method outperforms the standard
Lasso even for traits PH and HD which distinguished from
other traits and illustrated worse results with the proposed
method (see Table 1). This is a very important fact showing
that joint probabilities of pairs of SNPs as well as correla-
tions between SNPs may improve the GWAS.

Table 4 shows the top ranked SNPs or their pairs with
the largest 10 weights β obtained by means of the standard
Lasso and the proposed method. Moreover, Table 4 shows
the chromosomes where the corresponding SNPs are loca-
ted. One can see that the largest weight has a pair of SNPs
997× 1279. This implies that impact of the epistatic effect
is very significant. It is interesting to note that the both met-
hods select this pair of SNPs as the most significant one.

4.5 The second dataset

Let us study the dataset consisting of 92 DH lines of bar-
ley obtained from the Dicktoo x Morex cross. Tables 5 and
6 contain error measures for the Dicktoo x Morex dataset
by considering two traits mentioned above. At that, Table
5 is obtained without taking into account the epistatic ef-
fect. In Table 6, the results are represented under condition
of epistasis. Comparison of the tables shows that the use
of condition of epistasis allows us to get outperforming re-
sults.

Table 7 shows the top ranked SNPs or their pairs with
the largest 10 weights β obtained by means of the standard
Lasso and the proposed method for the heading date wit-
hout vernalization.

4.6 The third dataset
The third dataset consists of 150 DH lines of barley obtai-
ned from the Steptoe x Morex cross. Values of the RMSR
for the third dataset are shown in Table 8. It can be seen
from the table that the proposed method provides outper-
forming results. Table 9 shows also reduced values of the
RMSR for the case of taking into account the epistatic ef-
fect. Comparing Tables 8 and 9, we can conclude that the
model taking into account the epistatic effect significantly
improves the regressor accuracy when the model is con-
structed by using only 40 top ranked SNPs. Moreover, the
standard Lasso method also shows better results when the
epistatic effect is considered.

It should be noted that the results given in Tables 8 and
9 is obtained for a certain value of q, namely, for q = 0.8.
However, it is interesting to analyze how the value q impact
on numerical results by using the third dataset. Figs. 1-4
depict the difference D between RMSRs of the proposed
and standard Lasso methods for the HD trait. The larger
the values of D are, the better the corresponding proposed
method. The positive values of D say that the proposed
method outperforms the standard Lasso for the correspon-
ding values of q. It can be seen from Figs. 1-4 that there is
an optimal value of q for every condition of the model use
such that D achieves its maximum at this q. For example,
it follows from Fig. 1 that the best results by using only
top ranked SNPs can be obtained by q = 0.8. If we use
all SNPs and analyze the first examples, then the optimal
value of q is 0.5 (see Fig. 2). The same conclusions can be
inferred from pictures illustrating the methods taking into
account the epistatic effect (see Figs. 3-4).

Table 10 shows the top ranked SNPs and their pairs with
the largest 10 weights β obtained by means of the standard
Lasso and the proposed method for the grain yield trait.

It is interesting to note that the use of t-statistics for com-
puting weights β of SNPs by the same parameters for GY
trait gives the following 10 top ranked SNPs:

82 81 83 84 85 79

86 130 129 80 .

One can see that the most top ranked SNPs concentrated
around the SNP with index 82. This is the obvious inte-
raction of genes in a group of SNPs located at the same
chromosome.

5 Conclusion
The results of numerical experiments and the logic under-
lying the proposed method have demonstrated that the pro-
posed method outperforms the standard Lasso for many
real datasets. Moreover, it takes into account the epista-
tic effect or the SNP-SNP interaction. It should be noted
that the proposed method is very simple from a computa-
tion point of view. It does not require to develop a special
software. The standard software (package “glmnet” in R)
can be used for the method.
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Figure 1: Difference between RMSRs of the standard and
proposed Lasso methods for top SNPs.

It can be seen from the Bahadur representation that one
of the crucial elements of the proposed method is a set of
correlation coefficients between SNPs. It should be noted
that they often use in GWAS as additional information. Ho-
wever, the correlation coefficients do not contain all proba-
bilistic information about impacts of SNPs on values of a
phenotype. The joint probabilities taking into account the
correlation between SNPs can be viewed as a way for con-
structing association between SNPs and traits.

We have analyzed DH populations of barley. According
to the DH method, only two types of genotypes occur for a
pair of alleles, i.e., every xij takes only two values. At the
same time, in diploid method, three genotypes occur, i.e.,
every xij takes three values. In this case the Bahadur repre-
sentation cannot be applied, but the Sarmanov-Lancaster
expansion [26, 39] can be used 1. This is a direction for
further research.

Of course, we have used a heuristic procedure by taking
pairs of SNPs for computing Rki by means of (3). We
could consider joint probabilities of three and more SNPs.
However, the increase of SNP numbers for computing the
joint probabilities is impossible when the total number of
SNPs is rather large. In this way, we can propose a multi-
step procedure when the large set of top ranked SNPs is
consequently determined by computing the joint probabi-
lities of SNP pairs at the first step, then by computing the
joint probabilities of SNP triples but from the reduced set
obtained at the previous step. This procedure can be con-
tinued. At that, we could use the ridge regression in order
to avoid a situation when a very small number of SNPs are
obtained at some step. However, this is a direction for furt-
her research. The above modification may be very useful
when the number of lines or individuals is small.

1A rather simple presentation of the Sarmanov-Lancaster expansion
and its usage can be found in the paper I. Goodman and D.H. Johnson,
Multivariate dependence and the Sarmanov-Lancaster expansion, 2005,
http://www-ece.rice.edu/~igoodman/papers/goodman-johnson05.pdf

Figure 2: Difference between RMSRs of the standard and
proposed Lasso methods for all SNPs.

Figure 3: Difference between RMSRs of the standard and
proposed Lasso methods for top ranking SNPs with epista-
sis.

Figure 4: Difference between RMSRs of the standard and
proposed Lasso methods for all SNPs with epistasis.
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Table 1: RMSRs for the standard and proposed Lasso for OWBD.
Top ranked SNPs All SNPs

All lines First 10 lines All lines First 10 lines
Trait S.L. P.L. S.L. P.L. S.L. P.L. S.L. P.L.
SL 1.760 0.583 1.596 0.515 3.280 4.429 2.594 3.845
GN 75.62 71.62 61.16 57.96 140.6 139.3 103.8 110.0
FS 77.86 79.59 50.39 40.78 162.0 158.9 75.68 74.60

HGW 0.134 0.121 0.094 0.085 0.209 0.186 0.147 0.137
PH 24.92 24.92 16.23 16.23 237.5 237.5 147.5 147.5
SN 17.96 16.53 8.847 8.285 27.71 27.92 12.73 12.66
HD 31.08 31.08 29.12 29.12 130.3 130.3 82.50 82.50

Table 2: RMSRs for the standard and proposed Lasso for OWBD by different numbers of top ranked SNPs.
All lines First 10 lines

SNP numbers S.L. P.L. S.L. P.L.
20 1.412 1.116 1.396 1.177
40 1.392 0.550 1.392 0.443
60 1.393 0.680 1.393 0.611
80 1.393 1.548 1.393 1.569

Table 3: RMSRs for the standard and proposed Lasso for OWBD with epistasis.
Top ranked SNPs All SNPs

All lines First 10 lines All lines First 10 lines
Trait S.L. P.L. S.L. P.L. S.L. P.L. S.L. P.L.
SL 0.815 0.724 0.697 0.652 2.866 3.638 2.622 2.630
GN 51.67 52.97 45.25 42.23 85.15 86.13 77.27 77.43
FS 44.99 70.42 33.19 27.53 72.00 102.1 51.17 50.86

HGW 0.077 0.056 0.069 0.052 0.156 0.107 0.118 0.098
PH 46.08 33.69 43.13 39.97 254.2 247.0 219.8 249.1
SN 12.21 10.42 6.842 5.274 24.26 23.84 13.34 10.71
HD 31.08 29.05 29.12 25.79 130.3 133.4 82.50 78.47

Table 4: Top ranked SNPs and their weights for the standard and proposed Lasso for OWBD HD with epistasis.
S.L. P.L.

SNP chromosome β SNP chromosome β
997× 1279 6× 6 3.421 997× 1279 6× 6 3.401

138 1 3.314 903× 325 5× 2 3.193
896 5 3.176 1101 6 −2.764

1101× 1152 6× 6 2.750 138 1 2.661
734 4 −2.683 896 5 2.634

670× 273 4× 2 −2.542 1101× 1152 6× 6 2.583
324× 903 2× 5 2.128 725 4 −2.493
1096× 976 6× 6 −1.877 670× 273 4× 2 −2.012
997× 526 6× 3 1.826 734 4 −1.629
903× 325 5× 2 1.706 1101× 976 6× 6 −1.447

Table 5: RMSRs for the standard and proposed Lasso for Dicktoo-Morex without epistasis.
Top ranked SNPs All SNPs

All lines First 10 lines All lines First 10 lines
Trait S.L. P.L. S.L. P.L. S.L. P.L. S.L. P.L.

unvernalized 43.74 44.68 18.13 17.87 63.57 60.77 26.57 27.43
vernalized 79.56 78.37 27.95 26.49 108.3 106.7 26.46 25.81
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Table 6: RMSRs for the standard and proposed Lasso for Dicktoo-Morex with epistasis.
Top ranked SNPs All SNPs

All lines First 10 lines All lines First 10 lines
Trait S.L. P.L. S.L. P.L. S.L. P.L. S.L. P.L.

unvernalized 34.33 38.85 24.08 17.63 58.63 58.28 30.46 27.81
vernalized 38.41 62.26 17.28 17.11 124.0 119.8 33.32 32.14

Table 7: Top ranked SNPs and their weights for the standard and proposed Lasso for Dicktoo-Morex HD with epistasis.
S.L. P.L.

SNP chromosome β SNP chromosome β
112 7 −7.860 112 7 −7.238
22 2 6.387 110 7 −5.242
110 7 −5.296 20 2 4.426
20 2 4.074 22 2 4.377
113 7 −2.26 113 7 −3.55
51 3 −1.684 21 2 2.645

59× 84 4× 5 −1.394 50 3 −2.398
84 5 −1.261 49× 113 3× 7 1.627
19 2 1.002 84 5 −1.174
49 3 −0.980 33× 50 2× 3 −1.037

Table 8: RMSRs for the standard and proposed Lasso for Steptoe-Morex without epistasis.
Top ranked SNPs All SNPs

All lines First 10 lines All lines First 10 lines
Trait S.L. P.L. S.L. P.L. S.L. P.L. S.L. P.L.
HD 79.05 41.95 78.68 43.73 46.62 51.37 57.49 46.66
GY 104.0 78.99 95.81 74.24 137.3 140.4 151.3 163.9

Table 9: RMSRs for the standard and proposed Lasso for Steptoe-Morex without epistasis.
Top ranked SNPs All SNPs

All lines First 10 lines All lines First 10 lines
Trait S.L. P.L. S.L. P.L. S.L. P.L. S.L. P.L.
HD 77.15 40.31 78.52 39.14 44.12 51.52 50.15 47.26
GY 87.48 23.00 78.63 18.61 156.5 161.8 192.8 171.1

Table 10: Top ranked SNPs and their weights for the standard and proposed Lasso for the Steptoe-Morex GY with
epistasis.

S.L. P.L.
SNP chromosome β SNP chromosome β
82 3 9.562 82 3 13.158
53 2 −7.067 53 2 −6.687
81 3 5.278 222× 114 7× 4 5.355
29 1 −4.62 29 1 −5.089

42× 53 2× 2 4.126 68 2 4.599
20 1 −3.693 20 1 −3.543
111 4 3.510 108 4 3.338
68 2 2.377 154× 19 5× 1 −3.156
72 2 2.348 154× 45 5× 2 3.028
203 7 −1.675 108× 105 4× 3 2.881
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