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Meta-heuristic search techniques, mainly Genetic Algorithm (GA), have been widely applied for 

automated test data generation according to a structural test adequacy criterion. However, it remains a 

challenging task for more robust adequacy criterion such as data-flow coverage of a program. Now, 

focus is on the use of other highly-adaptive meta-heuristic search techniques such as Particle Swarm 

Optimization (PSO) and Differential Evolution (DE). In this paper, a hybrid (adaptive PSO and DE) 

algorithm is proposed to generate test data for data-flow dependencies of a program with a 

neighbourhood search strategy to improve the search capability of the hybrid algorithm. The fitness 

function is based on the concepts of dominance relations and branch distance. The measures considered 

are mean number of generations and mean percentage coverage. The performance of the hybrid 

algorithm is compared with that of DE, PSO, GA, and random search. Over several experiments on a 

set of benchmark programs, it is shown that the hybrid algorithm performed significantly better than 

DE, PSO, GA and random search in data-flow test data generation with respect to the measures 

collected. 

Povzetek: Razvit je nov algoritem kot kombinacija hibridnega roja delcev in diferenčne evolucije z 

uporabo sosednje iskalne strategije. 

1 Introduction  
Software testing aims at assessing the quality and 

reliability of software product by detecting as many 

defects as possible. The cost of software testing increases 

exponentially with the size of input search space, thereby 

making manual testing a difficult and tedious task. There 

are software testing tools available with capture and 

playback features to automate the execution of test 

scripts. However, the test cases are manually selected by 

the human tester and may not be optimal. It is therefore 

desirable to generate optimal test data that reveals as 

many errors as possible according to a test adequacy 

criterion [1]. Structural (white-box) testing tests software 

for its structure and has the inherent capability to expose 

faults. The structural test adequacy criteria can be 

statement coverage, branch coverage, or path coverage 

that aim at executing every statement, branch or path 

respectively at least once. Data-flow coverage, an 

effective and robust test adequacy criterion, focuses on 

the definition and usage of variables in a program. Data-

flow testing, therefore, could lead to more efficient and 

targeted test suites. 

The attempts to reduce the cost of software testing 

by automating the process of software test data 

generation have been constrained by the ever increasing 

size and complexity of software. In the early period of 

automated test data generation, gradient descent and 

meta-heuristic search (MHS) algorithms such as Tabu 

Search, Hill Climbing and Simulated Annealing [2, 3, 4]. 

In the past two decades, evolutionary search-based 

algorithms such as Genetic Algorithm (GA) have been 

widely employed for test data generation as an effective 

alternative [5, 6, 7, 8, 9]. A search-based approach 

captures the test adequacy criteria as a fitness function 

that is used to guide the search. Due to an extensive 

application of search-based algorithms to test data 

generation problem, the approach has come to be known 

as Search Based Software Testing (SBST, coined by 

Harman and Jones). Recently, the focus is on the use of 

other highly adaptive search-based techniques such as 

Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO) and Differential Evolution (DE). It 

has been observed that GA and ACO have slow 

convergence towards the optimal solution. PSO and DE 

are conceptually very simple and the knowledge of 

previous good solutions is retained by all the members of 

the current population by means of constructive 

cooperation among them. PSO and DE have been found 

to be robust in solving optimization problems; however, 

the performance depends on control parameters. PSO has 

been shown to be well suited for test data generation with 

better performance than GA [10, 11, 12, 13, 14]. 

Hybridization of search-based algorithms for test data 

generation has also been reported in literature. GA with a 

local search algorithm [15] and more recently, GA with 
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PSO has been applied for test data generation in some 

studies [16, 17, 18, 19, 20, 21]. 

In this study, we propose a hybrid global search 

algorithm by combining an adaptive PSO with DE 

mutation operator to automatically generate test data for 

data-flow dependencies of a program. In the proposed 

hybrid algorithm, a new term based on DE differential 

operator is included for velocity update in PSO for some 

additional exploration capability. The greedy selection 

scheme of DE is used wherein position of a particle is 

updated only if it yields a better fitness value. This 

results in movement of particles only to better locations 

in the input search space. A local neighborhood strategy 

is also included in the proposed hybrid algorithm to 

explore more promising candidate solutions and 

overcome the problem of boundary constraints. Design 

of the fitness function [22] is based on dominance 

concepts and branch distance that is used to guide the 

search for optimal test data for data-flow dependencies of 

a program. The performance of the proposed hybrid 

algorithm is compared with that of DE, PSO, GA and 

random search. It is demonstrated that the proposed 

hybrid algorithm outperformed DE, PSO, GA and 

random search in terms of mean percentage coverage 

achieved, and mean number of generations to produce 

the final test suite for data-flow coverage of a program.  

The rest of the paper is organized as follows: Section 

2 provides a brief description of automated software test 

data generation process and related work. Section 3 

provides an overview of data-flow analysis. Sections 4 

and 5 provide a brief description of PSO and DE 

algorithms. Section 6 describes the proposed hybrid 

algorithm. Section 7 gives the experimental results. 

Section 8 provides the discussion and the detailed 

statistical analysis of the experimental results. Section 9 

deals with threats to validity and limitations of the 

proposed hybrid algorithm. Finally, section 10 gives the 

conclusion.  

2 Related work 
This section presents the methods to generate test data 

for software structural testing and the related literature. 

Symbolic execution, a static method, has been employed 

for test data generation [2]; however, the performance is 

constrained by programming constructs such as pointers, 

loop conditions with input variables, array subscripts and 

procedure calls [23]. Dynamic methods that have been 

employed for test data generation can be classified as 

random, path-oriented and goal-oriented techniques [9, 

23]. A random test data generator arbitrarily selects test 

data from the input domain. Though easy to implement, 

it may fail to find optimal test data. Path-oriented test 

data generator [5] uses control flow information to 

identify a set of independent paths to generate test data. 

However, it does not work well with infeasible paths or 

paths that contain loops. A goal-oriented test data 

generator [9, 23, 24] generates test data for a selected 

goal such as a statement or a branch, irrespective of the 

path taken.  

The meta-heuristic search techniques guided by a 

fitness function have been adopted to generate optimal 

test data mainly according to a structural test adequacy 

criterion. From the literature on structural test data 

generation, it can be inferred that branch coverage and 

path coverage are the most often used and well-

understood measures [25]. For branch coverage, fitness 

values are calculated by finding approximation level and 

branch distance for a target branch from control flow 

graph [8, 26]. Data-flow coverage criterion has not been 

used much [27] due to difficulty in writing test cases that 

satisfy data-flow dependencies of a program. Wegener et 

al. [28] defined different types of fitness functions for 

structural testing; data-flow test criteria being classified 

as node-node-oriented methods. Recently only there has 

been more work on search based test data generation for 

data-flow coverage using GA as the algorithm of choice 

[6, 7, 22, 24, 29, 30]. Now, other highly adaptive search-

based techniques such as PSO [14, 18] and ACO [31] are 

also being applied to generate test data for data-flow 

coverage due to simplicity and faster convergence. ACO 

[32] and Harmony Search [33] has also been applied to 

generate structural test data for branch coverage. 

Vivanti et al. [30] have proposed a GA-based 

technique for data-flow coverage evaluated on open 

source Java applications. The results have indicated the 

scalability and applicability of data-flow criteria for test 

data generation. 

In our previous work [22], an elitist GA-based 

approach is proposed to generate test data for data-flow 

dependencies of a program using dominance concepts 

and branch distance. The fitness function is derived from 

the work by Ghiduk et al. [6]; it is augmented with 

branch distance to produce a smoother landscape for 

guiding the search and also takes into account that a 

definition may be killed by another definition before the 

associated use is reached. The performance of the 

proposed approach is compared with random search and 

earlier studies on test data generation for data-flow 

dependencies of a program by Girgis [7], Ghiduk et al. 

[6] and Girgis et al. [21]. The proposed GA-based 

approach guided by the novel fitness function 

outperformed random search and the earlier studies [6, 7, 

21] to generate test data for data-flow coverage of a 

program. 

Windisch et al. [10] applied PSO to artificial and 

complex industrial test objects to generate test data for 

branch coverage. Their results showed efficiency and 

efficacy of PSO over GA for most code elements to be 

covered.  

Agarwal et al. [11] applied binary PSO, Agarwal and 

Srivastava [12] applied discrete quantum PSO and Mao 

[13] applied standard PSO to generate test data for 

branch coverage test adequacy criterion.  

Nayak and Mohapatra [14] proposed an algorithm to 

generate test cases using PSO for data flow coverage. 

This technique cannot rank test cases because the fitness 

function, as simply taken from Girgis [7], assigns the 

same fitness value to all the test cases that cover the same 

number of test requirements and a fitness value of 0 to all 

the test cases that do not cover any test requirement or 
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cover a partial aim. Here, the fitness function is unable to 

guide the search. 

Application of hybrid algorithms have also been 

studied for test data generation problem. Zhang et al. [16] 

proposed a hybrid algorithm (GA and PSO) to generate 

test data for path coverage.  GA and PSO operations are 

applied to two population sets. Triangle classification 

problem is taken as the case study and the hybrid 

algorithm is compared with GA and PSO. The hybrid 

algorithm is shown to be better than GA and PSO with 

respect to number of iterations. The average time taken is 

found to be more than PSO but less than GA. Their 

hybrid technique is complicated and may generate 

redundant test cases for automatic test data generation.   

Li et al. [17] also proposed a hybrid algorithm (GA 

and PSO) to generate test data for path coverage.  PSO 

equations to update particle’s velocity and position 

distance are used instead of mutation operator of GA. 

The algorithm is applied only to the triangle benchmark 

problem. 

Singla et al. [18] applied a hybrid algorithm (GA and 

PSO) to generate test data for data-flow coverage. The 

fitness function used is same as in [6]; it does not take 

into account the traversal of killing nodes as well as 

closeness of test data in case if only partial aim is 

covered. The strategy is tested only on some simple 

programs. 

Kaur and Bhatt [19] proposed a hybrid algorithm 

(GA and PSO) to prioritize test data in regression testing. 

The algorithm has been tested on few simple programs. 

Girgis et al. [21] proposed a hybrid Genetical Swarm 

Optimization (GSO) Technique to generate a set of test 

paths that cover the all-uses criterion for data-flow 

coverage. The authors have claimed that the set of paths 

generated by the proposed GSO can be passed to a test 

data generation tool to find program inputs that will 

execute them to complete the data flow paths testing of 

the program under test. The fitness function used is same 

as in [7]; it is not able to guide the search and results in 

loss of valuable information in case if only partial aim is 

covered. 

Chawla et al. [20] proposed a hybrid PSO and GA 

algorithm for automatic generation of test suites with 

branch coverage as the test adequacy criterion. The 

experiments are performed with ten Java container 

classes. The algorithm is shown to perform better than 

GA, PSO and existing hybrid strategies based on GA and 

PSO. 

Each optimization algorithm has its own advantages 

and disadvantages. Also, one optimization algorithm will 

not work well for all the optimization problems. DE, a 

meta-heuristic search-based algorithm, has been applied 

to several optimization problems [34, 35] to demonstrate 

its potential. Das et al. [36] has explored hybridization of 

PSO with DE applied to the design of digital filters. 

However, DE has not been applied for test data 

generation and optimization problem [25, 27, 37]. 

The proposed study will focus on the application of a 

hybrid adaptive PSO-DE algorithm to generate test data 

for data-flow dependencies of a program. The proposed 

hybrid global search algorithm combines the evolution 

scheme of both PSO and DE incorporating the best of 

both the algorithms in the context of test data generation. 

A new term based on DE differential operator is included 

for velocity update in PSO. The greedy selection scheme 

of DE is also used wherein position of a member is 

updated only if it yields a better fitness value. The 

hybridization scheme has resulted in movement of 

particles only to better locations in the input search 

space. The design of fitness function [22] is based on the 

dominance relations between the nodes of a program’s 

control flow graph augmented with branch distance 

which produces a smoother landscape for guiding the 

search. This leads to faster and better convergence of test 

data to achieve the desired coverage. A neighborhood 

search strategy is also incorporated into the proposed 

hybrid algorithm that further helps in overcoming the 

problem of boundary constraints and local optima by 

exploring more promising candidate solutions. This is the 

main contribution of this paper. The proposed hybrid 

algorithm generates test data for one test requirement at a 

time; other test requirements are also checked for 

coverage thereby reducing the overall number of fitness 

evaluations. 

3 Data flow analysis 
In this study, data-flow coverage is used as the test 

adequacy criteria. Data-flow analysis [38] augments the 

control-flow testing criteria; the emphasis is on the 

definition and use of the variables in a program. The 

control flow of a program is represented by a directed 

graph G (V, E) also known as control flow graph (CFG), 

where V is the set of all the nodes and E is the set of all 

the edges in the graph. Each node corresponds to a 

program statement or group of sequential program 

statements and an edge represents flow of control from 

one node to another. There are two distinct nodes: an 

entry node n0 and an exit node nend.  Node n dominates 

node m (dominance relationship) if every path from entry 

node n0 to m contains n. By applying dominance 

relationship to all the nodes of CFG, a tree can be 

obtained that is rooted at n0. This tree is called the 

dominator tree [39]. For each node m in the CFG, Dom 

(m) is the set of all the nodes that dominate node m. 

Figure 2 gives the CFG of the example program as given 

in Figure 1. The dominator tree is shown in Figure 3. For 

example, Dom (12) = {1, 2, 6, 7, 12}. 

In a program, the definition and use occurrences of 

each variable are identified. A variable is said to be 

defined in a program statement (def-node) if a value is 

associated with the variable. A variable is said to be used 

in a program statement if its value is referenced for 

computational use (c-use node) or a predicate use (p-use 

node). Data-flow testing should cause the traversal of 

def-clear sub-paths from the variable definition to either 

some or all of the p-uses, c-uses, or their combination. 

Empirically, the all-uses criterion has been shown to be 

most effective compared to the other data-flow criteria 

[40]. A def-clear path does not include any intermediate 

nodes containing other definitions of that variable 

(killing nodes). A def-clear path can be further 
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categorized as a dcu-path (c-use of the variable) or a dpu-

path (p-use of the variable). For the example program, 

Table 1 provides definition and use nodes for each 

variable, Table 2 provides the list of all-def-use paths and 

Table 3 provides the dominance paths for the nodes of 

the program flow graph. 

#include<stdio.h> 

#include<conio.h> 

 
1 1   void main() { 

2 1  int a, b, c, valid; 

3 1  printf(“\nEnter the value of three sides: “); 
4 1  scanf(“%d %d %d”, &a, &b, &c); 

5 1  valid=0; 

6 2  if((a>=0)&&(a<=100)&&(b>=0)&&(b<=100)&&(c>=0) 
       &&(c<=100)) { 

7 3   if(((a+b)>c)&&((c+a)>b)&&((b+c)>a)) { 

8 4   valid=1; 
9 5  } 

10 5 } 

11 6 if (valid==1) { 
12 7  if ((a==b)&&(b==c)) 

13 8          printf(“\nEquilateral triangle.”); 

14 9  else if ((a==b)||(b==c)||(c==a)) 
15 10          printf(“\nIsosceles triangle.“); 

16 11  else 

17 11          printf((“\nScalene triangle.“); 
18 12 } else { 

19 13  printf(“\n Invalid input ”).; 

20 14 } 

21 15 } 

Figure 1: Triangle classification program. 

Table 1: List of variables and def-use occurrences in the 

example program 

Variable 
def 
Node 

c-use 
Node 

p-use Edge 

a 
b 
c 

1 None 2-3 
2-6 
3-4 
3-5 
7-8 
7-9 
9-10 
9-11 

valid 1,4 None 6-7 
6-13 

Table 2: List of def-use paths for the example program. 

Path 

No. 

def-use Path (Terminates 

with -1 for c-use) 

Killing 

Node(s) 

1 1-2-3 None 

2 1-2-6 None 

3 1-3-4 None 

4 1-3-5 None 
5 1-7-8 None 
6 1-7-9 None 
7 1-9-10 None 
8 1-9-11 None 
9 1-6-7 4 

10 1-6-13 4 

11 4-6-7 None 
12 4-6-13 None 

 

 

Figure 2: CFG of the example program. 

 

Figure 3: Dominator tree for the example 

Table 3: Dominance paths for the nodes of the CFG. 

Node No. Dominance Path 

1 1 

2 1-2 

3 1-2-3 

4 1-2-3-4 

5 1-2-3-5 

6 1-2-6 

7 1-2-6-7 

8 1-2-6-7-8 

9 1-2-6-7-9 

10 1-2-6-7-9-10 

11 1-2-6-7-9-11 

12 1-2-6-7-12 

13 1-2-6-13 

14 1-2-6-14 

15 1-2-6-14-15 
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4 Particle swarm optimization 
In 1995, Kennedy and Eberhart [41] introduced Particle 

Swarm Optimization algorithm, a population-based 

search algorithm based on the social and cognitive 

behavior of different swarms such as flock of birds, herd 

of animals or school of fishes. The application of PSO 

for solving many continuous space problems in the field 

of Computer Science and Engineering has demonstrated 

its potential. Unlike GA, PSO does not use evolution 

operators such as crossover and mutation. Instead, each 

member of the swarm (called particle) attains optimal 

solution by learning from its own experience and the 

experience of other members of the swarm. Each particle 

maintains its current position, current velocity and the 

best position it has achieved so far, called pbest. The 

global best position of the swarm is called gbest. Both 

pbest and gbest are used by the particle in determining its 

next best position in the swarm. Thus, the knowledge of 

previous good solutions is retained by all the particles 

resulting in a faster convergence towards the optimal 

solution. 

Consider a swarm of n particles denoted as (p1, p2... 

pn). Position of the ith particle in the d-dimensional search 

space is denoted as Xi = (Xi1, Xi
2…Xi

d) and the 

associated velocity is denoted as Vi = (Vi
1, Vi

2…Vi
d). 

The personal best position of the ith particle in dimension 

d is denoted as pbesti
d. The position of the best particle of 

the entire swarm in dimension d is denoted as gbestd. The 

velocity and position of the ith particle in dimension d can 

be updated by Equations 1 and 2 as given below. 

Vi
d = w×Vi

d + c1×r1×(pbesti
d - Xi

d) + c2×r2×(gbestd – Xi
d) (1) 

Xid = Xid + Vid        (2) 

where, c1 and c2 are positive learning constants 

called cognitive and social scaling parameters chosen in 

such a way that their sum never exceeds 4, and r1 and r2 

are two random numbers in the range [0,1]. The inertia 

weight w controls the impact of the previous history on 

the new velocity of the ith particle. A particle’s velocity 

in each dimension is clamped to a maximum magnitude 

Vmax. The position and velocity of each particle in the 

swarm are continuously updated until an optimal solution 

is achieved. 

4.1 Adaptive inertia weight 

In PSO algorithm, a large value of inertia weight 

facilitates exploration (global search) of the input search 

space and a small value of inertia weight facilitates 

exploitation (local search) of the input search space for 

the optimal solution. Various inertia weighting strategies 

used in the literature have been categorized into constant, 

random, time varying and adaptive inertia weight 

strategies [42]. In constant and random inertia weight 

strategies, value of inertia weight is either constant or is 

chosen randomly during the search. In time varying 

inertia weight strategies, inertia weight is defined as a 

function of time or iteration number. Here, value of 

inertia weight is independent of the state of the particles 

in the search space. In adaptive inertia weight strategies, 

state of the particles in the search space (feedback 

mechanism) is used to adjust the value of the inertia 

weight. 

In this study, fitness value of the particles is used to 

adjust the inertia weight. Ratio α of the particle’s fitness 

to the average fitness of the swarm is calculated as 

shown in Equation 3 below:  

α = fi / fmax  (3) 

Here, fi=fitness of ith particle and fmax is the 

maximum fitness achieved by the particles in the swarm. 

The range of α is [0, 1]. For lower values of α, 

increasing inertia weight can strengthen the particle’s 

search capability. For values of α that are closer to 1, 

smaller inertia weight should be used. The inertia weight 

wi for the ith particle is therefore defined as a linear 

function of α and is calculated as follows: 

wi = 0.5×(1-α) + 0.5 (4)  

The range of the inertia weight is [0.5, 1]. 

PSO is computationally inexpensive. The ability of 

PSO to balance between local exploitation and global 

exploration of the search space enhances searching 

ability and avoids premature convergence towards the 

optimal solution. 

5 Differential evolution 
Differential Evolution (DE) algorithm was given by 

Storn and Price [43] in 1995. It is a stochastic 

population-based global optimization algorithm that uses 

an evolutionary differential operator to create new 

offspring from parent chromosomes. Unlike GA, DE 

works upon real-valued chromosomes. The differential 

operator of DE replaces the classical crossover and 

mutation operators of GA.  

Let’s say, the initial population consists of n vectors 

denoted as (p1, p2... pn). Position of the ith vector in the d-

dimensional space is denoted as Xi = (Xi1, Xi
2…Xi

d). 

These vectors are referred as chromosomes in DE. To 

change each chromosome (target vector), a difference 

vector Vi is created.  In the literature, there are various 

mutation schemes to create this vector. In this paper, 

DE/Rand/1 scheme is used. In this scheme, for each ith 

member Xi of the current population, three other 

members (say r1, r2 and r3) are randomly chosen from the 

current population. Next, the scaled difference (mutation 

scaling factor F) of any two of the three vectors is added 

to the third one to obtain the difference vector Vi. The jth 

component of the difference vector is as given below: 

vi,j = xr1,j + F×(xr2,j ­xr3,j) (5) 

To increase the population diversity, a ‘crossover 

scheme’ is applied. The difference vector exchanges its 

components with the target vector Xi to obtain the 

offspring/trial vector Ui. The most common crossover in 

DE is ‘uniform crossover’ as given below: 

ui,j  = vi,j  if rand(0,1) < CR 

= xi,j  else   (6) 

CR is called the crossover constant.  
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The final step in DE algorithm is the fitness-based 

selection of either target vector or trial vector in the next 

generation. F and CR are the control parameters of DE. 

The performance of DE depends on the manipulation of 

target vector and difference vector in order to obtain a 

trial vector. 

6 Proposed hybrid algorithm 
In the proposed study, an adaptive PSO algorithm is 

hybridized with the DE algorithm incorporating local 

neighborhood search strategy. The synergy between PSO 

and DE algorithms has resulted in a more powerful 

global search algorithm. The local neighborhood search 

strategy helps in exploring more promising candidate 

solutions to overcome the problem of local optima. 

In the proposed hybrid (adaptive PSO and DE) 

algorithm, a differential velocity term inspired by the DE 

mutation scheme is computed by taking the difference of 

the position vectors of any two distinct particles 

randomly chosen from the swarm. A random number r is 

generated between 0 and 1. If r is less than DE crossover 

probability, Equation 7 (given below) is used to update 

the velocity of a particle. In Equation 7, the cognitive 

term (second term) in Equation 1 is replaced by the 

differential term scaled by DE mutation scaling factor.  

Vid = w×Vid + F×(xjd ­xkd) + c2×r2×(gbestd – Xid) (7) 

Here, xj and xk denote the position of particles j and 

k respectively (i≠j≠k) that are randomly chosen from the 

swarm. A survival of the fittest mechanism is also 

followed by incorporating the greedy selection scheme of 

DE as given by Equation 6. Therefore, the particle either 

moves to a better location or remains at its previous 

position in the input search space. The current position of 

a particle will always be its best position. 

The steps of the proposed hybrid (adaptive PSO and 

DE) algorithm are given in Figure 5. The flowchart is 

given in Figure 6. Inputs to the algorithm are an 

instrumented program, dominator tree of the program, 

list of def-use paths to be traversed and the killing nodes 

if any, number of input variables, domain range of each 

input variable, and the algorithmic parameters: 

population size, PSO acceleration parameters, PSO 

maximum velocity, DE mutation scaling factor and DE 

crossover probability. Adaptive inertia weight is used as 

given by Equations 3 and 4. For data-flow coverage 

criterion, the design of fitness function is explained in 

Section 6.2 below. Initial value of pbest and gbest is 0. 

The algorithm is run once for each uncovered def-use 

path. If the selected path is not covered by any member 

of the current population, fitness value is computed for 

each member. Accordingly, for each particle, the 

personal best position pbest and the global best position 

gbest can be updated. During the evolution process, 

particle’s position and velocity is adjusted according to 

Equations 2 and 7 respectively. If the updated position of 

the particle is out of input domain range, a local 

neighbourhood strategy is applied. Then, the greedy 

selection scheme of DE is used to generate the new 

population. The evolution process continues until the 

termination criteria is met. The other uncovered paths are 

also checked for coverage. The output is an optimal test 

suite and a list of def-use paths marked as covered or 

uncovered, if any.   

A tool is developed for instrumenting programs and 

to generate def-use paths. Dominator tree is generated 

manually. Infeasible paths, if any, are determined by 

careful analysis of the program. 

6.1 Neighbourhood search strategy 

Every meta-heuristic search algorithm suffers with the 

problem of local optima. Another issue related to meta-

heuristic search algorithms is boundary constraints. 

There are no set mechanisms to deal with such problems. 

Hence, in this study, an effort is also made to handle the 

problems of local optima and boundary constraints and to 

improve the exploitation ability of the algorithm.  A 

neighbourhood search strategy (Figure 4) is introduced to 

sample more promising candidate solutions to overcome 

these problems. It is summarized as follows: 

Step 1: For each particle, Euclidean distance is 

calculated from the other particles in the input search 

space using the position of particles. Accordingly, other 

particles within a threshold Euclidean distance 

(determined by preliminary study to fine-tune the 

algorithmic parameters) form the neighbourhood. 

Euclidean distance between two particles Xi and Xj in the 

n-dimensional search space is given by the following 

equation: 

                  dij = √∑(xik − xjk)
2

n

k=1

                               (8)    

Step 2: If a particle’s new position is out of range, 

other particles in the neighbourhood are evaluated.  

Step 3: The position of the particle is then replaced 

with that of the best particle in the neighbourhood instead 

of a random value. 

This helps in exploring more promising candidate 

solutions. 

6.2 Design of Fitness Function 

Def-use associations can be represented as node-node 

fitness functions [28]. Def-use associations specify the 

node of definition and the node of use for the program 

variables in the CFG without specifying a concrete path 

between the nodes. This implies that the first objective to 

reach is the definition node and then the use node, 

without however, specifying a path through the CFG. 

The distance to a node is represented by the standard 

minimizing metric given below:  

node distance=approach level + v(branch distance)          (9) 
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It evaluates to 0 if the target is covered. Approach 

level is the closest point (a node) of a given execution to 

the target node. A branch is said to be critical if it leads 

the program execution away from the target node in a 

path through the program structure [44]; branch distance 

is calculated at that particular predicate node using 

values of the variables according to the formulae given in 

Table 4 [3] below.  

Table 4: Branch distance measure for relational and 

logical predicates. 

S. No. Predicate (C) Branch Distance Formulae: f(C) 

1 Boolean if true then 0 else K 

2 x = y if (x-y)=0 then 0 else abs(x-y)+K 

3 x ≠ y if abs(x-y)≠0 then 0 else K 

4 x > y if (y–x)<0 then 0 else (y-x)+K 

5 x ≥ y If (y–x)≤0 then 0 else (y-x)+K 

6 x < y if (x–y)<0 then 0 else (x-y)+K 

7 x ≤ y if (x–y)≤0 then 0 else (x-y)+K 

8 C1 && C2 f(C1) + f(C2) 

9 C1 || C2 min(f(C1), f(C2)) 

K is a failure constant that is added to branch distance if predicate is 

false 

Branch distance provides a measure of how close the 

program execution was to traverse the alternate edge of 

the critical branch. Branch distance is normalized in the 

range [0, 1] using a normalization function v, such that 

the approach level always dominates the branch distance. 

In our previous study [22], a novel maximizing 

fitness function is proposed for data-flow coverage 

adequacy criterion based on the standard metric 

(Equation 9) and dominator tree. Dominance relations 

between the nodes of the CFG are used to obtain path-

cover for the nodes of the selected def-use path. The 

fitness function considers each def-use path as two 

objectives. For a dcu-path, the first objective is to cover 

the dominance path of the definition node and then to 

cover the dominance path of the use node. For a dpu-

path, the first objective is to cover the dominance path of 

the definition node and then to cover the dominance 

paths of the nodes of the p-use edge (u1, u2). A dpu-path 

is formed for both the branches (T/F) of the predicate 

node. A test case is evaluated with respect to the selected 

def-use path by executing the program under test with it 

as an input and recording the nodes that are covered. If a 

killing node is traversed between the source node and the 

use node, a fitness value of 0 is assigned to the test case 

and it is discarded. The fitness value is 1 if all the nodes 

of the dominance paths of both the objectives are 

covered; otherwise closeness of the test case to the 

missed objective (branch distance) is computed.  

In this work, for fitness maximization, branch 

distance bch(x, ti) at the critical branch for test case ti and 

target node x is the reciprocal of the value returned by an 

appropriate formula from Table 4 i.e. the closer a test 

case is to cover the required branch, higher is its fitness  

value. The fitness function uses control-flow information 

(dominance relations between the nodes of the CFG) 

augmented with branch distance if a partial aim is 

achieved. This provides a smoother landscape/guidance 

to the search process towards the optimal solution. 

Branch distance is computed using Equation 10 and the 

 
 

 

Figure 4: Local Neighbourhood Strategy. 
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fitness functions are given by Equations 11 and 12 as 

explained below. 

Branch distance bch (x, ti) for test case ti (i=1...p) 

and target node x, for fitness maximization, is calculated 

as follows: 

bch(x, ti)

=

{
 
 

 
 
       1            if the test case ti leads to the target node x             

1

f(C)
        otherwise, using an appropriate  formula from 

 
                      Table 4  for  the predicate C at the critical branch 

   

 (10) 

The fitness function to evaluate the fitness of a test 

case ti (i=1...p) w.r.t. a dcu-path (d, u, v), where d is the 

definition node and u is the c-use node of a variable v, is 

given below:  

ft(d, u,  ti)= 
1

2
×(

|cdom(d, ti)|

|dom(d)|
×bch(d, ti)+

|cdom(u, ti)|

|dom(u)|
×bch(u, tI)) 

 (11) 

Similarly, the fitness function to evaluate the fitness 

of a test case ti (i=1...p) w.r.t. a dpu-path (d, (u1, u2), v), 

where d is the definition node and (u1, u2) is the p-use 

edge of a variable v, is given below:  

ft(d, (u1, u2), ti)= 
1

3
×

(

 
 

|cdom(d, ti)|

|dom(d)|
×bch(d, ti)+

|cdom(u1, ti)|

|dom(u1)|

×bch(u1, ti)+
|cdom(u2, ti)|

|dom(u2)|
×bch(u2, ti)

)

 
 
   

(12) 

In general,  

• dom(x): set of nodes in the dominance path of the 

target node x 

• cdom(x, ti): set of nodes in dom(x) that are covered 

by test case ti (i=1...p) 

• bch(x, ti): branch distance for test case ti (i=1...p) 

and target node x using Equation 9 

 

If a killing node is traversed, a fitness value of 0 is 

assigned to the test case ti and it is discarded; otherwise 

Equation 11 or Equation 12 is used to compute the 

fitness value. Test case ti is said to be optimal if its fitness 

value is 1 i.e. the target is covered.  

Consider the def-use path# 5 (1, 7, 8) for coverage 

from Table 2. This is a dpu-path that tests for ‘Equilateral 

triangle’ condition. Node 1 (source) and the p-use edge 

(7, 8) (target) form the two objectives - their dominance 

paths to be covered by an input test case. There are three 

cases - if the dominance paths of both the nodes are 

covered, fitness value of the input test case is 1 and it is 

optimal. However, if a partial aim is covered (one of the 

two nodes) or none of the nodes is covered, fitness value 

of the input test case is computed using Equations 3.2 

and 3.4.  

From Table 3, the dominance paths of the nodes are 

as given below: 

dom(d) = dom(1) = {1} 

dom(u1) = dom(7) = {1, 2, 6, 7} 

dom(u2) = dom(8) = {1, 2, 6, 7, 8} 

Case 1: Input test case t1 <2, 2, 2>  

Path traversed {1, 2, 3, 4, 5, 6, 7, 8, 12, 15} 

Dominance path of the definition node (node 1) is 

covered. 

Dominance path of the first node of the p-use edge (node 

7) is covered. 

Dominance path of the second node of the p-use edge 

(node 8) is covered. 

As the dominance paths of both the objectives are 

covered, the fitness value of the input test case using 

Equation 3.4 is 1; the input test case t1 is therefore 

optimal. 

Case 2: Input test case t2 <2, 2, 1> 

Path traversed {1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15} 

Dominance path of the definition node (node 1) is 

covered. 

Dominance path of the first node of the p-use edge (node 

7) is covered. 

Dominance path of the second node of the p-use edge 

(node 8) is not covered; the critical node is node 7. The 

branch distance at node 7 using Equation 3.2 is bch (8, t2) 

= 0.91 

The fitness value of the input test case using Equation 3.4 

is ft (1, (7, 8), t2) = 0.91 

Case 3: Input test case t3 <1, 2, 4> 

Path traversed {1, 2, 3, 5, 6, 12, 13, 14, 15} 

Dominance path of the definition node (node 1) is 

covered. 

Dominance path of the first node of the p-use edge (node 

7) is not covered; the critical node is node 6. The branch 

distance at node 6 using Equation 3.2 is bch (7, t3) = 0.91 

Dominance path of the second node of the p-use edge 

(node 8) is not covered; the critical node is node 7. The 

branch distance at node 6 using Equation 3.2 is bch (8, t3) 

= 0.91 

The fitness value of the input test case using Equation 3.4 

is ft (1, (7, 8), t3) = 0.74 

This case study shows that the input test case t1 

covers the selected def-use path# 5. The input test case t2 

covers the def node and the first node of the selected def-

use path# 5 (partial aim). The input test case t3 does not 

cover any of the two objectives for the selected def-use 

path# 5. Accordingly, ft (1, (7, 8), t1) > ft (1, (7, 8), t2) > 

ft (1, (7, 8), t3). Thus, the input test cases are also ranked 

according to their fitness values. 

7 Experimental setup 
In this section, research questions, algorithmic 

parameters settings, details of the subject programs, and 

experimental results are provided. DE, PSO, GA and 

random search techniques are also implemented for 

comparison with the proposed hybrid (adaptive PSO and 

DE) algorithm. 

7.1 Research questions 

The following research questions are formulated to 

evaluate the performance of the proposed hybrid 

algorithm: 
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RQ1: How effective is the proposed hybrid 

(adaptive PSO and DE) algorithm for optimal test data 

generation to achieve 100% data-flow coverage of a 

program? 

Algorithm ATDG_Hybrid_PSO_DE  

Input:  

 P   : Instrumented version of the program under test 

 arg = (a1,a2,…,ad) : Argument list of P encoded into a d-dimension position vector  
 DT   : Dominator tree for the program P 

 Paths  : List of test requirements i.e. def-use paths 

 Popinit  : Initial random population of n particles Xi = [Xi1, Xi2…Xid] and their velocities V = [Vi1, Vi2…Vid] for i=1, 2…n 
 c1, c2, Vmax  : Algorithmic parameters of Particle Swarm Optimization (PSO) algorithm  

 F, CR  : Algorithmic parameters of Differential Evolution (DE) algorithm  

Output: 

 TestSuite : Set of optimal test cases 

 Pathstat  : List of test requirements marked as ‘covered’ and ‘could not be covered’ (if any) 

Begin 

1. Popold = Popinit 

2. Popcur = Popinit 

3. while some pathi in Paths is not marked { 
4.  while (termination criterion is not met) { //Either pathi is covered or MaxAttempts 

5.   for each particle i of Popcur { 

6.    Decode position vector Xi into a test case ti   
7.    if pathi is not marked { 

8.    Check pathi for coverage w.r.t. ti and calculate fitness value using Eq. 10 or Eq. 11 

9.     if pathi is covered { 
10.      Mark pathi as ‘covered’ (update Pathstat) 

11.      Add ti to TestSuite 

12.     } 
13.    } 

14.    for each pathj of TestReq other than pathi that is not marked { 

15.     Check pathj for coverage with respect to ti 
16.     if pathj is covered 

17.      Mark pathj as ‘covered’ (update Pathstat) 

18.    } 
19.   } 

20.   if pathi is covered 

21.    Go to line 3 
22.   else { 

23.    Update gbesti
j 

24.    for each particle i of Popcur { //Generate a new population Popnew 

25.     Calculate inertia weight w using Equations 3 and 4 

26.     Randomly choose two distinct particles k and l from Popcur (i≠k≠l) 

27.     for each dimension j (1≤j≤d) of particle i{ 
28.      Update pbesti

j 

29.      Randomly generate r between 0 and 1 

30.      if r<CR{ 

31.       Calculate the difference between the jth components of the position vectors of particle k and particle l 

32.       Update velocity Vi
j of particle i in dimension j using Eq. 7 

33.       Clamp velocity Vi
j within the range [-Vmax, Vmax] 

34.      } 
35.      Update position Xi

j of particle i in dimension j using Eq. 2  //Offspring 

36.      if new position Xi
j of particle i in dimension j is out of range { 

37.       Apply neighbourhood strategy to particle i - according to Euclidean distance (Eq.8) 
38.       New position Xi

j of particle i in dimension j is the position of the best particle in the neighbourhood  

39.      } 

40.     } 
41.     Calculate fitness value of Offspring using Eq. 10 or Eq. 11 

42.     if Offspring is better than the parent Xi 

43.      Include Offspring in new population Popnew 

44.     else 

45.      Include parent Xi in new population Popnew 

46.    } 
47.    Popold = Popcur  

48.    Popcur = Popnew 

49.   } 
50.  } 

51.  if selected pathi could not be covered 

52.   Mark pathi as ‘could not be covered’ 
53. } 

54. Return TestSuite, Pathstat 
End 

Figure 5: Proposed hybrid (adaptive PSO and DE) test data generation algorithm. 
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RQ2: How effective is the proposed hybrid 

(adaptive PSO and DE) algorithm for optimal test data 

generation with respect to the convergence speed (mean 

number of generations) at termination? 

7.2 Parameters tuning 

A preliminary study was carried out to determine the 

appropriate value of the algorithmic parameters and 

threshold value for Euclidean distance. Population sizes 

 

Figure 6: Flowchart of the proposed hybrid (adaptive PSO and DE) test data generation algorithm. 
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considered are 10, 15, 20 and 25. ‘Triangle Classifier’ 

program is used as the pilot benchmark program and 100 

experiments were carried out. Accordingly, in the main 

experiments, the following parameters settings have been 

used for adaptive PSO, DE and GA: 

7.3 Subject programs 

For this study, various benchmark programs have been 

selected from other researchers’ work [6, 7, 13, 26] in the 

area of SBST. Experiments are also performed on 

programs taken from the SIR repository [45]. Source 

code of the academic programs is taken from standard 

reference books [38, 46, 47, 48]. The programs, as given 

in Table 6 below, have diverse structural elements such 

as loops, equality conditions, logically connected and 

nested predicates. A tool has also been developed for the 

instrumentation of programs and for listing of def-use 

paths. 

7.4 Study results 

This section presents the experimental results for various 

subject programs. For each subject program and each 

testing approach, 100 experiments were carried out. The 

measures collected are as follows: 

• Mean number of generations: Sum of the number of 

generations at termination for each experiment over 

the total number of experiments gives the mean 

number of generations for a particular subject 

program.   

Here, termination criteria is either 100% data-flow 

coverage or 103 generations, whichever occurs first. 

Maximum number of generations is set to 103. For 

more complex programs, the maximum number of 

generations may be increased. Mean number of 

generations, however, is not indicative of full data-

flow coverage. 

• Mean percentage coverage: Sum of the data-flow 

coverage achieved for each experiment over the total 

number of experiments gives the mean percentage 

coverage achieved for a particular subject program. 

A def-use path is marked as covered the first time it 

is traversed and is not checked subsequently. The 

overall number of fitness evaluations is therefore 

reduced as stated in Section 2. 

If a path is infeasible, then some c-uses and p-uses 

that require this path to be traversed might also be 

infeasible [38]. For each program, infeasible uses, if 

any, were excluded while measuring data-flow 

coverage. 

7.4.1 Effect of varying population size on the 

performance of the proposed hybrid 

(adaptive PSO and DE) algorithm  

In this section, the effect of varying population size on 

the performance of the proposed hybrid algorithm with 

adaptive inertia weight and neighbourhood search 

strategy is analyzed. The performance is also compared 

with other meta-heuristic techniques and random search. 

The proposed hybrid algorithm, DE, PSO, GA (all 

guided by the same fitness function) and random search 

is applied to the various subject programs and 

experimental results are collected for the different 

measures. Population sizes that are considered are 10, 15, 

20 and 25. Detailed experimental results are presented in 

Figures 7-16 below. 

7.4.2 Overall comparison  

In this section, overall performance of the proposed 

hybrid (adaptive PSO and DE) algorithm is compared 

with DE, PSO, GA and random search with respect to the 

measures collected. Tables 7 - 10, as given below, 

summarize the results of applying the various testing 

approaches to the set of chosen subject programs for 

Table 5: Algorithmic parameter settings 

Algorithm Parameters Value 

Common 

Parameters 

Population Size 10, 15, 20, 25 

Maximum number of 

generations  
103 

Number of 

experiments for each 

program 

100 

Fitness Function 
As given by Eq. 11 

and Eq. 12 

Threshold Euclidean 

distance 
10 

DE 

Mutation Scaling 
Factor: F 

1 

Crossover Constant: CR 0.9 

PSO 

Inertia weight 
Adaptive as given 

by Eq. 3 and Eq. 4 

Acceleration 

constants: c1 and c2 
c1=c2=2.0 

Maximum velocity: 

Vmax 

Varies according to 

the program 

GA 

Chromosome 

encoding 
Gray encoding 

Parent selection 

strategy 
Roulette Wheel 

Probability of 

crossover 
0.8 

Probability of 

mutation 
0.15 

 

Table 6: Subject programs 

Program 

#def-

use 

Paths 

Description Type 

1. Triangle 
Classifier 

12 
Finds the type of 
a triangle 

Academic 

2. Quadratic 

Equation 
20 

Finds the roots of 

a quadratic 
equation 

Academic 

3. Previous 
Date 

66 

Finds the 

previous date of a 

given date 

Academic 

4. Day of the 

Calendar 
80 

Finds the day on 

a given date  

Academic 

5. Marks 

Processing 
19 

Finds the final 

grade and 
average marks 

Academic 

6. Banking 

Transactio
n System 

77 
Banking 

transactions 

Industrial 

7. Sort 15 Sorting an array Repository 

8. Vector 26 Vector operations Repository 

9. Stack 20 Stack operations Repository 

10. Linked 
List 

35 
Linked list 
operations 

Repository 

 

http://sir.unl.edu/portal/index.php
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different population sizes (10, 15, 20, 25). Range of the 

input integer variables is taken to be 0-100; range is  

different for variables of Program# 3, 4, and 7 as per the 

requirement of each program. The results are further 

discussed in the next section. 

 

 

 

 

 

 

 

 
Figure 7: Graphs for ‘Triangle Classifier’ program. 

 
Figure 8: Graphs for ‘Quadratic Equation’ program. 

 
Figure 9: Graphs for ‘Previous Date’ program. 

 
Figure 10: Graphs for ‘Day of the Calendar’ program. 
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Figure 11: Graphs for ‘Marks Processing’ program. 

 

Figure 12: Graphs for ‘Simple Banking Transaction System’ program. 

 
Figure 13: Graphs for ‘Sort’ program. 

 
Figure 14: Graphs for ‘Stack’ program. 
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Figure 15: Graphs for ‘Vector’ program. 

 

Figure 16:  Graphs for ‘Linked List’ program. 

Table 7: Experimental results for Population Size 10: Mean number of generations and mean percentage coverage. 

Program 

Measure 

Mean Number of Generations Mean Percentage Coverage 

Proposed 
Hybrid 
Algorithm 

DE PSO GA  
Random 
Search 

Proposed 
Hybrid 
Algorithm 

DE PSO GA  
Random 
Search 

Triangle 
Classifier 

287 312 295 361 835 99% 97% 98% 97% 89% 

Quadratic 
Equation 

289 320 316 353 743 99% 97% 98% 98% 90% 

Previous 
Date 

426 488 453 501 856 98% 97% 98% 97% 85% 

Day of the 
Calendar 

397 440 417 487 772 98% 97% 97% 96% 86% 

Marks 
Processing 

419 494 515 578 897 98% 97% 98% 97% 85% 

Simple 
Banking 
Transaction 
System 

585 602 615 690 986 97% 95% 95% 94% 76% 

Sort 468 502 498 512 802 98% 97% 96% 96% 88% 

Vector 397 467 454 521 821 97% 97% 96% 96% 88% 

Stack 241 275 300 357 606 97% 96% 97% 97% 87% 

Linked List 277 312 311 379 838 99% 97% 96% 96% 88% 
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Table 8: Experimental results for Population Size 15:  

Mean number of generations and mean percentage coverage. 

Program 

Measure 

Mean Number of Generations Mean Percentage Coverage 

Proposed 
Hybrid 
Algorithm 

DE PSO GA  
Random 
Search 

Proposed 
Hybrid 
Algorithm 

DE PSO GA  
Random 
Search 

Triangle 
Classifier 

253 271 258 326 772 99% 97% 98% 97% 89% 

Quadratic 
Equation 

280 297 288 329 699 99% 98% 99% 99% 91% 

Previous 
Date 

406 468 431 493 870 99% 97% 98% 98% 87% 

Day of the 
Calendar 

378 413 422 465 769 99% 97% 98% 97% 88% 

Marks 
Processing 

387 451 492 559 785 99% 98% 98% 97% 87% 

Simple 
Banking 
Transaction 
System 

555 610 613 667 945 98% 95% 95% 94% 79% 

Sort 417 488 449 502 815 99% 97% 97% 96% 91% 

Vector 355 459 415 498 819 99% 97% 97% 96% 88% 

Stack 236 267 288 365 588 99% 97% 98% 97% 88% 

Linked List 271 299 297 381 807 99% 98% 97% 97% 88% 

Table 9: Experimental results for Population Size 20:  

Mean number of generations and mean percentage coverage. 

Program 

Measure 

Mean Number of Generations Mean Percentage Coverage 

Proposed 
Hybrid 
Algorithm 

DE PSO GA  
Random 
Search 

Proposed 
Hybrid 
Algorithm 

DE PSO GA  
Random 
Search 

Triangle 
Classifier 

185 255 211 285 709 100% 99% 99% 99% 93% 

Quadratic 
Equation 

246 255 241 289 502 99% 99% 99% 99% 93% 

Previous 
Date 

369 415 398 432 783 100% 98% 99% 98% 91% 

Day of the 
Calendar 

319 380 392 460 625 100% 98% 98% 97% 92% 

Marks 
Processing 

338 407 455 512 668 100% 99% 98% 98% 92% 

Simple 
Banking 
Transaction 
System 

512 568 584 591 919 99% 96% 96% 95% 81% 

Sort 355 398 401 486 748 100% 98% 99% 98% 92% 

Vector 343 408 382 463 729 100% 98% 98% 97% 90% 

Stack 219 251 285 302 565 100% 98% 98% 98% 92% 

Linked List 258 285 279 353 759 100% 98% 99% 99% 90% 
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8 Discussion 
The experimental results have been presented above in 

Tables 7-10 and Figures 7-16. In context of the research 

questions formulated for this study, the experimental 

results are analysed and discussed in this section.  

RQ1: How effective is the proposed hybrid 

(adaptive PSO and DE) algorithm for optimal test data 

generation to achieve 100% data-flow coverage of a 

program? 

From the experimental results as shown in Tables 7-

10, it can be seen that the proposed hybrid algorithm with 

adaptive inertia weight and neighbourhood search 

strategy, achieved highest mean percentage coverage for 

all the subject programs and for all population sizes that 

are considered. Only the proposed hybrid algorithm 

achieved 100% data-flow coverage for all the subject 

programs for population size 20 (except for Program# 2 

and Program# 6) and for population size 25 (except for 

Program# 6). For population size 10 and 15 also, the 

mean percentage coverage is 97%-99% with the 

proposed hybrid algorithm. For each program, infeasible 

uses, if any, were not considered while measuring data-

flow coverage. Infeasible uses, if any, are determined by 

careful manual analysis as it is not possible to write an 

algorithm for analyzing a given program to determine if a 

given element in the coverage domain is feasible or not 

[38]. This, in addition to the novel fitness function, 

adaptive inertia weight and neighbourhood search 

strategy has resulted in full data-flow coverage as the 

population size is increased from 10 to 25.  

For the other meta-heuristic search techniques (DE, 

PSO and GA), all guided by the same fitness function, 

mean percentage coverage is between 94%-99% for all 

the subject programs and for all population sizes that are 

considered. DE achieved 100% data-flow coverage only 

for Program# 1 and Program# 7 for population size 25. 

PSO achieved 100% data-flow coverage only for 

Program# 1, Program# 2, and Program# 7 for population 

size 25. GA achieved 100% data-flow coverage only for 

Program# 1 and Program# 2 for population size 25. 

However, the proposed hybrid algorithm outperformed 

DE, PSO and GA with respect to the convergence speed 

in all the cases. Performance of random search is worst; 

mean percentage coverage achieved is minimum for all 

the subject programs for all population sizes that are 

considered. This provides an explanation for high mean 

number of generations when percentage coverage is less 

than 100% as then the algorithm terminates only after 103 

generations. 

RQ2: How effective is the proposed hybrid 

(adaptive PSO and DE) algorithm for optimal test data 

generation with respect to the convergence speed (mean 

number of generations) at termination? 

From the experimental results as shown in Tables 7-

10, it can be seen that the mean number of generations is 

least with the proposed hybrid algorithm for all the 

subject programs and for all population sizes that are 

considered. There is a substantial reduction in mean 

number of generations with the proposed hybrid 

algorithm for benchmark programs such as ‘Triangle 

Classifier’, ‘Quadratic Equation’, and ‘Previous Date’ 

Table 10: Experimental results for Population Size 25:  

Mean number of generations and mean percentage coverage. 

Program 

Measure 

Mean Number of Generations Mean Percentage Coverage 

Proposed 
Hybrid 
Algorithm 

DE PSO GA  
Random 
Search 

Proposed 
Hybrid 
Algorithm 

DE PSO GA  
Random 
Search 

Triangle 
Classifier 

152 199 186 219 628 100% 100% 100% 100% 94% 

Quadratic 
Equation 

221 262 205 245 478 100% 99% 100% 100% 96% 

Previous 
Date 

317 358 362 394 663 100% 99% 99% 99% 93% 

Day of the 
Calendar 

281 360 365 398 598 100% 99% 99% 98% 94% 

Marks 
Processing 

317 388 383 438 579 100% 99% 98% 98% 93% 

Simple 
Banking 
Transaction 
System 

482 520 546 554 888 99% 97% 96% 96% 84% 

Sort 306 365 387 452 715 100% 100% 100% 99% 92% 

Vector 276 332 317 401 601 100% 99% 98% 98% 92% 

Stack 188 227 212 267 521 100% 98% 99% 98% 92% 

Linked List 225 253 261 317 714 100% 98% 99% 99% 90% 
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that have multiple and nested conditions along with 

equality conditions. This is also true for other programs 

taken from the repository [45] such as ‘Sort’, ‘Stack’, 

‘Vector’, and ‘Linked List’. As expected, the mean 

number of generations decreases as the population size 

increases due to a wider search space. 

The performance of random search is worst with 

respect to the mean number of generations to achieve 

same data-flow coverage for smaller population sizes and 

Table 11: Statistical results of Friedman Aligned and post hoc test (level of confidence α = 0.05) 

Program Testing Approach 
Average 
Rank 

Friedman 
Aligned 
Statistic 

p-value by 
Friedman 
Aligned 
Test 

p-value by 
applying Post 
Hoc Methods 

Holm’s 
Procedure 
α/i 

Hypothesis 

Triangle 
Classifier 

Proposed Hybrid Algorithm 34.5 

24.2877 6.994E-05 

- - - 

DE 56.23 0.048691 0.05 Rejected 

PSO 63.43 0.0099 0.025 Rejected 

GA 89.23 0.000001 0.016667 Rejected 

Random Search 134.1 0 0.0125 Rejected 

Quadratic 
Equation 

Proposed Hybrid Algorithm 52.03 

24.2141 7.236E-05 

0.799444 0.05 Not Rejected 

DE 68.95 0.078049 0.025 Not Rejected 

PSO 49.18 - - - 

GA 80.03 0.005957 0.016667 Rejected 

Random Search 127.3 0 0.0125 Rejected 

Previous 
Date 

Proposed Hybrid Algorithm 31.78 

24.183394 7.339 E-05 

- - - 

DE 52.57 0.063918 0.05 Not Rejected 

PSO 63.02 0.005364 0.025 Rejected 

GA 97 0 0.016667 Rejected 

Random Search 133.13 0 0.0125 Rejected 

Day of the 
Calendar 

Proposed Hybrid Algorithm 35.1 

24.151826 7.447E-05 

- - - 

DE 58.15 0. 039897 0.05 Rejected 

PSO 66.42 0. 005242 0.025 Rejected 

GA 85.22 0. 000008 0.016667 Rejected 

Random Search 132.62 0 0.0125 Rejected 

Simple 
Banking 
Transaction 
System 

Proposed Hybrid Algorithm 33.2 

23.557598 9.795 E-05 

- - - 

DE 55.08 0.0470 0.05 Rejected 

PSO 59.8 0.017726 0.025 Rejected 

GA 96.32 0 0.016667 Rejected 

Random Search 133.1 0 0.0125 Rejected 

Marks 
Processing 

Proposed Hybrid Algorithm 25.68 

23.903359 8.352E-05 

- - - 

DE 49.28 0.035392 0.05 Rejected 

PSO 66.58 0.000266 0.025 Rejected 

GA 101.38 0 0.016667 Rejected 

Random Search 134.57 0 0.0125 Rejected 

Sort 

Proposed Hybrid Algorithm 34.61 

24.028397 7.883E-05 

- - - 

DE 57.88 0.038067 0.05 Rejected 

PSO 65.55 0.005823 0.025 Rejected 

GA 90.38 0.000001 0.016667 Rejected 

Random Search 129.07 0 0.0125 Rejected 

Vector 

Proposed Hybrid Algorithm 34.7 

24.235764 7.164E-05 

- - - 

DE 61.73 0.015956 0.025 Rejected 

PSO 56.83 0.048484 0.05 Rejected 

GA 99.33 0 0.016667 Rejected 

Random Search 124.9 0 0.0125 Rejected 

Stack 

Proposed Hybrid Algorithm 32.52 

23.829629 8.641E-05 

- - - 

DE 53.25 0.06456 0.05 Not Rejected 

PSO 70.13 0.000798 0.025 Rejected 

GA 92.77 0 0.016667 Rejected 

Random Search 128.83 0 0.0125 Rejected 

Linked List 

Proposed Hybrid Algorithm 34.78 

23.551908 9.821E-05 

- - - 

DE 60.65 0.021116 0.025 Rejected 

PSO 59.48 0.027672 0.05 Rejected 

GA 91.53 0 0.016667 Rejected 

Random Search 131.05 0 0.0125 Rejected 
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for programs with multiple and nested conditions. 

Random search did not achieve full data-flow coverage 

for any of the subject program. This has resulted in 

higher values for the measure ‘mean number of 

generations’ at termination. 

It can be inferred that the proposed hybrid algorithm 

with adaptive inertia weight and neighbourhood search 

strategy is the best performing approach for all the 

subject programs and for all population sizes that are 

considered with respect to the measures collected. The 

proposed hybrid algorithm and the other meta-heuristic 

search techniques (DE, PSO and GA) are all guided by 

the same novel fitness function; the better performance 

of the proposed hybrid algorithm can be attributed to the 

inclusion of adaptive inertia weight and neighbourhood 

search strategy. 

8.1 Statistical analysis on repeated trials  

Statistical analysis is performed to validate the 

effectiveness and efficiency of the proposed hybrid 

(adaptive PSO and DE) algorithm with adaptive inertia 

weight and neighbourhood search strategy over other 

meta-heuristic search techniques (DE, PSO and GA) and 

random search applied for test data generation in 

accordance to data-flow coverage criterion. The 

experiment on each subject program was repeated 100 

times. From the experimental results as presented in 

Section 7.4, it can be seen that the proposed hybrid 

algorithm as well as the other meta-heuristic search 

techniques (DE, PSO and GA), all guided by the same 

fitness function, have comparable results with respect to 

the measure ‘mean percentage coverage’ for population 

size 10 and 15. The proposed hybrid algorithm achieved 

100% data-flow coverage for all the subject programs for 

(a)  (b)  

(c)  (d)  

(e)  (f)  
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population size 20 (except for Program# 2 and 6) and for 

population size 25 (except for Program# 6). For 

population size 25, DE achieved 100% data-flow 

coverage only for Program# 1 and 7; PSO achieved 

100% data-flow coverage only for Program# 1, 2, and 7; 

GA achieved 100% data-flow coverage only for 

Program# 1 and 2. Therefore, the convergence speed 

(mean number of generations) information for population 

size 25 (best performance for all the approaches) is used 

for statistical difference test.  

In the first step, Friedman Aligned 1xN test, a non-

parametric multiple comparison statistical test [49], is 

applied to check for significant differences between the 

performance of the proposed hybrid algorithm and the 

other algorithms. Average rankings of all the algorithms 

are obtained that provide a fair comparison of the 

algorithms; a low value indicates higher rank. The 

unadjusted p-value is also computed through normal 

approximations; the smaller the p-value, the stronger the 

evidence against the null hypothesis. The value of α 

(level of confidence) is set to 0.05. In the second step, if 

the null hypothesis of equivalence of rankings is rejected, 

a post hoc test (Holm’s procedure) is applied to report 

adjusted p-values by adjusting the value of α in a step-

down manner to compensate for multiple comparisons. 

Here, the proposed hybrid algorithm acts as the control 

algorithm and its performance is compared with the rest 

of the algorithms used for comparison.  

Results of the statistical analysis are summarized in 

Table 11 - average ranking of each algorithm, Friedman 

Aligned statistic, p-value computed by Friedman Aligned 

test and p-values obtained in by applying post hoc 

methods. It can be observed that the rank of the proposed 

hybrid algorithm is minimum (best performing 

algorithm) for all the subject programs except for 

‘Quadratic Equation’ program. In case of ‘Quadratic 

Equation’ program, PSO is the best performing 

algorithm; however, PSO did not achieve full data-flow 

coverage and the proposed hybrid algorithm achieved 

full data-flow coverage as can be seen in Table 10. 

Random search gets the worst rank among all the 

algorithms as expected. The p-values computed by 

Friedman Aligned test are ≤ α (level of confidence) for 

all the subject programs, so the null hypothesis of 

equivalence of rankings can be rejected.  

Further, p-values at the level of confidence α are 

reported by applying Holm’s procedure to compensate 

for multiple comparisons. Holm’s procedure rejects those 

hypotheses that have an unadjusted p-value ≤ α. As can 

be seen, all the null hypotheses are rejected in all the 

cases for all the subject programs except for ‘Quadratic 

Equation’, ‘Previous Date’ and ‘Stack’ programs. The 

null hypothesis is not rejected for DE in case of 

‘Quadratic Equation’ (for proposed hybrid algorithm 

also), ‘Previous Date’ and ‘Stack’ programs. However, 

as can be seen from Tables 7   - 10, there is significant 

difference among the performance of all the algorithms 

being compared with respect to the measures collected. 

Thus, it be claimed that there is significant difference 

between the performances of the proposed hybrid 

algorithm and the other algorithms being compared. 

(g) (h)  

(i)  (j)  

Figure 17: Stability analysis for the measure ‘mean number of generations’. 
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For further analysis, box plots are drawn as shown in 

Figure 17 to compare the distribution of the measure 

mean number of generations over 100 trials for all the 

subject programs (population size 25). It can be observed 

that the median value of the measure ‘mean number of 

generations’ (in 100 trials) for the proposed hybrid 

algorithm is always less than the corresponding values 

for DE, PSO, GA and random search for all the subject 

programs except for ‘Quadratic Equation’ program. The 

median value is comparable with that of PSO for the 

‘Quadratic Equation’ program. For all the approaches, 

the difference between the first quartiles as well as the 

difference between the third quartiles is quite visible.  

It can therefore be concluded that the proposed 

hybrid (adaptive PSO and DE) algorithm is the best 

performing algorithm and is significantly different from 

the other algorithms (DE, PSO, GA and random search) 

being compared. The proposed hybrid (adaptive PSO and 

DE) algorithm has stronger ability to generate test data 

with higher data-flow coverage as well as convergence 

speed as compared to DE, PSO, GA and random search 

techniques. 

9 Threats to validity and limitations 
This section presents the possible validity threats [50] for 

the proposed study. Threats to internal validity are 

considered in the context of SBST. The choice of 

algorithmic parameters such as population size, inertia 

weight, acceleration constants, maximum velocity, 

mutation scaling factor, crossover constant affects the 

performance of the meta-heuristic search algorithms. 

Preliminary experiments were carried out to determine 

the appropriate values for the various algorithmic 

parameters for the proposed hybrid (adaptive PSO and 

DE) algorithm. 

Threats to construct validity may arise from the fact 

that the performance of the proposed hybrid (adaptive 

PSO and DE) algorithm is evaluated with respect to the 

measures ‘mean number of generations’ and ‘mean 

percentage coverage’ for a particular subject program. 

Other measures such as total number of fitness 

evaluations and average search time may have also been 

used for evaluation. 

Statistical analysis is performed to establish 

conclusion validity i.e. to validate the effectiveness and 

efficiency of the proposed hybrid (adaptive PSO and DE) 

algorithm over other techniques that have been 

considered for comparison. It is shown that the proposed 

hybrid (adaptive PSO and DE) algorithm is significantly 

different to DE, PSO, GA and random search that are 

considered for comparison; all except random search 

have been guided by the same fitness function. Adaptive 

inertia weight and neighbourhood search strategy have 

improved the performance of the proposed hybrid 

(adaptive PSO and DE) algorithm with respect to the 

measures collected. Threats to conclusion validity may 

arise from the fact that the infeasible uses / infeasible 

data-flow paths are identified and eliminated by manual 

analysis. Also, results for the proposed hybrid algorithm 

and other techniques have been compiled with respect to 

the experimental setup used for the present study. 

The main external threat to validity is the choice of 

subject programs that may limit the generalization of 

results of the proposed study to real and more complex 

programs. Also, a different population size apart from 

those considered may produce different coverage results.  

However, subject programs that are considered have 

many of the same programming constructs as large 

programs. The proposed approach should therefore be 

able to handle real and more complex programs. The 

claim is, however, a matter of further investigation.  

10 Conclusion 
Automated test data generation is still an open problem 

in spite of decades of research. In the field of SBST, GA 

has been the algorithm of choice for control-flow 

coverage criteria. Very recently only, other highly 

adaptive search-based techniques such as PSO have been 

employed for structural test data generation. DE is 

another simple to implement and highly adaptive search-

based technique that has been not yet applied for 

automated test data generation. Among the structural test 

adequacy criteria, data-flow coverage test adequacy 

criterion has received relatively little attention. This 

paper presents a hybrid (adaptive PSO and DE) 

algorithm with neighbourhood search strategy for 

optimal test data generation in accordance to the all-uses 

data-flow coverage test adequacy criterion.   

The performance of the proposed hybrid (adaptive 

PSO and DE) algorithm has been experimentally 

evaluated and compared with that of DE, PSO, GA and 

random search for data-flow coverage. It is shown that 

the proposed hybrid (adaptive PSO and DE) algorithm 

outperformed DE, PSO, GA and random search with 

respect to the measure ‘mean number of generations’ for 

all the population sizes that are considered. For the 

measure ‘mean percentage coverage’, performance of the 

proposed hybrid (adaptive PSO and DE) algorithm is 

comparable to that of DE, PSO and GA for smaller 

population sizes (10 and 15); however, only the proposed 

hybrid algorithm achieved full data-flow coverage as the 

population size is increased to 20 and 25 for complex 

subject programs. Performance of random search is 

worst. Here, we have explored a promising hybrid 

optimization algorithm for test data generation. In future, 

we intend to fine tune the algorithmic parameters and 

work upon more complex subject programs. 
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