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In this paper, we study the hard uniform capacitated k - median problem. We give (5 + ε) factor approxi-
mation for the problem using local search technique, violating cardinality by a factor of 3. Though better
results are known for the problem using LP techniques, local search algorithms are well known to be sim-
pler. There is a trade-off viz-a-viz approximation factor and cardinality violation between our result and
the result of Korupolu et al. [10] which is the only result known for the problem using local search. They
gave (1 + α) approximation factor with (5 + 5/α) factor loss in cardinality. In a sense, our result is an
improvement as they violate the cardinality by more than a factor of 6 to achieve 5 factor in approximation.
Though in their result, the approximation factor can be made arbitrarily small, cardinality loss is at least 5
and small approximation factor is obtained at a big loss in cardinality. Thus, we improve upon their result
with respect to cardinality.

Povzetek: Obravnavan je NP problem optimiranja iskanja k median in predlagana izvirna rešitev, ki dosega
boljše rezultate v določenih primerjavah.

1 Introduction

k - Median Problem is one of the well studied NP-hard
optimization problem. The input instance consists of a set
of clients, a set of facilities, a non-negative number k and
a non-negative cost of connecting a facility to a client. The
goal is to select a set of at most k facilities as centers and
assign clients to them such that the total cost of serving the
clients from centers is minimum.

Several versions of the problem exist in literature
with different properties, the most common being Un-
capacitated k Median Problem (UkM) and Capacitated k
Median Problem (CkM). In the former case, each facility
has infinite capacity (i.e. there is no limit on the amount
of demand it can serve) in comparison to finite capacity in
the latter case. In CkM, capacities may be soft or hard. In
soft capacitated version, multiple copies of a facility can
be opened at a location whereas in case of hard capacities,
each facility is either opened at some location or not. Also,
the capacities may be uniform or non-uniform. In the for-
mer case, all facilities have the same capacity in contrast
to the latter one where-in different facilities have different
capacities. Another variation of CkM is with respect to
assignments of clients to facilities: in un-splittable assign-
ments, the entire demand of a client has to be served by
only one facility, in comparison to splittable assignments
in which the demand of a client can be split among multi-
ple facilities.

Several techniques have been used to obtain results for
the problem. One of the most widely used technique to ap-

proximate the problem is LP Rounding ([4, 5, 7, 8, 9, 11,
12, 13, 14]). Charikar et al. [7] gave a 20/3 factor approxi-
mation algorithm for UkM, which was further improved to
3.25 factor by Charikar and Li in [8]. Li and Svensson [14]
further improved the ratio to 1 +

√
3 + ε. Their algorithm

has a running time of O(n(1/ε2)).
Obtaining a constant approximation factor for CkM

problem without violating capacity constraint and cardinal-
ity constraint is challenging as natural LP of the problem is
known to have an unbounded integrality gap. Approxima-
tion results violate either capacity constraint or cardinality
constraint, or both.

Cardinality violation: Li [12] gave a novel linear pro-
gram called rectangle LP and presented an improved ap-
proximation algorithm (exp(O(1/ε2))) using at most (1 +
ε)k facilities for hard uniform CkM problem. The running
time of the algorithm is nO(1), where the constant in the
exponent does not depend on ε. He then extended this re-
sult to non-uniform soft capacitated variant of the problem
in [13] and gave an (O(1/ε2 log(1/ε))) approximation fac-
tor bounding softness by a factor of 2. The algorithm has a
running time of nO(1/ε).

Capacity violation: Charikar et al. [7] gave a 16 factor
approximation algorithm for hard uniform CkM violating
capacities by a factor of 3 in case of splittable demands
and 4 in case of un-splittable demands. In 2015, Byrka
et al. [4] gave an O(1/ε) approximation algorithm violat-
ing capacities by a factor of (3 + ε) for hard non-uniform
CkM. Demirci et al. [9] improved the approximation ratio
to O(1/ε5) with capacity violation of (1 + ε) for the same
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version of the problem. The running time of their algorithm
is nO(1/ε). Recently, Byrka et al. [5] gave an O(1/ε2) ap-
proximation violating capacities by a factor of (1 + ε) for
hard uniform CkM. The algorithm uses randomized round-
ing to round a fractional solution to the configuration LP.

Aardal et al. [1] exploited the structure of an extreme
point solution to give a (7+ε) factor algorithm for hard non-
uniform Capacitated k- Facility Location Problem (Ck-
FLP) violating cardinality constraint by a factor of 2. As
a special case of CkFLP, their result applies on hard non-
uniform CkM with all facility costs being zero. In the same
manner, the CkFLP result (1/ε2) of Byrka et al. [4] is appli-
cable on hard uniform CkM. The result violates capacities
by a factor of 2 + ε.

The other commonly used technique for the problem is
local search [2, 6, 10]. Charikar and Guha [6] gave 4 factor
algorithm without violating cardinality constraint for the
un-capacitated variant of the problem. Korupolu et al. [10]
gave O(1 + ε) factor approximation algorithm for UkM us-
ing at most 3+5/ε facilities. Arya et al. [2] gave an impro-
vised result of 3 + 2/p factor algorithm for UkM by using
p-swaps.

We present a (5 + ε) factor algorithm for hard uniform
CkM violating the cardinality by a factor of 3 using Lo-
cal Search. Algorithms based on local search are well
known to be simpler as compared to the LP-based algo-
rithms. The only result known for the problem using local
search is due to Korupolu et al. [10]. They give an algo-
rithm with a trade-off between approximation factor and
cardinality loss. They give (1 + α) approximation factor
with (5 + 5/α) factor loss in cardinality. To achieve 5 fac-
tor in approximation, cardinality violation is more than 6.
Though the approximation factor can be made arbitrarily
small, cardinality loss is at least 5. Note that small approx-
imation factor is obtained at a big loss in cardinality. For
example, for α anything less than 1, cardinality violation
is more than 10. Though we somewhat loose on the ap-
proximation factor, we surely improve upon the cardinality
violation. Thus, there is a trade-off between cardinality vi-
olation and approximation factor amongst their result and
ours. In particular, we present the following result:

Theorem 1. There is a polynomial time algorithm that
approximates hard uniform capacitated k median problem
within 5 factor violating the cardinality by a factor of 3.

High Level Idea: We extend the idea of ‘mapping’ of
Arya et al. [2] to the capacitated version of the problem.
However, for the capacitated case, mapping needs to be
done a little intelligently. Mapping to an almost fully uti-
lized facility may not be able to accommodate all the clients
mapped to it and vice-versa. That is, a partially utilized
facility may not be able to accommodate the load of an
almost fully utilized facility. Thus, mapping is done only
between the partially utilized facilities. To ensure that there
are sufficient number of partially utilized facilities, we need
to assume that we have sufficient number (3k) of opened
centers.

2 Notation and preliminaries

2.1 Capacitated k-median problem

In Capacitated k-Median Problem, we are given a set of F
of facilities, a set C of clients and a real valued distance
function c on F ∪ C in metric space. Each client j ∈ C
has a non-negative demand dj and each facility i ∈ F has
a capacity ui indicating the amount of demand it can serve.
The cost of serving one unit of demand of a client j ∈ C
from facility i ∈ F is denoted as c(i, j). The goal is to
select a subset S ⊆ F of at most k facilities and assign
clients to them without violating the capacities such that the
total cost of serving all the clients by the opened facilities
is minimum.

We consider the hard uniform capacitated k-median ver-
sion of the problem i.e. ui = U ∀i ∈ F and at most one
instance of a facility can be opened at its location. We as-
sume unit demand at each client i.e. dj = 1 ∀j ∈ C.

2.2 Local search paradigm

Given a Problem P, let S be any arbitrary feasible solution
to it. A new solution S′ is called a neighborhood solution
of S if it can be obtained by performing local search
operations such as adding one or more facilities s /∈ S to
S or deleting one or more facilities s from S or swapping
one or more facilities of S with facilities not in S. We now
formally describe the steps of the algorithm.

The paradigm:

1. Compute an arbitrary feasible solution S to P.

2. While S′ is a neighborhood solution of S such that
cost(S′) < cost(S) do, set S = S′.

The solution S so obtained is called a locally optimal
solution. Note that cost(S′) ≥ cost(S) for every neigh-
borhood solution S′, for otherwise S would not have been
locally optimal. More formally, a solution S is said to be lo-
cally optimal if no further operation results in improvement
in cost.

3 (5 + ε, 3) algorithm
For the k-median problems, we define an (a, b) -
approximation algorithm as a polynomial-time algorithm
that computes a solution using at most bk number of facili-
ties with cost at most a times the cost of an optimal solution
using at most k facilities.

We select an arbitrary set of facilities S ⊆ F such that
|S| = 3k. This set acts as our initial feasible solution. Note
that, defining a subset of opened facilities completely spec-
ifies a solution. We can obtain the assignments by solving
an appropriately defined instance of transportation prob-
lem.
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The only operation permitted by our algorithm is
swap(s, o), defined as follows: S = S − {s} + {o},
o ∈ F \ S, s ∈ S . Reassign all the clients served by o
in optimal to o in our new solution.

We run the local search algorithm on S. Since S is now
locally optimal, for all neighborhood solutions S ′ of S , we
have, cost(S ′) ≥ cost(S).

3.1 Analysis
Let O denote the optimal solution to the problem. We now
show that the local optimal solution S is within 5 factor of
the optimal solution i.e. cost(S) ≤ 5cost(O).

For a client j, let πS(j) and πO(j) denote the facilities
serving j in S and O respectively. Also, let Sj and Oj
denote the service costs paid by j in S and O respectively.

Let s ∈ S and o ∈ O. Consider Figure 1. Let BS(s)
denote the ball of s, that is, the set of clients served by s in
S. Similarly, let BO(o) denote the ball of o ∈ O. Also, let
B(s, o) be the set of clients served by s ∈ S and o ∈ O.

Figure 1: Balls of facilities

To deal with capacities, we classify the facilities in S
based on the number of clients served by them. A facility
s ∈ S is said to be heavy if it serves more than U/2 clients
in S, else it is said to be light. Note that the number of
heavy facilities can be at most 2k. Let SL denote the set of
light facilities in S. Since |S| = 3k, |SL| ≥ k.

Let BLO(o) be the set of clients served by o in optimal
and by light facilities in S and Mo = |BLO(o)|. We say
that a facility s ∈ SL dominates o, if it serves more than
half the clients served by light facilities in S and by o ∈ O,
i.e. B(s, o) >Mo/2. A facility belonging to SL is called
bad if it dominates more than one facilities inO, it is called
good if it dominates exactly one facility in O, else it is
called nice

We now devise a 1 − 1 and onto mapping τ : BLO(o) →
BLO(o). Order the clients inBLO(o) as j0, j1, ..., jMo−1 such
that for every s ∈ S with a nonempty B(s, o), the clients
in B(s, o) are consecutive; that is, there exists r, s, 0 ≤
r ≤ s ≤ Mo − 1, such that B(s, o) = {jr, ..., js}. De-
fine τ(jp) = (jq), where q = (p+

⌊
Mo/2

⌋
) moduloMo.

Consider Figure 2a which shows the set BO(o). The corre-
sponding mapping is shown in Figure 2b.

The following claim holds on mapping:

Claim 1. If s ∈ SL does not dominate o, then τ(B(s, o))∩
B(s, o) = φ.

Proof. For contradiction, assume that both jp, τ(jp) =
jq ∈ B(s, o) for some s, where |B(s, o)| ≤ Mo/2. If
q = p +

⌊
Mo/2

⌋
, then |B(s, o)| ≥ q − p + 1 =⌊

Mo/2
⌋

+ 1 >Mo/2. If q = p +
⌊
Mo/2

⌋
−Mo, then

|B(s, o)| ≥ p− q + 1 =Mo −
⌊
Mo/2

⌋
+ 1 >Mo/2. In

either case, we have a contradiction, and hence mapping τ
satisfies the claim.

Figure 2: Mapping

The notion of dominate can be used to construct a bipar-
tite graph H = (S,O, E). For each facility in SL, we have
a vertex on the S-side and for each facility in O, we have a
vertex on the O-side. We add an edge between s ∈ SL and
o ∈ O if s dominates o. Note that the degree of each vertex
on O-side is at most one while the vertices on the S-side
can have degree up to k.

We now consider all k swaps, one for each facility in O.
If s ∈ SL is good, then we consider the swap(s, o), where
o is the facility in O dominated by s. Let λ be the number
of facilities inO that did not participate in the above swaps.
Then the total number of bad and nice facilities in SL is at
least λ and at least λ/2 of them must be nice. The remain-
ing λ facilities in O get swapped with the nice facilities in
SL such that each nice facility is considered in at most two
swaps. The bad facilities are not considered for swapping.
The swaps considered above satisfy the following proper-
ties:

1. Each o ∈ O is considered in exactly one swap.

2. Facilities in S \ SL are not considered in any swap
operation.

3. Bad facilities in SL are not considered in any swap
operation.

4. Each nice facility s ∈ SL is considered in at most two
swap operations.

5. If swap(s, o) is considered then s does not dominate
any facility o′ 6= o : o′ ∈ O.
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Lemma 1. Let cost(S) denote the cost of the local opti-
mal solution S and, cost(O) denote the cost of the global
optimal solution O. Then, cost(S) ≤ 5cost(O).

Proof. Consider swap(s, o). Let j ∈ BS(s). We first reas-
sign the clients in BS(s).

1. If j ∈ BO(o), assign j to o.

2. If j /∈ BO(o), assign j to s′ ∈ SL such that τ(j) = j′

and j′ ∈ BS(s′).

In case 1, the change in cost is given by (Oj − Sj).
In case 2, the change in cost is (c(j, s′) − Sj). Let
j ∈ BO(o′). From triangle inequality, we get c(j, s′) ≤
c(j, o′) + c(o′, τ(j)) + c(τ(j), s′) = Oj +Oτ(j) +Sτ(j).

As S is a locally optimal solution, we have

∑
j∈BS(s)∩BO(o)

(Oj − Sj)+

∑
j∈BS(s)\BO(o)

(Oj +Oτ(j) + Sτ(j) − Sj) > 0 (1)

Each facility o ∈ O is considered in exactly one swap
operation. Thus the first term of inequality when added
over all k swaps gives exactly cost(O) − cost(S). Each
s ∈ S is considered in at most two swaps. The second term
of inequality when added over all k swaps is no greater
than 2(Oj +Oτ(j) + Sτ(j) − Sj). As τ is a 1− 1 and onto

mapping,
∑
j∈C

Oj =
∑
j∈C

Oτ(j) and
∑
j∈C

(Sτ(j) − Sj) = 0.

Thus, 2(Oj+Oτ(j) +Sτ(j)−Sj) = 4cost(O). Combining
the two terms, we get cost(O)− cost(S) + 4cost(O) ≥ 0.
Thus, cost(S) ≤ 5cost(O).

In the algorithm presented so far, we move to a new so-
lution if it gives some improvement in the cost, however
small that improvement may be. This may lead to an algo-
rithm taking lot of time. To ensure that the algorithm termi-
nates in polynomial time, a local search step is performed
only when the cost of the current solution S is reduced by
at least cost(S)

p(n,ε) , where n is the size of the problem instance
and p(n, ε) is an appropriate polynomial in n and 1/ε for
a fixed ε > 0. This modification in the algorithm incurs a
cost of additive ε in the approximation factor.

It is easy to see that if we have 3.5k facilities then the
total number of bad and nice facilities in SL is at least λ+
k/2 and at least (λ + k)/2 ≥ λ of them must be nice.
The remaining λ facilities in O get swapped with the nice
facilities in SL such that each nice facility is considered
in at most one swap. This saves us factor 2 coming from
the second term of equation (1). Thus, we get (3 + ε, 3.5)
algorithm. Also, using p-swaps of Arya et al. [2], we can
get (3 + 2/p, 3) algorithm.

4 Conclusion and future work
We gave a (5 + ε) factor approximation algorithm for hard
uniform capacitated k median problem using local search
technique, violating cardinality by a factor of 3. It improves
upon the existing results known for the problem using local
search, with respect to cardinality violation. It would be
interesting to obtain a constant factor algorithm reducing
the cardinality violation to (1 + ε). Though such a result
is known using LP-techniques, it would be interesting to
obtain similar result using local search. Another direction
to extend the work would be to consider the non-uniform
capacitated version of the problem using local search.
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