
https://doi.org/10.31449/inf.v42i4.1510 Informatica 42 (2018) 555–561 555

Analysing RPC and Testing the Performance of Solutions

Sandor Kiraly

Eszterhazy Karoly University, Eger, Eszterhazy ter 1., Hungary

E-mail: kiraly.sandor@uni-eszterhazy.hu

Szilveszter Szekely

Imperial College, Kensington, London SW7 2AZ, UK

E-mail: szekelyszilv@gmail.com

Keywords: remote procedure call, marshalling, Google protocol buffers, JSON-RPC, XML-RPC, performance test

Received: January 29, 2017

In distributed computing, network sockets provide mechanism for a process to establish a remote

connection to another process and send messages back and forth. This interface makes possible a proper

mechanism that allows a program running as a process on computer A to call a procedure or a function

on remote computer B and pass parameters to it. In the case of synchronous Remote Procedure Call

(RPC), processes on computer A need to wait for the finishing of execution of procedures on computer B.

When the called procedure finishes, produces its result and passes it to the process on computer A that

can continue execution. The question is what happens between the time of the remote procedure call and

arrival of the returned values and how much the caller must wait for result. Prompted by the release of

Protocol Buffers and gRPC by Google, this paper answers that question, describing the structure of third

generation RPCs and analysing them putting the focus on performance and the way of marshalling

parameters. To facilitate the choice between them this paper represents the results of performance tests

carried out by the authors.

Povzetek: Podana je analiza oddaljenih klicev (RPC) v distribuiranih sistemih predvsem v smislu

performans.

1 Introduction
While developing computer applications, using

procedures and functions is very common. In most cases

the subroutines work independently so they could even be

run on a remote computer. To reach the remote subroutine

(procedure or function) network communication is

necessary that is performed via RPC mechanisms. Since

the caller and callee procedures run on different machines,

they execute them in different address spaces, and

different operating system which cause complications.

Parameters and results also have to be passed, which can

be complicated, especially if the software architectures are

not identical or the data structures are complex. Still, most

of these can be dealt with, and RPC is a very popular

technique that underlies many distributed systems. [1]

To understand the working of RPC it is necessary to

examine how local procedure calls are implemented.

Before calling a procedure the processor stores the local

variables and the state of the caller procedure on the stack

while the running of the current procedure will be

suspended. To perform the call, the caller pushes the

parameters onto the stack in order, last one first. The

processor transfers the control to the address determined

by the call. In the callee procedure, the compiler is

responsible for saving the necessary registers, allocating

stack space for local variables, and then restoring the

registers and stack prior to the return from the callee. After

the procedure has finished running the processor puts the

return value in a register, removes the return address, and

transfers control back to the caller. The caller then

removes the current parameters from the stack, returning

it to the original state.

This method cannot be performed if the callee

procedure is stored on a remote computer since there are

two different running contexts. To solve the problem,

another function is used that looks like the remote

procedure and it contains code for sending and receiving

messages over the network. Its name is stub function.

Figure 1 represents the working of remote procedure call

for a function pow that returns a long value

More text of the introduction. More text of the

introduction. More text of the introduction. More text of

the introduction.

The sequence of operations labeled in Figure 1 is as

follows:

The client calls a local function (1) that seems to be

the actual function but it is the client stub function that

serializes the parameters into a message (raw byte stream)

(2), and then sends the message to the server machine (3)

using socket interfaces. The server stub deserializes the

parameters from the raw message (4), and then calls the

server function (5) passing it the arguments that it received

from the client using the standard calling sequence. After

completing the server function, it passes the return value

to the server stub (6) that serializes it into a message (7) to

mailto:szekelyszilv@gmail.com

556 Informatica 42 (2018) 555–561 S. Kiraly et al.

send to the client stub. The message is sent back across the

network (8) and the network layer passes the message to

the client stub (9) that reads and deserializes it then returns

the result to the client function (10).

Figure 1 represents a remote procedure call applying

passing parameters by value which is simple since it just

copies the value into the network message. Passing by

reference is more complex. To enable this technique it is

necessary to send a copy of the arguments over, place

them in memory on the remote computer, pass a pointer to

them to the server function, and finally send the object

back to the client, copying it over the reference. For

complex structures, it is needed to copy the structure into

a pointerless representation, transmit it, and reconstruct

the data structure on the remote machine. [2][3][4]

Both the client program and the callee function see

only ordinary, local procedure calls, using the normal

calling conventions. Only the stubs know that the call is

remote. It also means, the performance of RPC depends

on the stub implementation apart from the network

conditions.

Most languages were not designed to handle remote

procedures natively with built in transparent stubs. That is

the reason why they are not capable of generating the

necessary stub functions. To enable them for performing

remote procedure calls, the commonly adopted solution is

to provide a separate compiler that can generate both the

client and server stub functions. The input of this compiler

comes from the remote procedure call interfaces written

by a programmer. These are written in an interface

definition language (IDL) for example proto3 in gRPC.

After the RPC compiler is run, the server and client

programs can be compiled and linked with the appropriate

stub functions. Both the client and the server codes need

to be changed to initialize the RPC mechanism.

2 RPC APIs
RPC implementations generally use supporting libraries to

complete the stub operations. They must provide the

following operations:

Name service operations: They must register

themselves and support servers to advertise these bindings

and clients to find them.

Binding operations: They establish client/server

communications using the appropriate protocol.

Endpoint operations: They register endpoint

information (protocol, port number, machine name) to the

name server and listen for procedure call requests.

Figure 1: The RPC mechanism comparing with the Local Procedure Call.

Analysing RPC and Testing the Performance of Solutions Informatica 42 (2018) 555–561 557

Security operations: They provide the authentication

procedure and a secure communication channel between

the two computers

Internationalization operations (possibly): They

include functions to convert currency formats, time

formats and language-specific strings through string

tables.

Marshaling/data conversion operations: They pack

data into package for transmitting onto a network and

functions to reconstruct it. Sometimes, they have to

serialize the messages as well.

Stub memory management and garbage collection:

It may occur that stubs need to allocate memory for storing

parameters, particularly in case of accomplishing pass-by-

reference technique. RPC library needs to allocate and

clean up such allocations. For RPC packages that support

objects, the RPC system must provide the deletion of

unnecessary references to objects.

Program ID operations: They allow applications to

access identifiers of sets of RPC interfaces for

communication.

Object and function ID operations: They support

passing references to remote functions or remote objects

to other processes. [5]

The more effective the implementation of these

operations the faster the RPC solution will be.

3 Third generation RPCs and Web

Services
Microsoft DCOM (Distributed Component Object Model)

and CORBA (Common Object Request Broker

Architecture) were the first RPC solutions that supported

the object oriented programming techniques, and CORBA

also includes IDL to specify the name of classes, their

attributes, and their methods. It based on binary

serialization. [5]

The increasing popularity of internet use led that web

browsers became the dominant model for accessing

information. Clients access the service via the HTTP

protocol that allows services to be published, discovered,

and used in a technology-neutral form.

Web server is configured to recognize the part of the

URL pathname and pass the request to a specific plug-in

module. This module can strip out the headers, parse the

data (if needed), and call any other functions or modules

as needed. [6][7]

XML-RPC

XML-RPC is one of the simplest web service

approaches that was designed in 1998 as an RPC

messaging protocol for serializing procedure requests and

responses into human-readable XML. The XML format

uses HTTP protocol to send data from a client computer

to a server computer using traditional web ports for RPC.

XML-RPC does not define any standard methods for

generating stub functions or handling remote procedures.

It only focuses on messaging and therefore consists of

only three small parts:

XML-RPC data model is a set of types used in

passing parameters, return values, and faults (error

messages).

XML-RPC request structures that contain method

and parameter information for supporting HTTP requests.

XML-RPC response structures that contain return

values or fault information for supporting HTTP

responses.

For the performance test several libraries are available

for example Apache XML-RPC that was selected to

compare to other solutions.

3.1 SOAP and WSDL

The XML-RPC specification was used as a basis for

creating SOAP (Simple Object Access Protocol) that is an

open-standard, XML-based messaging protocol for

exchanging information among computers. It is platform-

and language-independent and enables client applications

to easily connect to remote services and invoke remote

methods. For creating a standardized messaging structure

it is necessary to define a service definition document in

WSDL (Web Services Description Language) so that to

create and check the proper SOAP messages. Though,

WSDL is an XML document, it is hard to create and read

it by human, therefore tools such as Java2WSDL or

wsdl.exe (in .NET) are used to generate template code for

programmers. [5]

SOAP and WSDL are complex and highly-verbose

formats, therefore their performances are naturally worse,

than XML-RPC. Furthermore, if correctly implemented

all XML-RPC libraries are compatible the same cannot be

said about SOAP. The protocol has extensions which are

not all implemented in all libraries. These properties make

it somewhat unsuitable for our cross platform testing and

was therefore omitted from the tests.

3.2 JSON-RPC

JSON (JavaScript Object Notation) is another marshaling

format. JSON is based on JavaScript and does not need to

be generated since it is human readable and writable, and

it contains less redundancies. It was introduced as the “fat-

free alternative to XML” as it has much less markup

overhead compared to XML. This is just a messaging

format and JSON do not offer RPC libraries and support

for stub operations.

JSON-RPC is very similar to XML-RPC but encoded

in JSON instead of XML. As XML-RPC was available

before JSON-RPC this RPC has enjoyed less uptake.

While JSON has less markup overhead the format is still

textual and the savings are not large. This was also evident

as for the example none of the available Ruby libraries had

documentation. [5]

3.3 Google RPC and Google’s Protocol

Buffers

gRPC (Google RPC) is a cross-platform, language and

platform independent, general-purpose infrastructure used

by Google Inc. and they made it public in 2015. It can

automatically generate idiomatic client and server stubs

for service in a variety of languages and platforms. It uses

Protocol Buffers that is a flexible, efficient, automated

mechanism for binary serialization of structured data. [8]

558 Informatica 42 (2018) 555–561 S. Kiraly et al.

Prompted by this newly released RPC solution, with

this paper we aim to compare its use and performance to

other popular solutions that predate it.

Users need to define how they want their data to be

structured once in Protocol Buffers language (proto3) and

the signature of the methods that will be called remotely.

Then they can use a generated source code to easily write

and read their structured data to and from a variety of data

streams and using a variety of languages. Figure 2. shows

the relevant sections of the proto file used for the

performance test.

The defined data structure is stored in .proto files.

Each protocol buffer message is a small logical record of

information, containing a series of name-value pairs. Once

the user defined their messages, they run the protocol

buffer compiler for their application's language on their

.proto file to generate data access classes. These provide

simple accessors for each field as well as methods to

serialize/parse the whole structure to/from raw bytes – so,

for instance, if the chosen language is C++, running the

compiler on the user’s .proto file will generate a class.

User can then use this class in his application to populate,

serialize, and retrieve the class protocol buffer messages.

The compiler also provides the stub implementations that

can be inherited to code the remote function definition.

The protocol buffer message encoded in binary format

is much smaller than its XML code but is not human-

readable and human-editable. Protocol buffers result not

only binary format but are 3 to 10 times smaller and 20 to

100 times faster than XML for serializing structured data

that may one of the reasons for the higher performance of

gRPC. [9]

4 The performance test of the

implemented RPCs
Based on the structure of RPC the performance

differences of the different RPC solutions must come from

the differently implemented stub operations. The RPC

solution that performs stub operations the fastest way and

produces the shortest data for sending must have the best

performance.

We have performed benchmarks to test the

performance of each of these RPC methods and compare

them against each other. (See the signature of the methods

in Figure 2.)

With these benchmarks the aim was to measure the

processing overhead of the RPC methods and their

implementations.

For the request method we have written server and

client implementations in C++, Java, and Ruby. The server

part reads sample data that has multiple data formats,

including strings, integers, floats, and 1MB of binary data.

After the data has been read it starts listening for

connections from the client. The client can only send one

request to the server, which is requesting one of the data

items with an option to specify whether to include the

binary data part or not. The request method in the client

program was invoked 100 times, the client program was

run 10 times.

The data on the server component was serialized from

memory where it was loaded previously, which was not

part of the measurement. The client component did no

processing on the data apart from printing receipt of

request with the identifier from the current item to

service Database {

 rpc Request(InfoRequest) returns (Info) {}

}

message Info {

 int32 id = 1;

 string first_name = 2;

 string last_name = 3;

 int32 age = 4;

 string email = 5;

 string phone = 6;

 bool newsletter = 7;

 float latitude = 8;

 float longitude = 9;

 bytes photo = 10;

}

message InfoList {

 repeated Info infos = 1;

}

message InfoRequest {

 int32 id = 1;

 bool photo = 2;

}

Figure 2: Services and messages defined in Protocol Buffers.

Analysing RPC and Testing the Performance of Solutions Informatica 42 (2018) 555–561 559

standard output. This was to prevent potential elision of

deserialization.

The RPC methods would usually be part of a system

that further processes data in either a synchronous or

asynchronous manner that would have different

performance and latency implications. Asynchronous or

non blocking systems are usually preferred for more

optimal resource usage on both client and server side.

With non blocking operations the components would send

further requests needed to fulfill their answer, but they

would not wait for the answer actively while holding up

resources. Instead these systems store that a request is

pending, suspend execution of the routine, and continue to

do other outstanding operations that they have the

necessary data for. When the answer arrives from the

server, they load the previously stored request and

execution state and continue from the point where

execution was suspended.

Our implementation of the server and client do not

follow this asynchronous model of operation, but instead

blocks until the response arrives from the server. The

reason for this is to have more reliable and stable

measurements. As we focus on the RPC itself, the server

and client components do minimal processing, there are

no further requests to wait for. Using an asynchronous

model would mean more outside effects on the

measurements, as asynchronous signaling is less

predictable than synchronous blocking operations.

For gRPC the gRPC and Protobuffers library were

used, for XML RPC and JSON RPC the most popular

library was selected for each language. These are: for

XML-RPC in C++ xmlrpc-c[10], in Java Apache

XMLRPC [11], in Ruby the standard library XMLRPC

[12] for JSON-RPC in C++ jsonrpccpp[13], in Java JSON-

RPC 2.0 by [d]zhuvinov [s]oftware [14], in Ruby

jsonrpc2.0 with webrick [15]. The only restriction was

that it needed to be able to start listening for connections

without a large framework that it would be deployed part

of. This means that for example Servlet based Java

implementations were excluded.

Docker containers were created for each of these

server and client implementations so that they had a

runtime environment that is not dependant on the host

system. This caused some overhead when starting the

client programs, as a new Docker instance had to created

for each run, but we found that this did not influence our

overall conclusion.

We used a Linux rack to run the server instances and

a commodity laptop to run the client instances to simulate

somewhat real conditions and connected both of them to

the subnet with 125 MBit/s wired connections to exclude

the interference in WiFi or otherwise long distance

internet connection.

With the RPC method we cross tested all of the

languages with each other to get more measurements and

lessen the influence of particular implementations on the

overall results [16].

It also has to be noted while XML-RPC

implementations were easy to find, JSON-RPC is not as

widespread judging from the available libraries. The only

server library available for Ruby had some issues and no

documentation. Table 1 and Table 2 show the results.

 server

 grpc small cxx java ruby

client

cxx 1.446586288 1.538543454 1.843524988

java 2.385020082 2.574738704 2.862809575

ruby 2.335048487 2.357542191 2.329401348

xmlrpc

small
cxx java ruby

client

cxx 1.745901795 1.789834515 6.283093411

java 1.872503282 1.932996376 6.336315439

ruby 2.531053102 2.39889046 6.991524778

jsonrpc

small
cxx java ruby

client

cxx 1.746023073 5.997436199 6.166025146

java 1.857895238 6.242739725 6.315714135

ruby 2.245318859 6.360743144 6.627618996

Table 1: The measured average values in seconds after 100 invokes and 5 runs with small test data.

560 Informatica 42 (2018) 555–561 S. Kiraly et al.

The overall results we have found in our test runs it

that overall gRPC performed the best of all three, with

XML RPC and JSON RPC having similar performance

characteristics with the differences between mainly

attributable to implementation details of the libraries.

(Table 1)

With small test data, without the 1MB binary, we

found that while the different methods had similar

performance, in most cases the gRPC was slightly faster

except, for example, in the java server java client case

where the gRPC implementation did 2.5s while the XML

RPC finished in under 2s. In XML-RPC, the Ruby server

implementation almost tripled the amount of time required

to run the tests regardless of client language. The same can

be observed in JSON RPC with the Java and Ruby server

implementation. With small test data, C++

implementations were faster than the Java or Ruby ones.

The languages, in which the stub operations are

implemented also influences the performance. All RPC

solutions performed better in C++ with small test data.

With the inclusion of the binary data the differences

were more pronounced (see Table 2). gRPC performed

better except one case. How much faster it was depended

on the language combination used. Only the Ruby server

with the Java client did beat the time of the gRPC solution.

The XML-RPC Ruby client was generally slower than

other clients, taking almost twice the time to complete the

test runs.

The increased performance of gRPC can be attributed

to the transmission format. Both XML and JSON are

textual formats. While binary versions exist, these are not

as widely used and the RPC libraries do not use them.

Because of their text nature to include binary data in them

it needs to encoded to some representation that only uses

printable ASCII characters, in most cases to Base64. This

increases the data to be transmitted by 4/3 and the

overhead of the markup structure is also not insignificant.

gRPC uses Protobuffers as its wire format, which is a

binary format. Binary data can be included as is, no

conversion necessary. It also does not add much overhead

to the structure, only field identifiers are added for

backward compatibility.

5 Conclusions
In this paper, the structure of third generation RPCs was

analysed to find answers for the differences in the

performance of different RPC solutions: Google RPC,

XML-RPC and JSON-RPC. The chosen libraries

implemented the stub operations in different ways and

used different formats for marshalling. gRPC with

Protocol Buffers performed best in our tests because of the

fast binary serialization method of structured data, that

resulted in smaller sized encoded messages. Our tests

proved, that the chosen computer language has an

influence on the performance of RPC invocations. gRPC

proved faster in C++ implementations than in Java or

Ruby with small test data. In case of XML-RPC and

JSON-RPC, Ruby server with Java client proved to be the

fastest with large test data.

References
[1] Andrew D. Birrell and Bruce Jay Nelson (1984).

Implementing Remote Procedure Calls. ACM

Transactions on Computer Systems, Vol. 2, No. 1,

February 1984, Pages 39-59.

https://doi.org/10.1145/2080.357392

[2] Andrew S. Tanenbaum, Robbert van Renesse

(1988). A Critique of the Remote Procedure Call

Paradigm. Available at http://www.cs.vu.nl/~ast/

Publications/Papers/euteco-1988.pdf

 server

 grpc big cxx java ruby

client cxx 10.49837347 19.78831593 10.61724809

 java 11.50234759 11.65334163 20.65961758

 ruby 11.44378246 15.36368512 16.35586611

 xmlrpc big cxx java ruby

client cxx 16.87760948 23.02763573 17.56123346

 java 16.70705216 22.97051365 16.33389231

 ruby 31.4515749 36.40461197 26.93085479

 jsonrpc big cxx java ruby

client cxx 23.85746603 23.59290045 23.09974722

 java 18.68594349 21.19607064 18.29131204

 ruby 17.81739152 17.89413377 17.48205703

Table 2: The measured average values in seconds after 100 invokes and 5 runs with binary data.

https://doi.org/10.1145/2080.357392
http://www.cs.vu.nl/~ast/%20Publications/Papers/euteco-1988.pdf
http://www.cs.vu.nl/~ast/%20Publications/Papers/euteco-1988.pdf

Analysing RPC and Testing the Performance of Solutions Informatica 42 (2018) 555–561 561

[3] Andrew S. Tanenbaum, Maarten van Steen (2016).

Distributed Systems: Principles and Paradigms.

Pearson Education Inc. ISBN:978-15-302817-5-6

Andrew D. Birrell (1985). Secure Communication

Using Remote Procedure Calls. ACM Transactions

on Computer Systems, Vol. 3, No. 1, February 1985,

Pages 1-14. https://doi.org/10.1145/214451.214452

[4] Paul Krzyzanowski (2012). Remote Procedure Calls

Available at https://www.cs.rutgers.edu/~pxk/

417/notes/08-rpc.html

[5] Michael D. Schroeder and Michael Burrows1

(2006). Performance of Firefly RPC.

http://web.mit.edu/6.826/www/notes/HO11.pdf

[6] Hakan Bagci and Ahmet Kara (2016). A Lightweight

and High Performance Remote Procedure Call

Framework for Cross Platform Communication.

ICSOFT-EA 2016 Abstracts. Available at:

http://www.scitepress.org/DigitalLibrary/Publicatio

nsDetail.aspx?ID=Rqt07DUDIy8=&t=.

https://doi.org/10.5220/0005931201170124

[7] What is gRPC? Available at http://www.grpc.io/

docs/guides/

[8] Protocol Buffers. Available at

https://developers.google.com/protocol-

buffers/docs/overview#whynotxml

[9] XML-RPC for C and C++. Available at

http://xmlrpc-c.sourceforge.net/

[10] Apache XML-RPC. Avilable at

https://ws.apache.org/xmlrpc/

[11] XML-RPC for Ruby. Available at

https://github.com/ruby/xmlrpc

[12] JSON-RPC 2.0. Essential Java libraries and tools

for JSON-RPC 2.0development. Available at

http://software.dzhuvinov.com/json-rpc-2.0.html

[13] JSON-RPC 2.0. Available at

http://software.dzhuvinov.com/json-rpc-2.0-

client.html

[14] JSON-RPC 2.0. for Ruby. Available at

https://github.com/chriskite/jimson

[15] Downloadable programs and the environment for

the benchmarks: Available at https://github.com/

ksanyi007/rpc

https://doi.org/10.1145/214451.214452
https://www.cs.rutgers.edu/~pxk/
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=Rqt07DUDIy8=&t
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=Rqt07DUDIy8=&t
https://doi.org/10.5220/0005931201170124
http://www.grpc.io/
https://developers.google.com/
http://xmlrpc-c.sourceforge.net/
https://ws.apache.org/
https://github.com/

562 Informatica 42 (2018) 555–561 S. Kiraly et al.

