
 Informatica 41 (2017) 275–282 275

Power and Limitations of Formal Methods for Software Fabrication:

Thirty Years Later

Edgar Serna M. and Alexei Serna A.

Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington. Medellín, Antioquia, Columbia

E-mail: edgar.serna@uniremington.edu.co, alexei.serna@uninremington.edu.co

Keywords: formalization, automation, formal languages, software lifecycle, software quality

Received: February 16, 2017

In 1987, Michael Jackson presented his work "Power and Limitations of Formal methods for software

fabrication" at the AIT Conference, which analyzed the advantages and limitations of formal methods up

to that time. His conclusion was that formal methods had undoubted capabilities and advantages, but they

also had serious limitations that prevented their widespread acceptance and adoption. The aim of this

paper is to present the current context of formal methods compared with what Jackson described three

decades ago. A tour of the strengths and limitations of formal methods is taken through a review of

literature in the timeline of the past thirty years. The conclusion is that little progress has been made on

this issue in relation to the situation presented by Jackson, and formal methods still need more work from

academia, industry and the community.

Povzetek: Prispevek analizira napredek formalnih metod s primerjavo z Jacksonovo metodo izpred

trideset let.

1 Introduction
The idea of making mathematics an area of increased use

and applicability in different disciplines and contexts can

be traced to ancient Greece, where Pythagoras, Plato,

Aristotle and Euclid tried to make its study and use

accessible to a wide audience [1]. Beyond incipient

astronomy, the development of physics, public works and

the little there was of mechanics, however, its context

continued to be limited to accounting and commercial

calculations [2].

For a long time, initiatives were developed with

similar objectives, and although some have been relatively

successful, especially with the emergence of the

engineering disciplines and scientific specializations, the

situation appears to remain in other areas [3]. Despite

these achievements, the general idea is that mathematics

is a field of knowledge that is extremely complicated and

difficult to learn and apply to social realities. This attitude

has created many myths that have taken hold in the

formative process, where students manifest a fear of

taking mathematics courses whose content is higher than

that in other courses [4, 5). Beyond the fact that these

myths may or may not be true, the reality is that there is

still no generalized context in which mathematics is

appreciated for what it is and not what it seems. For

example, one can mention that without the contributions

of mathematics, major scientific and engineering

developments would not have materialized in areas such

as astronomy, physics, chemistry, natural sciences and,

more recently, computer science [6]. In the latter, it was

adopted as formal methods with the idea of mathematizing

processes to develop software and design hardware [7].

Although many moments of the appearance of formal

methods can be found in the history of these sciences and

many authors have submitted contributions in this regard,

it was not until the 1960s that the concept was taken

seriously, after the enactment of the so-called software

crisis [8]. The community then directed its gaze to

mathematics as a lifeline that had helped other disciplines,

with the aim of integrating it into software development to

solve this crisis and ones that might appear later.

Since that time, various researchers, scientists,

authors and organizations have been given the task of

mathematizing software development and automating

their tests in search of better-quality products. At this time

there has been progress, but at the same time, many

problems have been found due to the limitations

diagnosed in formal methods [9]. In 1987, Michael

Jackson [10], a British computer scientist and professor,

made a presentation on what he considered the advantages

and limitations of formal methods at that time. Three

decades after his presentation, it is time to review whether

mathematics in computer sciences has overcome those

weaknesses and built upon its strengths, if it continues on

the same path, or if it needs more time to achieve what was

proposed as a lifesaver for software problems.

Building on the work of Jackson, the aim of this article

is to take a tour through three decades of publications on

the advantages and limitations of formal methods and

determine how far we have advanced in their potentiation

and/or improvement. This work presents what authors

have proposed, innovated and applied regarding the

formalization of software development, and the results

and conclusions of Jackson are contrasted with the current

reality. In addition, current and future challenges for

industry, academia and the community regarding the

acceptance and widespread use of formal methods are

described.

276 Informatica 41 (2017) 275–282 E. Serna M. et al.

2 Method
To develop this review, it was applied the methodology

proposed by Serna [47] to perform reviews of the

literature. The search was performed in the following

databases: ScienceDirect, ACM Digital Library, Scopus,

and Web of Science. It was searched the term Formal

Method(s) combined with the terms definition,

description, power, limitations, best practices, effective

development, and development, first in the title or

abstract. By applying this method were selected 78 works

including articles, books, works in events and websites. To

this population, the sample was applied the

inclusion/exclusion criteria (thematic pertinence, author's

relevance, focus, quality of results, practical application,

and others) in order to determine if the content contributes

to the achievement of the goals set in this review. After

this procedure, we get 48 works, and after performing a

quick reading and applying the concepts of quality in order

to determine the value of each of them for this research the

final sample was constituted by 40 works.

3 Jackson’s conclusions
The work of Jackson [10] had the goal of presenting an

analysis of the state of formal methods for the decade of

the 1980s. In his presentation, he argued that it would be

tedious and boring to describe the advantages and

limitations alone, and for this reason, he dedicated almost

all of the content to analyzing the fact that the problem

was not so much with the formal methods but rather with

the body of knowledge itself or the practice of developing

software at that time. He asserted that these limitations

could not be overcome solely by improving formal

methods because they had been imposed by the inherent

informality of that practice. To this end, it was one thing

to describe the real world with mathematics and a very

different thing to do so with natural language because the

ambiguity of the latter creates complications for

translation.

He also argued that formal methods offered a range of

formalization but did not indicate which option to select

nor how to apply it in the development of software, a task

that corresponded to the developer based on experience

and skills. For him, at that time, it was thought that

software development was like a manufacturing process,

in which descriptions were written in some language and

assumed to be analogous to the parts of a mechanical

product, where language was the raw material to

manufacture them. It was also assumed at that time that

software development was primarily a task of

composition, not of decomposition, which duplicated the

thinking in the forties of engineers in the construction of

rockets, who felt that the process consisted of five

descriptions: a guidance system, a propulsion system, fuel,

a structure and aerodynamic principles, when, to satisfy

them all, only the structure, fuel and streamlining were

needed. According to Jackson, that process is what defines

composition, but it demands creativity and invention that

cannot always be automated.

He concluded that formal methods have undeniable

advantages and potential, but for the practice of software

development at the time, they also had serious limitations

that hampered their widespread acceptance. Although

most of his work was devoted to demonstrating that most

of the blame belonged to the practice of software

development, he listed some advantages and limitations,

which are presented in Table 1.

Power

Their descriptions are accurate and non-

ambiguous

Their descriptions can be manipulated by

symbols

Mathematics provides a high degree of reliability

The math is based on a large body of knowledge

Limitations

They restrict the developer to a single language

They are focused on transformations between

descriptions

They tend not to be methods

Not all software projects can be formalized

Formalisms tend to be isolated from each other

Research focuses on individual formalisms

A broad integration of formalisms is required

Table 1: Power and limitations of formal methods [10].

Three decades have passed since these claims, and

there remains in the environment the feeling that formal

methods cannot become an alternative for developing

reliable, secure and quality software. In the next section,

the development of formal methods over the 30 years after

the work of Michael Jackson is described.

4 The last thirty years of formal

methods
In Seven myths of formal methods, Anthony Hall [11]

presents his analysis of seven myths that existed at that

time: 1) they ensure that the software is perfect, 2) they

prove that the program is correct, 3) they are only useful

in critical systems, 4) they involve complex mathematics,

5) they increase the cost of development, 6) they are

incomprehensible to customers, and 7) nobody uses them

in real projects. The author claims that many of the things

said for or against formal methods were generated from

the experiences of developers when applying them but

that, although there might be some uncertainty, the reality

was that they had more advantages than disadvantages. In

his own experience, said Hall, these myths had to be

reformulated and established as a type of process because,

by then, the transfer from academia to industry was

working consistently. To Gaudel [12], the advantages and

problems of formal methods were limited to specification

and design, as shown in Table 2.

According to Young [13], positive or negative

opinions on formal methods had generated controversy for

years, while the formal methods community fell short in

explaining what they are and what their advantages are

due to using descriptions and language that only

Power and Limitations of Formal… Informatica 41 (2017) 275–282 277

community members understood and recognized.

However, likewise, he asserted that there was a lack of will

in the software engineering community to recognize the

true value of formal methods. For him, if the goal was to

improve the quality of software, it was necessary for both

communities to work together to achieve it. For their part,

Barroca and McDermid [14] felt that formal methods

could be used in two different ways: to produce

specifications for conventional systems development and,

from that point, to generate formal specifications to verify

the accuracy of the program. For these authors and at that

time, the benefits of formal methods were as follows: 1)

they ensure a consistent interpretation of the specification,

2) they allow verification of the application, and 3) they

remove the ambiguity of language. They also listed

weaknesses: 1) their development status is low, 2) the

specification cannot be validated, 3) they only have

mathematical interpretations, and 4) non-functional

requirements cannot be adequately articulated in the

context.

 Power Limitations

Specification

They make it

possible to

analyze and

encourage it

It is structured

and reusable

It is testable

Correctness

cannot be

formalized

To express the

properties, it is

necessary to

formulate certain

aspects of the

application

domain

They only allow

external

verification

Design

It is the best way

to prevent human

errors

It is a good

approximation to

zero failures

Correctness tests

are improved

They are difficult

to implement

It is still

necessary to

check the design

with a tool

The mathematical

rigor does not

completely

eliminate errors

The tests do not

provide security

Table 2: Power and limitations of formal methods [12].

For Robert Vienneau [15], changes in computing in

the 1970s and 1980s generated revolutionary ideas that

materialized in formal methods, but there was not yet a

unified philosophy about them. Although formal methods

were promulgated as a technology applicable to the entire

software life cycle, the author wondered why they were

not more widely known. He asserted that part of the

problem was educational and that many of its limitations

would never be overcome, but he was convinced that some

restrictions would be addressed through research and

practice. Table 3 shows the limitations and advantages that

this author described.

Power

They can be used to verify a system

They complement the natural language descriptions

and give them accuracy

They can show that an implementation satisfies a

specification

More precise specifications are achieved

Internal communication is improved

They provide the ability to verify designs before

running them during the test

They offer higher quality and productivity

Limitations

They cannot be used to validate a system

They can never replace the knowledge that the engineer

has of the system

They can never fully replace tests

Their applicability is doubtful in systems with many

lines of code

Table 3: Power and limitations of formal methods [15].

Liu and Adams [17] concluded that developers

utilized formal methods with the hope of refining

processes and improving specifications but often did not

achieve their goals due to the limitations of this

technology: the refinement rules are not sufficient to

guarantee that a refined specification satisfies the

requirements, and in addition, these rules cannot be

reutilized and are difficult to apply in practice. For this

reason, they recommended modifying the existing

refinement rules, if the objective is to make formal

methods widespread. According to Craigen et al. [18], at

that time, formal methods were a developing technology,

and therefore, they exhibited limitations, like any other

such technology. Moreover, it was necessary to determine

two key aspects: 1) what were the boundaries between the

real world and the world of mathematics and 2) what were

the internal limitations of the mathematics. They felt it was

difficult to address these issues because, at that time,

research placed the real world in doubt; therefore,

mathematizing the needs of the client became an informal

process. This limitation hindered the widespread growth

and recognition of formal methods among software

professionals.

Bowen and Hinchey [19] asserted that, for some

reason, in the 1990s, formal methods had become one of

the most controversial techniques in software engineering.

They took as a foundation the work of Hall [12], and they

added perspectives that they considered to be new myths:

they delay the development process, tools do not support

them, they are not really methods, they only apply to

software, they are not necessary, they do not have support,

and the formal-methods community always uses formal

methods. For them, the problem was that more real

relationships between academia and industry were

required, it was necessary to spread experiences (positive

and negative) by using them more widely, more research

was needed, and it was necessary to demystify

mathematics. Rushby [20] said that, in that decade, formal

methods had progressed from an academic curiosity to an

industrial reality, and he presented an analysis of their

278 Informatica 41 (2017) 275–282 E. Serna M. et al.

past, present and future. He concluded that to achieve

widespread adoption, it was necessary to improve the tools

and the scale of their applications, that theoretical research

should provide better characterization, and that the

software industry must have an open mind regarding this

technology because the hardware industry was already

enjoying its benefits.

Steve Easterbrook [21] described three case studies in

which they applied formal methods to model

requirements. They argued that, in contrast to other

projects in which Requirements Engineering was used

very early on to validate needs, in their experience, they

were able to improve the specification. They concluded

that the benefits of formal modeling are that it reduces

process costs, it enables more effective verification and

validation, and maintenance is structured better.

Meanwhile, for Kneuper [22], formal methods could help

improve the reliability of software development but did

not solve all problems. The author described the

limitations that make universal solution by formal

methods impossible: complete formalization is not

possible, there is no guarantee that the informal user

requirements are correct and complete, it is difficult

(almost impossible) to ensure that the program is correct,

they do not determine correct tests, abstraction does not

accurately reflect the application, they are applied on a

small scale, the technical development is insufficient, and

developers do not have the proper mathematical training.

According to John Knight and his team [23], by that

time, formal methods had proven benefits, but there were

several reasons they lacked broader acceptance: they

extend the development cycle, they require complicated

mathematics, and the existing tools are inadequate and

incompatible with other software packages. However,

after applying formal methods to critical application

specifications, they concluded that, although several of

those reasons could be valid, the main issue was to try to

build a comprehensive evaluation framework for the

specification. Given that until then, it had not been

achieved, it became a stumbling block that the industry

could not solve, but given the orientation of the subsequent

research, it could be solved in future work. For Jeannette

Wing [24], formal methods had limitations in ensuring the

security of systems, but they delineated the boundaries of

the systems and characterized their behavior more

accurately, defining their desired properties with precision

and providing a specification in terms of time. She

explained that their limitations were because the system

operates in an environment, and therefore, formal methods

cannot provide total security. She also said that the future

of formal methods was promising because, in that decade,

many research initiatives were conducted.

Jones et al. [25] conducted research on the

contributions of formal methods to requirements

engineering and found that some challenges still remained

to be overcome: how to couple informality to the formality

of requirements, better manage changes, allow

traceability, improve accuracy in the validation of the

specification, offer better alternatives for non-functional,

reconcile some inconsistencies in notations, allow

multiple notations and create a body of knowledge that

includes all parts involved in this phase. In the same vein,

Heylighen [26] stated that the validation of knowledge

requires formal expressions of the same and that

mathematical determinism requires greater co-pagination

with operational determinations. He believed that any

formalization process has advantages: it removes

ambiguity, it defines the extension of terms, it is

independent of time, mathematical language is universal,

and it is reusable and testable. However, it also has

limitations: it is generally isolated from the context, it has

intrinsic limitations, and it assumes normal conditions as

implicit contexts, whereas causal factors determine

context dependence. He predicted that it was necessary to

overcome the limitations and potentiate the advantages to

popularize the formalization of software.

Wordsworth [27] summarized the benefits of formal

methods as follows: 1) successful cases have been

sufficiently reported, and 2) although the basis is

mathematical, it is not always necessary. His caveats,

however were that formal methods demand some degree

of mathematical sophistication, they are not taken

seriously in programs of study, users are satisfied with

traditional methods, the requirements should be specified

more precisely, and developers prefer to code without

complete specification. According to [28], formal

methods had not yet achieved greater penetration; a wide

gap persisted between research in academia and industry

application. They maintained that the fact that industry

still did not believe in formal methods was due to the loss

of scalability, limited access to specialists and the

immaturity of tools and techniques.

Peter Amey [29] presented what he called the reality

of formal methods and described a series of cases of

successful software development. He inquired why,

despite its utility, the approach still was not widely used

in industry, and he concluded that it was because,

typically, they were trying to use development at

inopportune times. That is, the error was not how but

when. He suggested it would be advisable to start with

specification and then reach verification and validation.

Edmonds and Bryson [30] argued that the idea of formal

Power

They provide units of measure

They facilitate the detection of errors

They ensure proper operation

They reduce errors

They help improve abstraction

They perform rigorous analysis

They are reliable

They allow effective test cases

Limitations

They require informality to guarantee the specification

It is not easy to see that the implementation satisfies the

specification

It is not possible to guarantee that the tests are correct

The language features are complex

Technical environments do not always recognize a

formal specification

Table 4: Power and limitations of formal methods [37].

Power and Limitations of Formal… Informatica 41 (2017) 275–282 279

methods offered two advantages: 1) the specification is

unambiguous, and 2) it can be self-handled syntactically.

However, they felt that formal language presented

difficulties when trying to translate to or from other

languages, which generated two problems: 1) natural

language translation is slow, and 2) coding is delayed.

Martin Gogolla [31] summarized the benefits and

problems of formal methods through a literature review

and classified his findings based on indicators: domain of

application, persons, properties, tools, understanding,

development and general criticism. He concluded that the

success or failure of formal methods was not determined

by their mathematical properties but by the low usability

of existing tools.

For Glass [32], formal methods had existed for a long

time but still did not achieve the impact they should have,

even though the specification is considerably more

understandable, the confidence of the analyst increases

because they identify the key problem to solve, errors in

the final product are reduced, and maintenance costs are

reduced due to the knowledge acquired. Hall [33]

attempted to demonstrate the benefits of formal methods

and asserted that achieving them was not automatic

because there was no better way nor better method to do

so. He thought that they were only part of the solution to

the problems of software development and that their

success depended largely on a clear integration: that

intelligent use is required, that researchers should dedicate

more time to them, that practical issues of integration and

access are as important as the theoretical issues, and that

developers must let go of the fear of formalisms.

Sommerville [34] wrote that since the 1980s, many

engineers and researchers had proposed the use of formal

methods as the best way to improve the quality of software

products, but that dream still had not come true. He

concluded that there were four reasons: 1) the emergence

of new methods and management proposals that have

helped improve the quality and success of Software

Engineering; 2) a new market where quality seems to be

of secondary importance; 3) the limited reach of formal

methods, which still do not adequately exceed

specifications; and 4) limited scalability because large

projects are still not satisfied. Still, for him, formalization

was an excellent way to discover errors in specification.

David Parnas [35] argued that in the last 40 years,

three alarming gaps had appeared in the software field: 1)

between research and practice, 2) between software

development and traditional engineering disciplines, and

3) between computer sciences and classical mathematics.

He argued that advocates of formal methods proposed

them as the solution to any of those gaps, even though, up

until that time, they could not be verified. He concluded

that formal methods had been left with only that

perspective, and it was time to rethink them. To achieve

this rethinking, he proposed the following: 1) software has

problems, but some formal methods with problems will

not solve them, 2) more research is needed as is fewer

defensive efforts, 3) movement should be slow, not all at

once, 4) abstractions should be simple, but true, and 5) our

role in the model must be as engineers, not as philosophers

and logicians. For the IET [36], formal methods offered

the following advantages: they allow a consistent and

reasonably complete specification, they reduce the

likelihood of error and the cost of detection, and they

permit identifying ambiguity in the specification and

verification of security requirements. Nonetheless, they

were not widely used because the industry did not give

them real opportunities and because academia did not

view them seriously.

In the article by Batra et al. [37], it became clear that

by then, the demand for incorporating formalization in

Information Systems had increased because the

specification represented actual requirements, and the

formal methods could ensure that the implementation met

the specifications and demands of security, reliability and

quality, although they also had weaknesses. Table 4

describes the advantages and limitations of formal

methods for these authors.

In the results of a survey conducted by Fitzgerald [38]

on the impact of formal methods on the cost, time and

quality of the software, the opinions were divided: 25%

reported a decrease and 20% an increase in time; in terms

of cost, 33% said there was a reduction and 8% said it

increased; and in quality, 88% asserted that it improved

and 8% were not sure. In [9] identified eight obstacles to

the research, teaching and practice of formal methods: 1)

there is insufficient research and teaching, 2) support tools

are not sufficient for use on a large scale, 3) students are

not taught Computer Science or Software Engineering in

mathematical terms, 4) no foundations are strengthened

and no attempt is made to present new functions, 5) there

are not enough graduates with mathematical knowledge to

serve the industry, 6) professors of computer science and

Software Engineering do not receive the same training

they did 30 years ago, 7) formal methods lack tools for

managing versions and configuration control, and 8)

professionals who are trained in formal methods do not

find support among their industry fellows, so they tend to

abandon the practice.

Ishikawa et al. [39] stated that formal methods were

increasingly attracting more attention as a solution to the

high demand for efficient and reliable software, but a gap

had developed between knowledge and teaching with

which software engineers were educated and what was

required to implement these methods. Meanwhile, for

Mayo et al. [40], the limitations of formal methods lay in

semantics and traceability, as software and hardware are

formally tested during the development process only for

explicit statements made ahead of time and as the

requirements are validated only in the semantics in which

they were tested. According to Gross et al. [41], the

exhaustive testing of software systems is intractable and

expensive, but if formal methods are incorporated

throughout the design process, errors can be identified as

they are introduced and the total cost of development

dramatically reduced.

5 Analysis of results
After presenting a review of the timeline of formal

methods in the past 30 years, looking for the advantages

and limitations published by various authors, it is difficult

280 Informatica 41 (2017) 275–282 E. Serna M. et al.

to determine whether the advantages of formal methods

have been improved or new ones found. Regarding the

limitations, it cannot be stated clearly whether they have

been overcome or if instead they have become more acute

or others have appeared. The conclusions and

presentations in these decades are divided between

positivism and negativism toward formal methods, even

predicting its possible disappearance from the software

development stage. In any case, after analyzing these

conclusions, the map of reality of formal methods in these

three decades can be seen from three dimensions: from

academia, from the community and from the industry.

Next, we consider each from the perspective of the results.

In the academic dimension, many works report that

formal methods do not achieve the expected penetration

because the curriculum in Computer Science and Software

Engineering still does not pay adequate attention to them.

Thus, these professionals are not educated in applied

mathematics, and the few who are have not found peers in

industry interested in sharing their knowledge. In this

sense, academia should provide an opportunity for formal

methods and include them in its content, and in addition,

professors need more training to avoid improvising in the

classroom. While software problems will not be solved in

this way from one moment to another, if progress has

already been made, it is better to exploit formal methods

to see if they can improve software quality [42].

Furthermore, education systems should take

responsibility for the fact that students have mythicized

mathematics because they are structured to educate

everyone equally and in all areas. With this approach, the

skills that each individual may have for one or another

discipline are wasted because they do not receive a

vocational orientation that tells them how to orient their

educational needs. The reality is that to understand

mathematics, one must first develop logical and abstract

reasoning, but education systems have not contemplated

this foundation. Hence, the student prefers more

theoretical or less logical areas because they require less

effort. This reality is combined with the fact that software

development is highly abstract because it is a non-tangible

engineering product, and only the outputs and not the

processes can be observed. This characteristic

differentiates it from other products, such as civil

engineering, in which the manufacturing process is

constantly evident. The result is that professionals are not

adequately trained in mathematics, and thus, formal

methods are not practiced nor experienced to exploit their

advantages and overcome their limitations.

In the community dimension, the opinion is reiterated

in the literature review that formal methods have

demonstrated their power in the formalization of

specification. For many authors, Requirements

Engineering is where formal methods have had the

greatest acceptability and where the most success stories

are found. The effect has been that the community has

devoted less effort to further strengthening procedures and

tools to elicit and specify requirements, dedicating itself

instead to possibilities in other phases of the life cycle.

Some authors criticize this trend in that the community

believes that formal methods have already exceeded their

goal and that thus another goal should be developed, when

the reality is that there are still many problems in the

formalization of specification. One recommendation is

that what has been achieved so far with requirements

should first be strengthened and standardized, and other

possibilities can then be considered.

Another issue with the formal methods community is

that it is perceived as closed to the participation of other

stakeholders because language has limited its

communication to the strictly mathematical [43] and

because transdisciplinary work is not considered as an

alternative. With the development of different disciplines,

many researchers interested in contributing from their

specialty to the development of other specialties have

appeared, as in the case of Neurocomputation for

understanding the brain and how people learn. If the

formal methods community were more open to

contributions from areas such as philosophy, psychology

or didactics, it could achieve better results than it has so

far.

On the other side is the software industry, a crucial

factor in the current map of the reality of formal methods.

For years, software was developed in laboratories and with

military support because its potential was considered only

from that perspective. Over time, society realized that

software could be expanded as a solution to other needs,

commercialization began, and the software industry

appeared with the aim of development for sale. However,

software was nonetheless adopted and adapted with the

methodology that military scientists had built in their

laboratories and applied to develop the products offered

on the market. This approach to software development

triggered what NATO deemed a crisis in the late 1960s. It

is understandable that industry has intended to mainly

produce to sell and make a profit, but software is a product

that is not manufactured but rather is created (developed);

therefore, different procedures are needed from the ones

used, for example, to manufacture an aircraft or turbine.

With respect to formal methods, the industry still does

not assimilate them at their full potential because it

believes that they delay processes and reduce usefulness.

The issue is that, if not in industry, where can the

proposals of the community and of academia be verified

and validated? The three dimensions must work in unison

so that a software-dependent society can enjoy better-

quality software products. This need does not mean that

formal methods are the immediate and magical solution to

the software crisis, but as an alternative, it is worth the

effort to give them an opportunity while there is no other

alternative.

6 Conclusions
The increasing complexity of systems in this century is a

challenge for research in Computer Science. The hardware

and software that make up these systems have gone in a

few years from a few components and lines of code to

hundreds of thousands. One need only compare the reality

that Jackson described in his work, three decades ago, with

the one in which we currently live, in the midst of a

software-dependent society with high demands for

Power and Limitations of Formal… Informatica 41 (2017) 275–282 281

quality, reliability and product security. However, the

software component costs half or more of the total value

of the development of a system, and its applications

impact economies around the world. For all these reasons,

it is necessary to innovate with regard to development

processes because, although many think otherwise, we

still have not overcome the so-called software crisis of the

60s.

Two key issues can be identified from this analysis of

the reality of formal methods in the past three decades. 1)

The processes for developing software are still performed

as they were more than 50 years ago. Very little innovation

has occurred in this sense, and interest seems geared more

to proposing and selling new languages and

methodologies than to positioning and strengthening the

ones that exist and have been proven to work. New

approaches are not always the solution, and often what is

achieved is to increase the range of options but hinder the

work of developers. 2) Formal methods are mathematical

and therefore are not yet widespread. In this sense, we

must understand that mathematics is based on the

understanding and application of logic and pure

abstractions, and although computers exist in physical

reality, software is basically responsible for representing

and manipulating non-physical data. That is, mathematics

represents the physical reality, while software models and

simulates it.

Formal methods were developed over decades and

have introduced principles, paradigms and influential

conceptual innovations into computer science for the

development software. This is reflected in the fact that a

quarter of the Turing Awards between 1966 and 2013

recognize work with a significant component in formal

methods. Nonetheless, they still seem to be at a

crossroads: as an advantage, they seem well developed

and are supported by a large number of applications, users

and important critical developments; however, as a

limitation, they have ceased to be a major component in

computer science and engineering training, few professors

are working on them, course offerings at the

undergraduate and graduate levels are scarce, they are

difficult to apply in important projects, and only a small

number of graduates welcome them as a source of work.

Moreover, education systems do not adequately develop

the logical interpretation and abstracting ability of

students [44, 45], which are necessary for logical

reasoning. This area of study even seems to have

decreased in recent years, which has made new

generations increasingly prejudiced regarding

mathematics [46].

Thirty years after the work of Michael Jackson, the

outlook for formal methods seems not to have changed

much. The advantages and limitations that this author

described remain, and others seem to have become more

acute because variables entered the scene that at the time

were unknown: the abandonment of mathematics as the

center of the universe of educational systems, the social

demand for new and innovative products in a very short

time frame, the increasing complexity of problems and the

emergence of tools that attempt to displace developers,

among others. The facts that the community of formal

methods remains isolated from the reality of Computer

Science and that the industry does not provide the

necessary space to popularize its application are also of

little help.

We can thus conclude that, as a solution to the

problems of software development, formal methods still

have a long way to go. Work over the past thirty years has

been slow and achievements few. It has not been possible

to form a suitable environment to establish formal

methods as an area of academic and industrial interest, and

professors have lacked the training and experience to

include them in the curriculum. In addition, students still

perceive mathematics as an obstacle to be overcome to

graduate, rather than as an important part of the learning

process. If the formal methods community is integrated

and works with other knowledge disciplines, if the

industry works a little more and if academia grounds its

theories in an attempt to overcome these limitations,

formal methods could constitute an alternative way for

software to achieve the security and quality expected by

society.

7 References
[1] Cohen, B. (1995). A brief history of ‘Formal

Methods’. Formal aspects of computing, 1(3), 1-10.

[2] Neugebauer, O. (1969). The Exact Sciences in

Antiquity. USA: Dover Publications.

[3] Serna, M.E. (Ed.) (2015). Avances en ingeniería.

Medellín: Editorial Instituto Antioqueño de

Investigación.

[4] Dani, S. (1993). 'Vedic Mathematics': Myth and

Reality. Economic and Political Weekly, 28(31),

1577-1580.

[5] Dowling, P. (1998). The Sociology of Mathematics

Education: Mathematical Myths/Pedagogic Texts.

London: Falmer Press.

[6] Holloway, C. (1997). Why Engineers Should

Consider Formal Methods. 16th Digital Avionics

Systems Conference. Irvine, USA, 16-22.

[7] Butler, R. (2001). What is Formal Methods? NASA.

Online [Aug 2016].

[8] Naur, P. & Randell, B. (1968). Software

Engineering. Scientific Affairs Division NATO.

Germany, Garmisch.

[9] Bjørner, D. & Havelund, K. (2014). 40 years of

formal methods- Some obstacles and some

possibilities? Lecture Notes in Computer Science,

8442, 42-61.

[10] Jackson, M. (1987). Power and limitations of formal

methods for software fabrication. Journal of

Information Technology, 2(2), 1-6.

[11] Hall, A. (1991). Seven Myths of formal methods.

IEEE Software, 7(5), 11-19.

[12] Gaudel, M. (1991). Advantages and limits of formal

approaches for ultra-high dependability.

Proceedings of the Sixth International Workshop on

Software Specification and Design. Como, Italy,

237-241.

[13] Young, W. (1991). Formal Methods versus Software

Engineering - Is there a conflict? Fourth Testing,

http://shemesh.larc.nasa.gov/fm/fm-what.html

282 Informatica 41 (2017) 275–282 E. Serna M. et al.

Analysis, and Verification Symposium. Victoria,

Canada, 188-899.

[14] Barroca, L. & McDermid, J. (1992). Formal

Methods: Use and relevance for the development of

safety critical systems. The Computer Journal,

35(6), 579-599.

[15] Vienneau, R. (1993). A review of Formal Methods.

Technical Report, Kaman Science Corporation.

[16] Gerhart, S., Craigen, D. & Ralston, T. (1994).

Experience with Formal Methods in Critical

Systems. IEEE Software, 11(1), 21-28.

[17] Liu, S. & Adams, R. (1995). Limitations of formal

methods and an approach to improvement.

Proceedings Asia Pacific Software Engineering

Conference. Brisbane, Australia, 498-507.

[18] Craigen, D., Gerhart, S. & Ralston, T. (1995).

Industrial applications of formal methods to model,

design and analyze computer systems - An

international survey. New Jersey: Noyes Data.

[19] Bowen, J. & Hinchey, M. (1995). Seven more myths

of formal methods - Dispelling industrial prejudices.

Lecture Notes in Computer Science, 873, 105-117.

[20] Rushby, J. (1996). Mechanized Formal Methods:

Progress and prospects. Lecture Notes in Computer

Science, 1180, 43-51.

[21] Easterbrook, S. et al. (1996). Experiences using

formal methods for requirements modeling.

Technical Report NASA-CR-203085.

[22] Kneuper, R. (1997). Limits of Formal Methods.

Formal Aspects of Computing, 3(1), 1-16.

[23] Knight, J., Dejong, C., Gibble, M. & Nakano, L.

(1997). Why are formal methods not used more

widely? Fourth NASA Langley Formal Methods

Workshop. Virginia, USA, 1-12.

[24] Wing, J. (1998). A symbiotic relationship between

formal methods and security. Proceedings Conf. on

Computer Security, Dep. and Assu: From Needs to

Solutions. Williamsburg, USA, 26-38

[25] Jones, S., Till, D. & Wrightson, A. (1998). Formal

Methods and Requirements Engineering -

Challenges and Synergies. Journal of Systems and

Software, 40(3), 263-273.

[26] Heylighen, F. (1999). Advantages and limitations of

formal expression. Foundations of Science, 4(1), 25-

56.

[27] Wordsworth, J. (1999). Getting the best from formal

methods. Information and Software Technology, 41,

1027-1032.

[28] Broadfoot, G. & Broadfoot, P. (2003). Academia and

industry meet - Some experiences of formal methods

in practice. Tenth Asia-Pacific Software Engine.

Conference. Chiang Mai, China, 49-58.

[29] Amey, P. (2004). Dear Sir, yours faithfully - An

everyday story of formality. In Redmill, F. &

Anderson, T. (Eds.), Practical Elements of Safety.

UK: Springer, 3-15.

[30] Edmonds, B. and Bryson, J. (2004). The

insufficiency of Formal Design Methods.

Proceedings Third International Joint Conference

on Autonomous Agents and Multiagent Systems.

New York, USA, 938-945.

[31] Gogolla, M. (2004). Benefits and problems of

Formal Methods. LNCS, 3063, 1-15.

[32] Glass, R. (2004). The mystery of Formal Methods

Disuse. Communications of the ACM, 47(8), 15-17.

[33] Hall, A. (2005). Realising the benefits of Formal

Methods. LNCS, 3785, 1-4.

[34] Sommerville, I. (2009). Software Engineering. New

York: Pearson.

[35] Parnas, D. (2010). Really rethinking ‘formal

methods’. Computer, 34(1), 28-34.

[36] IET. (2011). Formal Methods. The IET.

[37] Batra, M., Malik, A. & DAVE, M. (2013). Formal

methods - Benefits, challenges and future direction.

Journal of Global Research in Comp. Scien., 45, 21-

25.

[38] Fitzgerald, J. (2013). Industrial deployment of

formal methods: Trends and challenges. In

Romanovsky, A. and Thomas, T. (Eds.), Industrial

Deployment of System Engineering Methods. Berlin:

Springer, 123-143.

[39] Ishikawa, F., Yoshioka, N. & Tanabe, Y. (2015).

Keys and roles of formal methods education for

industry: 10 Year experience with Top SE Program.

Proceedings First Workshop on Formal Methods in

SEE & Training. Oslo, Norway, 35-42.

[40] Mayo, J., Armstrong, R. & Hulette, G. (2015).

Digital System Robustness via Design Constraints:

The Lesson of Formal Methods. In 9th IEEE

International Systems Conference. Vancouver,

Canada, 109-114.

[41] Gross, K., Fifarek, A. & Hoffman, J. (2016).

Incremental Formal Methods Based Design

Approach Demonstrated on a Coupled Tanks

Control System. Proceedings 17th International

Symposium on High Assurance Systems

Engineering. Orlando, USA, 181-188.

[42] Alvear, A. & Quintero, G. (2015). Integrating

software development techniques, usability, and

agile methodologies. Actas de Ingeniería 1, 94-103.

[43] Polansky, J. & Sinclair, M. (2014). The importance

of training in formal methods in Software

Engineering. Revista Antioqueña de las Ciencias

Computacionales y la Ingeniería de Software

(RACCIS), 4(2), 52-56.

[44] Serna, M.E. (2013). Prueba funcional del software -

Un proceso de Verificación constante. Medellín:

Editorial Instituto Antioqueño de Investigación.

[45] Serna, M.E. & Serna, A.A. (2013). Is it in crisis

engineering in the world? A literature review.

Revista Facultad de Ingeniería, 66, 197-206.

[46] Tucker, A., Kelemen, C. & Bruce, K. (2001). Our

curriculum has become Math-Phobic! Proceedings

32th Technical Symposium on Computer Science

Education. Charlotte, USA, 243-247.

[47] Serna, M.E. (2016). Methodology for perform

reliable literature reviews. Revista Investigación

Económica, in press.

