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This paper reviews the current state of a Hungarian project which seeks to create a speech recognition
system for the dictation of thyroid gland medical reports. First, we present the MRBA speech corpus that
was assembled to support the training of general-purpose Hungarian speech recognition systems. Then
we describe the processing of medical reports that were collected to help the creation of domain-specific
language models. At the acoustic modelling level we experimented with two techniques – a conventional
HMM one and an ANN-based solution – which are both briefly described in the paper. Finally, we present
the language modelling methodology currently applied in the system, and round off with recognition re-
sults on test data taken from four speakers. The scores show that on a somewhat restricted sub-domain of
the task we are able to produce word accuracies well over 95%.

Povzetek: Prispevek predstavlja pregled trenutnega stanja madžarskega projekta, ki skuša vzpostaviti sis-
tem razpoznavanja govora za narekovanje zdravniških izvidov na temo žleze ščitnice.

1 Introduction: state of the art and
goals of the project

Automating the dictation of texts is one of the main appli-
cations of speech recognition. Mainly because of the huge
training corpora, the increased processor speeds and the
refined search techniques dictation systems have reached
such a level of sophistication that the commercial prod-
ucts now offer sufficiently good accuracy even for arbi-
trary normal-pace fluent speech [12]. Experience tells
us, however, that for a really good performance it is still
worth applying some tricks like an initial speaker enroll-
ment process where the machine can adapt to the voice of
the speaker, or the restriction of the dictation topic to some
specific (e.g. medical or legal) domain. Such dictation sys-
tems already exist for the biggest languages, but the situa-
tion for those languages that can offer only a small market
is not as good. For Hungarian at the present time there ex-
ists no general-purpose large vocabulary continuous speech
recognizer (LVCSR). Among the university publications
even papers that deal with continuous speech recognition
are hard to find, and these give results only for restricted
vocabularies [15]. Although on the industrial side Philips
have adapted its SpeechMagic system to two special appli-
cation domains in Hungarian, it is sold at a price that is
affordable for only the largest institutes [9]. The experts

usually cite two main reasons for the lack of Hungarian
LVCSR systems. First, there are no sufficiently large, pub-
licly available speech databases that would allow the train-
ing of reliable phone models. The second reason is the
special difficulties of language modelling that arise due to
the highly agglutinative nature of Hungarian.

In 2004 the Research Group on Artificial Intelligence
at the University of Szeged and the Laboratory of Speech
Acoustics of the Budapest University of Technology and
Economics began a project with the aim of collecting
and/or creating the basic resources needed for the construc-
tion of a continuous dictation system for Hungarian. The
project lasted for three years (2004-2006), and was finan-
cially supported by the national fund IKTA-056/2003. For
the acoustic modelling part, the project included the collec-
tion and annotation of a large speech corpus of phonetically
rich sentences. As regards the language modelling part, we
restricted the target domain to the dictation of some lim-
ited types of medical reports. Although this clearly led to a
significant reduction compared to a general dictation task,
we chose this application area with the intent of assess-
ing the capabilities of our acoustic and language modelling
technologies. Depending on the findings, later we hope to
extend the system to more general dictation domains. This
is why the language resources were chosen to be domain-
specific, while the acoustic database contains quite general,
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domain-independent recordings.
Although both participating teams used the same speech

database to train their acoustic models, they focused on
two different dictation tasks and experimented with their
own acoustic and language modelling technologies. The
team at the University of Szeged focused on the task of the
dictation of thyroid scintigraphy medical reports, while the
Budapest team dealt with gastroenterology reports. This
paper just describes the research and development efforts
of the Szeged team. The interested reader can find a survey
of the research done by the Laboratory of Speech Acoustics
in [16].

2 Speech and language resources

In the first phase of the project we designed, assembled
and annotated a speech database called the MRBA cor-
pus (the abbreviation stands for the "Hungarian Reference
Speech Database") [16]. Our goal was to create a database
that allows the training of general-purpose dictation sys-
tems which run on personal computers in office environ-
ments and operate with continuous, read speech. The con-
tents of the database were designed by the Laboratory of
Speech Acoustics. As a starting point, they took a large
(1.6 MB) text corpus and after automatic phonetic tran-
scription they created phone, diphone and triphone statis-
tics from it. Then they selected 1992 different sentences
and 1992 different words in such a way that 98.8% of the
most frequent diphones had at least one occurrence in them.
These sentences and words were recorded from 332 speak-
ers, each reading 12 sentences and 12 words. Thus all sen-
tences and words have two recordings in the speech cor-
pus. Both teams participated in the collection of the record-
ings, which was carried out in four big cities, mostly at
universities labs, offices and home environments. In the
database the ratio of male and female speakers is 57.5% to
42.5%. About one-third of the speakers were between 16
to 30 years of age, the rest being evenly distributed among
the remaining age groups. Both home PCs and laptops
were used to make the recordings, and the microphones and
sound cards of course varied as well. The sound files were
cleaned and annotated at the Laboratory of Speech Acous-
tics, while the Research Group on Artificial Intelligence
manually segmented and labelled one third of the files at
the phone level. This part of the corpus is intended to sup-
port the initialization of phone models prior to training on
the whole corpus.

Besides the general-purpose MRBA corpus, we also col-
lected recordings that are specific for the target domain,
namely thyroid scintigraphy medical reports. From these
recordings 20-20 reports read aloud by 4 persons were used
as test data in the experiments reported here.

For the construction of the domain-specific language
models, we got 9231 written medical reports from the De-
partment of Nuclear Medicine of the University of Szeged.
These thyroid scintigraphy reports were written and stored

using various software packages that were employed at the
department during 1998 to 2004. So first of all we had to
convert all the reports to a common format, followed by
several steps of routine error correction. Each report con-
sists of 7 fields: header (name, ID number etc. of the pa-
tient), clinical observations, request of the referral doctor,
a summary of previous examinations (if any), the findings
of this examination, a one-sentence summary, and a sig-
nature. From the corpus we omitted the first and the last,
person-specific fields, for the sake of personal data privacy.
Then we discarded those reports that were incomplete such
as those that had missing fields. This way only 8546 re-
ports were kept, which, on average, contained 11 sentences
and 6 words per sentence. The next step was to remove
any typographical errors from the database, of which there
were surprisingly many (the most frequent words occurred
in 10-15 mistyped forms). A special problem was that of
unifying the Latin terms, many of which are allowed to be
written both with a Latin or a Hungarian spelling in medi-
cal texts (for example therapia vs. terápia). The abbrevia-
tions also had to be resolved. The corpus we got after these
steps contained approximately 2500 different word forms
(excluding numbers and dates), so we were confronted with
a medium-sized vocabulary dictation task.

3 The user interface

Our GUI was really designed with the goal of serving many
users on the same computer. The other main design aspect
was to combine simplicity with good functionality. With
our program only a microphone and a text editor (Microsoft
Word or a similar word processing program) are needed for
dictating medical reports.

Every user has one or more profiles containing all the
special information characterizing his or her voice for a
given language and vocabulary. The language models and
the acoustic core modules can be installed separately, and
the system can optionally adapt to the individual charac-
teristics of the users. The user interface basically consists
of a toolbar at the top of the desktop. Using the toolbar
all the main functionalities related to the initial parameter
settings can be accessed, such as choosing a specific user,
choosing the actual task and selecting the output window
(Fig. 1). Other functionalities can only be accessed from
the actual text editor. The most important of these features
could be that the user can ask the speech recognition system
for other possible variants of the recognized sentences in
cases where he/she discovers the recognized word or sen-
tence to be incorrect.
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Figure 1: Functions of the graphical user interface: a)
Enable or disable auto hiding of the main toolbar. b) Start
or stop the recognition procedure. The user can suspend
the dictation at any time, and can continue later. c) Vol-
ume display bar. The volume of the microphone input can
be checked here. d) Choosing a specific user. The user
can be selected from the list of existing users. e) Choosing
the actual language. The language assigned to the current
user can be chosen from a listbox. f) Choosing the actual
grammar. Any available grammar can be chosen with just
one click. g) Selecting the internal text editor. The recog-
nized text will appear in the internal smart text editor. h)
Selecting the Microsoft Word plugin for output. i) Selecting
the window of the active application. With this function the
user can dictate into any MS Windows-based application
like MS Excel or MS Outlook. j) The main menu for man-
aging the user profiles. The functions presented above can
be accessed from here.

4 Acoustic modelling I:
HMM phone models over MFCC
features

At the level of acoustic modelling we have been experi-
menting with two quite different technologies. One of these
is a quite conventional Hidden Markov Model (HMM) de-
coder that works with the usual mel-frequency cepstral co-
efficient (MFCC) features [4]. More precisely, 13 coeffi-
cients are extracted from 25 msec frames, along with their
∆ and ∆∆ values, at a rate of 100 frames/sec. The phone
models applied have the usual 3-state left-to-right topology.
Hungarian has the special property that almost all phones
have a short and a long counterpart, and their difference is
phonologically relevant (i. e. there are word pairs that dif-
fer only in the duration of one phone – for example ‘tör’–
‘tőr’ or ‘szál’–‘száll’) [14]. However, it is known that such
minimal word pairs are relatively rare [14], and inspect-
ing the vocabulary of our specific dictation task we found
no such words. Hence most of the long/short consonant
labels were fused, and this way we worked with just 44
phone classes. One phone model was associated with each

of these classes, that is we applied monophone modelling
and this far no context-dependent models were tested in
the system. The decoder built on these HMM phone mod-
els performs a combination of Viterbi and multi-stack de-
coding [4]. For speed efficiency it contains several built-in
pruning criteria. First, it applies beam pruning, so only the
hypotheses with a score no worse than the best score mi-
nus a threshold are kept. Second, the number of hypothe-
ses extended at every time point is limited, corresponding
to multi-stack decoding with a stack size constraint. The
maximal evaluated phone duration can also be fixed. With
the proper choice of these parameters the decoder on a typ-
ical PC runs faster than real-time on the medical dictation
task.

5 Acoustic modelling II:
HMM/ANN phone models over
2D-cepstrum features

Our alternative, more experimental acoustic model em-
ploys the HMM/ANN hybrid technology [2]. The basic
difference between this and the standard HMM scheme is
that here the emission probabilities are modelled by Artifi-
cial Neural Networks (ANNs) instead of the conventional
Gaussian mixtures (GMM). In the simplest configuration
one can train the neural net over the usual 39 MFCC coef-
ficients – whose result can serve as a baseline for compar-
ison with the conventional HMM. However, ANNs seem
to be more capable of modelling the observation context
than the GMM technology, so the hybrid models are usu-
ally trained over longer time windows. The easiest way of
doing this is to specify a couple of neighboring frames as
input to the net: in a typical arrangement 4 neighboring
frames are used on both sides of the actual frame [2]. An-
other option is to apply some kind of transformation on the
data block of several neighboring frames. Knowing that
the modulation components play an important role in hu-
man speech perception, performing a frequency analysis
over the feature trajectories seems reasonable. When this
analysis is applied to the cepstral coefficients, the resulting
feature set is usually referred to as the 2D-cepstrum [6].
Research shows that most of the linguistic information is
in the modulation frequency components between 1 and 16
Hz, especially between 2 and 10 Hz. This means that not
all of the components of a frequency analysis have to be
retained, and so the 2D-cepstrum offers a compact repre-
sentation of a longer temporal context.

In the experiments we tried to find the smallest feature
set that would give the best recognition results. Running
the whole recognition test for each parameter setting would
have required too much time so, as a quick indicator of
the efficiency of a feature set we used the frame-level clas-
sification score. Hence the values given in the following
tables are frame-level accuracy values measured on a held-
out data set of 20% of the training data.
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First of all we tried to extend the data of the ‘target’
frame by neighboring frames, without applying any trans-
formation. The results shown in Table 1 indicate that train-
ing on more than 5 neighboring frames significantly in-
creased the number of features and hidden neurons (and
also significantly raised the training time) without bringing
any real improvement in the score.

Obs. size Hidden neurons Frame accuracy
1 frames 150 64.16%
3 frames 200 67.51%
5 frames 250 68.67%
7 frames 300 68.81%
9 frames 350 68.76%

Table 1: The effect of varying the observation context size.

In the experiments with the 2D-cepstrum we first tried
to find the optimal size of the temporal window. Hence
we varied the size of the DFT analysis between 8, 16,
32, and 64, always keeping the first and second compo-
nents1 (both the real and the imaginary parts), and com-
bined these with the static MFCC coefficients. The results
displayed in Table 2 indicate that the optimum is some-
where between 16 and 32 (corresponding to 160 and 320
milliseconds). This is smaller than the 400 ms value found
optimal in [6] and the 310 ms value reported in [13], but
this might depend on the amount of training data available
(a larger database would cover more of the possible vari-
ations and hence would allow a larger window size). Of
course, one could also experiment with combining various
window sizes as Kanedera did [6], but we did not run such
multi-resolution tests.

DFT size Hidden neurons Frame accuracy
8 200 64.63%
16 200 67.60%
32 200 67.01%
64 200 64.75%

Table 2: Frame-level results at various DFT sizes.

As the next step we examined whether it was worth re-
taining more components. In the case of the 16-point DFT
we kept 3 components, while for the 32-point DFT we tried
retaining 5 components (the highest center frequency being
18.75 Hz and 15.625 Hz, respectively). The results (see
Table 3) show that the higher modulation frequency com-
ponents are less useful, which accords with what is known
about the importance of the various modulation frequen-
cies.

Finally, we tried varying the type of transformation ap-
plied. Motlíček reported that there is no need to keep both
the real and imaginary parts of the DFT coefficients; using

1The DC offset being indexed as the zeroth component.

DFT Size Components H. n. Frame acc.
16 1, 2, 3 250 68.40%
32 1, 2, 3, 4, 5 300 70.64%

Table 3: Frame-level results with more DFT components.

just one of them is sufficient. Also, he obtained a simi-
lar performance when replacing the complex DFT with the
DCT [10]. Our findings agree more with those of Kaned-
era [6], that is we obtained slightly worse results with these
modifications (see Table 4). Hence we opted for the com-
plex DFT, using both the real and imaginary coefficients.
One advantage of the complex DFT over the DCT might
be that when only some of its coefficients are required (as
in our case), it can be very efficiently computed using a
recursive formula [5].

Transform H. neurons Frame accuracy
DFT Re + Im 300 70.64%
DFT Re only 220 65.81%

DCT 220 68.00%

Table 4: The effect of varying the transformation type.

6 Domain-specific language
modelling

A special difficulty of creating language models for Hun-
garian is the highly agglutinative [3] nature of the language.
This means that most words are formed by joining several
morphemes together, and those modifications of the mean-
ing that other languages express e.g. by pronouns or prepo-
sitions in Hungarian are handled by affixes (for example
‘in my house’ is ‘házamban’) [7]. Because of this, in a
large vocabulary modelling task the application of a mor-
phologic analyzer/generator seems inevitable. First, simply
listing and storing all the possible word forms would be al-
most impossible (e.g. an average noun can have about 700
inflected forms). Second, if we simply handled all these
inflected forms as different words, then achieving a certain
coverage rate in Hungarian would require a text about 5
times bigger than that in German and 20 times bigger than
that in English [11]. Hence the training of conventional n-
gram models would require significantly larger corpora in
Hungarian than in English, or even in German. A possi-
ble solution might be to train the n-grams over morphemes
instead of word forms, but then again the handling of the
morphology would be necessary.

Though decent morphological tools exist now for Hun-
garian, in our medical dictation system we preferred to
avoid the complications incurred by morphology. In fact,
the restricted vocabulary is one of the reasons why we
opted for the medical dictation task. For, as we men-
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Figure 2: Prefix tree for some Hungarian words with their MSD code. At the branches of the tree the grammar model
can generate the probability of a word based on the word n-gram and also based on the class n-gram.

tioned earlier, the thyroid gland medical reports contain
only about 2500 different word forms. Although these
many words could be easily managed even by a simple
list (‘linear lexicon’), we organized the words into a lex-
ical tree where the common prefixes of the lexical entries
are shared. Apart from storage reduction advantages, this
representation also speeds up decoding, as it eliminates re-
dundant acoustic evaluations [4]. A prefix tree representa-
tion is probably far more useful for agglutinative languages
than for English because of the many inflected forms of the
same stem.

The limited size of the vocabulary and the highly re-
stricted (i.e. low-perplexity) nature of the sentences used
in the reports allowed us to create very efficient n-grams.
Moreover, we did not really have to worry about out-of-
vocabulary words, since we had all the reports from the
previous six years, so the risk of encountering unknown
words during usage seemed minimal. The system cur-
rently applies 3-grams by default, but it is able to ‘back
off’ to smaller n-grams (in the worst case to a small ε
constant) when necessary. During the evaluation of the
n-grams the system applies a language model lookahead
technique. This means that the language model returns its
scores as early as possible, not just at word endings. For
this reason the lexical trees are stored in a factored form, so
that when several words share a common prefix, the max-
imum of their probabilities is associated with that prefix
[4]. These techniques allow a more efficient pruning of the
search space.

Besides word n-grams we also experimented with con-
structing class n-grams. For this purpose the words were
grouped into classes according to their parts-of-speech cat-
egory. The words were categorized using the POS tagger
software developed at our university [8]. This software as-
sociates one or more MSD (morpho-syntactic description)
code with the words, and we constructed the class n-grams
over these codes. With the help of the class n-grams the
language model can be made more robust in those cases
when the word n-gram encounters an unknown word, so
it practically performs a kind of language model smooth-
ing. In previous experiments we found that the application
of the language model lookahead technique and class n-
grams brought about a 30% decrease in the word error rate
when it was applied in combination with our HMM-based
fast decoder [1]. Figure 2 shows an example of a prefix tree

storing four words, along with their MSD codes.

7 Experimental results and
discussion

For testing purposes we recorded 20-20 medical reports
from 2 male and 2 female speakers. The language model
applied in the tests was constructed based on just 500 re-
ports instead of all the 8546 we had collected. This subset
contained almost all the sentence types that occur in the
reports, so this restriction mostly reduced the dictionary
by removing a lot of rarely occurring words (e.g. dates
and disease names). Besides the HMM decoder we tested
the HMM/ANN hybrid system in three configurations: the
net being trained on one frame of data, on five neighbor-
ing frames, and on the best 2D-cepstrum feature set (static
MFFC features plus 5 modulation components using a 32-
point DFT with both Re and Im parts). The results are listed
in Table 5 below. Comparing the first two lines, we see that
when using the classic MFCC features the HMM and the
HMM/ANN system performed quite similarly on the male
speakers. For some reason, however, the HMM system did
not like the set of female voices. The remaining rows of
the table show that extending the net’s input with an obser-
vation context – either by neighboring frames or by mod-
ulation features – brought only very modest improvements
over the baseline results. We think the reason for this is
that in the current arrangement the recognizer relies very
strongly on the language model, thanks to the high pre-
dictability of the sentences. We suspect that the improve-
ment in the acoustic modelling will be better seen in the
scores when we apply the system to a linguistically less
restricted domain. Pure phone recognition tests (i.e. recog-
nition experiments with no language model support) that
could verify this conjecture are just under development.

8 Conclusions
This paper reported the current state of a Hungarian project
for the automated dictation of medical reports. We de-
scribed the acoustic and linguistic training data collected
and the current state of development in both the acoustic
and linguistic modelling areas. Recognition results were
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Model Type Feature Set Male 1 Male 2 Female 1 Female 2
HMM MFCC + ∆ + ∆∆ 97.75% 98.22% 93.40% 93.39%
HMM/ANN MFCC + ∆ + ∆∆ 97.65% 97.37% 96.78% 96.91%
HMM/ANN 5-frames ∗ (MFCC + ∆ + ∆∆) 97.65% 97.74% 96.67% 98.05%
HMM/ANN MFCC + 5 Mod. Comp. (Re + Im) 97.88% 97.83% 96.86% 96.42%

Table 5: Word recognition accuracies of the various models and feature sets.

also given over a somewhat restricted subset of the full do-
main. For the next step we plan to extend the vocabulary
and language model to cover all the available data, and then
to test the system over other dictation domains as well. Our
preliminary results indicate that for tasks over larger vocab-
ularies several further improvements will be required. On
the acoustic modelling side we intend to implement speaker
adaptation and context-dependent models within the HMM
system. We also plan to continue our research on obser-
vation context modelling within the HMM/ANN system.
Finally, the language model will also need to be improved
in many respects, especially when handling certain special
features like dates and abbreviations.
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