
Informatica 31 (2007) 325–335 325

Dynamic Distribution of Java Applications

Gita Alagbhand and David Gnabasik
University of Colorado at Denver and Health Sciences Center
Department of Computer Science and Engineering
Campus Box 109, P.O. Box 173364, Denver CO 80217-3364, USA
E-mail: Gita.Alaghband@cudenver.edu P:303-556-2940 F:303-556-8369
E-mail: DavidGnabasik@comcast.net P:303-994-2740 F:303-617-7877

Keywords: Java, component streams, class loader, mobile devices

Received: April 10, 2007

This paper describes a streaming mechanism that distributes Java class bytecode streams to a client from
a database server. The class server uses a 1st-order Markov probability model to effectively predict the
client’s next class request. Experimental results demonstrate that class prediction can deliver a class cache
hit ratio of up to 54% using a modest cache size of 64kb on the client, whereas a 16kb cache delivers a hit
ratio of 37%. The model is designed to mitigate the distribution and deployment problems of monolithic
application software and is useful for applications running on resource-constrained, mobile computing
devices.

Povzetek: Članek opisuje postopek dinamičnega porazdeljevanja aplikacij v Javi.

1 Introduction and problem
description

Dynamic component streams can address several client
software distribution and deployment issues, including the
automated update of applications from a centralized soft-
ware repository, as well as the delivery of application
streams to resource-constrained mobile devices. We submit
that the process of application deployment can take advan-
tage of the dynamic linking and class loading [3] mecha-
nisms in Java compilers to support a distributed component
model that does not require the streaming of large mono-
lithic applications to these devices. Java class hierarchies
are stored as Java bytecode streams into database rows by
a class author. A streaming mechanism then transmits a
virtual application to a client’s process space from a class
server. Our class server uses a 1st-order Markov transition
probability model to effectively predict the client’s next
class request based upon the statistical analysis of histori-
cal application runs. This permits for the effective overlap-
ping of client-server communication with client process-
ing. The Java linking model and class file format are suited
for managing this problem since the class file is analyzed
and stored as the unit of compilation [2]. We manage and
optimize system performance by:

– decomposing and storing class hierarchies into a
database;

– defining an effective asynchronous streaming compo-
nent model;

– retrieving the most probable class subgraphs to be ac-
tivated next;

– effectively managing limited available client memory.

This paper is organized as follows. In section 2, we de-
scribe each architectural component of the system and the
underlying theory. Section 3 outlines its design and im-
plementation. Section 4 describes our experimental mea-
surements. Section 5 discusses related work, and section 6
presents our conclusions and summarizes the contributions
of this paper.

2 System architecture

2.1 Class authoring and client access roles
The role of the class author is to correctly compile and store
Java components or entire applications as binary streams
of Java bytecode into a database. By doing so, the class
authoring interface encapsulates much of the complexity of
class relations and their distribution. The primary function
of the interface is to scan each class for referenced classes
and to store this list into the database as well. The authoring
interface also manages the following information:

– appropriate class / application authorization and secu-
rity measures;

– any class digital signatures or certificates;

– what foundation set of Java classes are required lo-
cally on the client;

– the set of client deployment preferences that indicate
how and when the classes in a particular application
trace should be updated.

326 Informatica 31 (2007) 325–335 G. Alagbhand et al.

Consumer-Producer Channel (CPC)

Client PC

Class Browser

Event Notification System

JVM1 on Client1

ClassLoader-NameSpace 1

Connection 1A

ClassLoader-NameSpace 2

Connection 2AConnection 2B

Client Comsumer Buffer

Class
Database

Class Streamer

Performance
monitor

Database
Security
Interface

Client1 Cache

Client2 Cache

Common Cache

Class Name
Resolution

Service

Streaming
Dsitribution

Monitor Thread Pool

Connection
Pool

Database Server 1

TCP/IP Connection

Figure 1: Overall architectural schema.

Clients use a class browser or the Java Naming Directory
Interface (JNDI) to request a particular application through
a well-known URL address. The client request establishes
a consumer-producer channel with the class server. Once
the client is authorized, the server retrieves and transmits a
custom class loader to the client who loads it into his Java
virtual machine (JVM). It is this custom class loader which
initially loads an application’s main class and which makes
any further class requests on behalf of the application. No
other changes to existing Java classes are necessary. Figure
1 diagrams our system architecture.

2.2 The class loading and linking process

Class loaders are responsible for importing binary data that
define a running program’s classes and interfaces. The
JVM’s flexible class loader architecture provides for dy-
namically extended applications. Linking a class stream
into a JVM’s run time state is divided into three steps: ver-
ification, preparation, and resolution [4]. Verification en-
sures that the stream is properly formed, preparation allo-
cates memory needed by the stream, and resolution trans-
forms symbolic class references into direct machine refer-
ences for the sake of run time speed and efficiency. During
the class activation process, the JVM must give the impres-
sion that it loads classes as late as possible, a process called
lazy activation [3]. This on-demand activation process per-
mits the transmission of individual Java classes to a client
by a class server.

2.3 Class transmission mechanism

The server retrieves a requested set of classes, or class sub-
graphs, according to a class transition probability model.
This model, which forms the basis for prediction, is de-
scribed in section 1.4. Based on this model, the class server
attempts to prefetch and transmit the next set of expected
classes while the client is busy executing. Even though
some classes are prefetched and delivered that may not be
loaded by the client into his JVM, this network traffic oc-
curs while the client is busy processing the current class, in
effect, overlapping operations. Any successful access to a
prefetched class is a measurable performance gain. Over-
all system performance is maintained by an efficient class
prefetching algorithm, client and server caching, a simple
database schema, and judicious threading.

When the client attempts to load another class, the cus-
tom class loader searches for classes in the following order:
the client JVM, the client’s class cache (CCC), the client’s
standard Java class libraries, and the class server. If the
class is found in the client’s cache, it is decompressed by
the JCL or built-in classes of the JVM, loaded into the run-
ning JVM, and removed from the cache. If the requested
class is not in the CCC, the JCL requests the class from
the class server. The class is retrieved from the database
along with its previously parsed list of symbolically ref-
erenced classes, which was generated when the class was
inserted into the database by the class author. The list of
classes is compressed and streamed to the CCC in the or-
der in which a JVM internally resolves all of its referenced

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 327

classes. The amount of data transmitted is limited by the
size of the client’s cache, which is managed by the client’s
JCL.

Classes from the Java libraries are loaded by the na-
tive, primordial class loader. Classes in the class cache
are loaded by the custom object class loader. The differ-
ent class loaders are related by a policy called delegation.
For each class it loads, the JVM keeps track of which class
loader, whether primordial or object, loaded the class [4].
Our model uses a separately threaded class loader derived
from the SecureClassLoader Java class to load all sub-
sequent classes. SecureClassLoader extends ClassLoader
with additional support for defining classes with an associ-
ated code source and permissions. The protection domain
in the model is the class server database itself, which has
permissions assigned to it as a code source. It also uses
the parent-delegation model introduced in Java 1.2 to deter-
mine which class loader actually loads a given class. The
rule is that the JVM uses the same class loader that loaded
the referencing or calling class to load the referenced or
called class. The custom class loader is the first class the
client receives in an application stream.

A Java class is initialized in a certain order. In stage I,
all the class’s superclasses are recursively initialized, then
the class itself, and then its inner classes, followed by the
class’s static variables. Once the class is initialized for ac-
tive use, then the class’s private variables are initialized fol-
lowed by all classes referenced in any constructors. These
references are necessary to initialize a class; therefore their
invocation probability is 1. Class initialization is described
in detail in the next section. Stage I classes are always
transmitted to the client in their own package.

Stage II classes include any method argument classes,
method return types, and all classes referenced in any
method. These referenced classes are conditionally in-
voked by an application. Stage II classes are retrieved from
the database, ordered by invocation probability, and trans-
mitted to the client in a separate package. This strategy
allows the class server to act as a predictive look-ahead
class feeder for the client. Figure 2 diagrams these sepa-
rate stages.

2.4 Transition probability model and class
invocation

The delivery effectiveness ratio H is defined as the number
of requests satisfied by a particular cache divided by the
total number of requests during an entire application trace.
Given that CC is the number of class requests satisfied by
the client cache, SC is the number of class requests that had
to be satisfied by the server, and CR is the total number of
class requests made by the client’s class loader, such that
CC +SC = CR, then HC = CC/CR. The effectiveness of
prediction is then the ratio of class requests satisfied by the
CCC to requests satisfied by the class server. The model-
ing question becomes: How can the server more effectively
predict which classes to stream to the client?

The proposed model generates a set of invocation proba-
bilities, one for each context classj that invokes a particu-
lar classi. Given a class, the model enumerates all the invo-
cation probabilities of the classes that it symbolically refer-
ences. Since the probability of transmitting a specific class
depends upon the class that calls it, the model establishes
a conditional probability vector of P (classi|classj) =
P (classi ∩ classj)/P (classj) probability values, where
classj is the context class for classi. Each classi instance
may be invoked by different classes; hence each class has
multiple classj context classes. Each class also maintains
a total count of class invocations per context class. These
class values are accumulated during the execution of an ap-
plication. Class invocation prediction implies distributing
both the globally most frequently accessed classes as well
as the class most likely to be invoked next at any point in
the program. Good prediction means transmitting those
classes that are most likely to be consumed by the client.
Given a particular context class, stage I classes are always
transmitted, but stage II classes are transmitted according
to their invocation probabilities.

To illustrate, Table 1 lists the set of classes that are in-
voked by the class TelnetDriver over 20 program runs of
a Telnet application. Stage I classes are DialerAccess,
Plugin, Common and ReturnFocusRequest because Telnet-
Driver always invokes them. The invocation probabilities
for the other classes are lower because they were condi-
tionally invoked depending upon the flow of execution.
Clearly, TelnetDriver is a stage I class because it was also
invoked the same number of times the application was run.
Each invocation probability is calculated as the number of
invocations divided by the number of program runs (e.g.,
20). For example, P (invoking Class OnlineStatusListener
within Telnet) = 2/20 = 0.1. The 103 total classes and
interfaces in this Telnet application range in size from 124
to 26158 bytes, with an average size of 2083 bytes for all
classes.

2.5 Markov chain modeling

A 1st-order, finite state, probabilistic Markov model is pro-
posed because a Markov model is suitable to the local de-
pendencies embedded in Java class invocation structure,
and the finite-state machine model accurately reflects the
necessary and unique set of state transitions that occurs
in an application trace. Since classes are conditionally in-
voked in an application trace, the model is able to charac-
terize their invocations by probability values. The Markov
model has an additional advantage in that it reveals an ap-
plication’s locality of reference, since "the performance of
demand-driven caching depends on the locality of refer-
ence exhibited by the stream of requests made to the cache"
[13](abstract). Vanichpun et al [13] further claim that "the
two main contributors to locality of reference are tempo-
ral correlations in the streams of requests and the popular-
ity distribution of requested objects", which are both ac-
counted for by the model. The "temporal correlations" cor-

328 Informatica 31 (2007) 325–335 G. Alagbhand et al.

 Class A 1.0
 Class B 1.0
 Class C 1.0
 ...

Stage 1: Directly
Requested Classes

Stage 2: Prefetched
Classes
 Class X .64
 Class Y .50
 Class Z .38
 ...

Class R

Figure 2: Invocation probability stages.

Table 1: Conditional probability vector (CPV) for class TelnetDriver.
Invoked Class Name Invocation Probability Number of Invocations
DialerAccess 1.0 20
Plugin 1.0 20
Common 1.0 20
OnlineStatusListener .10 2
FocusStatusListener .10 2
SocketRequest .80 16
VisualTransferPlugin .66 13
ReturnFocusRequest 1.0 20

respond to the sequential flow of class invocations and the
"popularity distribution" corresponds directly to the proba-
bility of invocation for a particular class.

Markov chains can dynamically model these class invo-
cation patterns found in applications. A discrete Markov
chain model is defined as the tuple < S,A, λ > where S
corresponds to the state space, Aij is a matrix representing
the invocation probabilities from one state to another, and
λ is the initial probability distribution of the states in S(0).
In our model, S represents every possible application trace,
Aij represents the invocation probabilities for each class,
and λ is the initial class invocation distribution retrieved
from the database. If the vector sc denotes the probability
vector for all the subsequent possible class invocations dur-
ing execution of a specific class c, where c ∈ S, then the
overall set of expected transition state values for class c is
ŝc(j) = sc(i)Aij . The A matrix is recalculated during each
application trace and stored in the database. The class re-
quest mechanism simply selects the largest probability val-
ues from the vector ŝc either until a threshold probability
value is reached or their cumulative class sizes are greater
than the client’s class cache size. The conditional proba-
bility vector for a class directly supports the calculation of
ŝc.

For example, table 2 calculates ŝc(j =TelnetDriver≥
.75) for sc(i =TelnetDriver= .50). It is these combined
stage I and II classes that are actually delivered to the
client because the invocation probability for ŝc(j) is≥ .75.
ŝc(i = .50) is the probability that the application would

invoke TelnetDriver in the first place.
Given the semi-hierarchical structure of nearly all appli-

cations, this Markov chain model is not irreducible, that it
is possible to get to any state from any other state. Some
states would be transient, such that given a starting state
there is a non-zero probability that the application would
never return to that particular state. Most states would in-
stead be recurrent or persistent, that at some point in time
the application would return to that state. Most applica-
tion states also avoid the Markov property of absorbing,
where it is impossible to leave a particular state. Since our
Markov chain model is not irreducible, there is no guar-
antee that the model provides a steady-state or equilibrium
distribution. In practice, however, the probability transition
matrix quickly approached a set of relatively stable values.

2.6 Threaded queue representation

Although we do not present a detailed queuing model in
this paper, it is important to note that our system can also be
represented by queuing circuits because of Java’s stringent
class loading requirements and the way the system is archi-
tected around several queue components. Relevant queuing
centers are the client request queue (CRQ) and the more
complicated class server queue (CSQ), each of which are
distinguished by their own average service times. See sec-
tions 2.4 and 2.5 for complete descriptions of the queuing
mechanism. The CSQ is accessed by two threads per client:
one thread for handling class requests to the server and the

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 329

Table 2: Expected transition state values sc for class TelnetDriver.
Class Transition Transition Prob.
DialerAccess 1.0× .50 = 0.50
Plugin 1.0× .50 = 0.50
Common 1.0× .50 = 0.50
ReturnFocusRequest 1.0× .50 = 0.50
SocketRequest .80× .50 = 0.40

second thread for receiving predicted, prefetched classes.
The third client thread accesses locally referenced classes.
The same queuing components are managed by each thread
including a common cache, a client delivery cache, and a
database fetch component. Figure 3 diagrams the funda-
mental queuing centers of the system. Operating system
and database-specific queues are not included for the sake
of simplicity.

Following Gunther [9], our system is characterized by
a first-in, first-out (FIFO) service policy which assumes
an exponential service time distribution for both queues,
the custom and native class loaders. Under FIFO, the ser-
vice time can only depend upon the queue length at each
queuing center. The system is considered open because the
server queuing center can access a possibly infinite number
of elements or classes, even though only a limited and in-
determinate number of classes are actually invoked in an
application trace. Highleyman [11] argues that an open
queuing center model is a reasonably accurate approxima-
tion if N is at least 10 times larger than the average queue
length, which is indeed the case. The two queuing streams
are also separable and mergeable. The streams are separa-
ble because it is possible to evaluate the performance mea-
surements of the complete set of queuing centers as though
each of the centers were evaluated separately in isolation.
The streams are mergeable because the performance of the
entire system is then built by combining the separate so-
lutions. These queuing characteristics establish two differ-
ent servers in an open, overlapping configuration with an
infinite population, which we describe as a M/M/2/FIFO
delay queue model.

3 Design and implementation

3.1 Optimizing overall system performance

Our system architecture attempts to minimize overall net-
work traffic by delivering only the immediately needed
classes of an application trace, since the model claims that
overall delivery throughput is increased by incorporating
and limiting the Markov probability model to the 1st-order
when predicting the client’s next class request. Network
delivery time is reduced by writing the class subgraph into
a single Java ARchive (JAR) or ZIP package for transmis-
sion.

The major problems to resolve in order to maintain ade-
quate system performance are (along with

– decomposing and storing class hierarchies into a
database where each Java class file is stored as pre-
compiled Java bytecode in a database row;

– defining an effective asynchronous streaming com-
ponent model that overlaps execution with network
communication as implemented in the CSQ and CRQ
queueing centers;

– retrieving the most probable class subgraphs to be ac-
tivated next from the class server which uses a 1st-
order Markov probability model to effectively predict
the client’s next class request to reduce invocation la-
tency;

– caching the most frequently invoked bytecodes at the
client while prefetching and caching class bytescodes
at the server to reduce database access delay;

– managing class elements as discrete database rows,
which allows for database access optimization;

– avoiding slow file system accesses and disk paging by
storing the class bytecodes in database rows;

– effectively managing limited available client memory
by allocating a minimum client cache;

– the use of judicious I/O threading.

Other design goals include:

– not modifying the client’s virtual machine executable;

– not allowing the class server to manage client state be-
yond minimal client authentication, authorization and
initialization, which reduces the overall complexity of
the application;

– expending time and effort at the class-producing or -
authoring stage instead of the class-consuming stage.

When non-duplicated classes are inserted into the CCC,
they are associated with the class that invoked them. If
a class is extracted from the CCC for activation, the dis-
card policy marks the list of explicitly associated classes for
discard, too. These classes are either sequentially pushed
out of the CCC to make room for new classes or they are
extracted for activation. Note that any inherited or par-
ent classes or interfaces have themselves already been ex-
tracted from the CCC since a class’s parents must be com-
pletely activated before the class itself. Since only the

330 Informatica 31 (2007) 325–335 G. Alagbhand et al.

 Client JVM
 Class Cache
 Java Libraries

Client Request Queue Class Server Queue

 Client Delivery Cache
 Common Cache
 Database Fetch

Client
JVM

Class

Request

Thread A:
Requested

Classes

Thread B:
Requested

Classes

Thread C:
Prefetched

Classes

Figure 3: Queuing request centers.

client removes classes from the CCC, there is no need for
the client to inform the server that the client has unloaded
a class. The client JCL is responsible for cache overflows.

Storing Java bytecodes instead of source text offers sev-
eral advantages: the bytecode does not have to be recom-
piled for each client; unlike machine code, the Java byte-
code supports a heterogeneous computing environment. In
addition, the source analysis and compilation is performed
by several powerful class authors instead of by the clients
themselves.

3.2 Server caching strategy

The server implements the following caching strategy. A
common cache is maintained by the server which contains
classes or resources that have recently been used by two or
more active clients, as shown in Figure 1. A smaller, client-
specific delivery cache is also established on the server for
each client which receives the anticipated set of classes ref-
erenced in the class subgraph. These caches are informed
and populated by the application’s class invocation proba-
bilities.

Using these previously computed probabilities for
the requested class, the database keys of the re-
quested class and its subgraph are fetched from
the class server database as shown in Figure 3.
Then the class fetching algorithm works as follows:
while requested classes not in client-specific

buffer do

THREAD C:

receive prefetched classes and buffer them

locally

while requested classes not in common buffer

concurrently do

THREAD A:

fetch, buffer, transmit requested class

stream

THREAD B:

fetch, order, buffer, transmit subgraph

stream

endwhile

endwhile

The Java environment also supports the effective use of
multiple threads for asynchronous events. As shown above,
each connected client allocates at least three threads: two
to process class requests and one to receive class data.
The server allocates and manages a separate thread from a
thread pool per connected client. This coarse-grained par-
allelism, coupled with the use of dedicated socket ports,
permits for effective overlapping of client-server commu-
nication with client processing. Note that a client does not
establish a direct connection to the server database.

Determining the proper size of the client cache is of crit-
ical importance. This size must balance the critical con-
straints of limited client memory with the fact that class
prediction may be incorrect, which therefore may transmit
unneeded classes to the client. The viability of class predic-
tion is demonstrated only if these constraints are effectively
reconciled; i.e., if the delivery effectiveness ratio H can be
increased.

4 Performance measurements

4.1 Experimental setup

In the experiments, a 600MHz computer simulates a
resource-constrained client with a specified cache size.
It is connected to a 1.7GHz server computer over a
10Mb TCP/IP network through a router. The server pro-

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 331

gram executes within a single Java JVM instance, version
1.4.1.02.b06. The representative Telnet client application
is designed to exercise the two different stages of classes
to be delivered. The application has a reasonably rich class
hierarchy including superclasses, inner classes, static and
private variables, class variables and constructors.

The goal of this paper is to present the feasibility and
effectiveness of the proposed methods. Experiments with
more applications and benchmarks running on more suit-
able hardware, say one of the newer mobile handsets, will
be the subject of future publications.

4.2 Verifying the effectiveness of a common
cache

A performance-experiment was conducted in order to test
the effectiveness of a common cache on the server (as de-
fined in the Server caching strategy section) under the as-
sumption of multiple client JVMs. A common class pack-
age was transmitted to a set of 4, 16 and 32 clients all run-
ning under their own JVM instance on the same client com-
puter. Figure 4 shows the effect of averaged package in-
stantiation time with and without the common 256k server
cache operating. The performance effect of using the 256k
common cache is not significant until 32 clients are being
serviced simultaneously, at which point the average pack-
age instantiation time is cut in half from 15 seconds to 7
seconds. We will use a common cache of 256K for the
next set of experiments.

4.3 Experimental results
After exercising the client source application under multi-
ple and various traces using different class method calls,
the delivery effectiveness ratio H is calculated as a func-
tion of client cache size. Table 3 presents the class transfer
data gathered for a complete application run using a 32 kb
cache. In the table, the effectiveness ratio is calculated as
HC = CC/CR.

The server records the stream size it delivers to the client.
Previous experiments [7] had demonstrated that activating
the class prediction mechanism delivered twice as many
bytes to the client as opposed to simply delivering every
class stream on-demand. The separately threaded client
class loader, threads B and C, records the total stream trans-
fer time it took to receive requested data as the amount of
time the class loader blocks on the server, not including ac-
tual class instantiation. However, the two-stage packaging
mechanism that transmits the two separate class package
streams does not double the amount of transfer time be-
cause the predicted classes are transmitted asynchronously
to the client. The additional network traffic occurs while
the client is busy processing the current class, in effect,
overlapping operations. By convention, the custom class
loader itself and the application’s main class are counted in
SC . We do not count those classes that are already accessi-
ble within the client’s JVM.

Recall that multiple stage I classes are usually required
to initialize any particular class for active use, which sim-
ply activates the class in the client JVM. Depending upon
the application’s structural class hierarchy, these implicitly
loaded classes and interfaces may be satisfied by either the
CCC or the server. In either case, CR = 52 reflects the
actual number of classes the application trace instantiates,
both implicit and explicitly named. Without prediction, the
server has to deliver 27 out of 52 classes (52%) to the ap-
plication stream while the client blocks. Note that the cus-
tom class loader makes a fewer number of explicit class
requests than what is actually delivered to the CCC, and so
does not produce a reliable number for comparison.

With prediction, the number of classes SC satisfied by
the server, where the client is forced to request, block and
wait for a class stream, is 4 less because the server has an-
ticipated their use, then prefetched and transmitted them to
the CCC. Now the server delivers only 23 out of 82 classes
(28%) to the application stream responding to a blocked
request. The total client class cache count, CR = 82, is
larger because the server has transmitted additional, pre-
dicted stage II classes. However, the prediction process
increases CC , the number of classes fetched from the local
client cache. We claim that any successful local access by
the client to a prefetched class is a significant performance
gain. The end benefit is that the client effectiveness ratio
HC , has increased from 0.48 to 0.72, an improvement of
50%.

Figure 5 illustrates the averaged instantiation times and
HC ratios, prediction over no prediction, under four dif-
ferent cache sizes: 8k, 16k, 32k, and 64k. A client cache
size of 16k accommodates most class requests relatively
efficiently. A client cache size of 32k nearly approximates
immediate class activation, as measured by averaged time
of class activation. The averaged class cache hit ratios ap-
proached 54% with a cache size of 64k, revealing the effec-
tive limits of the prediction mechanism as well as demon-
strating the effective parallelization of class delivery with
program execution. For a modest increase in client mem-
ory, say 32k, a large application can be effectively delivered
to an otherwise resource-constrained client.

To show the effect of communication overlap of the re-
quired additional data transfer to the client’s overall exe-
cution time, we compare estimates of the total application
trace execution time te with and without prediction. Be-
cause we are interested in client I/O-bound applications,
it is fair to factor out the common duration of in-memory
class execution time and to concentrate on the I/O param-
eter of total blocking time tb, which includes total class
transmission time. We ask at what client class cache size,
if any, does the ratio of total blocking time over trace exe-
cution time ever become less with prediction than without
prediction? Tables 4 and 5 present the following averaged
results for 1 client at various client class cache sizes. Again,
the total size of the stream transmitted was 84746 com-
pressed bytes without prediction and 169104 bytes with
prediction.

332 Informatica 31 (2007) 325–335 G. Alagbhand et al.

Performance effect of 256k
common cache on the server

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00
C

lie
n

t
In

st
an

ti
at

io
n

 T
im

e

(s
ec

o
n

d
s)

Without Common Cache, Multiple JVM

With Common Cache, Multiple JVMs

Figure 4: Common class package instantiation for 4, 16 and 32 clients.

Table 3: Effectiveness of class prediction for 1 client.
32kb Client Cache: 1 Active Client No Prediction No Prediction P/NP
. Stage I Only Plus stage II .
Total stream size (compressed bytes) 84746 169104 1.995
Total stream transfer time (secs) = tb 14.2 19.3 1.36
Classes satisfied by server = SC 27 23 0.85
Classes satisfied by client cache = CC 25 59 2.36
Total client class cache count = CR 52 82 1.58
Effectiveness ratio HC = CC/CR 0.48 0.72 1.50

Table 4: Total execution te and blocking times tb (sec)
without prediction.

CCC Size 8k 16k 32k 64k
tb 23.7 17.5 15.2 15.0
te 38.1 34.1 31.8 31.2
tb/te 62% 51% 48% 48%

Table 5: Total execution te and blocking times tb (sec) with
prediction.

CCC Size 8k 16k 32k 64k
tb 29.5 18.9 12.1 12.0
te 39.9 31.5 28.1 28.6
tb/te 74% 60% 43% 42%

As shown in Figure 6, we conclude that prediction be-
comes more effective than not in terms of reducing total
client execution time at a client cache size of 32k, even
though twice as many class bytes are delivered to the client.

5 Related work
Arnold’s recent survey [14] of adaptive optimization in
virtual machines presents the three major developments
of adaptive optimization technology in virtual machines
over the last thirty years: 1) selective optimization, 2)
feedback-directed code generation, and 3) other feedback-
directed optimizations in order to improve VM perfor-
mance. The survey discusses the benefits and drawbacks of
just-in-time compilers, synchronized thread management,
dynamic class loading, native code caches, class splitting
and dynamic class caching. Most of these techniques ex-
ploit some form of temporal locality to be effective.

Krintz’s work [5] proposes Java class file splitting and
prefetching optimizations as an effective latency-hiding op-
timization for mobile programs which also does not require

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 333

8k: 18%

16k: 37%

64k: 54%32k: 50%

0

500

1000

1500

2000

2500

3000

3500

Cache sizes and class cache hit ratio percents

(m
se

c)

Figure 5: Client cache size vs. average time of class instantiation.

redefining the Java Virtual Machine specification. The
combination of techniques reduces the overall transfer de-
lay encountered during a mobile program’s execution by
25% to 30% on average. However, Krintz’s method re-
quires inserting prefetch statements into the Java source
code as well as compilation using a binary modification
tool.

Bartels et al [1] describe an adaptive fault-based
prefetching scheme based on a one-level Markov net that
achieved high prediction accuracy for some classes of sci-
entific applications.

Thiebaut’s work [10] with synthetic traces demonstrated
the structural importance of the locality of reference in real
programs and its impact on hit and miss ratios.

Chilimbi [12] proposes a data reference framework and
an exploitable locality abstraction called hot data streams
as a quantitative basis for understanding and optimizing
data reference locality.

Our general approach is indebted to Patterson’s semi-
nal paper [6] on informed aggressive disk prefetching and
caching (TIP), where it is shown that prefetching can not
only mask latency with asynchrony, by overlapping I/O
with computation, but also expose parallelism for the sake
of greater throughput.

6 Conclusions
Our paper describes a streaming mechanism that distributes
Java class bytecode streams to a client from a class server
using a 1st-order Markov probability model to predict
the client’s next class request. The experimental results
demonstrate that a simple class prediction mechanism sig-

nificantly reduces client blocking using a dedicated client
cache size of 32k. At the cost of the client receiving
twice as many bytes over the network and a modestly-larger
cache, the client is able to execute rich and complex appli-
cations not otherwise possible. We acknowledge that this
extra network processing is clearly a concern for power-
sensitive devices.

Using the Java architecture requires writing and deliver-
ing a custom class loader for mobile devices. Sun’s Java 2
Micro Edition (J2ME) CLDC, targeted to cell phones, re-
quires 128K to 512K total memory available with less than
256K ROM/Flash and less than 256K RAM (JSR-000030).
However, it currently does not support user-defined class
loaders or native method access. The mobile device man-
ufacturers would themselves have to embed modified class
loaders into these devices in order to handle the proposed
streaming mechanism.

To summarize, this paper makes the following contribu-
tions:

– The Java linking process permits dynamic class load-
ing that delivers application streams to clients.

– A 1st-order Markov class invocation probability
model effectively predicts the client’s next class re-
quest in order to reduce invocation latency and trans-
fer delay by overlapping program execution with net-
work communication. Prediction is worth the effort.

– The current implementation does not require the mod-
ification of the Java Virtual Machine definition. How-
ever, due to the lack of a dynamic class loading mech-
anism, the current version of J2ME/CLDC would re-
quire significant modification.

334 Informatica 31 (2007) 325–335 G. Alagbhand et al.

0 10 20 30 40 50 60 70
40

45

50

55

60

65

70

75

Client Cache Size (kb)

B
lo

ck
in

g/
E

xe
cu

tio
n

T
im

es
 (

%
)

No prediction
With prediction

Figure 6: Execution and blocking time percent vs client cache size.

– We also plan to carry out the methods developed in
this work with various benchmarks on appropriate
hardware, such as mobile handsets.

References

[1] Bartels, G., Karlin, A., Levy, H., Voelker, G.; Ander-
son, D., Chase, J. (1999). Potentials and Limitations
of Fault-Based Markov Prefetching for Virtual Mem-
ory Pages, ACM SIGMETRICS Performance Evalu-
ation Review, Volume 27 , Issue 1, June 1999.

[2] Gosling, J., B. Joy, G. Steele, and G. Brach. (2000).
Java Language Specification, 2nd Ed. Boston: Addi-
son Wesley.

[3] Liang, Sheng and Bracha, Gilad. (1998). Dynamic
Class Loading in the Java Virtual Machine, in Pro-
ceedings of OOPSLA ’98, published as ACM SIG-
PLAN Notices, Volume 33, Number 10, October
1998, pages 36-44.

[4] Venners, Bill. (1999). Inside the Java 2 Virtual Ma-
chine, 2nd Ed., New York: McGraw-Hill Companies.

[5] Krintz, C., Calder, B., and Holzle, U. (1999). Reduc-
ing Transfer Delay Using Java Class File Splitting
and Prefetching, UCSD Technical Report, CS99-615,
March 1999.

[6] Patterson, R.H. Gibson, G.A., Ginting, E., Stodolsky,
D. and Zelenka, R. (1995). Informed Prefetching and

Caching, J. Proc. of the 15th Symposium of Oper-
ating Systems Principles, Copper Mountain Resort,
CO, December 3-6, 1995, pp. 79-95.

[7] Alagbhand, G., Gnabasik, D. (2004). Streaming Java
Applications to Mobile Computing Devices, Proceed-
ing of the 2004 International Conference on Wireless
Networks, Monte Carlo Resort, Las Vegas, Nevada,
June 21-24, 2004, pp. 637-643.

[8] Sun Microsystems. (1998). Java Object Se-
rialization Specification. Available online:
http://java.sun.com/products/jdk/1.2/docs/
guide/serialization/spec/serialTOC.doc.html

[9] Gunther, N., (1998). The Practical Performance An-
alyst: Performance-By-Design Techniques for Dis-
tributed Systems, New York: McGraw-Hill Compa-
nies.

[10] Thiebaut, D., Wolf, J.L., and Stone, H.S. (1992). Syn-
thetic Traces for Trace-Driven Simulation of Cache
Memories. IEEE Trans. Computers. 41(4):388-410.

[11] Highleyman, W.H., (1989). Performance Analysis
of Transaction Systems. Englewood Cliffs, N.J.:
Prentice-Hall

[12] Chilimbi, Trishul. (2001). Efficient Representations
and Abstractions for Quantifying and Exploiting Data
Reference Locality. Microsoft Research, One Mi-
crosoft Way, Redmond, WA

[13] Vanichpun, S., Makowski, A.M., (2004). Compar-
ing strength of locality of reference - Popularity, ma-

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 335

jorization, and some folk theorems. To appear in Per-
formance Evaluation and Planning Methods for the
Next Generation Internet, A. Girard, B. Sanso and F.J.
Vazquez-Abad, Editors, Kluwer Academic Press.

[14] Arnold, M., Fink, S.J., Grove, D., Hind, M., Sweeney,
P.F. (2004).A Survey of Adaptive Optimization in
Virtual Machines. IBM Research Report, RC23143
(W0312-097).

336 Informatica 31 (2007) 325–335 G. Alagbhand et al.

