
Informatica 42 (2018) 145–166 145

Counterexamples in Model Checking – A Survey

Hichem Debbi
Department of Computer Science, University of Mohamed Boudiaf, M’sila, Algeria
E-mail: hichem.debbi@gmail.com

Overview paper

Keywords: model checking, counterexamples, debugging

Received: December 9, 2016

Model checking is a formal method used for the verification of finite-state systems. Given a system model
and such specification, which is a set of formal properties, the model checker verifies whether or not
the model meets the specification. One of the major advantages of model checking over other formal
methods its ability to generate a counterexample when the model falsifies the specification. Although the
main purpose of the counterexample is to help the designer to find the source of the error in complex
systems design, the counterexample has been also used for many other purposes, either in the context of
model checking itself or in other domains in which model checking is used. In this paper, we will survey
algorithms for counterexample generation, from classical algorithms in graph theory to novel algorithms
for producing small and indicative counterexamples. We will also show how counterexamples are useful
for debugging, and how we can benefit from delivering counterexamples for other purposes.

Povzetek: Pregledni članek se ukvarja s protiprimeri v formalni metodi za preverjanje končnih avtomatov,
tj. sistemov manjše računske moči kot Turingovi stroji. Protiprimeri koristijo snovalcem na več načinom,
predvsem kot način preverjanja pravilnosti delovanja.

1 Introduction

Model checking is a formal method used for the verification
of finite-state systems. Given a system model and such spe-
cification, which is a set of formal properties in temporal
logics like LTL [109] and CTL [28, 52], the model checker
verifies whether or not the model meets the specification.
One of the major advantages of model checking over ot-
her formal methods its ability to generate a counterexample
when the model falsifies such specification. The counterex-
ample is an error trace, by analysing it, the user can locate
the source of the error. The original algorithm for counte-
rexample generation was proposed by [31], and was imple-
mented in most symbolic model checkers. This algorithm
of generating linear counterexamples for ACTL, which is
a fragment of CTL, was later extended to handle arbitrary
ACTL properties using the notion of tree-like counterex-
amples [36]. Since then, many works have addressed this
issue in model checking. Counterexample generation has
its origins in graph theory through the problem of fair cy-
cle and Strongly Connected Component (SCC) detection,
because model checking algorithms of temporal logics em-
ploy cycle detection and technically a finite system model
is determining a transition graph [32]. The original algo-
rithm for fair cycle detection in LTL and CTL model was
proposed by [53]. Since then, many variants of this algo-
rithm and new alternatives were proposed for LTL and CTL
model checking. In section 3 we will investigate briefly the
problem of fair cycles and SCCs detection.

While the early works introduced by [28, 52] have inves-
tigated the problem of generating counterexample so wi-
dely, which led to practical implementation within well-
known model checkers, the open problem that emerged
was the quality of the counterexample generated and how
it really serves the purpose. Therefore, in the last decade
many papers have considered this issue, earlier in terms of
structure[36], by proposing the notion of tree-like counte-
rexamples to handle ACTL properties, and followed later
by the works investigating the quality of the counterexam-
ple mostly in terms of length to be useful later for debug-
ging. In section 3, we will investigate the methods propo-
sed for generating minimal, small and indicative counterex-
amples in conventional model checking. Model checking
algorithms are classified in two main categories, explicit
and symbolic. While explicit algorithms are applied di-
rectly on the transition system, symbolic algorithms em-
ploy specific data structures. Generally, the explicit algo-
rithms are adopted for LTL model checking, whereas sym-
bolic algorithms are adopted for CTL model checking. In
this section, the algorithms for generating small counte-
rexamples are presented with respect to each type of al-
gorithms.

However, generating small and indicative counterexam-
ples only is not enough for understanding the error. There-
fore, counterexamples analysis is inevitable. Many works
in model checking have addressed the analysis of counte-
rexamples to better understand the error. In section 4, we
will investigate the approaches that aim to help the designer

146 Informatica 42 (2018) 145–166 H. Debbi

to localize the source of the error given counterexamples.
In this section, we consider that most of these methods
range into two main categories: those that are applied on
the counterexample itself without any need to other infor-
mation, and those that require successful runs or witnesses
to be compared with the counterexamples.

Probabilistic model checking has appeared as an exten-
sion of model checking for analyzing systems that exhi-
bit stochastic behavior. Several case studies in several
domains have been addressed from randomized distribu-
ted algorithms and network protocols to biological sys-
tems and cloud computing environments. These systems
are described usually using Discrete-Time Markov Chains
(DTMC), Continuous Time Markov Chains (CTMC) or
Markov Decision Processes (MDP), and verified against
properties specified in Probabilistic Computation Tree Lo-
gic (PCTL)[78] or Continuous Stochastic Logic (CSL)
[9, 10]. In probabilistic model checking (PMC) counterex-
ample generation has a quantitative aspect. The counterex-
ample is a set of paths in which a path formula holds, and
their accumulative probability mass violates the probabi-
lity bound. Due to its specific nature, we specify section
5 for counterexample generation in probabilistic model
checking. As it was done in conventional model checking,
addressing the error explanation in the probabilistic mo-
del checking is highly required, especially that probabilis-
tic counterexample consists of multiple paths instead of a
single path, and it is probabilistic. So, in this section we
will also investigate the counterexample analysis in PMC.

The most important thing about counterexample is that
it does not just serve as a debugging tool, but it is also used
to refine the model checking process itself, through Coun-
terexample Guided Abstraction Refinement(CEGAR)[37].
CEGAR is an automatic verification method mainly propo-
sed to tackle the problem of state-explosion problem, and
it is based on the information obtained from the counterex-
amples generated. In section 6, we will show how counte-
rexample contributes to this famous method of verification.

Testing is an automated method used to verify the qua-
lity of software. When we use model checking to generate
test cases, this is called model-based testing. This met-
hod has known a great success in the industry through the
use of famous model checkers such as SPIN, NuSMV and
Java Pathfinder. Model checking is used for testing for two
main reasons: first, because model checking is fully auto-
mated, and secondly and more importantly because it de-
livers counterexamples when the property is not satisfied.
In section 7, we will show how counterexample serves as a
good tool for generating test cases.

Although counterexample generation is in the heart of
model checking, not all model checkers deliver counte-
rexamples to the user. In the last section, we will review
the famous tools that generate counterexamples. Section 9
concludes the paper, where some brief open problems and
future directions are presented.

2 Preliminaries and definitions

Kripke Structure. A Kripke structure is a tuple M =
(AP, S, s0, R, L) that consists of a set AP of atomic pro-
positions, a set S of states, s0 ∈ S an initial state, a to-
tal transition relation R ⊆ S × S and a labelling function
L : W → 2AP that labels each state with a set of atomic
propositions.

Büchi Automaton. A Büchi automaton is a tuple B =
(S, s0, E,

∑
, F) where S is a finite set of states, s0 ∈ S is

the initial state, E ⊆ S × S is the transition relation,
∑

is
a finite alphabet, and F ⊆ S is the set of accepting or final
states.

We use Büchi automaton to define a set of infinite words
of an alphabet. A path is a sequence of states (s0s1...sk),
k ≥ 1 such that (si, si+1) ∈ E for all 1 ≤ i < k. A path
(s0s1...sk) is a cycle if sk = s1, the cycle is accepting if it
contains a state in F . A path (s0s1...sk....sl) where l > k
is accepting if sk...sl forms an accepting cycle. We call
a path that starts at the initial state and reaches an accep-
ting cycle an accepting path or counterexample (see Figure
1). A minimal counterexample is an accepting path with a
minimal number of transitions.

Strongly Connected Component. A graph is a pair G =
(V,E), where V is a set of states and E ⊆ V × V is the
set of edges. A path is a sequence of states (v1, ..., vk),
k ≥ 1 such that (vi, vi+1) ∈ E for all 1 < i ≤ k. Let
π be a path, the length of π is defined by the number of
transitions and is denoted by [π]. We say that we can reach
a vertex u from a vertex v if there exists a path from v to
u. We define a Strongly Connected Component (SCC) as
a maximal set of states C ⊆ V such that for every pair of
vertices u, v ∈ C, u and v are mutually reachable. A SCC
C is trivial if C = {v}, or otherwise C is non-trivial if for
every u, v ∈ C there is a non-trivial path from u to v.

Discrete-Time Markov Chain (DTMC) A Discrete-Time
Markov Chain (DTMC) is a tuple D = (S, sinit, P, L),
such that S is a finite set of states, sinit ∈ S the initial
state,P : S × S → [0, 1] represents the transition proba-
bility matrix, L : S → 2AP is a labelling function that
assigns to each state s ∈ S the set L(s) of atomic propo-
sitions. An infinite path σ is a sequence of states s0s1s2...
, where P (si, si+1) > 0 for all i ≥ 0. A finite path is the
finite prefix of an infinite path. We define a set of paths
starting from a state s0 by Paths(s0). The probability of a
finite path is calculated as follows:

P (σ ∈ Paths(s0)|s0s1...snis a prefix of σ) =∏
i≤0<n P (si, si+1)

Linear Temporal Logic (LTL) The syntax of LTL state
formula over the set AP is given as follows :

ϕ ::= true|a|¬ϕ|ϕ1 ∧ ϕ2| © ϕ|ϕ1Uϕ2

where a ∈ AP is an atomic proposition. The Other
Boolean connectives can be simply derived using the Bool-
ean connectives ¬ and ∧. The eventual operator F and the

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 147

Figure 1: Accepting path (Counterexample).

always operatorG can be easily derived using the temporal
operator U .

Given a path π = s0s1... and an integer j ≥ 0, where
π[j] = sj , such that Words(ϕ) = {π ∈ (2AP)w)σ |= ϕ},
the semantics of LTL formulas for infinite words over 2AP

is given as follows:

π |= true⇔ true
π |= a⇔ a ∈ L(s0)
π |= ¬ϕ⇔ π 6|= ϕ
π |= ϕ1 ∧ ϕ2 ⇔ s |= ϕ1 ∧ s |= ϕ2

π |=©ϕ⇔ π [1..] |= ϕ
π |= ϕ1Uϕ2 ⇔ ∃j ≥ 0.π [j..] |= ϕ2 ∧ (∀0 ≤ k <
j.π [k..] |= ϕ1)

The semantics for the derived operators F andG is given
as follows :

π |= Fϕ⇔ ∃j ≥ 0.π [j..] |= ϕ
π |= Gϕ⇔ ∀j ≥ 0.π [j..] |= ϕ

Verifying whether a finite state system described in
Kripke structure AM satisfies an LTL property ϕ reduces
to the verification that A = AM ∩ A¬ϕ has no accepting
path, where A¬ϕ refers to the Büchi automaton that viola-
tes ϕ, Lω(A) =Words(¬ϕ). We call this procedure a test
of emptiness. So, in case AM ∩A¬ϕ 6= ∅, a counterexample
is generated.

Computation Tree Logic (CTL). We use the Computation
Tree Logic (CTL) to specify properties of systems descri-
bed using Kripke Structures. The CTL formulas are evalu-
ated over infinite computations produced by Kripke struc-
ture K. A computation of a Kripke structure is an infinite
sequence of states s0s1, ... such that si, si+1 ∈ R for all
i ∈ N. We denote by Paths(s) the set of all paths starting
at s. The syntax of CTL state formula over the set AP is
given as follows:

φ ::= true|a|¬φ|φ1 ∧ φ2|∃ϕ|∀ϕ

where a ∈ AP is an atomic proposition and ϕ is a path
formula. The path formulas are formed according to the
following grammar:

ϕ ::=©φ|φ1Uφ2

We denote by K, s |= φ the satisfaction of CTL formula at
a state s of K. The semantics defined by the satisfaction
relation for a state formula is given as follows

K, s |= true⇔ true
K, s |= a⇔ a ∈ L(s)

K, s |= ¬φ⇔ s 6|= φ
K, s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2
K, s |= ∃ϕ⇔ for some π ∈ Paths(s), π |= ϕ
K, s |= ∀ϕ⇔ for all π ∈ Paths(s), π |= ϕ

Given a path π = s0s1... and an integer i ≥ 0, where
π[i] = si, the semantics of path formulas is given as fol-
lows:

K,π |=©φ⇔ π [1] |= φ
K, π |= φ1Uφ2 ⇔ ∃j ≥ 0.π [j] |= φ2 ∧ (∀0 ≤ k <
j.π [k] |= φ1)

In case the Kripke structure violates the specification
K 6|= φ, a counterexample will be generated.

Both LTL and CTL are considered as sub-logics or frag-
ments of the logic CTL∗ [28, 52]. CTL is the subset of
CTL∗ where each path operator © and U must be imme-
diately preceded by path quantifiers ∀ or ∃, whereas LTL
is the subset of CTL∗ that consists of formulas that have
the form ∀f , where f is a path formula in which the only
state formulas are just atomic propositions [32]. ACTL is
the analogue fragment of CTL and thus of CTL∗, where
the only quantifier allowed is ∀. Using CTL∗ we can ex-
press formulas of the form ∀(FGp) ∨ ∀G(∃Fp), which is
a disjunction of LTL and CTL formula.

Probabilistic Computation Tree Logic (PCTL). Probabi-
listic Computation Tree Logic (PCTL) [78] has appeared
as an extension of CTL for the specification of systems that
exhibit stochastic behavior. We use the PCTL to define
quantitative properties of DTMCs. PCTL state formulas
are formed according to the following grammar:

φ ::= true|a|¬φ|φ1 ∧ φ2|P∼p(ϕ)

Where a ∈ AP is an atomic proposition, ϕ is a path for-
mula, P is a probability threshold operator, ∼∈ {<,≤, >
,≥} is a comparison operator, and p is a probability thres-
hold. The path formulas ϕ are formed according to the
following grammar:

ϕ ::= φ1Uφ2|φ1Wφ2|φ1U≤nφ2|φ1W≤nφ2

Where φ1 and φ2 are state formulas and n ∈ N. As
in CTL, the temporal operators (U for strong until, W for
weak (unless) until and their bounded variants) are requi-
red to be immediately preceded by the operator P. The
PCTL formula is a state formula, where path formulas only
occur inside the operator P. The operator P can be seen as
a quantification operator for both the operators ∀ (universal
quantification) and ∃ (existential quantification), since the
properties are representing quantitative requirements.

The semantics of a PCTL formula over a state s (or a
path σ) in a DTMC model D = (S, sinit, P, L) can be
defined by a satisfaction relation denoted by |=. The sa-
tisfaction of P∼p(ϕ) on DTMC depends on the probability
mass of a set of paths satisfying ϕ. This set is considered as
a countable union of cylinder sets, so that, its measurability
is ensured.

The semantics of PCTL state formulas for DTMC is de-
fined as follows:

148 Informatica 42 (2018) 145–166 H. Debbi

s |= true⇔ true
s |= a⇔ a ∈ L(s)
s |= ¬φ⇔ s 6|= φ
s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2
s |= P∼p(ϕ)⇔ P (s |= ϕ) ∼ p

Given a path σ = s0s1... in D and an integer j ≥ 0, where
σ[j] = sj , the semantics of PCTL path formulas for DTMC
is defined as for CTL as follows:

σ |= φ1Uφ2 ⇔ ∃j ≥ 0.σ [j] |= φ2 ∧ (∀0 ≤ k < j.σ [k] |=
φ1)
σ |= φ1Wφ2 ⇔ σ |= φ1Uφ2 ∨ (∀k ≥ 0.σ [k] |= φ1)
σ |= φ1U≤nφ2 ⇔ ∃0 ≤ j ≤ n.σ [j] |= φ2 ∧ (∀0 ≤ k <
j.σ [k] |= φ1)
σ |= φ1W≤nφ2 ⇔ σ |= φ1U≤nφ2 ∨ (∀0 ≤ k ≤
n.σ [k] |= φ1)

For specifying properties of CTMC, we use the Conti-
nuous Stochastic Logic (CSL). CSL has the same syntax
and semantics as PCTL, except that in CSL the time bound
in bounded until formula can be presented as an interval of
non-negative reals. Before verifying CSL properties over
CTMC, the CTMC has to be transformed to its embed-
ded DTMC. Therefore, further description of CTMC mo-
del checking is beyond the scope of this paper. We refer to
[9, 10] for further details.

Generally, two types of properties can be expressed
using temporal logics: Safety and Liveness. Safety pro-
prieties state that something bad never happens, a simple
example of that is the LTL formula G¬error that means
that error never occurs. Liveness properties state that so-
mething good eventually happens, a simple example of that
is the CTL formula (∀Greq → ∀Fgrant) that means that
every request is eventually granted.

3 Counterexamples generation

Counterexample generation has its origins in graph theory
through the problem of cycle detection. Cycle detection is
an important issue in the heart of model checking, either
explicit or symbolic model checking. To deal with this is-
sue, various algorithms were proposed for both LTL and
CTL model checking. Explicit state model checking is ba-
sed on Büchi automaton, which is a type of ω-automata.
The fairness condition relies on several sets of accepting
states, where the acceptance condition is visiting the accep-
tance set infinitely often. So, a run is accepting if only if it
contains a state in every accepting set infinitely often. As a
result, the emptiness of the language is based on checking
the non-existence of the fair cycle or equivalently the fair
non-trivial strongly connected component (SCC) that inter-
sects each accepting set. In the case of non-emptiness, the
accepting run is a sign of property failure, and as a result
it is rendered as an error trace. We call this error trace a
counterexample. So, the counterexample is typically pre-
sented by a finite stem followed by a finite cycle. Several

algorithms were proposed to find counterexamples in re-
asonable time, where finding the shortest counterexample
has been proved to be a NP-Complete problem [31, 82].

To find fair SCCs, Depth First Search (DFS) and Breadth
First Search (BFS) algorithms are used. The main algo-
rithm employing DFS is the Tarjan’s algorithm [126] that
is based on manipulating the states of the graph explicitly.
This algorithm is used to generate linear counterexamples
in LTL verification and showed promising results [43, 129].
It is also adopted in probabilistic model checking to gene-
rate probabilistic counterexamples for lower-bounded pro-
perties, through finding bottom strongly connected com-
ponents (BSCCs)[5]. BSCC is defined as an SCC B from
which no state outside B is reachable from B. Finding the
set of BSCCs over the probabilistic models is an important
issue for the verification of PCTL and CSL properties. Tar-
jan’s algorithm runs in linear time, but as the number of
states grows, it simply becomes infeasible. As a result, the
symbolic-based algorithms are proposed as a solution.

In contrast to explicit algorithms, symbolic algorithms
[17, 19] employ BFS and can describe large sets in a com-
pact manner using characteristic functions. Several symbo-
lic algorithms were proposed for computing the set of states
that contains all the fair SCCs, without enumerating them
[32, 84, 128]. We refer to these algorithms as SCC-hull al-
gorithms. Currently, most of the symbolic model checkers
are employing Emerson’s algorithm due to its high perfor-
mance, and it was proven by [58] that both of the algo-
rithms [52] and [31] can work in a complementary way.
Other works [83, 136] proposed algorithms based on enu-
merating the SCCs, we refer to these algorithms as symbo-
lic SCC-enumeration algorithms.

Different approaches for generating counterexamples are
proposed regarding the two types presented before. Clarke
et al. [31] proposed a hull-based approach based on Emer-
son’s algorithm by searching a cycle in a fair SCC close
to the initial state. Another approach by Hojati [84] was
also employed by other works for generating counterexam-
ples that use isolations techniques of the SCCs [95]. Using
Emerson’s algorithm in a combinatory way with SCC-
Enumeration algorithm is possible, but is still not guaran-
teed to get a counterexample of short length. Ravi et al.
[111] introduced a careful analysis of each type of these al-
gorithms. Since there is no guarantee to find terminal SCCs
close to the initial state, finding short counterexamples was
still a trade-off and an open problem, and thus it was in-
vestigated later by many researchers in both explicit and
symbolic model checking.

3.1 Short counterexamples in explicit-state
model checking

A counterexample in the Büchi automaton is a path σ = βγ
where β is a path without loop from the initial state to an
accepting state, and γ is a loop around this accepting state.
So that, a minimal counterexample is simply a counterex-
ample with a minimal number of transitions. More for-

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 149

1: procedure DFS(s)
2: Mark(〈s, 0〉)
3: for each successor t of s do
4: if 〈t, 0〉 not marked then
5: DFS(t)
6: end if
7: end for
8: if accepting(s) then seed := s; NDFS(s)
9: end if

10: end procedure
11: procedure NDFS(s)
12: Mark(〈s, 1〉)
13: for each successor t of s do
14: if 〈t, 1〉 not marked then
15: NDFS(t)
16: else
17: if (t==seed) then report cycle
18: end if
19: end if
20: end for
21: end procedure

Figure 2: Nested Depth First Search Algorithm[130].

mally, a counterexample σ = βγ is minimal if (|β|+|γ|) ≤
(|β′|+ |γ′|) for any path σ′ = β′γ′. With respect to this de-
finition, a counterexample has at least one transition. Many
algorithms consider the issue of generating counterexam-
ples given Büchi automaton [130, 85, 112]. All these works
employ Nested-Depth First Search (NDFS), but they are
not capable of finding a minimal counterexample. A basic
NDFS algorithm proposed by [130] is depicted in Figure
2. The algorithm is based on computing the accepting sta-
tes by performing a simple search, once an accepting state
is found, another search is performed to find an accepting
cycle through it.

Although minimal counterexamples can be computed in
polynomial time using minimal paths algorithms, the main
drawback, in fact, is the memory, where the resulting Bü-
chi automaton to be checked for emptiness is usually very
huge, the thing that makes storing all the minimal paths to
be compared so difficult.

Recently, new methods were proposed to compute mi-
nimal counterexample in Büchi automaton [77, 64, 63].
Hansen and Kervinen [77] proposed a DFS algorithm that
runs in O(n2) and they showed that O(n log n) is suffi-
cient, although DFS algorithms are memory consuming in
general. This is due to the optimizations added using in-
terleaving. Since the algorithms are based on exploring
transitions backwards, adapting this method in practice is
very difficult, especially by considering some restrictions.
While this method requires more memory than the model
checker SPIN does, [64, 63] proposed a method that does
not use more memory than SPIN does. While the first one
uses DFS and its time complexity is exponential [64], Gas-
tin and Moro proposed a BFS algorithm with some optimi-
zations able of computing the minimal counterexample in

polynomial time [63]. Hansen et al. [76] also proposed a
method for computing minimal counterexamples based on
Dijkstra algorithm for detecting strongly connected com-
ponents. A novel approach was proposed by [93] for gene-
rating short counterexamples based on analyzing the entire
model and defining which events have more contribution
to the error, these events are called crucial. In addition to
generating short counterexamples, the technique helps with
reducing the state space. The main drawback of this met-
hod is how to determine if such set of events are crucial and
really led to the error.

3.2 Short counterexamples in symbolic
model checking

The original algorithm for counterexample generation in
symbolic model checking was proposed by [31] and was
implemented in most symbolic model checkers. This al-
gorithm of generating linear counterexamples for the linear
fragment of ACTL was later extended to handle arbitrary
ACTL properties using the notion of tree-like counterex-
amples [36]. The authors realized that linear counterexam-
ples are very weak for ACTL, and thus they proposed to
generate tree-like Kripke structure instead, which is proven
to be a viable counterexample[36, 38]. Formally, a tree-
like counterexample is a a directed tree whose SCCs are
either cycles or simple nodes. Figure 3 shows an exam-
ple of a tree-like counterexample for the ACTL property
∀G¬a ∨ ∀F¬b. As we see in the figure, the counterexam-
ple consists of two paths refuting both subformulas. The
first path leads to a state that satisfies a, whereas the se-
cond path, which is expected to be an infinite one, along
which b always holds. The generic algorithm for generating
tree-like counterexamples as proposed in [36] is depicted in
Figure 4.

Figure 3: A tree-like counterexample for ∀G¬a ∨ ∀F¬b.

The counterexample is constructed from an indexed
Kripke structure Kω that is obtained by creating isomor-
phic copy for each state in the original Kriple structure K,
whereby no repeated state can be found. This process is
called path unraveling. The algorithm traverses the speci-
fication formula in depth manner, where each subformula
is evaluated recursively. The symbol O refers to temporal

150 Informatica 42 (2018) 145–166 H. Debbi

operator, and C is a global variable that is used in unrave-
ling through denoting index of states.

The algorithm outputs a sequence of descriptors of the
form < s0, .., sn >(path descriptor) and < s0, .., sn, s0 >
(loop descriptor), where

⋃
{desc1, desc2} describes a fi-

nite path leading to a cycle. The tree-like counterexample
will be then

⋃∏
, where

∏
refers to the set of descriptors

generated by CEX algorithm. The set of descriptors for the
example in Figure 3 would be: < s0, s1, s2 >, < s0, s3 >
and < s3, s4, s5 >

ω .

1: procedure CEX(K, si0, ϕ)
2: case ϕ of
3: ϕ1 ∨ ϕ2:
4: CEX(K, si0, ϕ1)
5: CEX(K, si0, ϕ2)
6: ∧i≥1ϕi:
7: ϕ1 ∧ ϕ2:
8: Select j such that K, s0 6|= ϕj
9: CEX(K, si0, ϕj)

10: ∀O(ψ1, ..., ψk):
11: Determine σ = s0, ..., sN , ..., sN+M such that

K,σ 6|= O(ψ1, ..., ψk)
12: desc1:= 〈si0, unravel(C, s1, ..., sN)〉
13: desc2:= 〈unravel(C +N, sN , ..., sN+M)〉ω
14: return desc1 and desc2
15: C := C +N +M + 1
16: for all states p ∈

⋃
{desc1, desc2} do

17: for j ∈ {1, ..., k} do
18: if K, p 6|= ψj then
19: CEX(K, p, ψj)
20: end if
21: end for
22: end for
23: end case
24: end procedure

Figure 4: The generic counterexample algorithm for
ACTL[36].

After these works of Clarke et al., many works have ad-
dressed the issue of computing short counterexamples in
symbolic model checking [117, 29, 108]. Schuppan et al.
[117] proposed some criteria that should be met for the Bü-
chi automaton to accept shortest counterexamples. They
proved that these criteria are satisfied in the approach pro-
posed by [29] just for future time LTL specification, and
thus they proposed an approach that meets the criteria pro-
posed for LTL specifications with past. The algorithm pro-
posed employs breadth-first reachability check with Binary
Decision Diagrams(BDD)-based symbolic model checker.

The authors in [108] proposed a black-box based techni-
que that masks some parts of the system in order to give
an understandable counterexample to the designer. So the
work does not just tend to produce minimal counterexam-
ples, but also, it delivers small indicative counterexample
of good quality to be analyzed in order to get the source

of the error. The major drawback of this method is that
the generalization of counterexample generation from sym-
bolic model checking to black box model checking, could
lead to non-uniform counterexamples that do not meet the
behavior of the system intended. While all of these works
are applied to unbounded model checking [117, 108], the
works [122, 120, 113] consider bounded model checking,
through lifting assignments produced by a SAT solver,
where the quality of the counterexample generated depends
on the SAT solver in use. Other works have investigated the
use of heuristics algorithms for generating counterexam-
ples [124, 50]. Although heuristics were not widely used,
they gave pretty good results and were also used later for
generating probabilistic counterexamples.

4 Counterexamples analysis and
debugging

One of the major advantages of model checking over ot-
her formal methods is its ability to generate a counterex-
ample when the model falsifies such specification. The
counterexample represents an error trace; by analyzing it
the user can locate the source of the error, and as Clarke
wrote:“The counterexamples are invaluable in debugging
complex systems. Some people use model checking just
for this feature” [27].

However, generating small and indicative counterexam-
ples only is not enough for understanding the error. There-
fore, counterexamples explanation is inevitable. Error ex-
planation is the task of discovering why the system exhibits
this error trace. Many works have addressed the automatic
analysis of counterexamples to better understand the fai-
lure. Error explanation ranges in two main categories. The
first is based on the error trace itself, through considering
the small number of changes that have to be made in order
to ensure that the given counterexample is no longer exhi-
bited, and thus, these changes represent the sources of the
error. The second is based on comparing successful execu-
tions with the erroneous one in order to find the differen-
ces, and thus those differences are considered as candidate
causes for the error. Kumar et al. [97] have introduced a
careful analysis of the complexity of each type. For the
first type, they showed using three models (Mealy machi-
nes, extended finite state machines, and pushdown automa-
ton) that this problem is NP-complete. For the second type,
they provided a polynomial algorithm using Mealy machi-
nes and pushdown automaton, but solving the problem was
difficult with extended finite state machines.

Error explanation methods are successfully integrated
into model checkers such as SLAM [12] and Java PathFin-
der JP [16]. SLAM takes less execution time than JP, and
can achieve completeness in finding the causes, but accor-
ding to Groce [67], this also could be harmful. The error
explanation process has many drawbacks; the main one is
that the counterexample consists usually of a huge number
of states and transitions and involves many variables. The

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 151

second is that model checker usually floods the designer
with multiple counterexamples, without any kind of clas-
sification. This makes challenging the task of choosing a
helpful counterexample for debugging purposes. Besides,
a single counterexample it might not be enough to under-
stand the behavior of the system. Analyzing a set of coun-
terexamples together is an option but the problem is that
it requires much effort, and even though, the set of counte-
rexamples to be analyzed could contain the same diagnostic
information, which may make analyzing this set of counte-
rexamples a waste of time. The last and the most important
problem in error explanation is that not all the events that
occur on the error trace are of importance for the designer,
so locating critical events is the goal behind error explana-
tion. In this section, we survey some works with respect to
the two categories.

4.1 Computing the minimal number of
changes

Jin et al. [92] proposed an algorithm for analyzing the
counterexamples based on the local information, by seg-
menting the events of the counterexamples in two main
segments, fated and free. The fated segments refer to the
events that obviously have to occur in the executions, and
the free segments refer to the events that should be avoided
for the error not to occur, and thus they are candidate to be
causes. Fated and free segments are computed with respect
to input variables in the system, where they are classified
into controlling and non-controlling. While controlling va-
riables are considered to be critical, and have more control
on the environment, the non-controlling variables have less
importance. So that, fated segments are determined with
respect to controlling variables, whereas free segments are
determined with respect to non-controlling ones.

Wang et al. [132] also proposed a method that works just
on the failed execution path without considering successful
ones. The idea is about looking at the predicates candidate
for causing the failure in the error trace. To do so, they
use weakest pre-condition computation, the technique that
is widely used in predicate abstraction. This computation
aims to find the minimal number of conditions that should
be met in order to not let the program violate the asser-
tion. This results in a set of predicates that contradict with
each other. By comparing how these predicates contradict
to each other, we can find the cause for the assertion fai-
led and map it back to the real code. Many similar works
also provided error explanation methods in the context of
C programs [137, 127, 138].

Using the notion of causality by Halpern and Pearl [74],
Beer et al. [88] introduced a polynomial-time algorithm
for explaining LTL counterexamples that was implemented
as a feature in the IBM formal verification platform Rule-
Base PE. Given the error trace, the causes for the violation
are highlighted visually as red dots on the error trace it-
self. The question asked was: what values of signals on
the trace cause it to falsify the specification? Following the

definition of Halpern and Pearl, they refer to such a set of
pairs of state-variable as bottom-valued pairs whose values
should be switched to make such state-variable pair criti-
cal. The pair is said to be critical if changing the value of
the variable in this state no longer produces a counterexam-
ple. This pair represents the cause for the first failure of the
LTL formula given the error trace, where they argue that
the first failure is the most relevant to the user. Neverthe-
less, the algorithm computes an over-approximation of the
set of causes not just the first cause that occurred.

Let ϕ be an LTL formula in Negation Normal Form
(NNF) and π = s0, s1, ..., sk a counterexample for it. The
algorithm for computing the approximate set of causes gi-
ven ϕ and π is depicted in Figure 5. The procedure invokes
each time a function val for evaluating sub-formulas of ϕ
on the path. The procedure is executed recursively given
the formula ϕ until it reaches the proposition level, where
the cause is finally rendered as a pair 〈si, p〉/〈si,¬p〉, where
si refers to the current state.

Let us consider the formula : G((¬START ∧
¬STATUS_V ALID ∧ END) →
[¬STARTUSTATUS_V ALID]). The result of
executing the RuleBase PE implementation of the algo-
rithm on this formula is shown in Figure 6. The red dots
refer to the relevant causes for the error. Where some
variables are not critical for the failure, others can be cri-
tical, which means that switching their values alone could
result in mitigating the violation. For instance, in state 9,
START precedes STATUS_V ALID, by switching the
value of START from 1 to 0 in state 9, the formula would
not fail anymore given this counterexample.

4.2 Comparing counterexamples with
successful runs

This is the most adopted method for error explanation that
is successfully featured in many model checkers such as
SLAM and Java PathFinder. Groce et al. [70] have propo-
sed an approach for counterexamples explanation based on
computing a set of faulty runs called negatives, in which
the counterexample is included, and comparing it to a set
of correct runs called positives. Analyzing the common
features and differences could lead to getting a useful di-
agnostic information. Their algorithms were implemented
in JAVA pathfinder. Based on Lewis counterfactual the-
ory of causality [105] and distance metrics, Groce [68] has
proposed a semi-automated approach for isolating errors in
ANSI C programs, by considering the alternative worlds as
programs executions and the events as propositions about
those executions. The approach relies on finding causal de-
pendencies between predicates of a program. A predicate
a is causally dependent on b given the faulty execution, if
only if the executions in which the removal of a cause a
also removes the effect b are more likely than the executi-
ons where a and b do not appear together. For finding these
traces, which are as close as possible to the faulty one, the
authors employed distance metric. A description of their

152 Informatica 42 (2018) 145–166 H. Debbi

1: procedure CAUSES(ϕ, πi)
2: Case ϕ of
3: p:
4: if p 6∈ si then
5: return 〈si, p〉
6: end if
7: ¬p:
8: if p ∈ si then
9: return 〈si, p〉

10: end if
11: Xϕ:
12: if i < k then return Causes(ϕ, πi+1)
13: end if
14: ϕ ∧ ψ:
15: return Causes(ϕ, πi) ∪ Causes(ψ, πi)
16: ϕ ∨ ψ:
17: if val(ϕ, πi) = 0 and val(ϕ,ψi) = 0 then
18: return Causes(ϕ, πi) ∪ Causes(ψ, πi)
19: end if
20: Gϕ:
21: if val(ϕ, πi) = 0 then
22: return Causes(ϕ, πi)
23: else
24: if val(ϕ, πi) = 1 and i < k and

val(XGϕ, πi) = 1 then
25: return Causes(Gϕ, πi+1)
26: end if
27: end if
28: φUψ:
29: if val(ϕ, πi) = 0 and val(ψ, πi) = 0 then
30: return Causes(ϕ, πi) ∪ Causes(ψ, πi)
31: if val(ϕ, πi) = 1 and val(ψ, πi) = 0 and i = k

then
32: return Causes(ψ, πi)
33: end if
34: if val(ϕ, πi) = 1 and val(ψ, πi) = 0 and i < k

and val(X[ϕUψ], πi) = 0 then
35: return Causes(ψ, πi) ∪ Cau-

ses(πi+1, [ϕUψ])
36: end if
37: end if
38: end procedure

Figure 5: Causes generation algorithm given a
counterexample[88].

Figure 6: Explanations on counterexample as red dots[88].

approach is depicted in Figure 7.

Figure 7: Explanation using distance metric[68].

Given a program P and its specification, the model chec-
ker CBMC is used to generate a counterexample through
using SAT solver, where the counterexample represents a
finite execution of P . The explain tool[69] gets the coun-
terexample generated from CBMC together with the P and
its specification. It generates first a set of executions that do
not violate the specification, and then using PBS solver [7],
it tries to find the closest execution to the counterexample.
Finally, the distance metric is computed, and a dynamic sli-
cing technique is applied in order to point out to the most
relevant assignments in the program that had contributed
the most to the error.

Figure 8: An example of C program.

We introduce here a brief explanation of this approach
through a running example on a C code as indicated in
[68]. The C program is depicted in Figure 8. For in-
put values (1,0,1), a counterexample is rendered in a set of
assignments form named Static Single Assignment(SSA),

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 153

Figure 9: Counterexample values.

Figure 10: Successful execution values.

which is a representation used by CBMC (See Figure 9).
A successful execution so close to the counterexample can
be found for the input values (1,1,1) (See Figure 10).
The change in the value of input2 results in the assertion
least <= most being true. The differences between the
two executions are presented in Figure 11. The first change
is in the value of input2, which results in the change of
most#1 from 0 to 1. These two changes have of course
lower importance to the following change, which concerns
the non execution of guard#3 that was executed in the
counterexample, since least#0 is no longer greater than
input2#0, and thus the value of #most6 has changed to
1, which is considered the last change. The explanation
that can be given for this counterexample, is that not exe-
cuting the instruction at line 10 leads to the satisfaction of
the assertion (no error occurring). This shows clearly the
causal dependency of the satisfaction/violation of the as-
sertion on executing this line of code. As a result, line 10
will be highlighted by Explain tool as an indication for the
source of the error. The user will then understand that the
this line of code should be corrected as least = input2.

In [22], Chaki and Groce extended the original approach
for comparing a counterexample with the closest success-
ful run through combining distance metric with predicate
abstraction in order to generate explanations for abstract
counterexamples. They argue that even for abstract counte-
rexample, abstract state-space makes the explanation more
informative. Renieris and Reiss [114] also introduced a
method based on distance metric to select the closest cor-
rect runs to the faulty one and they provided a quantitative
method for evaluating their methods.

Figure 11: Differences between the counterexample and
the successful execution.

Ball et al. [11] proposed an effective approach that is
currently featured in SLAM model checker. Their met-
hod is based on the same principle of finding successful
runs to be compared with the counterexample. The inte-
resting difference here is that it generates error trace per
error cause, which makes the diagnostic easier, since there
will not be causal dependencies in the traces generated. It
is clear that this method will require the invocation of the
model checker each time a cause for the error is found.
Finally, the causes are reported as erroneous transitions
that do not occur in any correct trace. Copty et al. [41]
proposed a framework for debugging counterexamples as
they refer to it as counterexample Wizard in the context of
symbolic LTL. The technique employs three main capabi-
lities: multi-value counterexample annotation, constraint-
based debugging and multiple counterexample generation.
But in contrast to the work by Ball et all, the model chec-
ker is not invoked each time an error cause is found, but
instead, it gets all the data needed together to start the ana-
lysis.

Leue and Tabaei Befrouei [104, 103] proposed a novel
approach based on computing two datasets, the bad da-
taset that represents the set of counterexamples, and the
good dataset that represents the successful runs. Both da-
tasets are produced using SPIN model checker. The idea
is always about computing the differences between good
and bad traces, but this time with the help of data mining
technique called sequential pattern mining [49]. The aim
behind using this technique is to extract a set of sequences
of actions that are mostly to appear in the bad dataset. In
concurrent systems, which are usually modeled using in-
terleaving semantics, the unforeseen interleavings resulted
from such a set of actions stand as a good indicator for the
source of the error.

While all of the previous works addressed safety pro-
perties, Kumazawa and Tamai [98] attended to explain er-
rors for liveness properties that involve more computati-
onal complexity. For that reason, the counterexample is
represented as an infinite trace and not a finite one, and
the witnesses to be compared with this counterexample are
infinite as well. The method also employs shortest paths
algorithms. Many similar works for counterexamples ana-
lysis have been done [121, 73, 40, 110, 119, 118, 56, 45].

5 Probabilistic counterexamples

Unlike the previous methods proposed for conventional
model checking that generate the counterexample as a sin-

154 Informatica 42 (2018) 145–166 H. Debbi

gle path ending with a bad state representing the failure,
the task in PMC is quite different. The counterexample
in PMC is a set of evidences or diagnostic paths that sa-
tisfy path formula and their probability mass violates the
probability threshold. The probabilistic counterexample is
generated when a PCTL/CSL property is not satisfied. The
probabilistic property φ = P≤p(ϕ) is refuted when the pro-
bability mass of the paths satisfying ϕ exceeds the bound
p. Therefore, a probabilistic counterexample for the pro-
perty φ is formed by a set of paths starting at a state s and
satisfying the path formula ϕ. We denote these paths by
Paths(s0 |= φ). The counterexample can be formed of a
set of finite paths where each path σ = s0s1...sn is a prefix
of an infinite path from Paths(s0 |= φ) satisfying the for-
mula ϕ. We denote these paths by FinitePaths(s0 |= φ).

We can get a set of probabilistic counterexamples, noted
PCX(s0 |= φ), which is a set of any combination from
FinitePaths(s0 |= φ) that their probability mass exceeds
the bound p. Among all these probabilistic counterexam-
ples, we are interested by the most indicative one. The most
indicative counterexample is minimal counterexample (has
the least number of paths fromFinitePaths(s0 |= φ)) and
its probability mass is the highest among all other minimal
counterexamples. We denote the most indicative probabi-
listic counterexample by MIPCX(s0 |= φ). We should
note that the most indicative probabilistic counterexample
may not be unique.

For the counterexample to have a high probability, it
should consist of paths that carry high probabilities from
FinitePaths(s0 |= φ). The path σ having the hig-
hest probability over all these paths is called strongest
path and is defined as follows: for every path σ′ ∈
FinitePaths(s0 |= φ) : P (σ) ≥ P (σ′). The strongest
path also may not be unique.

Example Let us consider the example of DTMC shown
in Figure 12 and the property P≤0.5(ϕ), where ϕ =
(a∨b)∪(c∧d). The property above is violated in this model
(s0 6|= P≤0.5(ϕ)), since there exists a set of paths satisfying
ϕ whose probability mass is higher than the probability
bound (0.5). Any combination from FinitePaths(s0 |=
φ) having probability mass higher than 0.5, is a valid coun-
terexample including the whole set. For instance, we can
find three counterexamples:

P (CX1) =
P ({s0s1, s0s2s3, s0s2s4s3, s0s2s4s5, s0s4s5})

= 0.25 + 0.2 + 0.09 + 0.15 + 0.12 = 0.81

P (CX2) = P ({s0s1, s0s2s4s5, s0s4s5})

= 0.25 + 0.15 + 0.12 = 0.52

P (CX3) = P ({s0s1, s0s2s3, s0s2s4s5})

= 0.25 + 0.2 + 0.15 = 0.6

The last probabilistic counterexample is the most indi-
cative since it is minimal and its probability is higher than

Figure 12: A DTMC.

the other minimal counterexample CX2,P (CX3) = 0.6 >
P (CX2). The strongest path is s0s1, which is included in
the most indicative probabilistic counterexample.

5.1 Probabilistic counterexample generation
Various approaches for probabilistic counterexamples ge-
neration have been proposed. Aljazzar et al. [1, 3] introdu-
ced an approach for counterexample generation for DTMC
and CTMC against timed reachability proprieties using
heuristics and directed explicit state space search. Since
resolving nondeterminism in an MDP results in a DTMC,
in complementary work [4], Aljazzar and Leue proposed
an approach for counterexample generation for MDPs ba-
sed on existing methods for DTMC. Aljazzar and Leue in-
troduced a complete work in [5] for generating counterex-
amples for DTMCs and CTMSs as what they refer to as
diagnostic sub-graphs. All these works on generating in-
dicative counterexamples have led to the development of
the K* algorithm [6], an on-the-fly heuristics guided al-
gorithm for the K shortest path problem. Comparing to
classical k-shortest-paths algorithms, K* has two main ad-
vantages, it woks on-the- fly in way it avoids exploring the
entire graph, and it can be guided using heuristic functions.
Based on all the previous works, they built a tool DiPro
[2] for generating indicative counterexamples for DTMCs,
CTMCs and MDPs. This tool can be jointly used with the
model checkers PRISM [81] and MRMC [94], and can ren-
der the counterexamples in text format as well as in graphi-
cal mode. These heuristic-based algorithms showed a great
efficiency in terms of counterexample quality. Neverthe-
less, with large models, DiPro tool that implements these
algorithms takes usually a long time to produce a counte-
rexample. By running DiPro on a PIRSM model of the
DTMC presented in Figure 12 against the same property,
we obtain the most indicative counterexample CX3. The
graphical representation of CX3 as rendered by DiPro is
depicted in Figure 13. The diamonds refer to the final or
end states (s1,s3,s5), whereas the circles represent simple
nodes s2 and s4. The user can navigate through the coun-
terexample and inspect all values.

Similar to the previous works, [75] has proposed the no-
tion of smallest most indicative counterexample that redu-

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 155

Figure 13: A counterexample generated by DiPro.

ces to the problem of finding K shortest paths. In a weigh-
ted digraph transformed from the DTMC model, and given
initial state and the target states, the strongest evidences
that form the counterexample are selected using extensi-
ons of K-shortest paths algorithms for an arbitrary number
k. Instead of generating path-based counterexamples, [134]
have proposed a novel approach for DTMCs and MDPs ba-
sed on critical subsystems using SMT solvers and mixed
integer linear programming. Critical subsystem is simply
a part of the model (states and transitions) that are con-
sidered relevant because of its contribution to exceeding
the probability bound. The problem has been shown that
is NP-Complete. Another work always based on the no-
tion of critical subsystem is proposed to deliver abstract
counterexamples with less number of states and transiti-
ons using hierarchical refinement method. Based on all of
these works, Jansen et al. proposed the COMICS tool for
generating the critical subsystems that induce the counte-
rexamples [90].

There are also many other works that addressed special
cases for generating counterexamples in PMC. the authors
of [8], proposed an approach for finding sets of evidences
for bounded probabilistic LTL properties on MDP that be-
have differently from each other giving significant diagnos-
tic information. While their method is also based on K-
shortest path, the main contribution is about selecting the
evidences or the witnesses with respect to main five cri-
teria in addition to the high probability. While all of the
previous works for counterexample generation are explicit-
based, the authors in [133] proposed a symbolic method
using bounded model checking. In contrast to the previ-
ous methods, this method lacks the selection of the stron-
gest evidences first, since the selection is performed in ar-
bitrary order. Another approach for counterexample gene-
ration that uses bounded model checking has been propo-

sed [15]. Unlike the previous work that uses conventional
SAT solvers, the authors used a SMT-solving approach in
order to put some constraints on the paths selected, in order
to get more abstract counterexample that consists of stron-
gest paths. Counterexample generation for probabilistic
LTL model checking has been addressed in [116] and pro-
babilistic CEGAR has been also addressed [80]. A com-
prehensive representation of the counterexamples using re-
gular expressions has been addressed in [44]. Since regu-
lar expressions deliver compact representations, they can
help to deliver short counterexamples. Besides, they are
widely known and easily understandable, so that they will
give more benefits as a tool for error explanation.

5.2 Probabilistic counterexample analysis

Instead of relying on the state space search resulted from
the parallel composition of the modules, [135] suggests to
rely directly on the guarded command language used by
the model checker, which is more likely and helpful for de-
bugging purpose. To do so, the authors employ the critical
subsystem technique [134] to identify the smallest set of
guarded commands contributing to the error.

To analyze probabilistic counterexamples, Debbi and
Bourahla [48, 47] proposed a diagnostic method based on
the definition of causality by Halpern and Pearl [74] and
responsibility [25]. The method proposed takes the pro-
babilistic counterexample generated by DiPro tool and the
probabilistic formula as input, and returns a set of pairs
(state-variable) as candidate causes for the violation orde-
red with respect to their contribution to the error. So, in
contrast to the previous methods, this method does not tend
to generate indicative counterexamples, but it acts directly
on indicative counterexamples already generated. Another
similar approach for debugging probabilistic counterexam-
ples has been introduced by [46]. It adopts the same defi-
nition of causality by Halpern and Pearl to reason formally
about the causes, and then transforms the causality model
into regression model using Structural Equation Modeling
(SEM). SEM is a comprehensive analytical method used
for testing and estimating causal relationships between va-
riables embedded in theoretical causal model. This met-
hod helps to understand the behavior of the model through
quantifying the causal effect of the variables on the viola-
tion, and the causal dependencies between them.

The same definition of causality has also been adopted
to event orders for generating fault trees from probabilis-
tic counterexamples, where the selection of traces forming
the fault tree are restricted to some minimality condition
[102]. To do so, Leitner-Fischer and Leue proposed the
event order logic to reason about Boolean conditions on
the occurrence of events, where the cause of the hazard in
their context is presented as an Event Order Logic (EOL)
formula, which is a conjunction of events. In [57], they ex-
tended their approach by integrating causality in explicit-
state model checking algorithm to give a causal interpreta-
tion for sub- and super-sets of execution traces, the thing

156 Informatica 42 (2018) 145–166 H. Debbi

that could help the designer to get a better insight on the
behavior of the system. They proved the applicability of
their approach to many industrial size PROMELA models.
They extended the causality checking approach to proba-
bilistic counterexamples by computing the probabilities of
events combination [101], but they still consider the use of
causality checking of qualitative PROMELA models.

6 Counterexample guided
abstraction refinement (CEGAR)

The main challenge in model checking is the state explo-
sion problem. Dealing with this issue is in the heart of
model checking, it was addressed at the beginning of mo-
del checking and not finished. Many methods were pro-
posed to tackle this issue, the most famous are: symbolic
algorithms, Partial Order Reduction (POR), Bounded Mo-
del Checking (BMC) and abstraction. Among these techni-
ques, abstraction is considered as the most general and flex-
ible for handling the state explosion problem [30]. Ab-
straction is about hiding or simplifying some details about
the system to be verified, even removing some parts from
it that are considered irrelevant for the property under con-
sideration. The central idea is that verifying a simplified or
an abstract model is more efficient than the entire model.
Evidently, this abstraction has a price, which is losing some
information, and the best abstraction methods are those that
control this loss of information. Over-approximation and
under-approximation are two main key concepts for this
problem. Many abstraction methods have been proposed
[42, 65, 106], the last one had the most attention and was
adopted in the symbolic model checker NuSMV.

Abstraction can be defined by a set of abstract states Ŝ,
an abstraction mapping function h that maps the states in
the concrete model to Ŝ, and the set of atomic propositi-
ons AP labeling these states. Regarding the choice on Ŝ,
h and AP , we distinguish three main types of abstraction :
predicate abstraction [66, 115], localization reduction [99]
and data abstraction [39]. Predicate abstraction is based
on eliminating some variables from the program to be re-
placed by predicates that still serve the information about
these variables. Each predicate has a Boolean variable cor-
responding to it, where the abstract states Ŝ resulted are
valuations of these variables. Both the abstraction map-
ping h between the concrete and abstract states, and the set
of atomic propositions AP , are determined with respect to
the truth values of these predicates. The entire abstract mo-
del can then be defined through existential abstraction. To
this end, we can use BDDs, SAT solvers or theorem pro-
vers depending on the size of the program. Localization
reduction and data abstraction are actually just extensions
of predicate abstraction. Localization reduction aims to de-
fine a small set of variables that are considered relevant to
the property in hand to be verified, these variables are cal-
led visible, the rest of variables that have no importance
with respect to the property to be verified are called invisi-

ble. We should mention that this technique does not apply
any abstraction on the domain of visible variables. Data ab-
straction deals mainly with the domains of variables by ma-
king an abstract domain for each variable. So the abstract
model will be built with respect to the abstract values. For
more detail on abstraction techniques, we refer to [71].

Given the possible loss of information caused by the
abstraction, inventing some refinement methods of the
abstract model is necessary. The most known method
for abstraction refinement is Counterexample-Guided Ab-
straction Refinement (CEGAR) that has been proposed by
[30] as a generalization of the localization reduction ap-
proach. A prototype implementation of this method in
NuSMV has also been presented. In this approach, the
counterexample plays the crucial role for finding the right
abstract model. The process of CEGAR consists of three
main steps: the first is to generate an abstract model using
one of the abstractions techniques [30, 23, 33] given a for-
mula ϕ. The second step is about checking the satisfaction
of ϕ, if it is satisfied then the model checker stops and re-
turns that the concrete or the original model satisfies the
formula, if it is not satisfied, a counterexample will be ge-
nerated. The counterexample generated is in the abstract
model, so we have to check if it is also a valid counterex-
ample in the concrete model, because the abstract model
has different behavior comparing to the concrete one. Ot-
herwise, the counterexample is called spurious and the ab-
straction must be carried out based on this counterexample.
So, a spurious counterexample is an erroneous counterex-
ample that exists only in the abstract model, not the con-
crete model. The final step is to refine the model until no
spurious counterexample is found (see Figure 14). This is
how the technique gets its name, refining the abstract mo-
del using the spurious counterexample. Refinement is an
important task of CEGAR that can make the process faster
and gives the appropriate results. To refine the abstract mo-
del, different partitioning algorithms are applied to abstract
states. Like abstraction, partitioning the abstract states in
order to eliminate the spurious counterexample can be car-
ried out in many other ways than BDDs [30]. SAT solvers
[24] or linear programming and machine learning [34] can
be used to define the most relevant variables to be conside-
red for the next abstraction.

In the literature, we find many extensions for CEGAR
depending on the type of predicates and application dom-
ains: large program executions [96], non-Disjunctive ab-
stractions [107] and propositional circumscription [89].
The CEGAR technique itself has been used to find bugs in
complex and large systems [14]. The idea is based on gat-
hering and saving information during the abstract model
checking process in order to generate short counterexam-
ples in the case of failure. This could be helpful for large
models that make generating counterexamples using stan-
dard BMS intractable. CEGAR currently is implemented in
many tools such as NuSMV[26], SLAM and BLAST[13].

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 157

Figure 14: Counterexample Guided Abstraction Refinement Process.

7 Counterexamples for test cases
generation

Counterexample generation gives the opportunity for mo-
del checking to be adopted and used in different domains,
one of the domains in which the model checking has been
adopted is test cases generation. Roughly speaking, tes-
ting is an automated method used to verify the quality of
software. When we use model checking to generate test
cases, this is called model-based testing. The use of mo-
del checking for testing is mainly subjected to the size of
the software to be tested, because a suitable model must be
guaranteed. The central idea of using model checking for
testing [20, 55] is about interpreting counterexamples ge-
nerated by the model checkers as test cases, and then test
data and some expected results are extracted from these
tests using such execution framework. Counterexamples
are mainly used to help the designer to find the source of
the error. However, they are very useful as test cases. [60].

A test describes the behavior of the test case intended:
the final state, the states that should be traversed to reach
the final state and so forth. In practice, it might not be
possible to execute all test cases, since the software to be
tested has usually a large number of behaviors. Neverthe-
less, there exist some techniques to help us to measure the
reliability of testing. These techniques range in two main
categories: first, deterministic methods (given initial state
and some input, we will be certainty aware about the out-
put), most famous methods for this category are coverage
analysis and mutation analysis. Second, statistical analysis,
where the reliability of the test is measured with respect to
some probability distribution.

In coverage-based testing, the test purpose is specified
in temporal logic and then converted to what is called a
never-claim by negation; to assert that the test purpose ne-
ver becomes true. So, the counterexample generated after

the verification process will describe how the never-claim
is violated, which is a description of how test purpose is
fulfilled. Many approaches for creating never-claims ba-
sed on coverage criterion (called “trap properties”) [61] are
proposed. Coverage criteria aim to find how such a system
is exercised given a specification in order to get the sta-
tes that were not traversed during the test; in this context,
we call this specification a test suit. So, a full coverage
is achieved if all the states of the system are covered. To
create a test suite that covers all states, we need a trap pro-
perty for each possible state. For example, claiming that
the value of a variable is never 0: G¬(a = 0). A counte-
rexample to such a trap property is any trace that reaches a
state where (a = 0).

With regard to trap properties, we find many variations.
Gargantini and Heitmeyer addressed the coverage of soft-
ware cost reduction (SCR) specifications [61]. SCR spe-
cifications are defined by tables over the events that repre-
sent the change of a value in state and lead to a new state,
and conditions defined on the states. Formally, a SCR mo-
del is defined as quadruple (S, S0, E

m, T) where S is the
set of states, S0 is the initial state set, Em is the set of
input events, and T is the transform function that maps
an input event and the current state to a new one. SCR
requirement properties can be used as never-claims, first
by converting SCR into model checkers languages such as
SPIN language (PROMELA), or SMV language, and then
transform SCR tables into if-else construct in the case of
using SPIN, or a case statement in the case of SMV. Anot-
her approach by Heimdahl et al. addressed the coverage of
transition systems globally [79], where they consider the
use of RSML−e as the specification language. A sim-
ple example of transition coverage criteria is of the form
G(A ∧ C → ¬B), where A represents a system’s state
s, B represents the next state, and C is the condition that
guards the transition A to B. So a counterexample for this
property could be a trace that reaches a state B when C

158 Informatica 42 (2018) 145–166 H. Debbi

Figure 15: Coverage based test case generation [60].

evaluates to true, or a trace that reaches another state than
B when C evaluates to false. Hong and Lee [87] proposed
an approach based on control and data flow, where they use
SMV model checker to generate counterexamples during
the model checking of state-charts. The counterexample
generated can be mapped into test sequence that induces
information about which initial and stable states are consi-
dered. Another approach based on abstract state machines
has been introduced [62]. The trap properties here will be
defined over a set of rules for guarded function updates.
We can see that all coverage-based approaches deal with
the same thing, which is trap properties, and defer from
each other in the formalism adopted.

Another approach for using requirement properties as
test cases has been introduced by [54]. In this approach,
each requirement has a set of tests. Trap properties can be
easily derived from requirement properties under property-
coverage criteria [125]. Another method that is completely
different from coverage-based analysis is mutation-based
analysis [18]. Mutation analysis consists of creating a set
of mutants, which can be obtained by making small modi-
fications on the original program in way these mutants lead
to realistic faults. We differ between each mutant by its
score, the mutant with the high score indicates high fault
sensitivity. It is evident that deriving such mutant that is
equivalent to the original program will have a high com-
putational cost [91], because we have to apply all the test
cases to each mutant, and all mutants should be considered.
And for each mutant the model checker must be invoked.
Fraser et al. [59] reviewed in detail most of these techni-
ques and proposed several effective techniques to improve
the quality of the test cases generated in model checking-
based testing, especially requirements based testing, and
apply them on different types of properties in many indus-
trial case studies.

8 Counterexamples generation tools

Practically, all successful model checkers are able to output
counterexamples in varying formats [38]. In this section,
we will try to survey the tools supporting counterexample
generation and study their effectiveness. A set of model
checkers with their features are presented in Table 1.

Berkeley Lazy Abstraction Software Verification Tool
(BLAST) [13] is a software model checking tool for C pro-
grams. BLAST has the ability to generate counterexam-
ples, and furthermore, it employs CEGAR. BLAST is not
just a CEGAR-based model checker, but it can be also used
for generating test cases. BLAST shows promising results
with safety properties of programs with a medium size.

CBMC [35] is a well-known Bounded Model Checker
for AINCI C and C++ programs. CBMC performs symbo-
lic execution on the programs and employs a SAT solver in
the verification procedure, when the specification is falsi-
fied, a counterexample in the form of states with variables
valuation leading to these states is rendered to the user.

JavaPathfinder(JPF) [131] is a famous software model
checking tool for Java programs. JavaPathfinder is an ef-
fective virtual machine-based tool that verifies the program
along all the possible executions. Due to its ability to deal
with most of JAVA language features, because it runs on
byte-code level, JavaPathfinder can generate a detailed re-
port on the error in case that the property is violated. Besi-
des, the tool gives the ability to generate test cases.

SPIN [86] is a model checker mostly known for the veri-
fication of systems that exhibit a high interaction between
processes. The systems are described using Process Meta
Language (PROMELA) language, and verified against pro-
perties specified in LTL. By applying a Depth-First Search
algorithm on the intersection product of the model and the
Büchi automaton representing the LTL formula, a counte-
rexample is generated in case an accepted cycle is detected.
SPIN offers an interactive simulator that helps to under-
stand the cause of the failure by showing the processes and
their interactions in order.

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 159

Table 1: Model checkers with their features.

Name Model Checking Counterexample generation
Programs,
systems

Algorithms,
methods

Modeling
language

Specification
language Visualization Form

BLAST C programs
Predicate lazy
abstraction,

CEGAR

C BLAST No
Set of

predicates

CBMC C programs BMC, SAT
solving

C/C++ Assertions No
Variables and

valuations

JPF Java
programs

Explicit state,
POR

Java No No Error report

SPIN
Concurrent,
distributed,

asynchronous

Nested Depth
First Search,

POR

PROMELA LTL Yes
Execution

path

NuSMV Synchronous,
asynchronous

BDD-based,
SAT-based

BMC

SMV LTL, CTL No
States and
valuations

UPPAAL Ral-time On-the-fly,
Symbolic

Timed
automata TCTL Yes

Sequence of
states

PRISM Probabilistic,
real-time

Graph-based,
numerical

PRISM PCTL,CSL,
PTCTL No-By DiPro Graph

MRMC Probabilistic Numerical
PRISM,
PEPA

PCTL,CSL,
PRCTL,CSRL

No-By DiPro
or COMIC Graph

NuSMV [26] is a symbolic model checker that appeared
as an extension of the Binary Decision Diagrams(BDD)-
based model checker SMV. NuSMV includes both LTL
and CTL for specification analysis, and combines SAT and
BDD techniques for the verification. NuSMV can deliver a
counterexample in XML format by indicating the states of
the trace and the variables with their new values that cause
the transitions.

UPPAAL [100] is a verification framework for real-time
systems. The systems can be modeled as networks of ti-
med automata extended with data types and synchroniza-
tion channels, and the properties are specified using a Ti-
med CTL(TCTL). UPPAAL can find and generate counte-
rexamples in graphical mode as message sequence charts
that indicate the events with respect to their order.

PRISM [81] is a probabilistic model checker used for the
analysis of systems that exhibit stochastic behavior. The
systems are described as DTMCs, CTMCs or MDPs, using
guarded command language, and verified against probabi-
listic properties expressed in PCTL and CSL, and can be
extended with rewards. Another successful probabilistic
model checker extended with rewards is the Markov Re-
ward Model Checker (MRMC) [94]. MRMC is mainly
used for performance and dependability analysis. It takes
the models as input files in two formats, in PRISM lan-
guage or Performance Evaluation Process Algebra (PEPA).
Although both model checkers have shown high effective-
ness, they lack a mechanism for generating probabilistic
counterexamples. Nevertheless, they have been used by re-
cent tools (DiPro [2] and COMICS [90]) for generating and
visualizing probabilistic counterexamples.

9 Conclusions and future directions
In this paper we surveyed counterexamples in model
checking from different aspects. At the beginning of using
model checking, counterexamples have not been treated as
a particular subject, but they have been treated as a rela-
ted problem to fair cycle detection algorithms, as presented
in section 3. But recently, the quality of the counterex-
amples generated has been treated as a standalone and a
fundamental problem. Many works tried to deliver short
and indicative counterexamples to be used for debugging
purpose. Concerning their structure, tree-like counterex-
amples have been proposed for the fragment of ACTL as
an alternative for linear counterexamples, however, we see
that this approach has not been adopted in model checkers,
but instead model checkers are still based on generating
simple non-branching counterexamples .

For debugging, we can conclude that approaches that re-
quire other successful runs might have some advantages
over other methods based on single trace, in way that they
compare many good traces to restrict the set of candidate
causes. However, these methods take usually much execu-
tion time in order to select the appropriate set of traces, and
besides, such traces could contain the same diagnostic in-
formation. Regardless of the debugging method in use, the
challenge of visualizing the error traces and the quality of
diagnoses generated to facilitate debugging is still an open
issue.

For the case of counterexample generation in PMC, we
have seen that the principle of counterexample generation
is completely different than conventional model checking,

160 Informatica 42 (2018) 145–166 H. Debbi

where the presentation of counterexample is different from
a work to another, from smallest and indicative set of paths
to most critical sub-systems. Despite the notable advance-
ment in generating probabilistic counterexamples that led
to inventing important tools like DiPro and COMICS, un-
fortunately this advancement is still insufficient for debug-
ging. Actually, it is more than important to see the techni-
ques for counterexample generation and counterexample
analysis integrated in probabilistic model checkers to get
their benefit. All these techniques act on verification results
of probabilistic model checkers like PRISM, so making the
approaches of counterexample generation and counterex-
amples analysis to be performed during the model checking
process itself is still an open problem. This could really
have a great impact on probabilistic model checking.

We have also seen the usefulness of counterexamples for
other purposes than debugging, like CEGAR and test cases
generation. For CEGAR, we have seen different approa-
ches for both abstraction and refinement. We have seen
that we can benefit from using SAT solvers and theorem
provers on the both sides, abstraction and refinement, thus
they are very useful for CEGAR. Fast elimination of spu-
rious counterexamples is still an active research topic. We
also expect to see more works on CEGAR in PMC.

For testing, we have seen that the most useful approaches
using model checking are those based on coverage and trap
properties. Other approaches for testing like requirement-
based analysis and mutation-based analysis have received
smaller attention due to the limitations presented. Cur-
rently, coverage-based techniques are widely used in the
industry. In the future, we expect to see the proposition
of new approaches to enable us to test new emerging sy-
stems, which require new transformation mechanisms for
enabling trap properties to be verified by model checkers
to generate the counterexamples.

We should mention that such techniques can benefit
from other techniques. For instance, new efficient CEGAR
techniques will not only have an impact on conventional
model checking, but on probabilistic model checking as
well. We can also see in the future the use of probabilis-
tic model checkers like PRISM for testing probabilistic sy-
stems. Since PRISM does not generate counterexamples,
any advancement in generating indicative counterexamples
could be of benefit for testing probabilistic systems. We
can also see that techniques based on counterexamples like
CEGAR can directly benefit from any advancement in ge-
nerating small and indicative counterexamples in a consi-
derable time.

In addition to all of this, we expect to see more works in
other domains that adapt model checking techniques just
for the seek of getting counterexamples. In previous works
we have seen for instance that counterexamples can be
mapped to UML sequence diagrams, describing states and
events in the original model [51], they can be used to gene-
rate attack graphs in networks security [123], in fragmen-
tation of services in Service-Based Applications (SBAs)
[21], and they have been also used to enforce synchroni-

zability and realizability in distributed services integration
[72].

References
[1] Aljazzar, H., Hermanns, H., and Leue, S. Coun-

terexamples for timed probabilistic reachability. In
FORMATS (2005), LNCS, vol. 3829, Springer, Ber-
lin, Heidelberg, pp. 177–195.

[2] Aljazzar, H., Leitner-Fischer, F., Leue, S., and Si-
meonov, D. Dipro - a tool for probabilistic coun-
terexample generation. In 18th International SPIN
Workshop (2011), LNCS, vol. 6823, Springer, Ber-
lin, Heidelberg, pp. 183–187.

[3] Aljazzar, H., and Leue, S. Extended directed search
for probabilistic timed reachability. In FORMATS
(2006), LNCS, vol. 4202, Springer, Berlin, Heidel-
berg, pp. 33–51.

[4] Aljazzar, H., and Leue, S. Generation of counterex-
amples for model checking of markov decision pro-
cesses. In International Conference on Quantitative
Evaluation of Systems (QEST) (2009), pp. 197–206.

[5] Aljazzar, H., and Leue, S. Directed explicit state-
space search in the generation of counterexamples
for stochastic model checking. IEEE Trans. on Soft-
ware Engineering 36, 1 (2010), 37–60.

[6] Aljazzar, H., and Leue, S. K*: A heuristic search
algorithm for finding the k shortest paths. Artificial
Intelligence 175, 18 (2011), 2129 – 2154.

[7] Aloul, F., Ramani, A., Markov, I., and Sakallah, K.
Pbs: A backtrack search pseudo boolean solver. In
Symposium on the Theory and Applications of Satis-
fiability Testing (SAT) (2002), pp. 346–353.

[8] Andres, M. E., DArgenio, P., and van Rossum, P.
Significant diagnostic counterexamples in probabi-
listic model checking. In Haifa Verification Confe-
rence (2008), pp. 129–148.

[9] Aziz, A., Sanwal, K., Singhal, V., and Brayton,
R. Model-checking continuous-time markov chains.
ACM Transactions on Computational Logic 1, 1
(2000), 162–170.

[10] Baier, C., Haverkort, B., Hermanns, H., and Katoen,
J.-P. Model checking algorithms for continuous-
time markov chains. IEEE Transactions on Software
Engineering 29, 7 (2003), 524–541.

[11] Ball, T., Naik, M., and Rajamani, S. From symptom
to cause: Localizing errors in counterexample tra-
ces. In ACM Symposium on the Principles of Pro-
gramming Languages (2003), pp. 97–105.

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 161

[12] Ball, T., and Rajamani, S. The slam project: De-
bugging system software via static analysis. In ACM
Symposium on the Principles of Programming Lan-
guages (2002), pp. 1–3.

[13] Beyer, D., Henzinger, T., Jhala, R., and Majumdar,
R. The software model checker blast: Applications
to software engineering. International Journal on
Software Tools for Technology Transfer (STTT) 9, 5
(2007), 505–525.

[14] Bjesse, P., and Kukula, J. Using counterexample
guided abstraction refinement to find complex bugs.
In Design, Automation and Test in European Confe-
rence and Exhibition (2004), pp. 156–161.

[15] Braitling, B., and Wimmer, R. Counterexample ge-
neration for markov chains using smt-based boun-
ded model checking. In Formal Techniques for Dis-
tributed Systems (2011), LNCS, vol. 6722, Springer,
Berlin, Heidelberg, pp. 75–89.

[16] Brat, G., Havelund, K., Park, S., and Visser, W. Java
pathfinder a second generation of a java model chec-
ker. In Workshop on Advances in Verification (2000).

[17] Bryant, R. E. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput 35, 8
(1986), 677–691.

[18] Budd, T., and Gopal, A. Program testing by speci-
fication mutation. Journal Computer Languages 10,
1 (1985), 63–73.

[19] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill,
D. L., and Hwang, L. J. Symbolic model checking:
1020 states and beyond. Information and Computa-
tion 98, 2 (1992), 142–170.

[20] Callahan, J., Schneider, F., and Easterbrook, S. Au-
tomated software testing using model checking. In
SPIN Workshop (1996).

[21] Chabane, Y., Hantry, F., and Hacid, M. Querying
and splitting techniques for sba: A model checking
based approach. In Emerging Intelligent Technolo-
gies in Industry (2011), SCI 369, Springer-Verlag,
Berlin, Heidelberg, pp. 105–122.

[22] Chaki, S., and Groce, A. Explaining abstract counte-
rexamples. In SIGSOFT04/FSE (2004), pp. 73–82.

[23] Chauhan, P., Clarke, E., Kukula, J., Sapra, S., Veith,
H., and D.Wang. Automated abstraction refinement
for model checking large state spaces using sat based
conflict analysis. In Formal Methods in Computer
Aided Design(FMCAD) (2002), LNCS, vol. 2517,
Springer, Berlin, Heidelberg, pp. 33–51.

[24] Chauhan, P., Clarke, E., Kukula, J., Sapra, S., Veith,
H., and D.Wang. Automated abstraction refine-
ment for model checking large state spaces using sat

based conflict analysis. In FMCAD 2002 (2002),
LNCS, vol. 2517, Springer-Verlag, Berlin, Heidel-
berg, pp. 33–51.

[25] Chockler, H., and Halpern, J. Y. Responsibility and
blame: a structural model approach. Journal of Arti-
ficial Intelligence Research (JAIR) 22, 1 (2004), 93–
115.

[26] Cimatti, A., Clarke, E., Giunchiglia, F., and Ro-
veri., M. Nusmv: a new symbolic model verifier.
In Proceedings Eleventh Conference on Computer-
Aided Verification (CAV 99) (1999), LNCS, vol.
1633, Springer, Berlin, Heidelberg, pp. 495–499.

[27] Clarke, E. The birth of model checking. In Grum-
berg, O., Veith, H. (eds.) 25 Years of Model Checking
(2008), LNCS, Springer, Berlin, Heidelberg, pp. 1–
26.

[28] Clarke, E., and Emerson, A. Design and synthe-
sis of synchronization skeletons using branching-
time temporal logic. In Logic of Programs (1982),
Springer-Verlag, pp. 52–71.

[29] Clarke, E., Grumberg, O., and Hamaguchi, K. Anot-
her look at ltl model checking. Formal Methods in
System Design 10, 1 (1997), 47–71.

[30] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith,
H. Counterexample-guided abstraction refinement
for symbolic model checking. Journal of the ACM
(JACM) 50, 5 (2003), 752–794.

[31] Clarke, E., Grumberg, O., McMillan, K., and Zhao,
X. Efficient generation of counterexamples and wit-
nesses in symbolic model checking. In Proc. of the
Design Automation Conference (1995), ACM Press,
pp. 427–432.

[32] Clarke, E., Grumberg, O., and Peled, D. Model
Checking. MIT, 1999.

[33] Clarke, E., Gupta, A., Kukula, J., and Strichman, O.
Sat based abstraction refinement using ilp and ma-
chine leraning techniques. In Computer-Aided Ve-
rification (CAV) (2002), LNCS, vol. 2404, Springer,
Berlin, Heidelberg, pp. 137–150.

[34] Clarke, E., Gupta, A., Kukula, J., and Strichman,
O. Sat based abstraction refinement using ilp and
machine leraning techniques. In CAV 2002 (2002),
LNCS, vol. 2404, Springer-Verlag, Berlin, Heidel-
berg, pp. 265–279.

[35] Clarke, E., Kroening, D., and Lerda, F. A tool
for checking ansi-c programs. In TACAS 2004
(2004), LNCS, vol. 2988, Springer, Berlin, Heidel-
berg, pp. 168–176.

162 Informatica 42 (2018) 145–166 H. Debbi

[36] Clarke, E., Lu, Y., s. Jha, and Veith, H. Tree-like
counterexamples in model checking. In Proc. of the
17th Annual IEEE Symposium on Logic in Computer
Science (2002), pp. 19–29.

[37] Clarke, E., O.Grumberg, Jha, S., Lu, Y., and Veith,
H. Counterexample-guided abstraction refinement.
In CAV (1986), pp. 154–169.

[38] Clarke, E., and Veith, H. Counterexamples revisi-
ted: Principles, algorithms and applications. In In:
Grumberg, O., Veith, H. (eds.) 25 Years of Model
Checking (2008), LNCS, Springer, Berlin, Heidel-
berg, pp. 1–26.

[39] Clarke, E. M., Grumberg, O., and Andlong, D. Mo-
del checking and abstraction. ACM Transactions on
Programming Languages and Systems 16, 5 (1994),
1512–1542.

[40] Cleve, H., and Zeller, A. Locating causes of program
failures. In ACM/IEEE International Conference on
Software Engineering (ICSE) (2005), pp. 342–351.

[41] Copty, F., Irron, A., Weissberg, O., Kropp, N., and
Gila, K. Effcient debugging in a formal verification
environment. Int J Softw Tools Technol Transfer 4
(2003), 335–348.

[42] COUSOT, P., and COUSOT, R. Abstract interpre-
tation: A unified lattice model for static analysis of
programs by construction or approximation of fix-
points. In ACM Symposium of Programming Lan-
guage (2003), pp. 238–252.

[43] Couvreur, J. On-the-fly verification of linear tempo-
ral logic. In FM (1999), LNCS, vol. 1708, Springer,
Heidelberg, pp. 253–271.

[44] Damman, B., Han, T., and Katoen, J. Regular ex-
pressions for pctl counterexamples. In Quantitative
Evaluation of Systems(QEST) (2008), pp. 179–188.

[45] de Alfaro, L., Henzinger, T., and Mang, F. Detecting
errors before reaching them. In CAV (2000), LNCS,
vol. 2725, Springer, Berlin, Heidelberg, pp. 186–
201.

[46] Debbi, H. Diagnosis of probabilistic models using
causality and regression. In in Proceedings of the
8th International Workshop on Verification and Eva-
luation of Computer and Communication Systems
(2014), pp. 33–44.

[47] Debbi, H. Systems Analysis using Model Checking
with Causality. PhD thesis, University of M’sila,
2015.

[48] Debbi, H., and Bourahla, M. Causal analysis of pro-
babilistic counterexamples. In Eleventh ACM-IEEE
International Conference on Formal Methods and
Models for Codesign (Memocode) (2008), pp. 77–
86.

[49] Dong, G., and Pei, J. Sequence Data Mining. Sprin-
ger, 2007.

[50] Edelkamp, S., Leue, S., and Lluch-Lafuente, A.
Directed explicit-state model checking in the vali-
dation of communication protocols. International
Journal on Software Tools for Technology Transfer
5, 2 (2004), 247–267.

[51] Elamkulam, J., Z. Glazberg, I. R., Kowlali, G.,
Chandra, S., Kohli, S., and Dattathrani, S. De-
tecting design flaws in uml state charts for embedded
software. In HVC 2006 (2006), LNCS, vol. 4383,
Springer-Verlag, Berlin, Heidelberg, pp. 109–121.

[52] Emerson, E., and Halpern, J. Decision procedures
and expressiveness in the temporal logic of bran-
ching time. In STOC 82: Proceedings of the four-
teenth annual ACM symposium on Theory of com-
puting (1982), ACM Press, pp. 169–180.

[53] Emerson, E. A., and Lei, C.-L. Efficient mo-
del checking in fragments of the propositional mu-
calculus. In Proceedings of the First Annual Sympo-
sium of Logic in Computer Science (1986), pp. 267–
278.

[54] Engels, A., Feijs, L., and Mauw, S. Test genera-
tion for intelligent networks using model checking.
In Third International Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems.
(TACAS97) (1997), LNCS, vol. 1217, Springer, Ber-
lin, Heidelberg, pp. 384–398.

[55] Engels, A., Feijs, L., and Mauw, S. Test genera-
tion for intelligent networks using model checking.
In Third International Workshop on Tools and Al-
gorithms for the Construction and Analysis of Sy-
stems(TACAS) (2010), LNCS, vol. 1217, Springer,
Berlin, Heidelberg, pp. 384–398.

[56] Fey, G., and Drechsler, R. Finding good counte-
rexamples to aid design verification. In First ACM
and IEEE International Conference on Formal Met-
hods and Models for Co-Design (MEMOCODE03)
(2003), pp. 51–52.

[57] Fischer, F., and Leue, S. Causality checking
for complex system models. In Verification, Mo-
del Checking, and Abstract Interpretation (VMCAI)
(2013), LNCS, vol. 7737, Springer, Berlin, Heidel-
berg, pp. 248–276.

[58] Fisler, K., Fraer, R., Kamhi, G., Vardi, M., and Yang,
Z. Is there a best symbolic cycle-detection algo-
rithm. In TACAS 2001 (2001), LNCS, vol. 2031,
Springer, Berlin, Heidelberg, pp. 420–434.

[59] Fraser, G. Automated Software Testing with Model
Checkers. PhD thesis, IST - Institute for Software
Technology, 2007.

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 163

[60] Fraser, G., Wotawa, F., and Ammann, P. E. Testing
with model checkers. Journal of Software Testing,
Verification and Reliability 19, 3 (2009), 215–261.

[61] Gargantini, A., and Heitmeyer, C. Using model
checking to generate tests from requirements spe-
cifications. In ESEC/FSE99: 7th European Soft-
ware Engineering Conference, Held Jointly with the
7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (1999), LNCS, vol. 1687,
Springer, Berlin, Heidelberg, pp. 146–162.

[62] Gargantini, A., Riccobene, E., and Rinzivillo, S.
Using spin to generate tests from asm specificati-
ons. In Abstract State Machines 2003. Advances
in Theory and Practice: 10th International Works-
hop, ASM (2003), LNCS, vol. 2589, Springer, Ber-
lin, Heidelberg, pp. 263–277.

[63] Gastin, P., and Moro, P. Minimal counterexam-
ple generation for spin. In 14th International SPIN
Workshop 2007 (2007), LNCS, vol. 4595, Springer,
Berlin, Heidelberg, pp. 24–38.

[64] Gastin, P., Moro, P., and Zeitoun, M. Minimi-
zation of counterexample in spin. In SPIN 2004
(2004), LNCS, vol. 2989, Springer, Berlin, Heidel-
berg, pp. 92–108.

[65] GRAF, S., and ANDSADI, H. Construction of ab-
stract state graphs with pvs. In CAV (1997), LNCS,
vol. 1254, Springer, Berlin, Heidelberg, pp. 72–83.

[66] Graf, S., and Saidi, H. Construction of abstract state
graphs with pvs. In CAV 97 (1997), LNCS, vol.
1254, Springer-Verlag, Berlin, Heidelberg, pp. 72–
83.

[67] Groce, A. Error Explanation and Fault Localization
with Distance Metrics. PhD thesis, School of Com-
puter Science Carnegie Mellon University, 2005.

[68] Groce, A., Chaki, S., Kroening, D., and Strichman,
O. Error explanation with distance metrics. Interna-
tional Journal on Software Tools for Technology 4, 3
(2006), 229–247.

[69] Groce, A., Kroening, D., and Lerda, F. Under-
standing counterexamples with explain. In Alur R.,
Peled D.A. (eds) Computer Aided Verification. CAV
2004 (2004), vol. 3114 of Lecture Notes in Compu-
ter Science, Springer, pp. 453–456.

[70] Groce, A., and Visser, W. What went wrong: Explai-
ning counterexamples. In SPIN Workshop on Model
Checking of Software (2003), pp. 121–135.

[71] Grumberg, O. Abstraction and refinement in model
checking. In FMCO 2005 (2006), LNCS, vol. 4111,
Springer-Verlag, Berlin, Heidelberg, pp. 219–242.

[72] Gudemann, M., Salaun, G., and Ouederni, M. Coun-
terexample guided synthesis of monitors for re-
alizability enforcement. In ATVA 2012 (2012),
LNCS, vol. 7561, Springer-Verlag, Berlin, Heidel-
berg, pp. 238–253.

[73] Guo, L., Roychoudhury, A., and Wang, T. Accura-
tely choosing execution runs for software fault loca-
lization. In 15th international conference on Compi-
ler Construction (2006), LNCS, vol. 3923, Springer,
Berlin, Heidelberg, pp. 80–95.

[74] Halpern, J., and Pearl, J. Causes and explanations:
A structural-model approach part i: Causes. In 17th
UAI (2001), pp. 194–202.

[75] Han, T., and Katoen, J. Counterexamples genera-
tion in probabilistic model checking. IEEE Trans.
on Software Engineering 35, 2 (2009), 72–86.

[76] Hansen, H., and Geldenhuys, J. Cheap and small
counterexamples. In Software Engineering and For-
mal Methods, SEFM ’08 (2008), IEEE Computer
Society Press, pp. 53–62.

[77] Hansen, H., and Kervinen, A. Minimal counterex-
amples in o(n log n) memory and o(n 2) time. In
ACDC 2006 (2006), IEEE Computer Society Press,
pp. 131–142.

[78] Hansson, H., and Jonsson, B. logic for reasoning
about time and reliability. Formal aspects of Com-
puting 6, 5 (1994), 512–535.

[79] Heimdahl, M., Rayadurgam, S., and Visser, W. Spe-
cification centered testing. In Second International
Workshop on Automates Program Analysis, Testing
and Verification (2000).

[80] Hermanns, H., Wachter, B., and Zhang, L. Probabi-
listic cegar. In Computer Aided Verification (CAV)
(2008), LNCS, vol. 5123, Springer, Berlin, Heidel-
berg, pp. 162–175.

[81] Hinton, A., Kwiatkowska, M., Norman, G., and Par-
ker, D. Prism: A tool for automatic verification of
probabilistic systems. In TACAS (2006), LNCS, vol.
3920, Springer, Berlin, Heidelberg, pp. 441–444.

[82] Hojati, R., Brayton, R. K., and Kurshan, R. P. Bdd-
based debugging of designs using language contain-
ment and fair ctl. In Fifth Conference on Computer
Aided Verification (CAV 93) (1993), LNCS, vol. 697,
Springer, Berlin, Heidelberg, pp. 41–58.

[83] Hojati, R., Brayton, R. K., and Kurshan, R. P. Bdd-
based debugging of designs using language contai-
nment and fair ctl. In CAV 93 (1993), LNCS, vol.
697, Springer, Berlin, Heidelberg, pp. 41–58.

164 Informatica 42 (2018) 145–166 H. Debbi

[84] Hojati, R., Touati, H., Kurshan, R. P., and Bray-
ton, R. K. Effcient -regular language containment.
In Computer Aided Verification (1992), LNCS, vol.
1708, Springer, Berlin, Heidelberg, pp. 371–382.

[85] Holzmann, G., Peled, D., and Yannakakis, M. On
nested depth

first search. In SPIN’96 (1996).

[86] Holzmann, G. J. The model checker spin. IEEE
Transactions on Software Engineering 23, 5 (1997),
1–17.

[87] Hong, H. S., and Lee, I. Automatic test generation
from specifications for controlflow and data-flow co-
verage criteria. In International Conference on Soft-
ware Engineering (ICSE) (2003).

[88] I.Beer, Ben-David, S., Chockler, H., Orni, A., and
Treer, R. Explaining counterexamples using causa-
lity. Formal Methods Systems Design 40, 1 (2012),
20–40.

[89] Janota, M., Grigore, R., and Marques-Silva, J.
Counterexample guided abstraction refinement al-
gorithm for propositional circumscription. In JE-
LIA’10 Proceedings of the 12th European confe-
rence on Logics in artificial intelligence (2010),
LNCS, vol. 6341, Springer, Berlin, Heidelberg,
pp. 195–207.

[90] Jansen, N., Abraham, E., Volk, M., Wilmer, R., Ka-
toen, J., and Becker, B. The comics tool - compu-
ting minimal counterexamples for dtmcs. In ATVA
(2012), LNCS, vol. 7561, Springer, Berlin, Heidel-
berg, pp. 249–253.

[91] Jia, Y., and Harman, M. An analysis and survey of
the development of mutation testing. IEEE Tran-
sactions ON Software Engineering 37, 05 (2011),
649 – 678.

[92] Jin, H., Ravi, K., and F.Somenzi. Fate and free will
in error traces. International Journal on Software
Tools for Technology Transfer 6, 2 (2004), 102–116.

[93] Kashyap, S., and Garg, V. Producing short coun-
terexamples using crucial events. In CAV 2008
(2008), LNCS, vol. 5123, Springer, Berlin, Heidel-
berg, pp. 491–503.

[94] Katoen, J.-P., Khattri, M., and Zapreev, I. S. A
markov reward model checker. In QEST (2005),
pp. 243–244.

[95] Kesten, Y., Pnueli, A., and o. Raviv, L. Algorithmic
verification of linear temporal logic specifications.
In International Colloquium on Automata, Langua-
ges, and Programming (ICALP-98), (1998), LNCS,
vol. 1443, Springer, Berlin, Heidelberg, pp. 1–16.

[96] Kroening, D., Groce, A., and Clarke, E. Counte-
rexample guided abstraction refinement via program
execution. In 6th International Conference on For-
mal Engineering Methods (ICFEM) (2004), LNCS,
vol. 3308, Springer, Berlin, Heidelberg, pp. 224–
238.

[97] Kuma, N., Kumar, V., and Viswanathan, M. On the
complexity of error explanation. In Verification, Mo-
del Checking, and Abstract Interpretation (VMCAI)
(2005), LNCS, vol. 3385, Springer, Berlin, Heidel-
berg, pp. 448–464.

[98] Kumazawa, T., and Tamai, T. Counterexample-
based error localization of behavior models. In
NASA Formal Methods (2011), pp. 222–236.

[99] Kurshan, R. P. Computer-Aided Verification of coor-
dinating processes - the automata theoretic appro-
ach. Princeton University Press, 1994.

[100] Larsen, K. G., Pettersson, P., and Wang, Y. Uppaal
in a nutshell. Int. J. Software Tools for Technology
Transfer 1, 1 (1997), 134–152.

[101] Leitner-Fischer, F., and Leue, S. On the synergy
of probabilistic causality computation and causality
checking. In SPIN 2013 (2013), LNCS, vol. 7976,
Springer-Verlag, Berlin, Heidelberg, pp. 246–263.

[102] Leitner-Fischer, F., and Leue, S. Probabilistic fault
tree synthesis using causality computation. IJCCBS
4, 2 (2013), 119–143.

[103] Leue, S., and Befrouei, M. T. Counterexample ex-
planation by anomaly detection. In SPIN (2012),
vol. 7385 of Lecture Notes in Computer Science,
Springer, pp. 24–42.

[104] Leue, S., and Befrouei, M. T. Mining sequential
patterns to explain concurrent counterexamples. In
SPIN (2013), vol. 7976 of Lecture Notes in Compu-
ter Science, Springer, pp. 264–281.

[105] Lewis, D. Causation. Journal of Philosophy 70
(1973), 556–567.

[106] LONG, D. Model checking, abstraction and compo-
sitional verification. PhD thesis, School of Compu-
ter Science, Carnegie Mellon University, 2005.

[107] McMillan, K., and Zuck, L. Abstract counterex-
amples for non-disjunctive abstractions. In Reacha-
bility Problems (2009), LNCS, vol. 5797, Springer,
Berlin, Heidelberg, pp. 176–188.

[108] Nopper, T., Scholl, C., and Becker., B. Computa-
tion of minimal counterexamples by using black box
techniques and symbolic methods. In Computer-
Aided Design (ICCAD) (2007), IEEE Computer So-
ciety Press, pp. 273–280.

Counterexamples in Model Checking – A Survey Informatica 42 (2018) 145–166 165

[109] Pnueli, A. The temporal logic of programs. In
18th Annual Symposium on Foundations of Compu-
ter Science (1977), IEEE, pp. 46–57.

[110] Pytlik, B., Renieris, M., Krishnamurthi, S., and
Reiss, S. P. Automated fault localization using po-
tential invariants. In AADEBUG’2003, Fifth Inter-
national Workshop on Automated and Algorithmic
Debugging (2003), pp. 273–276.

[111] Ravi, K., Bloem, R., and Somenzi, F. A comparative
study of symbolic algorithms for the computation of
fair cycles. In Third International Conference, FM-
CAD 2000 (2000), LNCS, vol. 1954, Springer, Ber-
lin, Heidelberg, pp. 162–179.

[112] Ravi, K., Bloem, R., and Somenzi, F. A note on
on-the-fly verification algorithms. In TACAS 2005
(2005), LNCS, vol. 3440, Springer, Berlin, Heidel-
berg, pp. 174–190.

[113] Ravi, K., and Somenzi, F. Minimal assignments for
bounded model checking. In TACAS (2004), LNCS,
vol. 2988, Springer, Berlin, Heidelberg, pp. 31–45.

[114] Renieris, M., and Reiss, S. Fault localization with
nearest neighbor queries. In ASE (2003), IEEE
Computer Society, pp. 30–39.

[115] Saidi, H., and Shankar, N. Abstract and model check
while you prove. In CAV 99 (1999), LNCS, vol.
4111, Springer-Verlag, Berlin, Heidelberg, pp. 219–
242.

[116] Schmalz, M., Varacca, D., and Volzer, H. Coun-
terexamples in probabilistic ltl model checking for
markov chains. In International Conference on Con-
currency Theory (CONCUR) (2009), LNCS, vol.
5710, Springer, Berlin, Heidelberg, pp. 787–602.

[117] Schuppan, V., and Biere, A. Shortest counterexam-
ples for symbolic model checking of ltl with past. In
11th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems
(2005), LNCS, vol. 3440, Springer, Berlin, Heidel-
berg, pp. 493–509.

[118] Shen, S., Qin, Y., and Li, S. Bug localization of har-
dware system with control flow distance minimiza-
tion. In 13th IEEE International Workshop on Logic
and Synthesis (IWLS 2004) (2004).

[119] Shen, S., Qin, Y., and Li, S. Localizing errors in
counterexample with iteratively witness searching.
In ATVA (2004), LNCS, vol. 3299, Springer, Berlin,
Heidelberg, pp. 456–469.

[120] Shen, S., Qin, Y., and Li, S. Minimizing counterex-
ample with unit core extraction and incremental sat.
In Verification, Model Checking, and Abstract Inter-
pretation (2005), LNCS, vol. 3385, Springer, Berlin,
Heidelberg, pp. 298–312.

[121] Shen, S., and Y. Qin, S. L. Localizing errors in
counterexample with iteratively witness searching.
In ATVA 2004 (2004), LNCS, vol. 3299, Springer,
Berlin, Heidelberg, pp. 459–464.

[122] Shen, S.-Y., Qin, Y., and Li, S. A fast counterexam-
ple minimization approach with refutation analysis
and incremental sat. In Conference on Asia South
Pacific Design Automation (2005), pp. 451–454.

[123] Sheyner, O., Haines, J., , Jha, S., Lippmann, R., and
Wing, J. Automated generation and analysis of at-
tack graphs. In IEEE Symposium on Security and
Privecy 2002 (2002), pp. 273–284.

[124] Tan, J., Avrunin, G., and Leue, S. Heuristic-guided
counterexample search in flavers. In 12th ACM
SIGSOFT international symposium on Foundations
of software engineering (2004), pp. 201–210.

[125] Tan, L., Sokolsky, O., and Lee, I. Specification-
based testing with linear temporal logic. In Procee-
dings of IEEE International Conference on Informa-
tion Reuse and Integration (2004), pp. 493–498.

[126] Tarjan, R. E. Depth-first search and linear graph al-
gorithms. SIAM Journal of Computing 1, 2 (1972),
146–160.

[127] Tip, F., and Dinesh, T. A slicing-based approach for
locating type errors. ACM Transactions on Software
Engineering and Methodology1 10, 1 (2001), 5–55.

[128] Touati, H. J., Brayton, R. K., and Kurshan, R. P.
Testing language containment for ω automata using
bdds. In International Workshop on Formal Methods
in VLSI Design (1991), pp. 371–382.

[129] Valmari, A., and Geldenhuys, J. Tarjans algo-
rithm makes on-the-fly ltl verification more eff-
cient. In Jensen, K., Podelski, A. (eds.) TACAS
(2004), LNCS, vol. 2988, Springer, Berlin, Heidel-
berg, pp. 205–219.

[130] Vardi, M., Wolper, P., and Yannakakis, M. Memory-
efficient algorithms for the verification of temporal
properties. Formal Methods in System Design 1, 2
(1992), 275–288.

[131] Visser, W., Havelund, K., Brat, G., Park, S., and
Lerda, F. Model checking programs. Automated
Software Engineering Journal 10, 2 (2003), 203–
222.

[132] Wang, C., Yang, Z., Ivancic, F., and Gupta, A. Who-
dunit? causal analysis for counterexamples. In 4th
International Symposium, ATVA (2006), LNCS, vol.
4218, Springer, Berlin, Heidelberg, pp. 82–95.

[133] Wimmer, R., Braitling, B., and Becker, B. Coun-
terexample generation for discrete-time markov

166 Informatica 42 (2018) 145–166 H. Debbi

chains using bounded model checking. In Verifica-
tion, Model Checking, and Abstract Interpretation
(2009), LNCS, vol. 5403, Springer, Berlin, Heidel-
berg, pp. 366–380.

[134] Wimmer, R., Jansen, N., Abraham, E., Becker, B.,
and Katoen, J. Minimal critical subsystems for
discrete-time markov models. In TACAS (2012),
LNCS, vol. 7214, Springer, Berlin, Heidelberg,
pp. 299–314.

[135] Wimmer, R., Jansen, N., and Vorpahl, A. High-
level counterexamples for probabilistic automata. In
Quantitative Evaluation of Systems (QEST) (2013),
LNCS, vol. 8054, Springer, Berlin, Heidelberg,
pp. 39–54.

[136] Xie, A., and Beerel, P. A. Implicit enumeration
of strongly connected components. In Internatio-
nal Conference on ComputerAided Design (1999),
pp. 37–40.

[137] Zeller, A. Yesterday, my program worked. today, is
does not. why? In ACM Symposium on the Founda-
tions of Software Engineering (1999), pp. 253–267.

[138] Zeller, A. Isolating cause-effect chains for computer
programs. In ACM Symposium on the Foundations
of Software Engineering (2002), pp. 1–10.

