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Multivariate data visualization is an interesting research field with many applications in various fields of
sciences. Radial visualization is one of the most common information visualization concept for visualizing
multivariate data. However, radial visualization may display different information about structures of
multivariate data. For example, all points which are multiplicatives of given point may map to the same
point in the visual space. An optimal layout of radial visualization is usually found by defining a suitable
the order of data dimensions on the unit circle. In this paper, we propose a novel method that improves the
radial visualization layout for cluster preservation of multivariate data. The traditional radial visualizations
have viewpoint at the origin coordinate. The idea of our proposed method is finding the most suitable
viewpoint among the corners of a hypercube to look into the cluster structures of data sets. Our method
provides an improvement in visualizing class structures of multivariate data sets on the radial visualization.
We present our method with three kinds of quality measurements and prove the effectiveness of our method
for several data sets.

Povzetek: Predstavljena je vizualizacija multivariantnih podatkov.

1 Introduction
Many scientific and business applications produce large
data sets with increasing complexity and dimensionality.
While information is growing in an exponential way, data
are ubiquitous in our world. Data should contain some kind
of valuable information that can possibly be explored using
human knowledge. However, extracting meaningful infor-
mation in large scale data is a difficult task.

Information visualization techniques have been proven
to be of high value in gaining insight into these large data
sets. The aim of information visualization is to use the
computer-based interactive visual representations of ab-
stract and non-physically based data to amplify human cog-
nition. It aims at helping users to detect effectively and ex-
plore the expected, as well as discovering the unexpected,
to gain insight into the data [6].

A major challenge for information visualization is how
to present multidimensional data to analysts, because com-
plex visual structures occur. Data visualization methods of-
ten employ a map from multidimensional data into lower-
dimensional visual space. The reason is that visual space
representation is composed of two or three spatial coordi-
nates and a limited number of visual factors such as color,
texture, etc. However, when the dimensionality of the data
is high, usually from tens to hundreds, the mapping from
multidimensional data space into visual space imposes in-
formation loss. This leads to one of the big question in
information visualization [6]: How to project from a mul-
tidimensional data space into a low-dimensional space and

best preserve the characteristics of the data.

The order of data dimensions is a crucial problem for
the effectiveness of many multidimensional data visualiza-
tion techniques [3] such as parallel coordinates [13], star
coordinates [14], Radial visualization (Radviz) [10], scat-
terplot matrix [2], circle segments [4], and pixel recursive
pattern [15]. The data dimensions have to be positioned in
some one- or two- dimensional arrangement on the screen.
The chosen arrangement of data dimensions can have a
major impact on the expressiveness of the visualization
because the relationships among adjacent dimensions are
easier to detect than relationships among dimensions po-
sitioned far from each other. Dimension ordering aims to
improve the effectiveness of the visualization by giving rea-
sonable orders to the dimensions so that users can easily
detect relationships or pay more attention to more impor-
tant dimensions.

The Radviz technique is one of the most common visu-
alization techniques used in medical analysis [10, 11, 16].
Finding the optimal order of data dimensions in Radviz is
known to be NP-complete [3]. Although there have been
a number of proposed methods for solving the dimension
ordering problem in Radviz [16, 8], most of them are ex-
haustive or greedy local searches in the space of all permu-
tations of data dimensions. These methods are usually only
tested on some data sets with small number of dimensions.

One of the disadvantages of Radviz is that all multidi-
mensional points which differ by a multiplicative constant,
i.e., all points cp with a fixed point p and various non-zero
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scalars c, number that map to the same position in the vi-
sual space. Thus, all these points separate in the original
space but they cannot be differentiated in the visual space.
This property is invariant for all permutations. Radviz can
be explained as a combination of a perspective projection
and a linear mapping with the viewpoint at the origin and
the view plane being a simplex. In this paper, we propose
another variant of Radviz that supports users visualizing
the data inside a hypercube from an arbitrary viewpoint at
the corners of the hypercube. Finding a suitable viewpoint
of the hypercube in an n-dimensional space has 2n possible
cases. In general, finding a good viewpoint is less compli-
cated than finding a good data dimensions permutation of
Radviz.

The remaining part of this paper is organized as follows.
In Section 2, we present related work with Radviz and
data dimensions reordering in multivariate data visualiza-
tion techniques. The inversion axes in Radviz are presented
in Section 3. In Section 4, we describe some methods for
measurement quality of class visualizations for multivari-
ate data in the visual space. In Section 5, we show the
effectiveness of our methods with five well known multi-
variate data sets in the case of classified data. In Section 6,
we make a comparison for five data sets with permutations
in Radviz with other algorithms. In Section 7, we present
our conclusion and future work.

2 Related work

Principal Component Analysis (PCA) is one of the
most common methods for the analysis of multivariate data
[12]. PCA is applied to visualizing multivariate data that is
a linear projection onto two or three eigenvectors. The gen-
eral linear mapping can be defined as P (x) = V x where
V is a matrix. PCA projects a multidimensional point x
into a space spanned by the two or three eigenvectors that
corresponding to the two or three largest eigenvalues of the
covariance matrix of the given data sets.

Star coordinates were introduced by Kandogan [14].
Star coordinates use a linear mapping with the ith column

of matrix transformation Vi = (cos
2πi

n
, sin

2πi

n
)T . Vec-

tors {Vi, i = 1, 2, . . . , n} are represented evenly on the
unit circle in the two-dimensional visual space. The au-
thor also introduced several techniques for interactions on
star coordinates, for example moving axes Vi in the vi-
sual space. In [5], 3D star coordinates are introduced with

Vi = (cos
2πi

n
, sin

2πi

n
, 1)T that extends the 2D star coor-

dinates by adding the third coordinates as summation of all
coordinates. Further properties can be found in [20, 17].
Long and Linsen [22] propose optimal 3D star coordi-
nates for visualizing hierarchical clusters in multidimen-
sional data.

Radviz was proposed by Hoffman et al. [10]. Radviz can
be explained as a perspective projection of the 3D star co-
ordinates with a view point at the origin and viewing plane
z = 1. A normalized Radviz and properties of Radviz are
presented in [7]. The important problem with Radviz is
the ordering of the dimensional anchors for a good viewing
of the multivariate data. In [19], the t-statistic method for
reordering dimensional anchors on the unit circle is intro-
duced. The t-statistic is applied for labelled data. Di Caro
et al. [8] proposed two methods for dimension arrangement
in Radviz based on an optimization problem for pair of sim-
ilarity matrix between data dimensions and neighbourhood
matrix between data dimensions on a unit circle [8]. Albu-
querque et al. [1] used the Cluster Density Measure (CDM)
for finding a good layout of Radviz. The authors propose a
greedy incremental algorithm to successively add data di-
mensions to the Radviz layout to determine a suitable order.

3 Radial visualization method

3.1 Radviz
Radviz was first introduced by Hoffman et al. in [10, 11],
and it could be regarded as an effective non-linear dimen-
sionality reduction method. Radviz directly maps multi-
dimensional data points into a visual space based on an
equibalance of spring systems. In Radviz, dimensional an-
chors are attached to springs. The stiffness of each spring
equals the value of the dimension corresponding to its di-
mensional anchor. The other end of each spring is attached
to a point in the visual space. The location of this point
ensures the equibalance of the spring systems.

Let x = (x1, x2, . . . , xn) be a data point in a hypercube
[0, 1]n. The dimensional anchors Si, i = 1, 2, . . . , n can be
easily calculated by the formula:

Si = (cos
2π(i− 1)

n
, sin

2π(i− 1)

n
), i = 1, 2, . . . , n.

For the spring systems to be equibalanced, we must have
n∑
i=1

xi(p−xi) = 0, and we have the location of p as follows:

p =

∑n
i=1 xiSi∑n
i=1 xi

. (1)

Thus, the multidimensional point x is represented by the
point p. Figure 1 shows how a sample x of an eight-
dimensional space is represented by a point p in a 2-
dimensional plot.

The important properties of the Radviz method are de-
scribed in [7]:

– If a multidimensional point with all x coordinates
have the same value, the data point lies exactly in the
origin of the graph. Points with approximately equal
dimensional values (after normalization) lie close to
the center. Points with similar dimensional values,
whose dimensions anchors are opposite each other on
the circle lie near the center.
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Figure 1: Radviz visualizes a point in 8 dimensions.
The dimensions are represented by points, placed equally
spaced on the unit circle. An observation x is displayed at
position p corresponding to its attributes x1, x2, . . . , x8.

– If the point is a unit vector point, it lies exactly at
the fixed point on the edge of the circle where the
spring for that dimension is fixed. Points which have
one or two coordinate values significantly greater than
the others lie closer to the dimensional anchors (fixed
points) of those dimensions.

– The position of a point depends on the layout of the
particular dimensional anchors around the circle.

– Many points can be mapped to the same position. This
mapping represents a non-linear transformation of the
data that preserves certain symmetries.

– The Radviz method maps each data record to a point
in a multidimensional data set that is within the convex
hull of the dimensional anchors.

We can consider the Radviz nonlinear mapping as a
combination of a perspective projection with the viewer

at o = (0, 0, . . . , 0) on a simplex
n∑
i=1

xi = 1, V (x) =

(
n∑
i=1

xi)
−1x and a linear mapping as in the Star coordinates

[14]LS(x) =
n∑
i=1

xiSi. The Radviz mapping can be rewrit-

ten as follows:

R(x) = LS(V (x)) = (

n∑
i=1

xi)
−1

n∑
i=1

xiSi.

3.2 Inversion Radviz
We propose a method that supports users in viewing the
hypercube at arbitrary corner of the unit hypercube. We

assume that the view is a point p = (p1, p2, . . . , pn) ∈
{0, 1}n. The simplex at the point p is a hyperplane (πp)
that goes through n points (p1, . . . , 1 − pi, . . . , pn), i =
1, 2, . . . , n. The equation of the simplex is determined as
follows:

n∑
i=1

(1− 2pi)xi = 1−
n∑
i=1

pi.

We can rewrite the above equation of the hyperplane as

(πp) :
∑
pi=0

xi +
∑
pi=1

(1− xi) = 1.

We find the position of the multidimensional point x =
(x1, x2, . . . , xn) ∈ [0, 1]n in the visual space. The coor-
dinates of the point x with respect to the origin p and the
basic vectors(

(1− 2p1)e1, (1− 2p2)e2, . . . , (1− 2pn)en

)
,

is denoted by

xp = (
x1 − p1
1− 2p1

,
x2 − p2
1− 2p2

, . . . ,
x2 − p2
1− 2pn

),

or

xp =
(
p1 + (1− 2p1)x1, . . . , pn + (1− 2pn)xn

)
,

where (e1, e2, . . . , en) are the standard basic vectors ofRn.
Obviously, the coordinates of the point x are the coordi-
nates of the vector x − p with respect to the vector basic
systems above.

The perspective projection V maps a point xp onto the
hyperplane (πp) at the point Vp(x) where

Vp(x) =

(
p1 + (1− 2p1)x1, . . . , pn + (1− 2pn)xn

)
∑
pi=0

xi +
∑
pi=1

(1− xi)
.

Figure 2 displays the viewpoint p, the view plane (πp), and
the location Vp(x) of the multidimensional point x on the
hyperplane (πp).

Figure 2: The perspective projection at corner p.

The Radviz projection at the point p is defined as

P (x) =

n∑
i=1

(
pi + (1− 2pi)xi

)
Si∑

pi=0
xi +

∑
pi=1

(1− xi)
,
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or

P (x) =

∑
pi=0

xiSi +
∑
pi=1

(1− xi)Si∑
pi=0

xi +
∑
pi=1

(1− xi)
.

The ith coordinate of the point x corresponding to pi =
1 is changed to 1 − xi. We propose an inversion Radviz
(iRadviz for short) to project the multidimensional point x
onto the visual space as follows:

Rp,S(x) =

∑
pi=0

xiSi +
∑
pi=1

(1− xi)Si∑
pi=0

xi +
∑
pi=1

(1− xi)
(2)

Figure 3 shows the Radviz and iRadviz to visualize a
synthetic data set in three dimensional space that called as
3D data set. The 3D data set contains 700 points which split
into seven clusters. Each cluster has 100 points at the seven
vertices of the cube except vertex (1, 1, 1). Figure 3 (left)
shows the traditional Radviz visualizing the 3D data set.
One cluster at the origin (0, 0, 0) is spread on the simplex.
Radviz visualizes three dimensional space data set that is
not affected by permutation. Figure 3 (right) shows the 3D
data set with iRadviz using viewpoint (1, 1, 1) where the
seven clusters are perfectly separated.

For interaction, users can select a dimensional anchor pi
in Radviz and change this vertex into 1 − pi. For finding
the optimal viewpoint of the iRadviz of the given data set,
we need a quality measurement to define a suitable view of
a multidimensional data set.

4 Quality measurement
Suppose data set X = {xi : 1 ≤ i ≤ n} is classified into
K classes and each class is labeled by C = {1, 2, . . . ,K}.
We denote nk a the number of data points in the kth class.
In this section, we present briefly three methods to measure
quality in iRadviz for visualizing supervised data. Without
loss of generality, we also denote the data set that is pro-
jected in the visual space by X = {xi : 1 ≤ i ≤ n} ⊂ R2.

4.1 Class distance consistency
For each class, we denote ck as the centroid of the kth class.
A data point x belongs to a particular class if the distance
from the data point x to the centroid of this class is smallest.
Hence, we denote

class(x) = arg min
1≤k≤K

||x− ck||.

A data point x is correctly represented if its label is the
same as its class, otherwise the data point x a miss.

The Class Distance Consistency (CDC) [21] of data set
X = {xi : 1 ≤ i ≤ n} is defined as the number of cor-
rectly represented data points, i.e.,

Q(CDC, X) =
|xi : label(xi) = class(xi)|

n
. (3)

The CDC quality measurement for class visualization is ap-
plicable for a spherical shape of clusters.

4.2 Cluster density measurement
The quality Cluster Density Measurement (CDM ) [1] is
defined as follows:

Q(CDM, X) =

K∑
i,j=1

d2ij
rirj

, (4)

where dij = ||ci − cj || is the Euclidean distance between
two cluster centroids, and ri is an average radius of the ith
cluster, i.e.,

ri =

∑
label(x)=i

||x− ci||

ni
.

The high value quality presents well defined cluster sep-
arations with small intra-cluster distances and large inter-
cluster distances. Hence, the higher the quality measure is,
the better is the visualization of the supervised data set.

4.3 Conditional entropy
The Havrda-Charvat’s structural α-entropy [9] is defined as

Hα(X) =
2α−1

2α−1 − 1

(
1−

n∑
i=1

pα(xi)
)
, α > 0, α 6= 1.

A conditional Havrda-Charvat’s structural α-entropy [18]
for class visualization quality is defined as follows:

Hα(C|X) =

∫
p(x)Hα(C|X = x)dx

=
2α−1

2α−1 − 1

(
1−

K∑
j=1

∫
pα(j|x)p(x)dx

)
.

We can estimate the conditional entropy Hα(C|X) as fol-
lows:

Hα(C|X) =
2α−1

2α−1 − 1

(
1− 1

n

K∑
j=1

n∑
i=1

pα(j|xi)
)
.

Assume each data point xi is classified into only one class,
i.e., p(j|xi) = 1 for the jth class and p(j|xi) = 0 for
any other class. The conditional entropy achieves minimal
value.

When α = 2, we have the quadratic entropy:

H2(C|X) = 2
(

1− 1

n

K∑
j=1

n∑
i=1

p2(j|xi)
)
.

By Bayes’ theorem, we have

p(j|x) =
p(j)p(x|j)
p(x)

.



Another Look at Radial Visualization for. . . Informatica 41 (2017) 159–168 163

Figure 3: The synthetic 3D data visualization. (Left) Traditional Radviz. (Right) iRadviz with viewpoint (1, 1, 1).

The prior probability is estimated by

p(j) =
nj
n
.

The density p(x|j) and p(x) are estimated by nonparamet-
ric techniques as the Parzen window method. Consider a
small region R(x) that contains x and has area V . Assume
the region R(x) contains kj(x) points of the jth class and
k(x) points of the data set. We estimate the density by

p(x|j) =
kj(x)

njV
,

and p(x) =
k(x)

nV
. Therefore, the conditional probability

p(j|x) can be estimated by

p(j|x) =

nj
n

kj(x)

njV

k(x)

nV

=
kj(x)

k(x)
.

The quality entropy is defined as following

Q(ENT,X) = 1− 1

n

n∑
i=1

K∑
j=1

(kj(xi)
k(xi)

)2
(5)

The lower the quality entropy is, the better is the clustering
visualization. For calculating the entropy quality, we di-
vide the square region that contains all data set into N ×N
grid cells. The grid size N in two-dimensional space is es-
timated by the k-nearest neighbor. For each cell c, we have

9 neighbor cells, and on average in 9 cells we have
9n

N2

points. The grid size N is calculated by
9n

N2
=
√
n or

N = 1 +
[
3 4
√
n
]
.

For each cell c, we store the class point counts c =
(c1, c2, . . . , cK), where cj is the number of point of the
jth class falling into the cell c. For each point x that
falls in the cell c, region R(x) contains all cells that are
neighbors with the cell c. We have kj(x) =

∑
c∈R(x)

cj and

k(x) =
∑

c∈R(x)

kj(x). The complexity for computing the

entropy quality is O(Kn), i.e., it has linear time complex-
ity.

5 Experimental results
We tested our approach with five data sets. For each data
set, we find the viewpoint for the iRadviz based on the three
quality measurements presented in the Section 4.

The first well known data set is called the Iris data set1.
The Iris data set contains 150 data points, four attributes:
X1 (sepal length), X2 (sepal width), X3 (petal length), X4

(petal width) and three classes: Setosa (50 data points),
Versicolour (50 data points), and Virginica (50 data points).

Figure 4 shows the iRadviz approach for visualizing the
Iris data set. Classes are encoded by different colors. One
class (red) is separated perfectly with two other classes. In
Figure 4 (left) with inversion of the axes X2, X3, X4 and
Figure 4 (right) with inversion of the axes X1, X2, X3, X4.
These figures show three classes better separated than in
Figure 4 (middle) without inversion the axes.

The second data set is named the Wine data set2. The
Wine data set includes 178 data points with 13 attributes:
X1(Alcohol), X2 (Malic acid), X3 (Ash), X4 (Alcalin-
ity of ash), X5 (Magnesium), X6 (Total phenols), X7

(Flavanoids), X8 (Nonflavanoid phenols), X8 (Proantho-
cyanins), X10 (Color intensity), X11 (Hue), X12 (OD280 /

1http://archive.ics.uci.edu/ml/datasets/Iris
2http://archive.ics.uci.edu/ml/datasets/Wine
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Figure 4: The Iris data. (Left) The best iRadviz visualization based on CDC quality. (Middle) The best iRadviz visualiza-
tion based on CDM quality. (Right) The best iRadviz visualization based on Entropy quality.

Figure 5: The Wine data. (Left) The best CDC quality of iRadviz visualization. (Middle) The best quality CDM of iRadviz
visualization. (Right) The best quality Entropy of iRadviz visualization.

Figure 6: The Y14c data. (Left) The best quality CDC on iRadviz. (Middle) The best quality CDM on iRadviz. (Right)
The best quality Entropy on iRadviz.

OD315 of diluted wines), and X13 (Proline). The Wine
data set is classified into three classes: class 1 (59 data

points), class 2 (71 data points), and class 3 (48 data
points). Figure 5 shows the Wine data set with a differ-
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ent viewpoint using iRadviz. The different colors repre-
sent different classes of the Wine data set. Figure 5 (left)
shows the best iRadviz visualization for the Wine data set
with highest CDC quality where inversion was applied to
axes X4, X5, X7, X10. Figure 5 (middle) shows the best
iRadviz visualization for the wine data set with highest
CDM quality where inversion has been applied to axes
X1, X2, X3, X4, X8, X9, X11, X12, X13. Figure 5 (right)
shows the best iRadviz visualization for the wine data set
with highest Entropy quality where inversion has been ap-
plied to axes X6, X7, X10.

The third data set is a synthetic data set, that contains
480 data points with ten attributes and partitions into 14
clusters. Figure 6 shows three views of the Y14c data with
several different viewpoints in iRadviz. In this figure, the
inversion axes are highlighted by red color. Figure 6 (left)
shows the best iRadviz class visualization of this data on
the CDC quality with inversion axes 2, 3, 4, 5, 6, 7. Clusters
shown in this figure are well separated. Figure 6 (middle)
shows the best iRadviz based on highest CDM quality with
inversion axes 1, 2, 3, 6, 10. Several clusters are overlap-
ping in this visualization. Figure 6 (right) shows the best
iRadviz based on highest Entropy quality with inversion
axes 1, 2, 3, 4, 6, 9. This figure shows that clusters are per-
fectly separated. The Y14c data set contains two clusters
that have an different a scale. These clusters are fully over-
lapped on the Radviz with any permutation of dimensional
anchors.

The fourth data set is named Italian Olive Oils data
(Olive for short)3. The Olive data set consists of eight
attributes about eight fatty acids (X1 palmitic, X2 palmi-
toleic, X3 stearic, X4 oleic, X5 linoleic, X6 linolenic, X7

arachidic, X8 eicosenoic) and 572 data samples. The Olive
data set is classified into nine clusters. Each cluster cor-
responds to one of nine areas in Italy. Figure 7 shows the
iRadviz class visualization of the Olive data set that shows
the best quality based on CDC (left), CDM (middle), and
Entropy (right). Figure 7 (left and right) classes are more
separated than the classes in Figure 7 (middle).

The last data set is called Ecoli4. The Ecoli data contains
336 data samples and each data sample consists seven at-
tributes. The Ecoli data set is partitioned into eight clusters
with 143, 77, 52, 35, 20, 5, 2, 2 data samples respectively.
The three last clusters contain very small data amounts of
samples. Figure 8 shows the class visualization using iRad-
viz with the best quality based on CDC (left), CDM (mid-
dle), and Entropy (right).

6 Comparison and discussion

In this section, we present some quality measurements of
our proposed method versus permutation and our method
versus other algorithms.

3http://cran.r-project.org/
4https://archive.ics.uci.edu/ml/datasets/Ecoli

6.1 Inversion dimension versus permutation
For the three first data set (Iris, Ecoli, and Olive) data sets,
we find the global best permutation for each quality mea-
surements by searching over all permutations. The two last
data sets (Y14c and Wine), we find the local best permuta-
tion. We call two instances permutations of data dimension
if they are different by one consecutive position. The local
best permutation achieves the best quality over all neighbor
permutations.

Class Distance Consistency: Table 1 shows that the
quality of our approach is better than the CDC quality
in [21] for the Iris, Ecoli, Y14c, and Wine data sets and
is slightly lower than the CDC quality for the Olive data
set.

Cluster Density Measurement: Table 2 shows that the
CDM quality of our approach is better than the CDM qual-
ity in [2] for the two last data sets, lower for the Ecoli and
Olive data sets, and the same for the Iris data set.

Entropy Measurement: Table 3 shows that the Entropy
quality of our approach is better than the Entropy quality
in [18] for the Iris, Ecoli, and Y14c data sets, and is slightly
lower for the Olive and Wine data sets.

6.2 Inversion axes with other permutation
algorithms

In this section, we present the quality measure-
ment comparison of our method versus the t-statistic
method and the CDM method about the permuta-
tion on the Radviz [1]. The best permutation
in Radviz for the Wine data by t-statistic method
is {1, 2, 4, 8, 10, 11, 13, 12, 9, 7, 6, 5, 3}, and the CDM
method delivers {8, 3, 4, 2, 10, 13, 1, 5, 6, 7, 9, 12, 11}. The
best permutation in Radviz for the Olive data by t-statistic
method is {1, 2, 5, 4, 8, 7, 3, 6}, and the CDM method de-
livers {1, 3, 4, 7, 6, 2, 8}.

Table 4 shows the quality measurements CDC, CDM,
and Entropy (ENT) for the Olive and Wine data sets. The
overall quality measurements of our approach are better
than those of the t-statistic and CDM methods except for
the Entropy quality measure applied to the Wine data set.

Figure 9 (left) shows Radviz visualizing the Wine data
set with the best permutation by the t-statistic method and
Figure 9 (right) shows the Radviz visualizing the Wine data
set with the best permutation by the CDM method. In com-
parison, Figure 5 shows the Wine data set over the inversion
axes. The Figure 9 (left) shows lowest quality for class sep-
aration for the Wine data set, while Figure 5 (left) shows the
highest quality for class separation.

Figure 10 shows the Olive data set with the two best per-
mutations using the t-statistic method (left) and the CDM
method (right). Comparison with the inversion axes lay-
out is provided in Figure 7. Figure 7 (left) and Figure 10
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Figure 7: The Olives Oil data. (Left) The best quality CDC on iRadviz. (Middle) The best quality CDM on Radviz.
(Right) The best quality Entropy on iRadviz.

Figure 8: The Ecoli data set. (Left) The best quality CDC on iRadviz. (Middle) The best quality CDM on iRadviz. (Right)
The best quality Entropy on iRadviz.

Figure 9: The Wine data. (Left) The best permutation by t-statistic method. (Right) The best permutation by CDM method.
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CDC Iris Ecoli Olive Y14c Wine
Permutation 84.67% 67.56% 82.34% 93.96% 94.94%
iRadviz 94.00% 78.57% 80.24% 100% 96.63%

Table 1: The best CDC function over permutation and inversion axes.

Quality CDM Iris Ecoli Olive Oil Y14c Wine
Permutation 44.242 42.457 27.825 358.37 13.914
iRadviz 44.242 32.325 23.078 459.824 16.634

Table 2: The Best CDM function over permutation and inversion axes.

Entropy Iris Ecoli Olive Oil Y14c Wine
Permutation 0.1316 0.2057 0.1198 0.0648 0.0084
iRadviz 0.0028 0.1645 0.1281 0.000 0.0261

Table 3: The Best Entropy function over permutation and inversion axes.

Data Olive Wine
Method CDC ENT CDC ENT
t-statistic 55.95% 0.4090 75.28% 0.1643
CDM 76.57% 0.1826 88.87% 0.0176
Our method 80.02% 0.1281 96.63% 0.0261

Table 4: The quality measurement for the Olive and Wine data sets.

Figure 10: The Olives Oil data. (Left) The best permutation with CDC quality. (Right) The best permutation with Entropy
quality.

(right) have the lowest quality for class separation in the
visual space while Figure 7 (left and right) exhibits higher
quality for class separation for both permutations.

7 Conclusion

We have presented a new method for visualizing multidi-
mensional data based on Radial visualization. Our pro-
posed method supports users choosing a suitable view for
data sets in hypercube. We proved the effectiveness of
our method versus permutation dimensional anchors on the
Radviz for some supervised data both synthetic and real.
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For future work, we want to improve our method to en-
hance class structures in subspaces with supervised data
sets. Moreover, we want to develop other quality measure-
ments for supervised data sets.
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