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This paper presents a summary of the doctoral dissertation [1] of the author, which analyzes in detail the
following problem. For a function T : N→ R≥0, how hard is it to verify whether a given Turing machine
runs in time at most T (n)? Is it even possible?

Povzetek: Prispevek predstavlja povzetek doktorske disertacije [1] avtorja, v kateri je podrobneje obrav-
navan naslednji problem. Naj bo T : N → R≥0 poljubna funkcija. Kako težko je preveriti, ali je časovna
zahtevnost danega Turingovega stroja T (n)? Je to sploh mogoče preveriti?

While it is tempting to argue about a Turing ma-
chine’s time complexity, we cannot algorithmically tell
even whether a given Turing machine halts on the empty
input (a folkloric result). Can we perhaps algorithmi-
cally check whether it is of a specified time complexity?
While the answer is no in most cases, there is an interest-
ing case where the answer is yes: verifying a time bound
T (n) = Cn + D, C,D ∈ N, for a given one-tape Turing
machine.

There are at least two natural types of questions about
whether a Turing machine obeys a given time bound:

– For a function T : N → R>0, does a given Turing
machine run in time O(T (n))?

– For a function T : N → R>0, does a given Turing
machine run in time T (n), i.e., does it make at most
T (n) steps on all computations on inputs of length n
for all n?

It is a folklore that it is undecidable whether a Turing ma-
chine runs in time O(1), thus the first question is undecid-
able for all practical functions T . We state a generalization
of this well known fact in the dissertation and prove it using
standard techniques. However, for the second question, it
is not hard to see that it is decidable whether a given Tur-
ing machine runs in time C for some constant C ∈ N: we
just need to simulate the given Turing machine on all the
inputs up to the length C [2]. It would be interesting if the
second question were decidable also for linear functions T .
However, we prove that it is decidable whether a multi-tape
Turing machine runs in time T (n) if and only if we have
the “eccentric” case T (n0) < n0+1 for some n0 ∈ N. The
time bound n+ 1 is special because it minimally enables a
multi-tape Turing machine to mark time while simulating
another Turing machine. The timekeeping can be done on

the input tape by just moving the head to the right until the
blank symbol at the end marks n+ 1 steps, while the other
tapes are used for the simulation. But what if the simulation
has to be performed on the same tape as the timekeeping,
i.e., how much time do we need for a one-tape Turing ma-
chine to count steps and simulate another Turing machine?
We show in [2] that Ω(n log n) time is enough:

Let T : N → R>0 be a function such that T (n) =
Ω(n log n) and, for all n ∈ N, it holds T (n) ≥ n+1. Then
it is undecidable whether a given one-tape Turing machine
runs in time T (n).

We also provide a nice contrast [2]:

For any “nice” function T : N → R>0, T (n) =
o(n log n), it is decidable whether a given one-tape Tur-
ing machine runs in time T (n).

Hence, a one-tape Turing machine that runs in time T (n) =
o(n log n) cannot count steps while simulating another
Turing machine. There is another well known fact about
one-tape Turing machines that makes the time bounds
Θ(n log n) special: these bounds are the tightest that al-
low a one-tape Turing machine to recognize a non-regular
language [4].

An interesting fact is that one-tape Turing machines that
run in time o(n log n) actually run in linear time [2, 4].
Thus, we can conclude that the most natural algorithmi-
cally verifiable time bounds for one-tape Turing machines
are the linear ones. This motivates the analysis of the com-
putational complexity of the following problems parame-
terized by integers C,D ∈ N. The problem HALT1

Cn+D is
defined as

Given a one-tape NTM∗, does it run in time Cn+D?

∗NTM is an abbreviation for non-deterministic Turing machine. Until
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and the problem D-HALT1
Cn+D is defined as

Given a one-tape DTM†, does it run in time Cn+D?

For the analyses of the problems HALT1
Cn+D and

D-HALT1
Cn+D, we fix an input alphabet Σ, |Σ| ≥ 2, and

a tape alphabet Γ ⊃ Σ. It follows that the length of most
standard encodings of q-state one-tape Turing machines is
O(q2). To make it simple, we assume that each code of
a q-state one-tape Turing machines has length Θ(q2) and
when we will talk about the complexity of the problems
HALT1

Cn+D, we will always use q as the parameter to mea-
sure the length of the input. We prove the following [3].

For all integers C ≥ 2 and D ≥ 1, all of the following
holds.

1. The problems HALT1
Cn+D and D-HALT1

Cn+D are
co-NP-complete.

2. The problems HALT1
Cn+D and D-HALT1

Cn+D cannot
be solved in time o(q(C−1)/4) by multi-tape NTMs.

3. The complements of the problems HALT1
Cn+D

and D-HALT1
Cn+D can be solved in time

O(qC+2) by multi-tape NTMs.

4. The complement of the problem HALT1
Cn+D cannot be

solved in time o(q(C−1)/2) by multi-tape NTMs.

5. The complement of the problem D-HALT1
Cn+D cannot

be solved in time o(q(C−1)/4) by multi-tape NTMs.

To put the theorem in short, the problems HALT1
Cn+D

and D-HALT1
Cn+D are co-NP-complete with a non-

deterministic and co-non-deterministic time complexity
lower bound Ω(q0.25C−1) and a co-non-deterministic time
complexity upper bound O(qC+2).

The main techical tools in the analyses of one-tape Tur-
ing machines that we used were crossing sequences and
diagonalization. We argue that our main results are proved
with techniques that relativize.
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