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In this paper we present results from predictiordafa for ozone (¢) concentrations in ambient air by
using the modelling techniques of support vectochires (SVM) and radial basis neural networks
(RBF NN). The predictions are performed for tworslperiods of time: for 24 hours and for one week
in August and in December in 2005, in Skopje, Man&d The built SVM models use different kinds of
kernels: polynomial and Gaussian kernels and tre balues of the free parameters of SVM kernels are
chosen by examining a range of values for eacthefftee parameters. This is the first attempt in
Macedonia for prediction of concentrations of arilygarameters in the ambient air.

Povzetek: Podana je analiza ravni ozona v Makedamjetodami strojnegacanja.

1 Introduction

In the process of EU integration, Republic of One approach for prediction of hourly values is
Macedonia had to harmonize environmental legighatiousing neural networks for evaluating air parameters
with European one. According to the new Macedoniaconcentrations [1], [2], [3], [4]. SVM is anotherethod
legislation for air quality (Law on ambient air dit)g  that started in the late seventies [5], [6] andatos used
Official Gazette of Republic of Macedonia, no 6[W2p for ambient air parameters prediction [7], [8], Ed for
the country is obliged to perform continuous monitg time series forecasting [10] in the environmental
of the ambient air throughout the whole territorfytioe  applications.
country. For that reason, in Macedonia were install For prediction of the @levels, we use the modelling
fifteen automatic monitoring stations for gatheridgta techniques based on SVM and Radial Basis Function
for the air quality. However, mainly due to finaaci (RBF) NN.
reasons, and technical problems in the maintenahte
monitoring stations, the data sets from the moimitpr 2 Overviaw of thewhole process
stations are not complete. According to the EUdllives o . . o
and Macedonian legislation, the country must fufid% Prediction of levels of O3 in ambient air is a
of the yearly measurements for the air quality be tco.mplex process that consists of the following phas
measuring spots during one year. In order to fulie  (Figure 1):
gaps in the data sets for air quality, we decidedige —

appropriate  mathematical modeling technique, as a Model
method that is allowed to be used by the EU divesti

In this paper we present the results obtained from l
filling in the existing gaps of the measured houdhta

for the levels of ozone (P in the ambient air for two C}/’Mmmmmm o
short periods of time in the municipality of Karposl, ,@WEKA

in Skopje, Republic of Macedonia. We process the tw N W

data sets for August and December, 2005 and wel buil Tet file

statistical models for hourly predictions of contcations :> @ [ﬁ

for one day and for one week. Solution of the pzobl

had to be generated in a simple manner and the used

algorithm had to be applicable for similar probleeg — rjgre 1 Overview of the whole process of prediction
for prediction of concentrations of other air qtali

parameters.
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» Measurement of the levels of parameters of the 1 !

ambient air by automatic monitoring station. Remplf] = Tz c(x;; y;; £(x3)) (3)
» Transmission of the measured data via radio i=1

connection from the monitoring station to they o attempt would be to find the functiofy =

textual data base situated in the Ministry for, . :
X X . R H]) for some hypothesis class H.
Environment and Physical Planning (MoEPP). argmineyRemp [H]) yp

! . . _However if H is very rich, i.e. its capacity is ydnigh as
» Data processing and preparation of ARFF file : ; : ; -
that are recognized by the WEKA software. Yor instance when dealing with few data in very hhig

lecti | ft ¢ delling the d dimensional spaces, this may be not such a goedasgét
*  Electing tools (software) for modelling the data. i |ead to overfiting and thus bad generalizatio

* Modelling using the software package WEKA.  ,qherties. Hence one should add a capacity coteroi,

* Comparison of the received models and choosing, . , . 2 .
the one that gives the best prediction results. Which n the_SV case results to|hel|”, which leads to
regularized risk function

3 Used techniques Rieg = Remplf] +%|Iw|l2 (4)

3.1 Support Vector Regression

The concept of a maximum margin hyperplane onlg.2 Kernels

applies to classification. However, support vectachine A kernel is essentially a similarity function with
algorithms have been developed for numeric preaficti certain mathematical properties, and it is possibie
that share many of the properties encountered & tQefine kernel functions over all sorts of structsfer

classification case: they produce a model thatumrlly  example, sets, strings, trees, and probabilityiistions.
be expressed in terms of a few support vectorscandoe

applied to non-linear problems using kernel funtsio The choice of kerneK(x;, x;) influences drastically
on the performance of the SVMs depending on the
problem considered. Several kernels are available f
learning sand they have to satisfy the so-calledcktés
condition [9].

Similar with linear regression, the basic idea hisre
to find a function that approximates the trainingints
well by minimizing the prediction error. The crucia
difference is that all deviations up to a user-fjest
parametex; are simply discarded. Also, when minimizing ~ The most commonly used kernels are the Gaussiareker
the error, the risk of overfitting is reduced by ||Xi—X]-||2)
simultaneously trying to maximize the flatness bét _ 202 ®)
function. Another difference is that what is minzed is K(x; x;) = exp
normally the predictions' absolute error insteadtlos 2and the polynomial kernel
squared error used in linear regression. A userispe K(Xi.X;) = (Xin + 1)p (6)
parametex; defines a tube around the regression functiowhich are also used for the purposes of this resear
in which errors are ignored.

SVM approximate the learning data set with a

function given in a form of: 4 Data processing
1 The data sets that are used are gathered by the
_ . national automatic monitoring network (AMN) by the
f) Zw,q),(x) +b (1) MoEPP in Republic of Macedonia. As soon as the data
i=

are transferred to the central DB in MOEPP theyfiase
meaning that the original data— ¢(x) are mapped into validated, that is the missing and the unreal dat
high dimensional space and then construct an optimaarked with -9999. We have picked a small period of
hyperplane in this space(x) represents feature of thetime where we do not have missing data, that is the
inputs, while w; and b are coefficients. These areeriod 1-17 August and 1-17 December 2005. We used
estimated by minimizing the risk function [10]: two different seasons because we wanted to show the

_ difference of the predicted results from differembdels
R(H) = [ e(xy, f(x)dp(x,y) (@) depending on the standard deviation of the inpté.da

where c(x,y,f(x)) is cost function that determirtesw to The first phase is parsing of data and their s®iag
penalize estimation errors based on the empiriatd & a relational data base. We convert the validatéd itdo
[7]. Given that we do not know the probability meas ARFF format that is recognized by the WEKA software
dp(x,y) we can only use X for estimating a functidhat that is used for the process of prediction of thde®els.
minimizes R[f]. A possible approximation consists i In order to build models for prediction of;Qevels, as
replacing the integration by the empirical estim@ateget input parameters we use the hourly data for theldeof
so called empirical risk function NO,, Os, temperature and humidity for 10 days in a raw.

The output function is following:
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0;(t) = f(NO,(t —2z) + 03(t — 2) Figure 3 presents the variations of MAE from the
+ NO,(t) + temp(t — z) (1) values of the parameter Parametek, like parameter C
+ hum(t — z)) has small influence on the performances of the infmde

prediction of the ozone concentrations. The valoés

We built eight different models for prediction of; O MAE are almost constant for values of the parameter
levels fort — z hours, where = 1,2, ...,8. £<107%ande > 0.5. In the models in which we use

For prediction of @levels, first we build three types SVM the value ofe is should be small. In this research,
of models from which two are based on SVM, while thwe set the value afto 0.1.
third one is based on RBF NN. In order to build finst Theoretically, the value of the speed parameter
two models, we use the existing functions in WEKAinfluences a lot on the prediction performancestha
SVMreg with polynomial kernel, where p=1 and SVMregnodel. Very small£ — 0) or very large § —» ) values
with RBF kernel, known as SVM with Gaussian kernelof ¢ may lead to bad prediction results. df— 0, all
For building the third model we use the function RB training data become support vectors. In that casen
with neural network which is also implemented inR&e an unknown data occur as input at the SVM modda, th
The three functions are used both for predictiotegéls SVM model will not be able to provide good predicat
of O; for 24 hours and for one week. That way we get tweesults. From the other side,sif— o, all training data
groups of models. In the first group belong modeis will be considered as one point and the SVM moday m
prediction of levels for 24 hours and in the secgnoup produce same results for any new input data tartbeel.
belong models for prediction of levels for one week Therefore, these two extreme cases should be al/dide
In order to decrease the total processing timéréoning  should note that botles —» oo and o — 0 represent two
the SVM we used the tool Explorer from WEKA that approximate processes. In real applications, < ||x; —
enabled us to distribute the whole process of lagrof x| and o > ||x; —x;|| the extreme cases mentioned
the model on three computers controlled by one temas  apove will occur. Figure 4 presents the variatiohMAE

computer. from the values of the parameterResults in théerror!

The results from the obtained models are compareqeference source not found. show that MAE is large,
As a measure for deviation of the predicted refolt®  \when ¢ is small (for example = 0.001), than it

the measured one we use the mean absolute erem giVyecreases with increasing®fnd it reaches minimum for

by: values of ogaround1. Figure 4 shows that MAE
1< fluctuates wheny is in the range of [0.9, 1.1]; then it
MAE = —Z la; — pil (2) increases with increasing ef and finally it has tendency

=i to become constant aftgrreaches values y > 100. For

that reason, in practical applications only paramet
5 Resultsfrom mode”ing y (oro) of the Gaussian kernel function has to be
petermined, while the two parametérand ¢ may be set
in advance by experience. In this application wetse
value ofy t00.5.
Once the best values for the free parameters C,
to the speed parameterwith the relation ofy = (0_12) v (or 6) ande are determined, the final step is to produce

i ” the models for prediction of the missing data far O
(Figure 4). To choose the values of the free pararsias In this paper, we have calculated the best valoes f

_the main _gifficqlty V\;]hen rr]nodelling with SVM'I Tau;dng parameters C¢ andy for z=3. We have used the same
Into _consideration that there are no general Moes 65 |ater in order to predict results for: 3 (z =

determination of the values of the free parameterss 1,..,8) in which cases the free parameters are not optima
necessary to determine the influence of the chesére Although in those cases we do not use the optirmhles

of the free parameter on the resulting error on tn%r the free parameters, still the results obtairfiedn

predicted results from the moc.iell. In this paper Y¥  models built with SVM are better than those frone th
MAE for assessment of the deviation between thgirtal models built with RBE NN

measured data and the predicted data. In gendmal, t Figures 5 — 8 show the results from the modelling.

smaller MAE, the better results the built modelsiace. Each figure show the distribution of the originaital and

Figure 2 p;]resentshthﬁ variart]ionsh of MAE frohm th'?he distribution of predicted data obtained frommeth
parameterC_. The graph shows t at the paf?‘mﬂe as  different models built with polynomial and Gaussian
very small influence on MAE and it is sensitive yin kernel and with RBE NN

very small val_ues foiC, for example wherC < 0.001. In August 2005, the data of the levels of @e very
When increasing the values @f, the value of MAE q,qe to each other i.e. the standard deviationeiy

steeply decreases untl recives valuesC = 0.5 When  gma| Therefore the three models give similar itssior
again parametef makes very small influence on MAE. prediction of Q levels (Figure 5 and Figure 6).

In general, in order one to guarantee a stableilegr

process, the value of the parameter C has to redaige

values, for example C=100, as it is the case mhper.

When modelling with SVM, first we choose the bes
values of the free parameters of the kernélgfactor of
penalty, Figure 2)¢ (Figure 3) and/,which is connected
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The input data in December 2005 have big standalt®
deviation. In this case due to the good generaizat
characteristics of the SVM models, the best predufict

results for period of one week are achieved byntloelel
built with SVM with polynomial kernel z =1, 2,&hd by
SVM with Gaussian kernel for z = 4,..,8. The besuits

for prediction of 24 hours are achieved by modeltbu

with SVM with polynomial kernel for z =1, 2, 5, 8,and
8 and by SVM with Gaussian kernel for z = 3 and 4.

2005. The same figures show the distribution of th

predicted data that are obtained by the three raodel

In August, when predicting the ;Qevels for one
week, the best results are achieved by the modiehtith
SVM with polynomial kernel forz = 1,3,4,6,7 and 8

and by SVM with Gaussian kernel for z = 2 and 5e Th

best results for prediction of 24 hours, the bestiits are

achieved when using the model built with SVM wit

polynomial kernel for z = 1, 3, 4, 6 and 7 by SVNthw
Gaussian kernel for z =2, 5 and 8.

6 Conclusion

OJuture, the presented methodology could be used for
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this paper we examined the free parameters of Gauss
kernel C, e and 0 and we conclude that only parameter
has significant influence on the results from thfered
models. Unlike the SVM models, the conventional RBF
models parameters like the size of the network, the
learning parameter and the training of the netwuoley
big role in the performances of the built modelrther
on, are a result of the Structural Risk Minimizatio
Principle, models built with SVM provide better
prediction results compared with SVM models. Finall
using SVM we overcome the problems of neural neteaor
like overfitting and local minima.

Although it is not possible to use the exact same
models to predict the concentrations on the other
measurement places in the country, still the pitesen
methodology is general and it may be used for ingld
new models for the other measurement places. The ne
dels will be trained with data measured at theallo
measurement sites.

Models for prediction of ozone concentrations may b
further extended. The developed model for ozone
prediction uses data for NO Oz temperature and
humidity. It may be extended with additional data f
NOx, data for emissions from vehicles and otherwkmo
sources of ozone. Similarly, the models may bereldd
with additional meteorological parameters.

The developed models are based on real data. In

gevelopment of models that will take into considiera
emissions from large combustion plants or the cexipl

of terrain where the prediction is performed. Thiesimg
data may be fulfilled with the built models, andeafthat
the “new” data sets may be used for further presticof
concentrations of the same or other parameter.hén t
further research, it is possible to add the additio

hchemical or time dependence among the parameteas ,

will lead to new models for prediction.That way fiture,
we may improve the use heuristic formula for prédic
of ozone concentrations and decrees the MEA.
The experiments showed that the SVM is an
appropriate tool for prediction of QOlevels both for

The paper describes an attempt to predict the émmer and winter seasons. The method gives good
hourly missing data for Yconcentrations in the ambientresults and may be used by MoEPP for filling théeada
air using SVM and RBF NN at the municipality Karhos gaps for hourly @values for short periods of time.

I, in Skopje, Macedonia.

We developed a complete system for filling the gapRefer ences

of missing hourly data by predicting the level€af

The built models for prediction of concentratiorfs o

ozone are examined for prediction of 8 consequeantii
values. The best results are achieved by the mmai#l
with SVM with polynomial kernel for prediction of42

hours for December and August, 2005. In one cdse, t

best results were achieved by the model built &M

with Gaussian kernel, for prediction of one week fo
December, 2005. We should conclude that modelg buil

with SVM achieve better results than models builthw
RBF NN.

Finally we may conclude that SVM models give[3]

better results when predicting time series and thfésr

several advantages before the conventional RBF INN.
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