
https://doi.org/10.31449/inf.v42i3.1497 Informatica 42 (2018) 417–438 417

A Hybrid Particle Swarm Optimization and Differential Evolution Based

Test Data Generation Algorithm for Data-Flow Coverage Using

Neighbourhood Search Strategy

Sapna Varshney and Monica Mehrotra

Department of Computer Science, Jamia Millia Islamia, India

E-mail: sapna_varsh@yahoo.com, drmehrotra2000@gmail.com

Keywords: search based software testing, particle swarm optimization, differential evolution, data flow testing,

dominance tree

Received: January 15, 2017

Meta-heuristic search techniques, mainly Genetic Algorithm (GA), have been widely applied for

automated test data generation according to a structural test adequacy criterion. However, it remains a

challenging task for more robust adequacy criterion such as data-flow coverage of a program. Now,

focus is on the use of other highly-adaptive meta-heuristic search techniques such as Particle Swarm

Optimization (PSO) and Differential Evolution (DE). In this paper, a hybrid (adaptive PSO and DE)

algorithm is proposed to generate test data for data-flow dependencies of a program with a

neighbourhood search strategy to improve the search capability of the hybrid algorithm. The fitness

function is based on the concepts of dominance relations and branch distance. The measures considered

are mean number of generations and mean percentage coverage. The performance of the hybrid

algorithm is compared with that of DE, PSO, GA, and random search. Over several experiments on a

set of benchmark programs, it is shown that the hybrid algorithm performed significantly better than

DE, PSO, GA and random search in data-flow test data generation with respect to the measures

collected.

Povzetek: Razvit je nov algoritem kot kombinacija hibridnega roja delcev in diferenčne evolucije z

uporabo sosednje iskalne strategije.

1 Introduction
Software testing aims at assessing the quality and

reliability of software product by detecting as many

defects as possible. The cost of software testing increases

exponentially with the size of input search space, thereby

making manual testing a difficult and tedious task. There

are software testing tools available with capture and

playback features to automate the execution of test

scripts. However, the test cases are manually selected by

the human tester and may not be optimal. It is therefore

desirable to generate optimal test data that reveals as

many errors as possible according to a test adequacy

criterion [1]. Structural (white-box) testing tests software

for its structure and has the inherent capability to expose

faults. The structural test adequacy criteria can be

statement coverage, branch coverage, or path coverage

that aim at executing every statement, branch or path

respectively at least once. Data-flow coverage, an

effective and robust test adequacy criterion, focuses on

the definition and usage of variables in a program. Data-

flow testing, therefore, could lead to more efficient and

targeted test suites.

The attempts to reduce the cost of software testing

by automating the process of software test data

generation have been constrained by the ever increasing

size and complexity of software. In the early period of

automated test data generation, gradient descent and

meta-heuristic search (MHS) algorithms such as Tabu

Search, Hill Climbing and Simulated Annealing [2, 3, 4].

In the past two decades, evolutionary search-based

algorithms such as Genetic Algorithm (GA) have been

widely employed for test data generation as an effective

alternative [5, 6, 7, 8, 9]. A search-based approach

captures the test adequacy criteria as a fitness function

that is used to guide the search. Due to an extensive

application of search-based algorithms to test data

generation problem, the approach has come to be known

as Search Based Software Testing (SBST, coined by

Harman and Jones). Recently, the focus is on the use of

other highly adaptive search-based techniques such as

Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO) and Differential Evolution (DE). It

has been observed that GA and ACO have slow

convergence towards the optimal solution. PSO and DE

are conceptually very simple and the knowledge of

previous good solutions is retained by all the members of

the current population by means of constructive

cooperation among them. PSO and DE have been found

to be robust in solving optimization problems; however,

the performance depends on control parameters. PSO has

been shown to be well suited for test data generation with

better performance than GA [10, 11, 12, 13, 14].

Hybridization of search-based algorithms for test data

generation has also been reported in literature. GA with a

local search algorithm [15] and more recently, GA with

https://doi.org/10.31449/inf.v42i3.1497
mailto:sapna_varsh@yahoo.com

418 Informatica 42 (2018) 417–438 S. Varshney et al.

PSO has been applied for test data generation in some

studies [16, 17, 18, 19, 20, 21].

In this study, we propose a hybrid global search

algorithm by combining an adaptive PSO with DE

mutation operator to automatically generate test data for

data-flow dependencies of a program. In the proposed

hybrid algorithm, a new term based on DE differential

operator is included for velocity update in PSO for some

additional exploration capability. The greedy selection

scheme of DE is used wherein position of a particle is

updated only if it yields a better fitness value. This

results in movement of particles only to better locations

in the input search space. A local neighborhood strategy

is also included in the proposed hybrid algorithm to

explore more promising candidate solutions and

overcome the problem of boundary constraints. Design

of the fitness function [22] is based on dominance

concepts and branch distance that is used to guide the

search for optimal test data for data-flow dependencies of

a program. The performance of the proposed hybrid

algorithm is compared with that of DE, PSO, GA and

random search. It is demonstrated that the proposed

hybrid algorithm outperformed DE, PSO, GA and

random search in terms of mean percentage coverage

achieved, and mean number of generations to produce

the final test suite for data-flow coverage of a program.

The rest of the paper is organized as follows: Section

2 provides a brief description of automated software test

data generation process and related work. Section 3

provides an overview of data-flow analysis. Sections 4

and 5 provide a brief description of PSO and DE

algorithms. Section 6 describes the proposed hybrid

algorithm. Section 7 gives the experimental results.

Section 8 provides the discussion and the detailed

statistical analysis of the experimental results. Section 9

deals with threats to validity and limitations of the

proposed hybrid algorithm. Finally, section 10 gives the

conclusion.

2 Related work
This section presents the methods to generate test data

for software structural testing and the related literature.

Symbolic execution, a static method, has been employed

for test data generation [2]; however, the performance is

constrained by programming constructs such as pointers,

loop conditions with input variables, array subscripts and

procedure calls [23]. Dynamic methods that have been

employed for test data generation can be classified as

random, path-oriented and goal-oriented techniques [9,

23]. A random test data generator arbitrarily selects test

data from the input domain. Though easy to implement,

it may fail to find optimal test data. Path-oriented test

data generator [5] uses control flow information to

identify a set of independent paths to generate test data.

However, it does not work well with infeasible paths or

paths that contain loops. A goal-oriented test data

generator [9, 23, 24] generates test data for a selected

goal such as a statement or a branch, irrespective of the

path taken.

The meta-heuristic search techniques guided by a

fitness function have been adopted to generate optimal

test data mainly according to a structural test adequacy

criterion. From the literature on structural test data

generation, it can be inferred that branch coverage and

path coverage are the most often used and well-

understood measures [25]. For branch coverage, fitness

values are calculated by finding approximation level and

branch distance for a target branch from control flow

graph [8, 26]. Data-flow coverage criterion has not been

used much [27] due to difficulty in writing test cases that

satisfy data-flow dependencies of a program. Wegener et

al. [28] defined different types of fitness functions for

structural testing; data-flow test criteria being classified

as node-node-oriented methods. Recently only there has

been more work on search based test data generation for

data-flow coverage using GA as the algorithm of choice

[6, 7, 22, 24, 29, 30]. Now, other highly adaptive search-

based techniques such as PSO [14, 18] and ACO [31] are

also being applied to generate test data for data-flow

coverage due to simplicity and faster convergence. ACO

[32] and Harmony Search [33] has also been applied to

generate structural test data for branch coverage.

Vivanti et al. [30] have proposed a GA-based

technique for data-flow coverage evaluated on open

source Java applications. The results have indicated the

scalability and applicability of data-flow criteria for test

data generation.

In our previous work [22], an elitist GA-based

approach is proposed to generate test data for data-flow

dependencies of a program using dominance concepts

and branch distance. The fitness function is derived from

the work by Ghiduk et al. [6]; it is augmented with

branch distance to produce a smoother landscape for

guiding the search and also takes into account that a

definition may be killed by another definition before the

associated use is reached. The performance of the

proposed approach is compared with random search and

earlier studies on test data generation for data-flow

dependencies of a program by Girgis [7], Ghiduk et al.

[6] and Girgis et al. [21]. The proposed GA-based

approach guided by the novel fitness function

outperformed random search and the earlier studies [6, 7,

21] to generate test data for data-flow coverage of a

program.

Windisch et al. [10] applied PSO to artificial and

complex industrial test objects to generate test data for

branch coverage. Their results showed efficiency and

efficacy of PSO over GA for most code elements to be

covered.

Agarwal et al. [11] applied binary PSO, Agarwal and

Srivastava [12] applied discrete quantum PSO and Mao

[13] applied standard PSO to generate test data for

branch coverage test adequacy criterion.

Nayak and Mohapatra [14] proposed an algorithm to

generate test cases using PSO for data flow coverage.

This technique cannot rank test cases because the fitness

function, as simply taken from Girgis [7], assigns the

same fitness value to all the test cases that cover the same

number of test requirements and a fitness value of 0 to all

the test cases that do not cover any test requirement or

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 419

cover a partial aim. Here, the fitness function is unable to

guide the search.

Application of hybrid algorithms have also been

studied for test data generation problem. Zhang et al. [16]

proposed a hybrid algorithm (GA and PSO) to generate

test data for path coverage. GA and PSO operations are

applied to two population sets. Triangle classification

problem is taken as the case study and the hybrid

algorithm is compared with GA and PSO. The hybrid

algorithm is shown to be better than GA and PSO with

respect to number of iterations. The average time taken is

found to be more than PSO but less than GA. Their

hybrid technique is complicated and may generate

redundant test cases for automatic test data generation.

Li et al. [17] also proposed a hybrid algorithm (GA

and PSO) to generate test data for path coverage. PSO

equations to update particle’s velocity and position

distance are used instead of mutation operator of GA.

The algorithm is applied only to the triangle benchmark

problem.

Singla et al. [18] applied a hybrid algorithm (GA and

PSO) to generate test data for data-flow coverage. The

fitness function used is same as in [6]; it does not take

into account the traversal of killing nodes as well as

closeness of test data in case if only partial aim is

covered. The strategy is tested only on some simple

programs.

Kaur and Bhatt [19] proposed a hybrid algorithm

(GA and PSO) to prioritize test data in regression testing.

The algorithm has been tested on few simple programs.

Girgis et al. [21] proposed a hybrid Genetical Swarm

Optimization (GSO) Technique to generate a set of test

paths that cover the all-uses criterion for data-flow

coverage. The authors have claimed that the set of paths

generated by the proposed GSO can be passed to a test

data generation tool to find program inputs that will

execute them to complete the data flow paths testing of

the program under test. The fitness function used is same

as in [7]; it is not able to guide the search and results in

loss of valuable information in case if only partial aim is

covered.

Chawla et al. [20] proposed a hybrid PSO and GA

algorithm for automatic generation of test suites with

branch coverage as the test adequacy criterion. The

experiments are performed with ten Java container

classes. The algorithm is shown to perform better than

GA, PSO and existing hybrid strategies based on GA and

PSO.

Each optimization algorithm has its own advantages

and disadvantages. Also, one optimization algorithm will

not work well for all the optimization problems. DE, a

meta-heuristic search-based algorithm, has been applied

to several optimization problems [34, 35] to demonstrate

its potential. Das et al. [36] has explored hybridization of

PSO with DE applied to the design of digital filters.

However, DE has not been applied for test data

generation and optimization problem [25, 27, 37].

The proposed study will focus on the application of a

hybrid adaptive PSO-DE algorithm to generate test data

for data-flow dependencies of a program. The proposed

hybrid global search algorithm combines the evolution

scheme of both PSO and DE incorporating the best of

both the algorithms in the context of test data generation.

A new term based on DE differential operator is included

for velocity update in PSO. The greedy selection scheme

of DE is also used wherein position of a member is

updated only if it yields a better fitness value. The

hybridization scheme has resulted in movement of

particles only to better locations in the input search

space. The design of fitness function [22] is based on the

dominance relations between the nodes of a program’s

control flow graph augmented with branch distance

which produces a smoother landscape for guiding the

search. This leads to faster and better convergence of test

data to achieve the desired coverage. A neighborhood

search strategy is also incorporated into the proposed

hybrid algorithm that further helps in overcoming the

problem of boundary constraints and local optima by

exploring more promising candidate solutions. This is the

main contribution of this paper. The proposed hybrid

algorithm generates test data for one test requirement at a

time; other test requirements are also checked for

coverage thereby reducing the overall number of fitness

evaluations.

3 Data flow analysis
In this study, data-flow coverage is used as the test

adequacy criteria. Data-flow analysis [38] augments the

control-flow testing criteria; the emphasis is on the

definition and use of the variables in a program. The

control flow of a program is represented by a directed

graph G (V, E) also known as control flow graph (CFG),

where V is the set of all the nodes and E is the set of all

the edges in the graph. Each node corresponds to a

program statement or group of sequential program

statements and an edge represents flow of control from

one node to another. There are two distinct nodes: an

entry node n0 and an exit node nend. Node n dominates

node m (dominance relationship) if every path from entry

node n0 to m contains n. By applying dominance

relationship to all the nodes of CFG, a tree can be

obtained that is rooted at n0. This tree is called the

dominator tree [39]. For each node m in the CFG, Dom

(m) is the set of all the nodes that dominate node m.

Figure 2 gives the CFG of the example program as given

in Figure 1. The dominator tree is shown in Figure 3. For

example, Dom (12) = {1, 2, 6, 7, 12}.

In a program, the definition and use occurrences of

each variable are identified. A variable is said to be

defined in a program statement (def-node) if a value is

associated with the variable. A variable is said to be used

in a program statement if its value is referenced for

computational use (c-use node) or a predicate use (p-use

node). Data-flow testing should cause the traversal of

def-clear sub-paths from the variable definition to either

some or all of the p-uses, c-uses, or their combination.

Empirically, the all-uses criterion has been shown to be

most effective compared to the other data-flow criteria

[40]. A def-clear path does not include any intermediate

nodes containing other definitions of that variable

(killing nodes). A def-clear path can be further

420 Informatica 42 (2018) 417–438 S. Varshney et al.

categorized as a dcu-path (c-use of the variable) or a dpu-

path (p-use of the variable). For the example program,

Table 1 provides definition and use nodes for each

variable, Table 2 provides the list of all-def-use paths and

Table 3 provides the dominance paths for the nodes of

the program flow graph.

#include<stdio.h>

#include<conio.h>

1 1 void main() {

2 1 int a, b, c, valid;

3 1 printf(“\nEnter the value of three sides: “);
4 1 scanf(“%d %d %d”, &a, &b, &c);

5 1 valid=0;

6 2 if((a>=0)&&(a<=100)&&(b>=0)&&(b<=100)&&(c>=0)
 &&(c<=100)) {

7 3 if(((a+b)>c)&&((c+a)>b)&&((b+c)>a)) {

8 4 valid=1;
9 5 }

10 5 }

11 6 if (valid==1) {
12 7 if ((a==b)&&(b==c))

13 8 printf(“\nEquilateral triangle.”);

14 9 else if ((a==b)||(b==c)||(c==a))
15 10 printf(“\nIsosceles triangle.“);

16 11 else

17 11 printf((“\nScalene triangle.“);
18 12 } else {

19 13 printf(“\n Invalid input ”).;

20 14 }

21 15 }

Figure 1: Triangle classification program.

Table 1: List of variables and def-use occurrences in the

example program

Variable
def
Node

c-use
Node

p-use Edge

a
b
c

1 None 2-3
2-6
3-4
3-5
7-8
7-9
9-10
9-11

valid 1,4 None 6-7
6-13

Table 2: List of def-use paths for the example program.

Path

No.

def-use Path (Terminates

with -1 for c-use)

Killing

Node(s)

1 1-2-3 None

2 1-2-6 None

3 1-3-4 None

4 1-3-5 None
5 1-7-8 None
6 1-7-9 None
7 1-9-10 None
8 1-9-11 None
9 1-6-7 4

10 1-6-13 4

11 4-6-7 None
12 4-6-13 None

Figure 2: CFG of the example program.

Figure 3: Dominator tree for the example

Table 3: Dominance paths for the nodes of the CFG.

Node No. Dominance Path

1 1

2 1-2

3 1-2-3

4 1-2-3-4

5 1-2-3-5

6 1-2-6

7 1-2-6-7

8 1-2-6-7-8

9 1-2-6-7-9

10 1-2-6-7-9-10

11 1-2-6-7-9-11

12 1-2-6-7-12

13 1-2-6-13

14 1-2-6-14

15 1-2-6-14-15

13

14

15

T

Predicate Node 7

8

9

10
11

12

T

T F

F

F Predicate Node

Predicate Node

Predicate Node

Predicate Node

1

4

5

6

2

3

T

T

F

F

1

2

3

4 5

6

7 13 14

8 9 12

10 11

15

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 421

4 Particle swarm optimization
In 1995, Kennedy and Eberhart [41] introduced Particle

Swarm Optimization algorithm, a population-based

search algorithm based on the social and cognitive

behavior of different swarms such as flock of birds, herd

of animals or school of fishes. The application of PSO

for solving many continuous space problems in the field

of Computer Science and Engineering has demonstrated

its potential. Unlike GA, PSO does not use evolution

operators such as crossover and mutation. Instead, each

member of the swarm (called particle) attains optimal

solution by learning from its own experience and the

experience of other members of the swarm. Each particle

maintains its current position, current velocity and the

best position it has achieved so far, called pbest. The

global best position of the swarm is called gbest. Both

pbest and gbest are used by the particle in determining its

next best position in the swarm. Thus, the knowledge of

previous good solutions is retained by all the particles

resulting in a faster convergence towards the optimal

solution.

Consider a swarm of n particles denoted as (p1, p2...

pn). Position of the ith particle in the d-dimensional search

space is denoted as Xi = (Xi1, Xi
2…Xi

d) and the

associated velocity is denoted as Vi = (Vi
1, Vi

2…Vi
d).

The personal best position of the ith particle in dimension

d is denoted as pbesti
d. The position of the best particle of

the entire swarm in dimension d is denoted as gbestd. The

velocity and position of the ith particle in dimension d can

be updated by Equations 1 and 2 as given below.

Vi
d = w×Vi

d + c1×r1×(pbesti
d - Xi

d) + c2×r2×(gbestd – Xi
d) (1)

Xid = Xid + Vid (2)

where, c1 and c2 are positive learning constants

called cognitive and social scaling parameters chosen in

such a way that their sum never exceeds 4, and r1 and r2

are two random numbers in the range [0,1]. The inertia

weight w controls the impact of the previous history on

the new velocity of the ith particle. A particle’s velocity

in each dimension is clamped to a maximum magnitude

Vmax. The position and velocity of each particle in the

swarm are continuously updated until an optimal solution

is achieved.

4.1 Adaptive inertia weight

In PSO algorithm, a large value of inertia weight

facilitates exploration (global search) of the input search

space and a small value of inertia weight facilitates

exploitation (local search) of the input search space for

the optimal solution. Various inertia weighting strategies

used in the literature have been categorized into constant,

random, time varying and adaptive inertia weight

strategies [42]. In constant and random inertia weight

strategies, value of inertia weight is either constant or is

chosen randomly during the search. In time varying

inertia weight strategies, inertia weight is defined as a

function of time or iteration number. Here, value of

inertia weight is independent of the state of the particles

in the search space. In adaptive inertia weight strategies,

state of the particles in the search space (feedback

mechanism) is used to adjust the value of the inertia

weight.

In this study, fitness value of the particles is used to

adjust the inertia weight. Ratio α of the particle’s fitness

to the average fitness of the swarm is calculated as

shown in Equation 3 below:

α = fi / fmax (3)

Here, fi=fitness of ith particle and fmax is the

maximum fitness achieved by the particles in the swarm.

The range of α is [0, 1]. For lower values of α,

increasing inertia weight can strengthen the particle’s

search capability. For values of α that are closer to 1,

smaller inertia weight should be used. The inertia weight

wi for the ith particle is therefore defined as a linear

function of α and is calculated as follows:

wi = 0.5×(1-α) + 0.5 (4)

The range of the inertia weight is [0.5, 1].

PSO is computationally inexpensive. The ability of

PSO to balance between local exploitation and global

exploration of the search space enhances searching

ability and avoids premature convergence towards the

optimal solution.

5 Differential evolution
Differential Evolution (DE) algorithm was given by

Storn and Price [43] in 1995. It is a stochastic

population-based global optimization algorithm that uses

an evolutionary differential operator to create new

offspring from parent chromosomes. Unlike GA, DE

works upon real-valued chromosomes. The differential

operator of DE replaces the classical crossover and

mutation operators of GA.

Let’s say, the initial population consists of n vectors

denoted as (p1, p2... pn). Position of the ith vector in the d-

dimensional space is denoted as Xi = (Xi1, Xi
2…Xi

d).

These vectors are referred as chromosomes in DE. To

change each chromosome (target vector), a difference

vector Vi is created. In the literature, there are various

mutation schemes to create this vector. In this paper,

DE/Rand/1 scheme is used. In this scheme, for each ith

member Xi of the current population, three other

members (say r1, r2 and r3) are randomly chosen from the

current population. Next, the scaled difference (mutation

scaling factor F) of any two of the three vectors is added

to the third one to obtain the difference vector Vi. The jth

component of the difference vector is as given below:

vi,j = xr1,j + F×(xr2,j ­xr3,j) (5)

To increase the population diversity, a ‘crossover

scheme’ is applied. The difference vector exchanges its

components with the target vector Xi to obtain the

offspring/trial vector Ui. The most common crossover in

DE is ‘uniform crossover’ as given below:

ui,j = vi,j if rand(0,1) < CR

= xi,j else (6)

CR is called the crossover constant.

422 Informatica 42 (2018) 417–438 S. Varshney et al.

The final step in DE algorithm is the fitness-based

selection of either target vector or trial vector in the next

generation. F and CR are the control parameters of DE.

The performance of DE depends on the manipulation of

target vector and difference vector in order to obtain a

trial vector.

6 Proposed hybrid algorithm
In the proposed study, an adaptive PSO algorithm is

hybridized with the DE algorithm incorporating local

neighborhood search strategy. The synergy between PSO

and DE algorithms has resulted in a more powerful

global search algorithm. The local neighborhood search

strategy helps in exploring more promising candidate

solutions to overcome the problem of local optima.

In the proposed hybrid (adaptive PSO and DE)

algorithm, a differential velocity term inspired by the DE

mutation scheme is computed by taking the difference of

the position vectors of any two distinct particles

randomly chosen from the swarm. A random number r is

generated between 0 and 1. If r is less than DE crossover

probability, Equation 7 (given below) is used to update

the velocity of a particle. In Equation 7, the cognitive

term (second term) in Equation 1 is replaced by the

differential term scaled by DE mutation scaling factor.

Vid = w×Vid + F×(xjd ­xkd) + c2×r2×(gbestd – Xid) (7)

Here, xj and xk denote the position of particles j and

k respectively (i≠j≠k) that are randomly chosen from the

swarm. A survival of the fittest mechanism is also

followed by incorporating the greedy selection scheme of

DE as given by Equation 6. Therefore, the particle either

moves to a better location or remains at its previous

position in the input search space. The current position of

a particle will always be its best position.

The steps of the proposed hybrid (adaptive PSO and

DE) algorithm are given in Figure 5. The flowchart is

given in Figure 6. Inputs to the algorithm are an

instrumented program, dominator tree of the program,

list of def-use paths to be traversed and the killing nodes

if any, number of input variables, domain range of each

input variable, and the algorithmic parameters:

population size, PSO acceleration parameters, PSO

maximum velocity, DE mutation scaling factor and DE

crossover probability. Adaptive inertia weight is used as

given by Equations 3 and 4. For data-flow coverage

criterion, the design of fitness function is explained in

Section 6.2 below. Initial value of pbest and gbest is 0.

The algorithm is run once for each uncovered def-use

path. If the selected path is not covered by any member

of the current population, fitness value is computed for

each member. Accordingly, for each particle, the

personal best position pbest and the global best position

gbest can be updated. During the evolution process,

particle’s position and velocity is adjusted according to

Equations 2 and 7 respectively. If the updated position of

the particle is out of input domain range, a local

neighbourhood strategy is applied. Then, the greedy

selection scheme of DE is used to generate the new

population. The evolution process continues until the

termination criteria is met. The other uncovered paths are

also checked for coverage. The output is an optimal test

suite and a list of def-use paths marked as covered or

uncovered, if any.

A tool is developed for instrumenting programs and

to generate def-use paths. Dominator tree is generated

manually. Infeasible paths, if any, are determined by

careful analysis of the program.

6.1 Neighbourhood search strategy

Every meta-heuristic search algorithm suffers with the

problem of local optima. Another issue related to meta-

heuristic search algorithms is boundary constraints.

There are no set mechanisms to deal with such problems.

Hence, in this study, an effort is also made to handle the

problems of local optima and boundary constraints and to

improve the exploitation ability of the algorithm. A

neighbourhood search strategy (Figure 4) is introduced to

sample more promising candidate solutions to overcome

these problems. It is summarized as follows:

Step 1: For each particle, Euclidean distance is

calculated from the other particles in the input search

space using the position of particles. Accordingly, other

particles within a threshold Euclidean distance

(determined by preliminary study to fine-tune the

algorithmic parameters) form the neighbourhood.

Euclidean distance between two particles Xi and Xj in the

n-dimensional search space is given by the following

equation:

 dij = √∑(xik − xjk)
2

n

k=1

 (8)

Step 2: If a particle’s new position is out of range,

other particles in the neighbourhood are evaluated.

Step 3: The position of the particle is then replaced

with that of the best particle in the neighbourhood instead

of a random value.

This helps in exploring more promising candidate

solutions.

6.2 Design of Fitness Function

Def-use associations can be represented as node-node

fitness functions [28]. Def-use associations specify the

node of definition and the node of use for the program

variables in the CFG without specifying a concrete path

between the nodes. This implies that the first objective to

reach is the definition node and then the use node,

without however, specifying a path through the CFG.

The distance to a node is represented by the standard

minimizing metric given below:

node distance=approach level + v(branch distance) (9)

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 423

It evaluates to 0 if the target is covered. Approach

level is the closest point (a node) of a given execution to

the target node. A branch is said to be critical if it leads

the program execution away from the target node in a

path through the program structure [44]; branch distance

is calculated at that particular predicate node using

values of the variables according to the formulae given in

Table 4 [3] below.

Table 4: Branch distance measure for relational and

logical predicates.

S. No. Predicate (C) Branch Distance Formulae: f(C)

1 Boolean if true then 0 else K

2 x = y if (x-y)=0 then 0 else abs(x-y)+K

3 x ≠ y if abs(x-y)≠0 then 0 else K

4 x > y if (y–x)<0 then 0 else (y-x)+K

5 x ≥ y If (y–x)≤0 then 0 else (y-x)+K

6 x < y if (x–y)<0 then 0 else (x-y)+K

7 x ≤ y if (x–y)≤0 then 0 else (x-y)+K

8 C1 && C2 f(C1) + f(C2)

9 C1 || C2 min(f(C1), f(C2))

K is a failure constant that is added to branch distance if predicate is

false

Branch distance provides a measure of how close the

program execution was to traverse the alternate edge of

the critical branch. Branch distance is normalized in the

range [0, 1] using a normalization function v, such that

the approach level always dominates the branch distance.

In our previous study [22], a novel maximizing

fitness function is proposed for data-flow coverage

adequacy criterion based on the standard metric

(Equation 9) and dominator tree. Dominance relations

between the nodes of the CFG are used to obtain path-

cover for the nodes of the selected def-use path. The

fitness function considers each def-use path as two

objectives. For a dcu-path, the first objective is to cover

the dominance path of the definition node and then to

cover the dominance path of the use node. For a dpu-

path, the first objective is to cover the dominance path of

the definition node and then to cover the dominance

paths of the nodes of the p-use edge (u1, u2). A dpu-path

is formed for both the branches (T/F) of the predicate

node. A test case is evaluated with respect to the selected

def-use path by executing the program under test with it

as an input and recording the nodes that are covered. If a

killing node is traversed between the source node and the

use node, a fitness value of 0 is assigned to the test case

and it is discarded. The fitness value is 1 if all the nodes

of the dominance paths of both the objectives are

covered; otherwise closeness of the test case to the

missed objective (branch distance) is computed.

In this work, for fitness maximization, branch

distance bch(x, ti) at the critical branch for test case ti and

target node x is the reciprocal of the value returned by an

appropriate formula from Table 4 i.e. the closer a test

case is to cover the required branch, higher is its fitness

value. The fitness function uses control-flow information

(dominance relations between the nodes of the CFG)

augmented with branch distance if a partial aim is

achieved. This provides a smoother landscape/guidance

to the search process towards the optimal solution.

Branch distance is computed using Equation 10 and the

Figure 4: Local Neighbourhood Strategy.

424 Informatica 42 (2018) 417–438 S. Varshney et al.

fitness functions are given by Equations 11 and 12 as

explained below.

Branch distance bch (x, ti) for test case ti (i=1...p)

and target node x, for fitness maximization, is calculated

as follows:

bch(x, ti)

=

{

 1 if the test case ti leads to the target node x

1

f(C)
 otherwise, using an appropriate formula from

 Table 4 for the predicate C at the critical branch

 (10)

The fitness function to evaluate the fitness of a test

case ti (i=1...p) w.r.t. a dcu-path (d, u, v), where d is the

definition node and u is the c-use node of a variable v, is

given below:

ft(d, u, ti)=
1

2
×(

|cdom(d, ti)|

|dom(d)|
×bch(d, ti)+

|cdom(u, ti)|

|dom(u)|
×bch(u, tI))

 (11)

Similarly, the fitness function to evaluate the fitness

of a test case ti (i=1...p) w.r.t. a dpu-path (d, (u1, u2), v),

where d is the definition node and (u1, u2) is the p-use

edge of a variable v, is given below:

ft(d, (u1, u2), ti)=
1

3
×

(

|cdom(d, ti)|

|dom(d)|
×bch(d, ti)+

|cdom(u1, ti)|

|dom(u1)|

×bch(u1, ti)+
|cdom(u2, ti)|

|dom(u2)|
×bch(u2, ti)

)

(12)

In general,

• dom(x): set of nodes in the dominance path of the

target node x

• cdom(x, ti): set of nodes in dom(x) that are covered

by test case ti (i=1...p)

• bch(x, ti): branch distance for test case ti (i=1...p)

and target node x using Equation 9

If a killing node is traversed, a fitness value of 0 is

assigned to the test case ti and it is discarded; otherwise

Equation 11 or Equation 12 is used to compute the

fitness value. Test case ti is said to be optimal if its fitness

value is 1 i.e. the target is covered.

Consider the def-use path# 5 (1, 7, 8) for coverage

from Table 2. This is a dpu-path that tests for ‘Equilateral

triangle’ condition. Node 1 (source) and the p-use edge

(7, 8) (target) form the two objectives - their dominance

paths to be covered by an input test case. There are three

cases - if the dominance paths of both the nodes are

covered, fitness value of the input test case is 1 and it is

optimal. However, if a partial aim is covered (one of the

two nodes) or none of the nodes is covered, fitness value

of the input test case is computed using Equations 3.2

and 3.4.

From Table 3, the dominance paths of the nodes are

as given below:

dom(d) = dom(1) = {1}

dom(u1) = dom(7) = {1, 2, 6, 7}

dom(u2) = dom(8) = {1, 2, 6, 7, 8}

Case 1: Input test case t1 <2, 2, 2>

Path traversed {1, 2, 3, 4, 5, 6, 7, 8, 12, 15}

Dominance path of the definition node (node 1) is

covered.

Dominance path of the first node of the p-use edge (node

7) is covered.

Dominance path of the second node of the p-use edge

(node 8) is covered.

As the dominance paths of both the objectives are

covered, the fitness value of the input test case using

Equation 3.4 is 1; the input test case t1 is therefore

optimal.

Case 2: Input test case t2 <2, 2, 1>

Path traversed {1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15}

Dominance path of the definition node (node 1) is

covered.

Dominance path of the first node of the p-use edge (node

7) is covered.

Dominance path of the second node of the p-use edge

(node 8) is not covered; the critical node is node 7. The

branch distance at node 7 using Equation 3.2 is bch (8, t2)

= 0.91

The fitness value of the input test case using Equation 3.4

is ft (1, (7, 8), t2) = 0.91

Case 3: Input test case t3 <1, 2, 4>

Path traversed {1, 2, 3, 5, 6, 12, 13, 14, 15}

Dominance path of the definition node (node 1) is

covered.

Dominance path of the first node of the p-use edge (node

7) is not covered; the critical node is node 6. The branch

distance at node 6 using Equation 3.2 is bch (7, t3) = 0.91

Dominance path of the second node of the p-use edge

(node 8) is not covered; the critical node is node 7. The

branch distance at node 6 using Equation 3.2 is bch (8, t3)

= 0.91

The fitness value of the input test case using Equation 3.4

is ft (1, (7, 8), t3) = 0.74

This case study shows that the input test case t1

covers the selected def-use path# 5. The input test case t2

covers the def node and the first node of the selected def-

use path# 5 (partial aim). The input test case t3 does not

cover any of the two objectives for the selected def-use

path# 5. Accordingly, ft (1, (7, 8), t1) > ft (1, (7, 8), t2) >

ft (1, (7, 8), t3). Thus, the input test cases are also ranked

according to their fitness values.

7 Experimental setup
In this section, research questions, algorithmic

parameters settings, details of the subject programs, and

experimental results are provided. DE, PSO, GA and

random search techniques are also implemented for

comparison with the proposed hybrid (adaptive PSO and

DE) algorithm.

7.1 Research questions

The following research questions are formulated to

evaluate the performance of the proposed hybrid

algorithm:

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 425

RQ1: How effective is the proposed hybrid

(adaptive PSO and DE) algorithm for optimal test data

generation to achieve 100% data-flow coverage of a

program?

Algorithm ATDG_Hybrid_PSO_DE

Input:

 P : Instrumented version of the program under test

 arg = (a1,a2,…,ad) : Argument list of P encoded into a d-dimension position vector
 DT : Dominator tree for the program P

 Paths : List of test requirements i.e. def-use paths

 Popinit : Initial random population of n particles Xi = [Xi1, Xi2…Xid] and their velocities V = [Vi1, Vi2…Vid] for i=1, 2…n
 c1, c2, Vmax : Algorithmic parameters of Particle Swarm Optimization (PSO) algorithm

 F, CR : Algorithmic parameters of Differential Evolution (DE) algorithm

Output:

 TestSuite : Set of optimal test cases

 Pathstat : List of test requirements marked as ‘covered’ and ‘could not be covered’ (if any)

Begin

1. Popold = Popinit

2. Popcur = Popinit

3. while some pathi in Paths is not marked {
4. while (termination criterion is not met) { //Either pathi is covered or MaxAttempts

5. for each particle i of Popcur {

6. Decode position vector Xi into a test case ti
7. if pathi is not marked {

8. Check pathi for coverage w.r.t. ti and calculate fitness value using Eq. 10 or Eq. 11

9. if pathi is covered {
10. Mark pathi as ‘covered’ (update Pathstat)

11. Add ti to TestSuite

12. }
13. }

14. for each pathj of TestReq other than pathi that is not marked {

15. Check pathj for coverage with respect to ti
16. if pathj is covered

17. Mark pathj as ‘covered’ (update Pathstat)

18. }
19. }

20. if pathi is covered

21. Go to line 3
22. else {

23. Update gbesti
j

24. for each particle i of Popcur { //Generate a new population Popnew

25. Calculate inertia weight w using Equations 3 and 4

26. Randomly choose two distinct particles k and l from Popcur (i≠k≠l)

27. for each dimension j (1≤j≤d) of particle i{
28. Update pbesti

j

29. Randomly generate r between 0 and 1

30. if r<CR{

31. Calculate the difference between the jth components of the position vectors of particle k and particle l

32. Update velocity Vi
j of particle i in dimension j using Eq. 7

33. Clamp velocity Vi
j within the range [-Vmax, Vmax]

34. }
35. Update position Xi

j of particle i in dimension j using Eq. 2 //Offspring

36. if new position Xi
j of particle i in dimension j is out of range {

37. Apply neighbourhood strategy to particle i - according to Euclidean distance (Eq.8)
38. New position Xi

j of particle i in dimension j is the position of the best particle in the neighbourhood

39. }

40. }
41. Calculate fitness value of Offspring using Eq. 10 or Eq. 11

42. if Offspring is better than the parent Xi

43. Include Offspring in new population Popnew

44. else

45. Include parent Xi in new population Popnew

46. }
47. Popold = Popcur

48. Popcur = Popnew

49. }
50. }

51. if selected pathi could not be covered

52. Mark pathi as ‘could not be covered’
53. }

54. Return TestSuite, Pathstat
End

Figure 5: Proposed hybrid (adaptive PSO and DE) test data generation algorithm.

426 Informatica 42 (2018) 417–438 S. Varshney et al.

RQ2: How effective is the proposed hybrid

(adaptive PSO and DE) algorithm for optimal test data

generation with respect to the convergence speed (mean

number of generations) at termination?

7.2 Parameters tuning

A preliminary study was carried out to determine the

appropriate value of the algorithmic parameters and

threshold value for Euclidean distance. Population sizes

Figure 6: Flowchart of the proposed hybrid (adaptive PSO and DE) test data generation algorithm.

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 427

considered are 10, 15, 20 and 25. ‘Triangle Classifier’

program is used as the pilot benchmark program and 100

experiments were carried out. Accordingly, in the main

experiments, the following parameters settings have been

used for adaptive PSO, DE and GA:

7.3 Subject programs

For this study, various benchmark programs have been

selected from other researchers’ work [6, 7, 13, 26] in the

area of SBST. Experiments are also performed on

programs taken from the SIR repository [45]. Source

code of the academic programs is taken from standard

reference books [38, 46, 47, 48]. The programs, as given

in Table 6 below, have diverse structural elements such

as loops, equality conditions, logically connected and

nested predicates. A tool has also been developed for the

instrumentation of programs and for listing of def-use

paths.

7.4 Study results

This section presents the experimental results for various

subject programs. For each subject program and each

testing approach, 100 experiments were carried out. The

measures collected are as follows:

• Mean number of generations: Sum of the number of

generations at termination for each experiment over

the total number of experiments gives the mean

number of generations for a particular subject

program.

Here, termination criteria is either 100% data-flow

coverage or 103 generations, whichever occurs first.

Maximum number of generations is set to 103. For

more complex programs, the maximum number of

generations may be increased. Mean number of

generations, however, is not indicative of full data-

flow coverage.

• Mean percentage coverage: Sum of the data-flow

coverage achieved for each experiment over the total

number of experiments gives the mean percentage

coverage achieved for a particular subject program.

A def-use path is marked as covered the first time it

is traversed and is not checked subsequently. The

overall number of fitness evaluations is therefore

reduced as stated in Section 2.

If a path is infeasible, then some c-uses and p-uses

that require this path to be traversed might also be

infeasible [38]. For each program, infeasible uses, if

any, were excluded while measuring data-flow

coverage.

7.4.1 Effect of varying population size on the

performance of the proposed hybrid

(adaptive PSO and DE) algorithm

In this section, the effect of varying population size on

the performance of the proposed hybrid algorithm with

adaptive inertia weight and neighbourhood search

strategy is analyzed. The performance is also compared

with other meta-heuristic techniques and random search.

The proposed hybrid algorithm, DE, PSO, GA (all

guided by the same fitness function) and random search

is applied to the various subject programs and

experimental results are collected for the different

measures. Population sizes that are considered are 10, 15,

20 and 25. Detailed experimental results are presented in

Figures 7-16 below.

7.4.2 Overall comparison

In this section, overall performance of the proposed

hybrid (adaptive PSO and DE) algorithm is compared

with DE, PSO, GA and random search with respect to the

measures collected. Tables 7 - 10, as given below,

summarize the results of applying the various testing

approaches to the set of chosen subject programs for

Table 5: Algorithmic parameter settings

Algorithm Parameters Value

Common

Parameters

Population Size 10, 15, 20, 25

Maximum number of

generations
103

Number of

experiments for each

program

100

Fitness Function
As given by Eq. 11

and Eq. 12

Threshold Euclidean

distance
10

DE

Mutation Scaling
Factor: F

1

Crossover Constant: CR 0.9

PSO

Inertia weight
Adaptive as given

by Eq. 3 and Eq. 4

Acceleration

constants: c1 and c2
c1=c2=2.0

Maximum velocity:

Vmax

Varies according to

the program

GA

Chromosome

encoding
Gray encoding

Parent selection

strategy
Roulette Wheel

Probability of

crossover
0.8

Probability of

mutation
0.15

Table 6: Subject programs

Program

#def-

use

Paths

Description Type

1. Triangle
Classifier

12
Finds the type of
a triangle

Academic

2. Quadratic

Equation
20

Finds the roots of

a quadratic
equation

Academic

3. Previous
Date

66

Finds the

previous date of a

given date

Academic

4. Day of the

Calendar
80

Finds the day on

a given date

Academic

5. Marks

Processing
19

Finds the final

grade and
average marks

Academic

6. Banking

Transactio
n System

77
Banking

transactions

Industrial

7. Sort 15 Sorting an array Repository

8. Vector 26 Vector operations Repository

9. Stack 20 Stack operations Repository

10. Linked
List

35
Linked list
operations

Repository

http://sir.unl.edu/portal/index.php

428 Informatica 42 (2018) 417–438 S. Varshney et al.

different population sizes (10, 15, 20, 25). Range of the

input integer variables is taken to be 0-100; range is

different for variables of Program# 3, 4, and 7 as per the

requirement of each program. The results are further

discussed in the next section.

Figure 7: Graphs for ‘Triangle Classifier’ program.

Figure 8: Graphs for ‘Quadratic Equation’ program.

Figure 9: Graphs for ‘Previous Date’ program.

Figure 10: Graphs for ‘Day of the Calendar’ program.

0

100

200

300

400

500

600

700

800

900

10 15 20 25

Proposed Hybrid
Algorithm

DE

PSO

GA

Random SearchM
ea

n
 N

o.
of

 G
en

er
at

io
ns

Population Size

Triangle Classifier

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random SearchM
ea

n
 P

er
ce

n
ta

ge
 C

o
ve

ra
ge

Population Size

Triangle Classifier

0

100

200

300

400

500

600

700

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random Search

M
ea

n
 N

o
.o

f
G

en
er

at
io

n
s

Population Size

Quadratic Equation

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random SearchM
ea

n
 P

er
ce

n
ta

ge
 C

o
ve

ra
ge

Population Size

Quadratic Equation

0

100

200

300

400

500

600

700

800

900

1000

10 15 20 25

Proposed Hybrid
Algorithm

DE

PSO

GA

Random SearchM
e

an
 N

o
.

o
f

G
e

n
e

ra
ti

o
n

s

Population Size

Previous Date

75%

80%

85%

90%

95%

100%

105%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random SearchM
e

a
n

 P
e

rc
e

n
ta

ge
 C

o
ve

ra
ge

Population Size

Previous Date

0

100

200

300

400

500

600

700

800

900

10 15 20 25

Proposed Hybrid
Algorithm

DE

PSO

GA

Random SearchM
ea

n
 N

o
.o

f
G

en
er

at
io

n
s

Population Size

Day of the Calendar

75%

80%

85%

90%

95%

100%

105%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random SearchM
ea

n
 P

er
ce

n
ta

ge
 C

o
ve

ra
ge

Population Size

Day of the Calendar

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 429

Figure 11: Graphs for ‘Marks Processing’ program.

Figure 12: Graphs for ‘Simple Banking Transaction System’ program.

Figure 13: Graphs for ‘Sort’ program.

Figure 14: Graphs for ‘Stack’ program.

0

100

200

300

400

500

600

700

800

900

1000

10 15 20 25

Proposed Hybrid
Algorithm

DE

PSO

GA

Random SearchM
ea

n
 N

o.
of

 G
en

er
at

io
ns

Population Size

Marks Processing

75%

80%

85%

90%

95%

100%

105%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random SearchM
ea

n
 P

er
ce

n
ta

ge
 C

o
ve

ra
ge

Population Size

Marks Processing

0

200

400

600

800

1000

1200

10 15 20 25

Proposed Hybrid
Algorithm

DE

PSO

GA

Random SearchM
ea

n
 N

o.
of

 G
en

er
at

io
ns

Population Size

Simple Banking Transaction System

65%

70%

75%

80%

85%

90%

95%

100%

105%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random Search

M
e

an
 P

e
rc

e
n

ta
ge

 C
o

ve
ra

ge

Population Size

Simple Banking Transaction System

0

100

200

300

400

500

600

700

800

900

10 15 20 25

Proposed Hybrid
Algorithm

DE

PSO

GA

Random SearchM
ea

n
 N

o.
of

 G
en

er
at

io
ns

Population Size

Sorting

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random Search

M
ea

n
 P

er
ce

nt
ag

e
Co

ve
ra

ge

Population Size

Sorting

0

100

200

300

400

500

600

700

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random SearchM
ea

n
 N

o
.o

f
G

en
er

at
io

n
s

Population Size

Stack

80%

85%

90%

95%

100%

105%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random Search

M
ea

n
 P

er
ce

n
ta

ge
 C

o
ve

ra
ge

Population Size

Stack

430 Informatica 42 (2018) 417–438 S. Varshney et al.

Figure 15: Graphs for ‘Vector’ program.

Figure 16: Graphs for ‘Linked List’ program.

Table 7: Experimental results for Population Size 10: Mean number of generations and mean percentage coverage.

Program

Measure

Mean Number of Generations Mean Percentage Coverage

Proposed
Hybrid
Algorithm

DE PSO GA
Random
Search

Proposed
Hybrid
Algorithm

DE PSO GA
Random
Search

Triangle
Classifier

287 312 295 361 835 99% 97% 98% 97% 89%

Quadratic
Equation

289 320 316 353 743 99% 97% 98% 98% 90%

Previous
Date

426 488 453 501 856 98% 97% 98% 97% 85%

Day of the
Calendar

397 440 417 487 772 98% 97% 97% 96% 86%

Marks
Processing

419 494 515 578 897 98% 97% 98% 97% 85%

Simple
Banking
Transaction
System

585 602 615 690 986 97% 95% 95% 94% 76%

Sort 468 502 498 512 802 98% 97% 96% 96% 88%

Vector 397 467 454 521 821 97% 97% 96% 96% 88%

Stack 241 275 300 357 606 97% 96% 97% 97% 87%

Linked List 277 312 311 379 838 99% 97% 96% 96% 88%

0

100

200

300

400

500

600

700

800

900

10 15 20 25

Proposed Hybrid
Algorithm

DE

PSO

GA

Random SearchM
ea

n
 N

o.
of

 G
en

er
at

io
ns

Population Size

Vector

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random Search

M
ea

n
 P

er
ce

n
ta

ge
 C

o
ve

ra
ge

Population Size

Vector

0

100

200

300

400

500

600

700

800

900

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random SearchM
ea

n
 N

o
.o

f
G

en
er

at
io

n
s

Population Size

Linked List

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

10 15 20 25

Proposed Hybrid
Algorithm
DE

PSO

GA

Random Search

M
ea

n
 P

er
ce

n
ta

ge
 C

o
ve

ra
ge

Population Size

Linked List

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 431

Table 8: Experimental results for Population Size 15:

Mean number of generations and mean percentage coverage.

Program

Measure

Mean Number of Generations Mean Percentage Coverage

Proposed
Hybrid
Algorithm

DE PSO GA
Random
Search

Proposed
Hybrid
Algorithm

DE PSO GA
Random
Search

Triangle
Classifier

253 271 258 326 772 99% 97% 98% 97% 89%

Quadratic
Equation

280 297 288 329 699 99% 98% 99% 99% 91%

Previous
Date

406 468 431 493 870 99% 97% 98% 98% 87%

Day of the
Calendar

378 413 422 465 769 99% 97% 98% 97% 88%

Marks
Processing

387 451 492 559 785 99% 98% 98% 97% 87%

Simple
Banking
Transaction
System

555 610 613 667 945 98% 95% 95% 94% 79%

Sort 417 488 449 502 815 99% 97% 97% 96% 91%

Vector 355 459 415 498 819 99% 97% 97% 96% 88%

Stack 236 267 288 365 588 99% 97% 98% 97% 88%

Linked List 271 299 297 381 807 99% 98% 97% 97% 88%

Table 9: Experimental results for Population Size 20:

Mean number of generations and mean percentage coverage.

Program

Measure

Mean Number of Generations Mean Percentage Coverage

Proposed
Hybrid
Algorithm

DE PSO GA
Random
Search

Proposed
Hybrid
Algorithm

DE PSO GA
Random
Search

Triangle
Classifier

185 255 211 285 709 100% 99% 99% 99% 93%

Quadratic
Equation

246 255 241 289 502 99% 99% 99% 99% 93%

Previous
Date

369 415 398 432 783 100% 98% 99% 98% 91%

Day of the
Calendar

319 380 392 460 625 100% 98% 98% 97% 92%

Marks
Processing

338 407 455 512 668 100% 99% 98% 98% 92%

Simple
Banking
Transaction
System

512 568 584 591 919 99% 96% 96% 95% 81%

Sort 355 398 401 486 748 100% 98% 99% 98% 92%

Vector 343 408 382 463 729 100% 98% 98% 97% 90%

Stack 219 251 285 302 565 100% 98% 98% 98% 92%

Linked List 258 285 279 353 759 100% 98% 99% 99% 90%

432 Informatica 42 (2018) 417–438 S. Varshney et al.

8 Discussion
The experimental results have been presented above in

Tables 7-10 and Figures 7-16. In context of the research

questions formulated for this study, the experimental

results are analysed and discussed in this section.

RQ1: How effective is the proposed hybrid

(adaptive PSO and DE) algorithm for optimal test data

generation to achieve 100% data-flow coverage of a

program?

From the experimental results as shown in Tables 7-

10, it can be seen that the proposed hybrid algorithm with

adaptive inertia weight and neighbourhood search

strategy, achieved highest mean percentage coverage for

all the subject programs and for all population sizes that

are considered. Only the proposed hybrid algorithm

achieved 100% data-flow coverage for all the subject

programs for population size 20 (except for Program# 2

and Program# 6) and for population size 25 (except for

Program# 6). For population size 10 and 15 also, the

mean percentage coverage is 97%-99% with the

proposed hybrid algorithm. For each program, infeasible

uses, if any, were not considered while measuring data-

flow coverage. Infeasible uses, if any, are determined by

careful manual analysis as it is not possible to write an

algorithm for analyzing a given program to determine if a

given element in the coverage domain is feasible or not

[38]. This, in addition to the novel fitness function,

adaptive inertia weight and neighbourhood search

strategy has resulted in full data-flow coverage as the

population size is increased from 10 to 25.

For the other meta-heuristic search techniques (DE,

PSO and GA), all guided by the same fitness function,

mean percentage coverage is between 94%-99% for all

the subject programs and for all population sizes that are

considered. DE achieved 100% data-flow coverage only

for Program# 1 and Program# 7 for population size 25.

PSO achieved 100% data-flow coverage only for

Program# 1, Program# 2, and Program# 7 for population

size 25. GA achieved 100% data-flow coverage only for

Program# 1 and Program# 2 for population size 25.

However, the proposed hybrid algorithm outperformed

DE, PSO and GA with respect to the convergence speed

in all the cases. Performance of random search is worst;

mean percentage coverage achieved is minimum for all

the subject programs for all population sizes that are

considered. This provides an explanation for high mean

number of generations when percentage coverage is less

than 100% as then the algorithm terminates only after 103

generations.

RQ2: How effective is the proposed hybrid

(adaptive PSO and DE) algorithm for optimal test data

generation with respect to the convergence speed (mean

number of generations) at termination?

From the experimental results as shown in Tables 7-

10, it can be seen that the mean number of generations is

least with the proposed hybrid algorithm for all the

subject programs and for all population sizes that are

considered. There is a substantial reduction in mean

number of generations with the proposed hybrid

algorithm for benchmark programs such as ‘Triangle

Classifier’, ‘Quadratic Equation’, and ‘Previous Date’

Table 10: Experimental results for Population Size 25:

Mean number of generations and mean percentage coverage.

Program

Measure

Mean Number of Generations Mean Percentage Coverage

Proposed
Hybrid
Algorithm

DE PSO GA
Random
Search

Proposed
Hybrid
Algorithm

DE PSO GA
Random
Search

Triangle
Classifier

152 199 186 219 628 100% 100% 100% 100% 94%

Quadratic
Equation

221 262 205 245 478 100% 99% 100% 100% 96%

Previous
Date

317 358 362 394 663 100% 99% 99% 99% 93%

Day of the
Calendar

281 360 365 398 598 100% 99% 99% 98% 94%

Marks
Processing

317 388 383 438 579 100% 99% 98% 98% 93%

Simple
Banking
Transaction
System

482 520 546 554 888 99% 97% 96% 96% 84%

Sort 306 365 387 452 715 100% 100% 100% 99% 92%

Vector 276 332 317 401 601 100% 99% 98% 98% 92%

Stack 188 227 212 267 521 100% 98% 99% 98% 92%

Linked List 225 253 261 317 714 100% 98% 99% 99% 90%

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 433

that have multiple and nested conditions along with

equality conditions. This is also true for other programs

taken from the repository [45] such as ‘Sort’, ‘Stack’,

‘Vector’, and ‘Linked List’. As expected, the mean

number of generations decreases as the population size

increases due to a wider search space.

The performance of random search is worst with

respect to the mean number of generations to achieve

same data-flow coverage for smaller population sizes and

Table 11: Statistical results of Friedman Aligned and post hoc test (level of confidence α = 0.05)

Program Testing Approach
Average
Rank

Friedman
Aligned
Statistic

p-value by
Friedman
Aligned
Test

p-value by
applying Post
Hoc Methods

Holm’s
Procedure
α/i

Hypothesis

Triangle
Classifier

Proposed Hybrid Algorithm 34.5

24.2877 6.994E-05

- - -

DE 56.23 0.048691 0.05 Rejected

PSO 63.43 0.0099 0.025 Rejected

GA 89.23 0.000001 0.016667 Rejected

Random Search 134.1 0 0.0125 Rejected

Quadratic
Equation

Proposed Hybrid Algorithm 52.03

24.2141 7.236E-05

0.799444 0.05 Not Rejected

DE 68.95 0.078049 0.025 Not Rejected

PSO 49.18 - - -

GA 80.03 0.005957 0.016667 Rejected

Random Search 127.3 0 0.0125 Rejected

Previous
Date

Proposed Hybrid Algorithm 31.78

24.183394 7.339 E-05

- - -

DE 52.57 0.063918 0.05 Not Rejected

PSO 63.02 0.005364 0.025 Rejected

GA 97 0 0.016667 Rejected

Random Search 133.13 0 0.0125 Rejected

Day of the
Calendar

Proposed Hybrid Algorithm 35.1

24.151826 7.447E-05

- - -

DE 58.15 0. 039897 0.05 Rejected

PSO 66.42 0. 005242 0.025 Rejected

GA 85.22 0. 000008 0.016667 Rejected

Random Search 132.62 0 0.0125 Rejected

Simple
Banking
Transaction
System

Proposed Hybrid Algorithm 33.2

23.557598 9.795 E-05

- - -

DE 55.08 0.0470 0.05 Rejected

PSO 59.8 0.017726 0.025 Rejected

GA 96.32 0 0.016667 Rejected

Random Search 133.1 0 0.0125 Rejected

Marks
Processing

Proposed Hybrid Algorithm 25.68

23.903359 8.352E-05

- - -

DE 49.28 0.035392 0.05 Rejected

PSO 66.58 0.000266 0.025 Rejected

GA 101.38 0 0.016667 Rejected

Random Search 134.57 0 0.0125 Rejected

Sort

Proposed Hybrid Algorithm 34.61

24.028397 7.883E-05

- - -

DE 57.88 0.038067 0.05 Rejected

PSO 65.55 0.005823 0.025 Rejected

GA 90.38 0.000001 0.016667 Rejected

Random Search 129.07 0 0.0125 Rejected

Vector

Proposed Hybrid Algorithm 34.7

24.235764 7.164E-05

- - -

DE 61.73 0.015956 0.025 Rejected

PSO 56.83 0.048484 0.05 Rejected

GA 99.33 0 0.016667 Rejected

Random Search 124.9 0 0.0125 Rejected

Stack

Proposed Hybrid Algorithm 32.52

23.829629 8.641E-05

- - -

DE 53.25 0.06456 0.05 Not Rejected

PSO 70.13 0.000798 0.025 Rejected

GA 92.77 0 0.016667 Rejected

Random Search 128.83 0 0.0125 Rejected

Linked List

Proposed Hybrid Algorithm 34.78

23.551908 9.821E-05

- - -

DE 60.65 0.021116 0.025 Rejected

PSO 59.48 0.027672 0.05 Rejected

GA 91.53 0 0.016667 Rejected

Random Search 131.05 0 0.0125 Rejected

434 Informatica 42 (2018) 417–438 S. Varshney et al.

for programs with multiple and nested conditions.

Random search did not achieve full data-flow coverage

for any of the subject program. This has resulted in

higher values for the measure ‘mean number of

generations’ at termination.

It can be inferred that the proposed hybrid algorithm

with adaptive inertia weight and neighbourhood search

strategy is the best performing approach for all the

subject programs and for all population sizes that are

considered with respect to the measures collected. The

proposed hybrid algorithm and the other meta-heuristic

search techniques (DE, PSO and GA) are all guided by

the same novel fitness function; the better performance

of the proposed hybrid algorithm can be attributed to the

inclusion of adaptive inertia weight and neighbourhood

search strategy.

8.1 Statistical analysis on repeated trials

Statistical analysis is performed to validate the

effectiveness and efficiency of the proposed hybrid

(adaptive PSO and DE) algorithm with adaptive inertia

weight and neighbourhood search strategy over other

meta-heuristic search techniques (DE, PSO and GA) and

random search applied for test data generation in

accordance to data-flow coverage criterion. The

experiment on each subject program was repeated 100

times. From the experimental results as presented in

Section 7.4, it can be seen that the proposed hybrid

algorithm as well as the other meta-heuristic search

techniques (DE, PSO and GA), all guided by the same

fitness function, have comparable results with respect to

the measure ‘mean percentage coverage’ for population

size 10 and 15. The proposed hybrid algorithm achieved

100% data-flow coverage for all the subject programs for

(a) (b)

(c) (d)

(e) (f)

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 435

population size 20 (except for Program# 2 and 6) and for

population size 25 (except for Program# 6). For

population size 25, DE achieved 100% data-flow

coverage only for Program# 1 and 7; PSO achieved

100% data-flow coverage only for Program# 1, 2, and 7;

GA achieved 100% data-flow coverage only for

Program# 1 and 2. Therefore, the convergence speed

(mean number of generations) information for population

size 25 (best performance for all the approaches) is used

for statistical difference test.

In the first step, Friedman Aligned 1xN test, a non-

parametric multiple comparison statistical test [49], is

applied to check for significant differences between the

performance of the proposed hybrid algorithm and the

other algorithms. Average rankings of all the algorithms

are obtained that provide a fair comparison of the

algorithms; a low value indicates higher rank. The

unadjusted p-value is also computed through normal

approximations; the smaller the p-value, the stronger the

evidence against the null hypothesis. The value of α

(level of confidence) is set to 0.05. In the second step, if

the null hypothesis of equivalence of rankings is rejected,

a post hoc test (Holm’s procedure) is applied to report

adjusted p-values by adjusting the value of α in a step-

down manner to compensate for multiple comparisons.

Here, the proposed hybrid algorithm acts as the control

algorithm and its performance is compared with the rest

of the algorithms used for comparison.

Results of the statistical analysis are summarized in

Table 11 - average ranking of each algorithm, Friedman

Aligned statistic, p-value computed by Friedman Aligned

test and p-values obtained in by applying post hoc

methods. It can be observed that the rank of the proposed

hybrid algorithm is minimum (best performing

algorithm) for all the subject programs except for

‘Quadratic Equation’ program. In case of ‘Quadratic

Equation’ program, PSO is the best performing

algorithm; however, PSO did not achieve full data-flow

coverage and the proposed hybrid algorithm achieved

full data-flow coverage as can be seen in Table 10.

Random search gets the worst rank among all the

algorithms as expected. The p-values computed by

Friedman Aligned test are ≤ α (level of confidence) for

all the subject programs, so the null hypothesis of

equivalence of rankings can be rejected.

Further, p-values at the level of confidence α are

reported by applying Holm’s procedure to compensate

for multiple comparisons. Holm’s procedure rejects those

hypotheses that have an unadjusted p-value ≤ α. As can

be seen, all the null hypotheses are rejected in all the

cases for all the subject programs except for ‘Quadratic

Equation’, ‘Previous Date’ and ‘Stack’ programs. The

null hypothesis is not rejected for DE in case of

‘Quadratic Equation’ (for proposed hybrid algorithm

also), ‘Previous Date’ and ‘Stack’ programs. However,

as can be seen from Tables 7 - 10, there is significant

difference among the performance of all the algorithms

being compared with respect to the measures collected.

Thus, it be claimed that there is significant difference

between the performances of the proposed hybrid

algorithm and the other algorithms being compared.

(g) (h)

(i) (j)

Figure 17: Stability analysis for the measure ‘mean number of generations’.

436 Informatica 42 (2018) 417–438 S. Varshney et al.

For further analysis, box plots are drawn as shown in

Figure 17 to compare the distribution of the measure

mean number of generations over 100 trials for all the

subject programs (population size 25). It can be observed

that the median value of the measure ‘mean number of

generations’ (in 100 trials) for the proposed hybrid

algorithm is always less than the corresponding values

for DE, PSO, GA and random search for all the subject

programs except for ‘Quadratic Equation’ program. The

median value is comparable with that of PSO for the

‘Quadratic Equation’ program. For all the approaches,

the difference between the first quartiles as well as the

difference between the third quartiles is quite visible.

It can therefore be concluded that the proposed

hybrid (adaptive PSO and DE) algorithm is the best

performing algorithm and is significantly different from

the other algorithms (DE, PSO, GA and random search)

being compared. The proposed hybrid (adaptive PSO and

DE) algorithm has stronger ability to generate test data

with higher data-flow coverage as well as convergence

speed as compared to DE, PSO, GA and random search

techniques.

9 Threats to validity and limitations
This section presents the possible validity threats [50] for

the proposed study. Threats to internal validity are

considered in the context of SBST. The choice of

algorithmic parameters such as population size, inertia

weight, acceleration constants, maximum velocity,

mutation scaling factor, crossover constant affects the

performance of the meta-heuristic search algorithms.

Preliminary experiments were carried out to determine

the appropriate values for the various algorithmic

parameters for the proposed hybrid (adaptive PSO and

DE) algorithm.

Threats to construct validity may arise from the fact

that the performance of the proposed hybrid (adaptive

PSO and DE) algorithm is evaluated with respect to the

measures ‘mean number of generations’ and ‘mean

percentage coverage’ for a particular subject program.

Other measures such as total number of fitness

evaluations and average search time may have also been

used for evaluation.

Statistical analysis is performed to establish

conclusion validity i.e. to validate the effectiveness and

efficiency of the proposed hybrid (adaptive PSO and DE)

algorithm over other techniques that have been

considered for comparison. It is shown that the proposed

hybrid (adaptive PSO and DE) algorithm is significantly

different to DE, PSO, GA and random search that are

considered for comparison; all except random search

have been guided by the same fitness function. Adaptive

inertia weight and neighbourhood search strategy have

improved the performance of the proposed hybrid

(adaptive PSO and DE) algorithm with respect to the

measures collected. Threats to conclusion validity may

arise from the fact that the infeasible uses / infeasible

data-flow paths are identified and eliminated by manual

analysis. Also, results for the proposed hybrid algorithm

and other techniques have been compiled with respect to

the experimental setup used for the present study.

The main external threat to validity is the choice of

subject programs that may limit the generalization of

results of the proposed study to real and more complex

programs. Also, a different population size apart from

those considered may produce different coverage results.

However, subject programs that are considered have

many of the same programming constructs as large

programs. The proposed approach should therefore be

able to handle real and more complex programs. The

claim is, however, a matter of further investigation.

10 Conclusion
Automated test data generation is still an open problem

in spite of decades of research. In the field of SBST, GA

has been the algorithm of choice for control-flow

coverage criteria. Very recently only, other highly

adaptive search-based techniques such as PSO have been

employed for structural test data generation. DE is

another simple to implement and highly adaptive search-

based technique that has been not yet applied for

automated test data generation. Among the structural test

adequacy criteria, data-flow coverage test adequacy

criterion has received relatively little attention. This

paper presents a hybrid (adaptive PSO and DE)

algorithm with neighbourhood search strategy for

optimal test data generation in accordance to the all-uses

data-flow coverage test adequacy criterion.

The performance of the proposed hybrid (adaptive

PSO and DE) algorithm has been experimentally

evaluated and compared with that of DE, PSO, GA and

random search for data-flow coverage. It is shown that

the proposed hybrid (adaptive PSO and DE) algorithm

outperformed DE, PSO, GA and random search with

respect to the measure ‘mean number of generations’ for

all the population sizes that are considered. For the

measure ‘mean percentage coverage’, performance of the

proposed hybrid (adaptive PSO and DE) algorithm is

comparable to that of DE, PSO and GA for smaller

population sizes (10 and 15); however, only the proposed

hybrid algorithm achieved full data-flow coverage as the

population size is increased to 20 and 25 for complex

subject programs. Performance of random search is

worst. Here, we have explored a promising hybrid

optimization algorithm for test data generation. In future,

we intend to fine tune the algorithmic parameters and

work upon more complex subject programs.

11 References
[1] H. Zhu, P.A.V. Hall, J.H.R. May (1997). Software

unit test coverage and adequacy. Computing

Surveys, ACM, Vol. 29, No. 4, pp. 366-427.

https://doi.org/10.1145/267580.267590

[2] R.A. DeMillo and A.J. Offutt (1991). Constraint-

based automatic test data generation. IEEE

Transactions on Software Engineering, Vol. 17, No.

9, pp. 900-910. https://doi.org/10.1109/32.92910

https://doi.org/10.1145/267580.267590
https://doi.org/10.1109/32.92910

A Hybrid Particle Swarm Optimization ... Informatica 42 (2018) 417–438 437

[3] N. Tracey (2010). A Search-Based Automated Test-

Data Generation Framework for Safety-Critical

Software. Doctoral Thesis, University of York.

[4] X.S. Yang (2010). Engineering Optimization: An

Introduction with Metaheuristic Applications.

Wiley, New Jersey.

[5] M.A. Ahmed and I. Hermadi (2007). GA-based

multiple paths test data generator. Computers and

Operations Research, Elsevier, Vol. 35, No. 10, pp.

3107-3124.

https://doi.org/10.1016/j.cor.2007.01.012

[6] A.S. Ghiduk, M.J. Harrold, and M.R. Girgis (2007).

Using Genetic Algorithms to Aid Test-Data

Generation for Data-Flow Coverage. Proceedings

of the 14th Asia-Pacific Software Engineering

Conference, IEEE, pp. 41-48.

https://doi.org/10.1109/ASPEC.2007.73

[7] M.R Girgis (2005). Test Data Generation for Data

Flow Testing Using a Genetic Algorithm. Journal

of Universal Computer Science, Vol. 11, No. 6, pp.

898-915. http://dx.doi.org/10.3217/jucs-011-06-

0898

[8] P. McMinn (2004). Search-Based Software Test

Data Generation: A Survey. Journal of Software

Testing, Verification and Reliability, Wiley, Vol.

14, No. 2, pp. 105-156.

https://doi.org/10.1002/stvr.294

[9] R.P. Pargas, M.J. Harrold, and R. Peck (1999).

Test-Data Generation Using Genetic Algorithms.

Journal of Software Testing, Verification and

Reliability, Wiley, Vol. 9, No. 4, pp. 263-282.

https://doi.org/10.1002/(SICI)1099-1689(199912)9:

4%3c263::AID-STVR190%3e3.0.CO;2-Y

[10] A. Windisch, S. Wappler, and J. Wegener (2007).

Applying Particle Swarm Optimization to Software

Testing. Proceedings of the 9th Annual Conference

on Genetic and Evolutionary Computation

(GECCO’07), pp. 1121-1128.

https://doi.org/10.1145/1276958.1277178

[11] K. Agarwal, A. Pachauri, and Gursaran (2008).

Towards Software Test Data Generation using

Binary Particle Swarm Optimization. Proceedings

of the XXXII National Systems Conference, pp. 339-

343.

[12] K. Agarwal and G. Srivastava (2010). Towards

Software Test Data Generation using Discrete

Quantum Particle Swarm Optimization.

Proceedings of the ISEC’10, pp. 65-68.

https://doi.org/10.1145/1730874.1730888

[13] C. Mao (2014). Generating Test Data for Software

Structural Testing Based on Particle Swarm

Optimization. Arabian Journal of Science and

Engineering, Springer, Vol. 39, No. 10, pp. 4593-

4607. https:/doi.org/10.1007/s13369-014-1074-y

[14] N. Nayak and D.P. Mohapatra (2010). Automatic

Test Data Generation for Data Flow Testing Using

Particle Swarm Optimization. Springer-Verlag

Heidelberg, pp. 1-12.

[15] A. Arcuri and X. Yao (2008). Search based

software testing of object-oriented containers.

Information Sciences, Elsevier, Vol. 178, No. 15,

pp. 3075-3095.

https://doi.org/10.1016/j.ins.2007.11.024

[16] S. Zhang, Y. Zhang, H. Zhou, and Q. He (2010).

Automatic path test data generation based on GA-

PSO. Proceedings of the International Conference

on Intelligent Computing and Intelligent Systems

(ICIS’10), IEEE, pp. 142-146.

https://doi.org/10.1109/ICICISYS.2010.5658735

[17] K. Li, Z. Zhang, and J. Kou (2010). Breeding

Software Test Data with Genetic-Particle Swarm

Mixed Algorithm. Journal of Computers, Vol. 5,

No. 2, pp. 258-265.

https://doi.org/10.4304/jcp.5.2.258-265

[18] S. Singla, D. Kumar, H.M. Rai, and P. Singla

(2011). A hybrid PSO approach to automate test

data generation for data flow coverage with

dominance concepts. International Journal of

Advanced Science and Technology, Vol. 37, pp. 15-

26.

[19] A. Kaur and D. Bhatt (2011). Hybrid particle

swarm optimization for regression testing.

International Journal on Computer Science and

Engineering, Vol. 3, No. 5, pp. 1815-1824.

[20] M.R. Girgis, A.S. Ghiduk, and E.H. Abd-Elkawy

(2015). Automatic Data Flow Test Paths Generation

using the Genetical Swarm Optimization

Technique. International Journal of Computer

Applications, Vol. 116, No. 22, pp. 25-33.

[21] P. Chawla, I. Chana, and A. Rana (2015). A novel

strategy for automatic test data generation using

soft computing technique. Frontier Computer

Science, Springer, Vol. 9, No. 3, pp. 346-363.

https://doi.org/10.1007/s11704-014-3496-9

[22] S. Varshney and M. Mehrotra (2016). Search-based

Test Data Generator for Data-Flow Dependencies

using Dominance Concepts, Branch Distance and

Elitism. Arabian Journal of Science and

Engineering, Springer, Vol. 41, No. 3, pp. 853-881.

https://doi.org/10.1007/s13369-015-1921-5

[23] B. Korel (1990). Automated Software Test Data

Generation. IEEE Transactions on Software

Engineering, Vol. 16, No. 8, pp. 870-879.

https://doi.org/10.1109/32.57624

[24] P. G. Frankl and S. N. Weiss (1993). An

Experimental Comparison of the Effectiveness of

Branch Testing and Data Flow Testing. IEEE

Transactions on Software Engineering, Vol. 19, No.

8, pp. 774-787.

http://doi.ieeecomputersociety.org/10.1109/32.2385

81

[25] S. Ali, L.C. Briand, H. Hemmati, and R.K.P.

Walawege (2010). A Systematic Review of the

Application and Empirical Investigation of Search-

Based Test Case Generation. IEEE Transactions on

Software Engineering, Vol. 36, No. 6, pp. 742-762.

https://doi.org/10.1109/TSE.2009.52

[26] A. Pachauri and G. Srivastava (2013). Automated

test data generation for branch testing using genetic

algorithm: An improved approach using branch

ordering, memory and elitism. Journal of Systems

https://doi.org/10.1016/j.cor.2007.01.012
https://doi.org/10.1109/ASPEC.2007.73
http://dx.doi.org/10.3217/jucs-011-06-0898
http://dx.doi.org/10.3217/jucs-011-06-0898
https://doi.org/10.1002/stvr.294
https://doi.org/10.1002/(SICI)1099-1689(199912)9:%204%3c263::AID-STVR190%3e3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1099-1689(199912)9:%204%3c263::AID-STVR190%3e3.0.CO;2-Y
https://doi.org/10.1145/1276958.1277178
https://doi.org/10.1145/1730874.1730888
https://doi.org/10.1007/s13369-014-1074-y
https://doi.org/10.1016/j.ins.2007.11.024
https://doi.org/10.1109/ICICISYS.2010.5658735
https://doi.org/10.4304/jcp.5.2.258-265
https://doi.org/10.1007/s11704-014-3496-9
https://doi.org/10.1007/s13369-015-1921-5
https://doi.org/10.1109/32.57624
http://doi.ieeecomputersociety.org/10.1109/32.238581
http://doi.ieeecomputersociety.org/10.1109/32.238581
https://doi.org/10.1109/TSE.2009.52

438 Informatica 42 (2018) 417–438 S. Varshney et al.

and Software, Elsevier, Vol. 86, No. 5, pp. 1191-

1208. https://doi.org/10.1016/j.jss.2012.11.045

[27] S. Varshney and M. Mehrotra (2013). Search Based

Software Test Data Generation for Structural

Testing: A Perspective. ACM SIGSOFT Software

Engineering Notes, Vol. 38, No. 4.

https://doi.org/10.1145/2492248.2492277

[28] J. Wegener, A. Baresel, and H. Sthamer (2001).

Evolutionary test environment for automatic

structural testing. Information and Software

Technology, Elsevier, Vol. 43, No. 14, pp. 841-854.

https://doi.org/10.1016/S0950-5849(01)00190-2

[29] K. Liaskos, M. Roper, and M. Wood (2007).

Investigating Data-Flow Coverage of Classes Using

Evolutionary Algorithms. Proceedings of the 9th

annual conference on Genetic and Evolutionary

Computation (GECCO’07), pp. 33-53.

https://doi.org/10.1145/1276958.1277183

[30] M. Vivanti, A. Mis, A. Gorla, and G. Fraser (2013).

Search-based Data-Flow Test Generation.

International Symposium on Software Reliability

Engineering (ISSRE), IEEE, pp. 370-379.

https://doi.org/10.1109/ISSRE.2013.6698890

[31] A. Ghiduk (2010). A New Software Data-Flow

Testing Approach via Ant Colony Algorithms.

Universal Journal of Computer Science and

Engineering Technology, Vol. 1, No. 1, pp. 64-72.

[32] C. Mao, L. Xiao, X. Yu, and J. Chen (2015).

Adapting ant colony optimization to generate test

data for software structural testing. Swarm and

Evolutionary Computation, Elsevier, Vol. 20, pp.

23-36.

http://dx.doi.org/10.1016/j.swevo.2014.10.003

[33] C. Mao (2014). Harmony search-based test data

generation for branch coverage in software

structural testing. Neural Computing and

Applications, Springer, Vol. 25, No. 1, pp. 199-216.

https://doi.org/10.1007/s00521-013-1474-z

[34] A. Shamekhi (2013). An Improved Differential

Evolution Optimization Algorithm. International

Journal of Research and Reviews in Applied

Sciences, Vol. 15, No. 2, pp. 132-145.

[35] H. Sharma, P. Shrivastava, and J.C. Bansal (2014).

Fitness Based Self Adaptive Differential Evolution.

Nature Inspired Cooperative Strategies for

Optimization (NICSO 2013), pp. 71-84.

[36] S. Das, A. Abraham, and A. Konar (2008). Particle

Swarm Optimization and Differential Evolution

Algorithms: Technical Analysis, Applications and

Hybridization Perspectives. Studies in

Computational Intelligence, Springer, Vol. 116, pp.

1-38. https://doi.org/10.1007/978-3-540-78297-1_1

[37] R. Malhotra and M. Khari (2013). Heuristic search-

based approach for automated test data generation:

a survey. International Journal of Bio-Inspired

Computation, Inderscience, Vol. 5, No. 1.

https://doi.org/10.1504/IJBIC.2013.053045

[38] A.P. Mathur (2008). Foundations of Software

Testing. Pearson.

[39] T. Lengauer and R.E. Tarjan (1979). A fast

algorithm for finding dominators in a flowgraph.

ACM Transactions on Programming Languages

and Systems, Vol. 1, No. 1, pp. 121-141.

https://doi.org/10.1145/357062.357071

[40] S. Rapps and E.J. Weyuker (1985). Selecting

software test data using data flow information.

IEEE Transactions on Software Engineering, Vol.

11, No. 4, pp. 367-375.

https://doi.org/10.1109/TSE.1985.232226

[41] J. Kennedy and R. C. Eberhart (1995). Particle

Swam Optimization. Proceedings of IEEE

International Conference on Neural Networks

(ICNN’95), IEEE, pp. 1942-1948.

https://doi.org/10.1109/ICNN.1995.488968

[42] A. Nickabadi, M.M. Ebadzadeh, and R. Safabakhsh

(2011). A novel particle swarm optimization

algorithm with adaptive inertia weight. Applied Soft

Computing, Elsevier, Vol. 11, No. 4, pp. 3658-

3670. https://doi.org/10.1016/j.asoc.2011.01.037

[43] R. Storn and K.V. Price (1995). Differential

evolution: A simple and efficient adaptive scheme

for global optimization over continuous spaces.

International Computer Science Institute, USA, TR-

95-012.

[44] R. Ferguson and B. Korel (1996). The chaining

approach for software test data generation. ACM

Transactions on Software Engineering and

Methodology, Vol. 5, No. 1, pp. 63-86.

https://doi.org/10.1145/226155.226158

[45] SIR: Software-artifact Infrastructure Repository.

http://sir.unl.edu/portal/index.php

[46] P.C. Jorgenson (2002). Software Testing: A

Craftsman’s Approach. 2nd ed., CRC Press.

[47] G.J. Myers (2006). The Art of Software Testing. 2nd

ed., Wiley.

[48] K.K Aggarwal and Y. Singh (2007). Software

Engineering. 3rd ed., New Age International

Publishers.

[49] Garcia, A. Fernandez, J. Luengo, and F. Herrera

(2010). Advanced nonparametric tests for multiple

comparisons in the design of experiments in

computational intelligence and data mining:

Experimental analysis of power. Information

Sciences, Elsevier, Vol. 180, pp. 2044-2064.

https://doi.org/10.1016/j.ins.2009.12.010

[50] R. Feldt and A. Magazinius (2010). Validity threats

in empirical software engineering research-an initial

survey. Proceedings of the 22nd International

Conference on Software Engineering and

Knowledge

https://doi.org/10.1016/j.jss.2012.11.045
https://doi.org/10.1145/2492248.2492277
https://doi.org/10.1016/S0950-5849(01)00190-2
https://doi.org/10.1145/1276958.1277183
https://doi.org/10.1109/ISSRE.2013.6698890
https://doi.org/10.1016/j.swevo.2014.10.003
https://doi.org/10.1007/s00521-013-1474-z
https://doi.org/10.1007/978-3-540-78297-1_1
https://doi.org/10.1504/IJBIC.2013.053045
https://doi.org/10.1145/357062.357071
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.asoc.2011.01.037
https://doi.org/10.1145/226155.226158
http://sir.unl.edu/portal/index.php
https://doi.org/10.1016/j.ins.2009.12.010

