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In this paper we present results from prediction of data for ozone (O3) concentrations in ambient air by 
using the modelling techniques of support vector machines (SVM) and radial basis neural networks 
(RBF NN). The predictions are performed for two short periods of time: for 24 hours and for one week 
in August and in December in 2005, in Skopje, Macedonia. The built SVM models use different kinds of 
kernels: polynomial and Gaussian kernels and the best values of the free parameters of SVM kernels are 
chosen by examining a range of values for each of the free parameters. This is the first attempt in 
Macedonia for prediction of concentrations of any air parameters in the ambient air. 

Povzetek: Podana je analiza ravni ozona v Makedoniji z metodami strojnega učenja. 

 

1 Introduction 
In the process of EU integration, Republic of 

Macedonia had to harmonize environmental legislation 
with European one.  According to the new Macedonian 
legislation for air quality (Law on ambient air quality, 
Official Gazette of Republic of Macedonia, no 67/2004) 
the country is obliged to perform continuous monitoring 
of the ambient air throughout the whole territory of the 
country. For that reason, in Macedonia were installed 
fifteen automatic monitoring stations for gathering data 
for the air quality. However, mainly due to financial 
reasons, and technical problems in the maintenance of the 
monitoring stations, the data sets from the monitoring 
stations are not complete. According to the EU directives 
and Macedonian legislation, the country must fulfill 90% 
of the yearly measurements for the air quality on the 
measuring spots during one year. In order to fulfill the 
gaps in the data sets for air quality, we decided to use 
appropriate mathematical modeling technique, as a 
method that is allowed to be used by the EU directives. 

In this paper we present the results obtained from 
filling in the existing gaps of the measured hourly data 
for the levels of ozone (O3) in the ambient air for two 
short periods of time in the municipality of Karposh III, 
in Skopje, Republic of Macedonia. We process the two 
data sets for August and December, 2005 and we build 
statistical models for hourly predictions of concentrations 
for one day and for one week. Solution of the problem 
had to be generated in a simple manner and the used 
algorithm had to be applicable for similar problems e.g 
for prediction of concentrations of other air quality 
parameters.   

One approach for prediction of hourly values is 
using neural networks for evaluating air parameters 
concentrations [1], [2], [3], [4]. SVM is another method 
that started in the late seventies [5], [6] and today is used 
for ambient air parameters prediction [7], [8], [9] and for 
time series forecasting [10] in the environmental 
applications. 

For prediction of the O3 levels, we use the modelling 
techniques based on SVM and Radial Basis Function 
(RBF) NN. 

2 Overview of the whole process 
Prediction of levels of O3 in ambient air is a 

complex process that consists of the following phases 
(Figure 1):  

 
Figure 1 Overview of the whole process of prediction 
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• Measurement of the levels of parameters of the 
ambient air by automatic monitoring station. 

• Transmission of the measured data via radio 
connection from the monitoring station to the 
textual data base situated in the Ministry for 
Environment and Physical Planning (MoEPP). 

• Data processing and preparation of ARFF files 
that are recognized by the WEKA software. 

• Electing tools (software) for modelling the data. 
• Modelling using the software package WEKA. 
• Comparison of the received models and choosing 

the one that gives the best prediction results. 

3 Used techniques 

3.1 Support Vector Regression 
The concept of a maximum margin hyperplane only 

applies to classification. However, support vector machine 
algorithms have been developed for numeric prediction 
that share many of the properties encountered in the 
classification case: they produce a model that can usually 
be expressed in terms of a few support vectors and can be 
applied to non-linear problems using kernel functions. 

Similar with linear regression, the basic idea here is 
to find a function that approximates the training points 
well by minimizing the prediction error. The crucial 
difference is that all deviations up to a user-specified 
parameter �� are simply discarded. Also, when minimizing 
the error, the risk of overfitting is reduced by 
simultaneously trying to maximize the flatness of the 
function. Another difference is that what is minimized is 
normally the predictions' absolute error instead of the 
squared error used in linear regression. A user-specified 
parameter �� defines a tube around the regression function 
in which errors are ignored. 

SVM approximate the learning data set with a 
function given in a form of: 

 ���� � � ��	���� 
 ��
�
�  (1) 

meaning that the original data � � 	��� are mapped into 
high dimensional space and then construct an optimal 
hyperplane in this space. 	��� represents feature of the 
inputs, while �� and b are coefficients. These are 
estimated by minimizing the risk function [10]: 

 ���� � � ���, �, ���������, �� (2) 

where c(x,y,f(x)) is cost function that determines how to 
penalize estimation errors based on the empirical data X 
[7]. Given that we do not know the probability measure 
dp(x,y) we can only use X for estimating a function f that 
minimizes R[f]. A possible approximation consists in 
replacing the integration by the empirical estimate to get 
so called empirical risk function 

 ������� � �� � ����; ��; �������
�
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A first attempt would be to find the function �� ��� ��!�"#�����#�� for some hypothesis class H. 
However if H is very rich, i.e. its capacity is very high as 
for instance when dealing with few data in very high 
dimensional spaces, this may be not such a good idea as it 
will lead to overfitting and thus bad generalization 
properties. Hence one should add a capacity control term, 

which in the SV case results to be$|�|$&
, which leads to 

regularized risk function 

 ��� � ������� 
 '& (�(& (4) 

3.2 Kernels 
A kernel is essentially a similarity function with 

certain mathematical properties, and it is possible  to 
define kernel functions over all sorts of structures-for 
example, sets, strings, trees, and probability distributions. 

The choice of kernel )���, �*� influences drastically 
on the performance of the SVMs depending on the 
problem considered. Several kernels are available for 
learning sand they have to satisfy the so-called Mercer's 
condition [9]. 

The most commonly used kernels are the Gaussian kernel 
 

)���, �*� � ���+,-.��+�*/&0&1& 2   (5) 

and the polynomial kernel 
 )3��, �*4 � 3���* 
 �4�

 (6) 
which are also used for the purposes of this research. 
 

4 Data processing 
The data sets that are used are gathered by the 

national automatic monitoring network (AMN) by the 
MoEPP in Republic of Macedonia. As soon as the data 
are transferred to the central DB in MoEPP they are first 
validated, that is the missing and the unreal data are 
marked with -9999. We have picked a small period of 
time where we do not have missing data, that is the 
period 1-17 August and 1-17 December 2005. We used 
two different seasons because we wanted to show the 
difference of the predicted results from different models 
depending on the standard deviation of the input data.  

The first phase is parsing of data and their storage in 
a relational data base. We convert the validated data into 
ARFF format that is recognized by the WEKA software 
that is used for the process of prediction of the O3 levels.  
In order to build models for prediction of O3 levels, as 
input parameters we use the hourly data for the levels of 
NO2, O3, temperature and humidity for 10 days in a raw. 
The output function is following: 
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We built eight different models for prediction of O3 
levels for t : z hours, where z � 1,2, … ,8.  

For prediction of O3 levels, first we build three types 
of models from which two are based on SVM, while the 
third one is based on RBF NN. In order to build the first 
two models, we use the existing functions in WEKA: 
SVMreg with polynomial kernel, where p=1 and SVMreg 
with RBF kernel, known as SVM with Gaussian kernel. 
For building the third model we use the function RBF 
with neural network which is also implemented in Weka. 
The three functions are used both for prediction of levels 
of O3 for 24 hours and for one week. That way we get two 
groups of models. In the first group belong models for 
prediction of levels for 24 hours and in the second group 
belong models for prediction of levels for one week. 
In order to decrease the total processing time for training 
the SVM we used the tool Explorer from WEKA that 
enabled us to distribute the whole process of learning of 
the model on three computers controlled by one “master” 
computer.  

The results from the obtained models are compared. 
As a measure for deviation of the predicted results from 
the measured one we use the mean absolute error given 
by: 

 

 GHI � �J � |KL : >L|J
L
�  (2) 

5 Results from modelling 
When modelling with SVM, first we choose the best 

values of the free parameters of the kernels: M (factor of 
penalty, Figure 2),  N (Figure 3) and O,which is connected 

to the speed parameter P with the relation of O � QR STU0 

(Figure 4). To choose the values of the free parameters is 
the main difficulty when modelling with SVM. Taking 
into consideration that there are no general rules on 
determination of the values of the free parameters, it is 
necessary to determine the influence of the chosen value 
of the free parameter on the resulting error on the 
predicted results from the model. In this paper we use 
MAE for assessment of the deviation between the original 
measured data and the predicted data. In general, the 
smaller MAE, the better results the built models achieve. 

Figure 2 presents the variations of MAE from the 
parameter M. The graph shows that the parameter M has 
very small influence on MAE and it is sensitive only on 
very small values for M, for example when M V 0.001. 
When increasing the values of M, the value of MAE 
steeply decreases until M recives values M Y 0.5 when 
again parameter M makes very small influence on MAE. 
In general, in order one to guarantee a stable learning 
process, the value of the parameter C has to receive large 
values, for example C=100, as it is the case in this paper. 

Figure 3 presents the variations of MAE from the 
values of the parameter N. Parameter N, like parameter C 
has small influence on the performances of the model for 
prediction of the ozone concentrations. The values of 
MAE are almost constant for values of the parameter N [ 10+\ and N ` 0.5. In the models in which we use 
SVM the value of N is should be small. In this research, 
we set  the value of N to  0.1. 

Theoretically, the value of the speed parameter P 
influences a lot on the prediction performances of the 
model. Very small (P � 0) or very large (P � ∞) values 
of P may lead to bad prediction results. If P � 0, all 
training data become support vectors. In that case, when 
an unknown data occur as input at the SVM model, the 
SVM model will not be able to provide good predication 
results. From the other side, if P � ∞, all training data 
will be considered as one point and the SVM model may 
produce same results for any new input data to the model. 
Therefore, these two extreme cases should be avoided. We 
should note that both P � ∞ and P � 0 represent two 
approximate processes. In real applications, if P b (cd :ce( and P f (cd : ce( the extreme cases mentioned 
above will occur. Figure 4 presents the variations of MAE 
from the values of the parameter P. Results in the Error! 
Reference source not found. show that MAE is large, 
when P is small (for example P � 0.001), than it 
decreases with increasing of P and it reaches minimum for 
values of P around 1. Figure 4 shows that MAE 
fluctuates when O is in the range of [0.9, 1.1]; then it 
increases with increasing of O, and finally it has tendency 
to become constant after O reaches values O Y 100. For 
that reason, in practical applications only parameter O �or P� of the Gaussian kernel function has to be 
determined, while the two parameters M and N may be set 
in advance by experience. In this application we set the 
value of O to 0.5. 

Once the best values for the free parameters C, O �or σ� and ε are determined, the final step is to produce 
the models for prediction of the missing data for O3. 

In this paper, we have calculated the best values for 
parameters C, N and O for z=3. We have used the same 
values later in order to predict results for r s 3 (r �1, . . ,8) in which cases the free parameters are not optimal. 
Although in those cases we do not use the optimal values 
for the free parameters, still the results obtained from 
models built with SVM are better than those from the 
models built with RBF NN. 

Figures 5 – 8 show the results from the modelling. 
Each figure show the distribution of the original data and 
the distribution of predicted data obtained from three 
different models built with polynomial and Gaussian 
kernel and with RBF NN. 

In August 2005, the data of the levels of O3 are very 
close to each other i.e. the standard deviation is very 
small. Therefore the three models give similar results for 
prediction of O3 levels (Figure 5 and Figure 6). 
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Figure 2: Variations of MAE from the parameter C for 
prediction of O3 levels for 24h and for 7 days for August, 
2005 

 
Figure 3: Variations of MAE from the parameter u for 
prediction of O3 levels for 24h and for 7 days for August, 
2005  

 
Figure 4: Variations of MAE from the parameter v for 
prediction of O3 levels for 24h and for 7 days for August, 
2005 

 

Figure 5: Prediction of levels of O3 for 24 hours, for 
August 2005, for z=3 

 
Figure 6: Prediction of levels of O3 for one week, for 
August 2005, for z=3 

 
Figure 7: Prediction of levels of O3 for 24 hours, for 
December 2005, for z=3 



PREDICTION OF MISSING DATA FOR OZONE… Informatica 31 (2007) 425–430 429 

 

Figure 8: Prediction of levels of O3 for one week, for 
December 2005, for z=3 

The input data in December 2005 have big standard 
deviation. In this case due to the good generalization 
characteristics of the SVM models, the best prediction 
results for period of one week are achieved by the model 
built with SVM with polynomial kernel  z = 1, 2, 3 and by 
SVM with Gaussian kernel for z = 4,..,8. The best results 
for prediction of 24 hours are achieved by model built 
with SVM with polynomial kernel for z = 1, 2, 5, 6, 7 and 
8 and by SVM with Gaussian kernel for z = 3 and 4. 

Figure 5 and 6 show the distribution of original O3 
data for the eleventh day and for one week in August, 
2005. The same figures show the distribution of the 
predicted data that are obtained by the three models. 

In August, when predicting the O3 levels for one 
week, the best results are achieved by the model built with 
SVM with polynomial kernel for r �  1, 3, 4, 6, 7 and 8 
and by SVM with Gaussian kernel for z = 2 and 5. The 
best results for prediction of 24 hours, the best results are 
achieved when using the model built with SVM with 
polynomial kernel for z = 1, 3, 4, 6 and 7 by SVM with 
Gaussian kernel for z = 2, 5 and 8.  

6 Conclusion 
The paper describes an attempt to predict the of 

hourly missing data for O3 concentrations in the ambient 
air using SVM and RBF NN at the municipality Karposh 
III, in Skopje, Macedonia.  

We developed a complete system for filling the gaps 
of missing hourly data by predicting the levels of O3. 

The built models for prediction of concentrations of 
ozone are examined for prediction of 8 consequent hourly 
values. The best results are achieved by the model built 
with SVM with polynomial kernel for prediction of 24 
hours for December and August, 2005. In one case, the 
best results were achieved by the model built with SVM 
with Gaussian kernel, for prediction of one week for 
December, 2005. We should conclude that models built 
with SVM achieve better results than models built with 
RBF NN. 

Finally we may conclude that SVM models give 
better results when predicting time series and they offer 
several advantages before the conventional RBF NN. In 

this paper we examined the free parameters of Gaussian 
kernel M, z and P and we conclude that only parameter P 
has significant influence on the results from the offered 
models. Unlike the SVM models, the conventional RBF 
models parameters like the size of the network, the 
learning parameter and the training of the network play 
big role in the performances of the built model. Further 
on, are a result of the Structural Risk Minimization 
Principle, models built with SVM provide better 
prediction results compared with SVM models. Finally, 
using SVM we overcome the problems of neural networks 
like overfitting and local minima. 

Although it is not possible to use the exact same 
models to predict the concentrations on the other 
measurement places in the country, still the presented 
methodology is general and it may be used for building 
new models for the other measurement places. The new 
models will be trained with data measured at the local 
measurement sites. 

Models for prediction of ozone concentrations may be 
further extended. The developed model for ozone 
prediction uses data for NO2, О3, temperature and 
humidity. It may be extended with additional data for 
NOx, data for emissions from vehicles and other known 
sources of ozone. Similarly, the models may be extended 
with additional meteorological parameters.  

The developed models are based on real data. In 
future, the presented methodology could be used for 
development of models that will take into consideration 
emissions from large combustion plants or the complexity 
of terrain where the prediction is performed. The missing 
data may be fulfilled with the built models, and after that 
the “new” data sets may be used for further prediction of 
concentrations of the same or other parameter. In the 
further research, it is possible to add the additional 
chemical or time dependence among the parameters , that 
will lead to new models for prediction.That way, in future, 
we may improve the use heuristic formula for prediction 
of ozone concentrations and decrees the MEA. 

The experiments showed that the SVM is an 
appropriate tool for prediction of O3 levels both for 
summer and winter seasons. The method gives good 
results and may be used by MoEPP for filling the data 
gaps for hourly O3 values for short periods of time. 
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