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This paper reports on preliminary numerical experiments in optimizing coolant flows in continuous casting
of steel with respect to multiple objectives. For this purpose, Differential Evolution for Multiobjective
Optimization (DEMO) coupled with a reliable numerical simulator of the casting process was applied.
The algorithm parameters were initially tuned to balance between the quality of the expected results and
the computational cost of the optimization process. Afterwards, suitable sets of coolant flow settings were
calculated under conflicting requirements for minimum temperature deviations and predefined core length
in the caster. In contrast to solutions produced in single-objective optimization, approximation sets of
Pareto optimal fronts obtained in multiobjective optimization provide more information to metallurgists
and allow for better insight into the casting process.

Povzetek: Članek obravnava nastavljanje pretokov hladila v industrijskem kontinuiranem ulivanju jekla
kot večkriterijski optimizacijski problem in ga rešuje z evolucijskim algoritmom DEMO.

1 Introduction

Production and processing of materials are nowadays un-
der strong market-driven pressure for shortening the pro-
cess development time, reducing experimental costs, im-
proving material properties, and increasing productivity. In
achieving these goals, numerical analysis is playing an in-
creasingly important role. Material scientists and engineers
actually consider empirical knowledge and computational
approximation as the basis for material process design and
control. Numerical simulators give insight into process
evolution, allow for execution of virtual experiments and
support manual optimization by trial and error. However,
the optimization procedure can be automated by coupling a
simulator with an optimization algorithm and introducing a
quality function which allows for automatic assessment of
the simulation results.

Continuous casting of steel is an example of a process to
which novel computational approaches have been applied
intensively over the last years to enhance product character-
istics and minimize production costs. In this complex met-
allurgical process molten steel is cooled and shaped into

semi-manufactures. To cast high quality steel, it is impor-
tant to properly control the metal flow and heat transfer
during the process. They depend on numerous parame-
ters, including the casting temperature, casting speed and
coolant flows. Finding optimal values of process parame-
ters is difficult as the number of possible parameter settings
is high, the involved criteria are often conflicting, and pa-
rameter tuning through real-world experimentation is not
feasible because of safety risk and high costs. Techniques
applied to overcome these difficulties include knowledge-
based techniques, neural networks, fuzzy logic and evolu-
tionary computation. Nevertheless, the predominant opti-
mization approach taken in the applied studies so far was to
aggregate multiple criteria into a single cost value and solve
the optimization problem empirically using the simulator-
optimizer coupling.

In this paper we report on preliminary numerical exper-
iments in optimizing secondary coolant flows on a steel
casting machine with respect to multiple objectives and un-
der technological constraints. The experiments were per-
formed using a novel multiobjective optimization evolu-
tionary algorithm, while in the underlying numerical sim-
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ulations continuous casting of a selected steel grade un-
der steady-state conditions was assumed. Through the ob-
tained approximation sets of optimal solutions the plant en-
gineers can get better insight into process behavior and pa-
rameter effects.

The paper outlines the related work, describes the op-
timization task and the multiobjective optimization ap-
proach, and reports on the performed numerical experi-
ments and obtained results.

2 Related Work

Over the last years, several advanced computer techniques
have been used in attempts to enhance the process perfor-
mance and material properties in metallurgical production.
Cheung and Garcia [3], for example, combine a numerical
model of the process with an artificial intelligence heuris-
tic search technique linked to a knowledge base to find
parameters values that result in defect-free billet produc-
tion. Chakraborti and coworkers [1] report that genetic
algorithms have proved to be the most suitable for opti-
mizing the settings of the continuous casting mold. They
use a Pareto-converging genetic algorithm to solve a multi-
objective problem of setting the casting velocity in the
mold region. In a further study [2] relying on heat trans-
fer modeling, genetic algorithms are used to determine the
maximum casting speed and solidified shell thickness at the
mold exit. Oduguwa and Roy [13] use a novel fuzzy fitness
evaluation in evolutionary optimization and apply it in rod
rolling optimization. They solve a multi-objective problem
of optimal rod shape design.

Our approach to process parameter optimization in con-
tinuous casting of steel involves a numerical simulator
of the casting process and various stochastic optimization
techniques among which evolutionary algorithms play the
key role. The initial version of the optimization system
[11] was designed to search for process parameter values
that would result in as high as possible quality of contin-
uously cast steel. Based on empirical metallurgical crite-
ria, it was able to deliver improved parameter settings that
proved beneficial in practice. However, using a simple evo-
lutionary algorithm, it spent thousands of process simula-
tions to find high-quality solutions. As the time aspect is
critical, the purpose of further exploration [9, 7] was to re-
duce the number of needed process simulations. These ap-
plied studies were all using the weighted-sum technique of
aggregating multiple criteria into a scalar cost function. As
opposed to that, in a recent work [10] an attempt was made
to handle multiple criteria by means of evolutionary mul-
tiobjective optimization. Based on the initial findings, this
paper refines the problem definition by introducing an addi-
tional technological constraint, justifies the algorithm set-
tings by checking the algorithm performance metrics and
analyzes the new numerical results.

3 Problem Description
In industrial continuous casting, liquid steel is poured into
a bottomless mold which is cooled with internal water flow.
The cooling in the mold extracts heat from the molten steel
and initiates the formation of a solid shell. The shell forma-
tion is crucial for the support of the slab behind the mold
exit. The slab then enters the secondary cooling area in
which it is cooled by water sprays. The secondary cooling
region is divided into cooling zones where the amount of
the cooling water can be controlled separately.

We consider a casting machine with the secondary cool-
ing area divided into nine zones. In each zone, cooling
water is dispersed to the slab at the center and corner po-
sitions. Target temperatures are specified for the slab cen-
ter and corner in every zone. Water flows should be tuned
in such a way that the resulting slab surface temperatures
match the target temperatures as closely as possible. From
metallurgical practice this is known to reduce cracks and
inhomogeneities in the structure of the cast steel. Formally,
cost function c1 is introduced to measure deviations of ac-
tual temperatures from the target ones:

c1 =
NZ∑

i=1

|T center
i − T center∗

i |+
NZ∑

i=1

|T corner
i − T corner∗

i |,
(1)

where NZ denotes the number of zones, T center
i and

T corner
i the slab center and corner temperatures in zone

i, and T center∗
i and T corner∗

i the respective target temper-
atures in zone i.

There is also a requirement for core length, lcore, which
is the distance between the mold exit and the point of com-
plete solidification of the slab. The target value for the core
length, lcore∗, is prespecified, and the actual core length
should be as close to it as possible. Shorter core length
may result in unwanted deformations of the slab as it so-
lidifies too early, while longer core length may threaten the
process safety. We formally treat this requirement as cost
function c2:

c2 = |lcore − lcore∗|. (2)

The optimization task is to minimize both c1 and c1 over
possible cooling patterns (water flow settings). It is known
that the two objectives are conflicting, hence it is reason-
able to handle this optimization problem as a multiobjec-
tive one.

In search for solutions, water flows cannot be set arbitrar-
ily, but according to the technological constraints. For each
zone, minimum and maximum values are prescribed for the
center and corner water flows. Moreover, to avoid unac-
ceptable deviations of the core length from the target value,
a hard constraint is imposed: c2 ≤ ∆lcoremax. Candidate so-
lutions not satisfying the water flow constraint and/or the
core length constraint are considered infeasible.

A prerequisite for optimization of this process is an ac-
curate numerical simulator, capable of calculating the tem-
perature field in the slab as a function of process parameters
and evaluating it with respect to cost functions (1) and (2).
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For this purpose we used the mathematical model of the
process with Finite Element Method (FEM) discretization
of the temperature field and the corresponding nonlinear
equations solved with relaxation iterative methods, already
applied in previous single-objective optimization study of
the casting process [8].

4 Multiobjective Optimization

4.1 Preliminaries
The multiobjective optimization problem (MOP) is defined
as finding the minimum of the cost function c:

c : X → Z

c : (x1, . . . , xn) 7→ (c1(x1, . . . , xn), . . . , cm(x1, . . . , xn)),

where X is an n-dimensional decision space, and Z ⊆ Rm

is an m-dimensional objective space (m ≥ 2). The ob-
jective vectors from Z can be partially ordered using the
concept of Pareto dominance: z1 dominates z2 (z1 ≺ z2)
iff z1 is not worse than z2 in all objectives and better in
at least one objective. When the objectives are conflicting,
there exists a set of optimal objective vectors called Pareto
optimal front. Each vector from the Pareto optimal front
represents a different trade-off between the objectives and
without additional information no vector can be preferred
to another.

With a multiobjective optimizer we search for an ap-
proximation set that approximates the Pareto optimal front
as well as possible. When solving MOPs in practice it is
often important to provide the user with a diverse choice
of trade-offs. Therefore, beside including vectors close to
the Pareto optimal front, the approximation set should also
contain near-optimal vectors that are as distinct as possible.

4.2 The DEMO Algorithm
Finding a good approximation set in a single run requires a
population-based method. Consequently, evolutionary al-
gorithms have been frequently used as multiobjective op-
timizers [4]. Among them, the recently proposed Differ-
ential Evolution for Multiobjective Optimization (DEMO)
[15] is applied in optimizing the described metallurgical
process.

DEMO is based on Differential Evolution (DE) [14],
an evolutionary algorithm for single-objective optimization
that has proved to be very successful in solving numerical
optimization problems. In DE, each solution is encoded as
an n-dimensional vector. New solutions, also called candi-
dates, are constructed using operations such as vector addi-
tion and scalar multiplication. After the creation of a can-
didate, the candidate is compared with its parent and the
best of them remains in the population, while the other one
is discarded.

Because the objective space in MOPs is multidimen-
sional, DE needs to be modified to deal with multiple ob-
jectives. DEMO is a modification of DE with a particular

mechanism for deciding which solution should remain in
the population. For each parent in the population, DEMO
constructs the candidate solution using DE. If the candi-
date dominates the parent, it replaces the parent in the cur-
rent population. If the parent dominates the candidate, the
candidate is discarded. Otherwise, if the candidate and its
parent are incomparable, the candidate is added to the pop-
ulation. After constructing candidates for each parent in-
dividual in the population, the population has possibly in-
creased. In this case, it is truncated to the original size us-
ing nondominated sorting and crowding distance metric (as
in NSGA-II [5]). This steps are repeated until a stopping
criterion is met.

DEMO is a simple but powerful algorithm, presented in
detail in [15]. From the three proposed algorithm variants,
the elementary one, called DEMO/parent, is used in this
work.

5 Optimization Experiments

5.1 Experimental Setup
Numerical experiments in multiobjective optimization of
the casting process were performed for a selected steel
grade with the slab cross-section of 1.70 m × 0.21 m.
Candidate solutions were encoded as 18-dimensional real-
valued vectors, representing water flow values at the center
and corner positions in 9 zones of the secondary cooling
area. Search intervals for cooling water flows at both cen-
ter and corner positions in zones 1, 2 and 3 were between
0 and 50 m3/h, while in the zones 4–9 between 0 and 10
m3/h. Table 1 shows the prescribed target slab surface tem-
peratures. The target value for the core length lcore∗ was
27 m, while its maximum deviation allowed ∆lcoremax was
7 m.

Table 1: Target surface temperatures in ◦C.

Zone number Center position Corner position
1 1050 880
2 1040 870
3 980 810
4 970 800
5 960 790
6 950 780
7 940 770
8 930 760
9 920 750

Four instances of the optimization problem were used
in experiments, differing in the casting speed. The casting
speed reflects the conditions under which the process needs
to be conducted and significantly affects the productivity
and product quality. In each problem instance the speed
was kept constant, but at a different value. The values used
were: 1.2 m/min, 1.4 m/min, 1.6 m/min and 1.8 m/min.
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DEMO was integrated with the numerical simulator of
the casting process into an automated optimization environ-
ment. DEMO evolved sets of candidate solutions in search
for a good approximation set, and the simulator served as
a solution evaluator. Steady-state operation of the casting
machine was assumed and optimization performed in the
off-line manner.

The most limiting factor for experimental analysis is the
computational complexity of the casting process simula-
tion. A single simulator run takes about 40 seconds on
a 1.8 GHz Pentium IV computer. In initial experimenta-
tion we found DEMO runs with 5000 solution evaluations
(and therefore taking about 55 hours) well compromising
between the execution time and solution quality. Further
algorithm settings were also adopted according to the ini-
tial parameter tuning experiments [6] and were as follows:
population size 50, number of generations 100, scaling fac-
tor 0.5 and crossover probability 0.05. These settings en-
sure highly acceptable algorithm performance and repeata-
bility of the results as indicated by the hypervolume mea-
sure [16] and attainment surface plots [12] obtained over
five test runs of the algorithm and shown in Figs. 1–2.
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Figure 1: Hypervolume values in five test runs of the
DEMO algorithm.

5.2 Results and Findings
The key result of this study were approximation sets of
Pareto optimal fronts. Figure 3 shows the approximation
sets found by DEMO for five casting speeds, ranging from
1.2 m/min to 1.8 m/min. Each set of nondominated solu-
tions is the final result of a single DEMO run at a constant
casting speed.

It can be observed that the two objectives are really con-
flicting in the sense that finding a minimum for one of them
the optimization procedure fails to do so for the other and
vice versa. It is also obvious that the casting speed has a de-
cisive impact on the result. Moreover, the higher the cast-
ing speed, the more the two objectives can be met simulta-
neously. This corresponds with practical experience on the
considered casting machine, where the process is easier to
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Figure 2: 20% and 100% attainment surfaces for the solu-
tions found in five test runs of the DEMO algorithm.
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Figure 3: Nondominated solutions found with DEMO for
different casting speeds.

control at the usual casting speed (1.6–1.8 m/min). Lower
casting speed is clearly shown as disadvantageous and in
practice it is only set exceptionally, for example, when a
new batch of steel is awaited.

A detailed analysis of the solution properties also reveals
that, in view of the objective c1, the majority of actual sur-
face temperatures are higher than the target temperatures,
while regarding c2, the actual core length is almost always
shorter than the target value.

Looking into decision space, one can also observe cer-
tain regularities. In case of applying trade-off solutions
from the middle of the approximation sets, the amount of
coolant spent increases with the casting speed (see the left-
hand side diagrams in Figs. 4–7). This is an expected result
as higher casting speed implies more intense cooling. On
the other hand, the distributions of temperature differences
across the secondary cooling zones (right-hand side dia-
grams in Figs. 4–7) exhibit two characteristics. First, the
target temperatures are much more difficult to achieve at
the center than in the corner slab positions. Second, the dif-
ferences at the center are rather non-uniform. While some
are close to zero, others reach up to 200◦C at lower cast-



PRELIMINARY NUMERICAL EXPERIMENTS IN MULTIOBJECTIVE . . . Informatica 31 (2007) 233–240 237

 0

 10

 20

 30

 40

 50

 1  2  3  4  5  6  7  8  9

W
at

er
 fl

ow
s 

[m
3/

h]

Zones

center
corner

-100

-50

 0

 50

 100

 150

 200

 250

 300

 1  2  3  4  5  6  7  8  9

D
ev

ia
tio

ns
 fr

om
 ta

rg
et

 te
m

er
at

ur
es

 [C
]

Zones

center
corner

Figure 4: A trade-off solution from the middle of the approximation set for the casting speed speed of 1.2 m/min: c1 =
1051◦C, c2 = 3.8 m.
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Figure 5: A trade-off solution from the middle of the approximation set for the casting speed speed of 1.4 m/min: c1 =
677◦C, c2 = 2.2 m.

ing speeds. Such a situation is not preferred in practice and
calls for the reformulation of objective c1 in further calcu-
lations.

On the other hand, it is worth checking the extreme so-
lutions from an approximation set at a given casting speed.
Figures 8 and 9 clearly show how one objective is met at
the expense of the other. None of these would normally
be used in practice. Instead, a plant engineer would rather
select a trade-off setting balancing between the two objec-
tives.

6 Conclusion
Advanced manufacturing and processing of materials
strongly rely on numerical analysis of the related processes
made possible by powerful modeling and simulation soft-
ware packages. To use them efficiently, an upgrade is
needed towards process automatic optimization. The op-
timization environment studied in this paper consists of a
numerical process simulator and an evolutionary multiob-

jective optimization algorithm. We illustrated the capabil-
ities of this approach in process parameter optimization in
continuous casting of steel. Solving this task successfully
is a key to higher product quality.

In the preliminary study of optimizing 18 cooling wa-
ter flows with respect to two objectives on an industrial
casting machine the capabilities of the multiobjective prob-
lem treatment were shown. The analysis assumes steady-
state process conditions, hence the results are not primarily
intended for control purposes but rather for better under-
standing of the process and evaluation of the casting ma-
chine performance. The resulting approximation sets of
Pareto optimal fronts indeed offer a more general view of
the process properties. The results support some facts al-
ready known in practice and, at the same time, show critical
points, such as the need to reformulate the temperature de-
viation criterion to ensure uniform distribution of temper-
ature differences over the zones, and extend the optimiza-
tion problem definition with an additional constraint. From
the practical point of view, further studies will also explore
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Figure 6: A trade-off solution from the middle of the approximation set for the casting speed speed of 1.6 m/min: c1 =
281◦C, c2 = 1.3 m.
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Figure 7: A trade-off solution from the middle of the approximation set for the casting speed speed of 1.8 m/min: c1 =
151◦C, c2 = 0.0 m.

how much the optimization results are affected by the fac-
tors that were kept constant so far, such as steel grade, slab
geometry and casting machine characteristics.
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