
Informatica 29 (2005) 71–78 71

Fast Discovery of Frequent Itemsets: a Cubic Structure-Based Approach

Renata Ivancsy and Istvan Vajk
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
and HAS-BUTE Control Research Group
H-1111, Goldmann Gy. ter 3, Budapest, Hungary
{renata.ivancsy,vajk}@aut.bme.hu

Keywords: frequent itemset mining, Apriori algorithm, FP-growth algorithm

Received: November 20, 2004

Mining frequent patterns in large transactional databases is a highly researched area in the field of data
mining. The different existing frequent pattern discovering algorithms suffer from various problems re-
garding the computational and I/O cost, and memory requirements when mining large amount of data. In
this paper a novel approach is introduced for solving the aforementioned issues. The contribution of the
new method is to count the short patterns in a very fast way, using a specific index structure. The suggested
algorithm is partially based on the apriori hypothesis and exploits the benefit of a new index table-based
cubic structure to count the occurrences of the candidates. Experimental results show the advantageous ex-
ecution time behavior of the proposed algorithm, especially when mining datasets having huge number of
short patterns. Its memory requirement, which is independent from the number of processed transactions,
is another benefit of the new method.

Povzetek:

1 Introduction

The task of association rule mining is to find hidden, previ-
ously unknown and potentially useful information in large
amount of data. Since it was first introduced by Agrawal
et al [1] the problem of discovering frequent patterns has
received a great deal of attention. The problem is widely
known as market basket analysis, however, several other
applications exist which are searching for frequent recur-
ring itemsets.

In general the process of association rule mining consists
of two main steps. The first one is to discover the frequent
itemsets in the dataset. The second one is to create rules
from the itemsets found during the first step. Most of the
existing algorithm’s aim is to find the frequent itemsets,
i.e. the frequent patterns in the transactions because of two
reasons. The first reason is the much higher computational
complexity of the frequent pattern discovery task than that
of the rule generation. The frequent itemsets are discov-
ered from the original database, which can be terabytes in
size; meanwhile the rules are generated from the relatively
small number of itemsets found by the first step. The sec-
ond reason is that the approach of discovering frequent pat-
terns is utilized in wide range of applications, for example
for mining sequential patterns, episodes, partial periodicity
and many other important data mining tasks.

The different types of frequent itemset mining algo-
rithms suit to datasets having different characteristics.
However all of them has problems either with the compu-

tational cost or the I/O activity or the memory requirement.
The "candidate generate and test" algorithms, such as the
Apriori algorithm [2], suffer from the problem spending
much of their time to discard the infrequent candidates on
each level. Another problem can be the high I/O cost which
is inseparable from the level-wise approach. In case of the
Apriori algorithm the database is accessed as many times
as the size of the maximal frequent itemset is. Several al-
gorithms were developed based on the Apriori method in
order to enhance its performance. One of them is the DHP
(Dynamic Hash and Prune) [3] algorithm which uses hash
tables to collect support information about the potentially
(i + 1)-itemsets when discovering the i-itemsets. In this
way the cost of generating and testing the candidates on
the (i + 1)th level is reduced. Another enhancement of the
Apriori algorithm is the DIC (Dynamic Itemset Counting)
[4] algorithm. It defines checkpoints in the database and
scans it continuously. When a checkpoint is reached, new
candidates are generated from those itemsets which are
proved frequent and those are discarded which are proved
infrequent since the last pass of the same checkpoint. In
this way the number of the database scans can be reduced.
There are several algorithms contributed [5, 6, 7, 8] to im-
prove the performance of the Apriori algorithm that use dif-
ferent type of approaches. An analysis of the best known
algorithms can be found in [9].

The FP-growth (Frequent Pattern-growth) [10] algo-
rithm differs basically from the level-wise algorithms, that
use a "candidate generate and test" approach. It does not



72 Informatica 29 (2005) 71–78 R. Ivancsy et al.

use candidates at all, but it compresses the database into the
memory in a form of a so-called FP-tree using a pruning
technique. The patterns are discovered using a recursive
pattern growth method by creating and processing condi-
tional FP-trees. The drawback of the algorithm is its huge
memory requirement which is dependent on the minimum
support threshold and on the number and length of the
transactions. [11] suggest a variant of the FP-growth al-
gorithm, such that the memory cost of building conditional
FP-trees are minimized due to building a so-called COFI-
tree for each frequent item. Another memory resident al-
gorithm is the H-mine algorithm [12] which represents the
transactions as a list of elements in the memory. The tra-
versal of the lists is helped with some header tables. A
further memory-based frequent itemset counting algorithm
was introduced in [13]. One advantage of the memory resi-
dent algorithms is that the number of the database accesses
is independent from the size of the maximal frequent item-
set. Unfortunately, the size of the memory is a function of
the number of transactions.

The method proposed in this paper belongs to the
Apriori-like algorithms, thus it uses candidates, but it has
the advantage counting and testing them quickly using an
index structure. Its other advantage is the relatively small
memory requirement that is dependent on the minimum
support threshold and on the item number.

The organization of the paper is as follows. 1 Sec-
tion 2 defines the association rule mining problem. In Sec-
tion 3 two of the most common association rule mining
algorithms are described in detail, a level-wise "candidate
generate and test" method, and a memory-based algorithm.
The execution behavior of the presented algorithms is an-
alyzed in Section 4. After drawing the conclusion of the
experiments a new method is suggested and described in
detail in Section 5. Some experimental results are shown
in this section as well. Conclusion can be found in Sec-
tion 6.

2 Problem statement

Frequent pattern mining is one of the most fundamental
data mining tasks. It is used besides several applications
mainly in association rule mining algorithms. This section
formally introduces the problem of association rule mining
and defines the most important terms in this field.

The association rule mining problem is defined as fol-
lows. Let I = {i1, i2, . . . , in} be the complete set of items
appearing in the transactions, where n denotes the maxi-
mum number of items. An itemset is a non-empty subset
of I , and if the length of the itemset is k, then it is called k-
itemset. A transaction T is a set of items such that T ⊆ I .
Each transaction in the database has an identifier, called
TID. A transaction T contains an itemset X if and only if
X ⊆ T . The support of the itemset X , denoted as σ(X), is

1Short version of this paper is presented in [14].

defined as the percentage of the transactions in the database
which contain X .

An association rule is an implication of the form X →
Y where both X and Y are itemsets, and there exists no
item which appears both in X and in Y , formally, X ⊂ I ,
Y ⊂ I and X ∩ Y = ∅. An association rule has two
properties: the support and the confidence. The support of
the rule X → Y equals to the support of the itemset XY .
The confidence, denoted with c, is the percentage of the
transactions in the database containing X that also contain
Y . This is taken as a conditional probability, P (Y |X).

In order to reduce the search space and to discover
only those rules which can be interesting for the user, two
thresholds are introduced, the minimum support and the
minimum confidence thresholds. An itemset is frequent if
its support exceeds a user-defined minimum support thresh-
old, σmin. However the support and the minimum support
threshold are defined as percentage, the algorithms convert
them to an integer value (sup) using the number of transac-
tions N . In this way calculating the support of the itemset
is only counting its occurrences in the transactions, and it
can be easily compared to the integer minimum occurrence
threshold (minsup). The rules are created only from fre-
quent itemsets. The rule is only a valid rule if its confidence
exceeds the minimum confidenc threshold (minconf ).

3 Basic Algorithms
The frequent itemset mining algorithms can be classified
regarding several aspects. One of the most distinctive fea-
tures of the methods is whether they use candidates. An-
other aspect of the classification can be the number of the
database scans because of the high cost of the I/O activity.
Regarding these aspects two basic algorithms are explained
in this paper whose approaches are fundamentally differ-
ent. The first algorithm, introduced in Subsection 3.1, is
the Apriori algorithm that is a basic level-wise method and
uses candidates to discover the frequent itemsets. The other
algorithm, presented in Subsection 3.2, is the FP-growth al-
gorithm which is a two-phase method and does not use any
candidates to generate the patterns. The two algorithms
are selected for presentation because their importance in
the data mining field. Before introducing the algorithms in
detail some assumptions are needed to explain. These as-
sumptions without loss of generality make easier to handle
the problem. Firstly it is assumed that the items are pre-
sented with continuous integers. The other supposition is
that the items are in lexicographic order both in the trans-
actions and in the candidates. If it is not the case the con-
versions can be done during a preprocessing step.

3.1 Apriori algorithm
The most commonly known, and the first presented associ-
ation rule mining algorithm is the Apriori algorithm intro-
duced by Agrawal et al in [2]. Since its introduction several
other algorithms were presented which are based on it.



FAST DISCOVERY OF FREQUENT ITEMSETS. . . Informatica 29 (2005) 71–78 73

The main idea of the algorithm is based on the a priori
hypothesis, namely, an itemset can only be frequent if all
its subsets are also frequent. In other words, if an itemset is
not frequent, no superset of it can be frequent. Exploiting
this knowledge makes possible to reduce the search space
efficiently when discovering the frequent itemsets, because
using this knowledge the number of the candidates can be
reduced. The Apriori algorithm is a level-wise method,
which means that it discovers the k-itemsets during the kth

database scan.
The algorithm works as follows. During the first data-

base scan the items in the transactions are counted and the
infrequent ones are discarded. In this way the frequent 1-
itemsets are found. From these frequent items two candi-
dates are generated by creating all the combination of them
by keeping the lexicographic order. Formally, the items x
and y form a candidate (x, y) when x ≤ y. During the
second database scan the support of the 2-candidates are
counted. After a database reading the counters of the candi-
dates are checked whether they are over the minimum sup-
port threshold. If a value of a counter exceeds the threshold,
the candidate belonging to it becomes frequent, otherwise
it is filtered out. The 3-candidates are generated from the
frequent 2-itemsets regarding the following rule. Let be
given two itemsets (i1, i2) and (i3, i4) where i1 < i2 and
i3 < i4 as mentioned earlier. The two itemsets can form a
3-candidate if i1 = i3 and (i2, i4) is also frequent. Fulfill-
ing the second condition means that the a priori hypothe-
sis is fulfilled. The resulting 3-candidate is the following:
(i1, i2, i4). In general two k-itemsets are joined by keeping
the lexicographic order to form a (k +1)-itemset if the first
k − 1 items of them are in common and all the (k − 1)-
subsets of the resulting candidate are frequent as well. The
algorithm terminates if no candidates can be generated or
no frequent itemsets are found. The pseudo code of the
algorithm is depicted in Table 1 and Table 2.

procedure Apriori(minsup)
L1 = find frequent 1-itemsets
for (k = 2;Lk−1 ! = null;k++)

Ck = AprioriGen(Lk−1)
for each transaction t do

Ct = subset(Ck,t)
for each candidate c in Ct do

c.counter++
for each c in Ck do

if c.counter >= minsup then
Lk.Add(c)

return Ck

Table 1: Pseudo code of the Apriori algorithm

3.2 FP-growth algorithm
One of the algorithms which do not use any candidates to
discover the frequent patterns is the FP-growth (Frequent

procedure Apriori(minsup)
for each itemset l1 in Lk−1do

for each itemset l2 in Lk−1 do
if l1[1] = l2[1]

and l1[2] = l2[2]
and . . . and l1[k − 2] = l2[k − 2]
and l1[k − 1] < l2[k − 1]

then
c = l1 join l2
if c has infrequent subset
then DELETE c
else Ck.Add(c)

return Ck

Table 2: Pseudo code of the AprioriGen procedure

Pattern Growth) algorithm proposed in [10]. The other
main difference to the Apriori algorithm is the number of
the database readings. While the Apriori is a level-wise al-
gorithm the FP-growth is a two-phase method. It reads the
database only twice and stores the database in a form of a
tree in the main memory.

The algorithm works as follows. During the first data-
base scan the number of occurrences of each item is de-
termined and the infrequent ones are discarded. Then the
frequent items are ordered descending their support. Dur-
ing the second database scan the transactions are read and
the frequent items of them are inserted into a so-called FP-
tree structure. In this way the database is pruned and is
compressed into the memory. The aim of using the FP-tree
is to store the transactions in such a way that discovering
the patterns can be achieved efficiently.

Each node in the tree contains an item, a counter to count
the support, and links to the child nodes, to the parent nodes
and to the siblings of the node. The rule for constructing
the FP-tree is as follows. When reading a transaction its
infrequent items are omitted and the frequent ones are or-
dered regarding their support. The transaction is then in-
serted into the tree. If the tree is empty the transaction is
inserted as the only branch in the tree. If it is not empty,
while the first k items of the transaction fit the prefix of one
of the branches of the tree, a counter is incremented in each
referred node in the tree. From the (k + 1)th item, a new
branch is created as a child of the node, which corresponds
to the kth item in the transaction, and the further items in
the transactions are inserted as this new branch with a sup-
port counter set to one. A header belongs to the FP-tree
which contains the sorted 1-frequent items, their supports
and a pointer to the first occurrence of the given item in the
tree. The other occurrences of the given item in the tree are
linked together sequentially as a list.

The FP-tree is processed recursively by creating several
so-called conditional FP-trees. This is the recursive pattern
growth method of the algorithm. When a conditional FP-
tree contains exactly one branch the frequent itemsets are
generated from it by creating all the combinations of each



74 Informatica 29 (2005) 71–78 R. Ivancsy et al.

items. When traversing the whole FP-tree, all the frequent
itemsets are discovered. The pseudo code of the FP-growth
algorithm is depicted in Table 3.

procedure FPGrowth(Tree, α)
if Tree contains a sigle path P then

for each β = comb. of nodes in P do
pattern = β ∪ α
sup = min(sup of the nodes in β)

else
for each ai in the header of Tree do

generatepattern = β ∪ α
sup = ai.support
construct β’s conditional pattern base
FPTree = construct β’s

conditional FP-tree
if FPTree != 0 then

FPGrowth(FPTree,β)

Table 3: Pseudo code of the FP-growth algorithm

4 Comparison of the Algorithms
The experimental results presented in this paper are per-
formed on semantic datasets generated by the dataset gen-
erator downloaded from the IBM website. The datasets
generated with this program accomplish the conditions in-
troduced in [2]. The algorithms were implemented in C#.
The simulations were executed on a Pentium 4 CPU, 2.40
GHz, and 1GB of RAM computer on .NET Framework
v1.1. The naming conventions of the datasets are shown
in Table 4. The number of the items that can occur in the
transactions is 1000.

Parameter Meaning
T Average length of the transactions
I Average size of maximal

frequent itemsets
D Number of transactions
K Thousand

Table 4: Meaning of the parameters in the names of the
datasets

In order to find a more effective algorithm to solve the
frequent itemset mining problem in a given range of the
parameters the behavior of the most representatives algo-
rithms should be investigated. After detecting their draw-
backs a novel method can be developed which aim is to
avoid the disadvantages found by the algorithms examined.
The objectives of the investigation are the execution time
behavior and the memory requirements of each methods.

A major aspect of the examination is which parameters
of the dataset affect the behavior of the algorithms signif-
icantly. The two main parameters of the datasets are the

number of items that can appear in the transactions, de-
noted with n, and the number of transactions, denoted with
T .

Fig. 1 shows the execution times of the two algorithms
as a function of the number of transactions. It can be eas-
ily concluded that the execution time dependency of the
Apriori algorithm on the number of transactions is linear,
and that of the FP-growth algorithm is rather a polynomial
of two degree. The memory requirement of the two algo-
rithms is depicted in Fig. 2 as a function of the number of
transactions. It is obvious, that the memory requirement
of the Apriori algorithm does not depend on the number
of transactions. The reason for that can be found in the
"candidate generate and test" approach. The number of the
candidates does not depend on the number of transactions;
it depends only on the item number and on the minimum
support threshold.

The memory requirement of the FP-growth algorithm
increases significantly with the growth of the number of
transactions. The reason for this can be found when exam-
ining the sizes of the trees which are generated by the al-
gorithm. If the algorithm mines two datasets with the same
statistical properties but the one contains an order of magni-
tude more transactions than the other, the first FP-tree built
by the FP-growth algorithm contains an order of magnitude
more nodes in the former case than in the latter. However
the rules that have been found are nearly the same. From
this fact we can draw the conclusion that several redundant
nodes are in the FP-tree when increasing the number of the
transactions. The claim is laid to modify the algorithm so
that the created tree does not contain as redundant nodes
as in the original case. The function between the number
of transactions and the size of the first generated tree is lin-
ear, which is shown in Fig. 3 by different minimum support
thresholds.

The advantage of the FP-growth algorithm is the quick
mining process which does not use candidates. Its draw-
back is, however, that the memory requirement of the al-
gorithm is huge, especially by lower minimum support
threshold. The main problem of the "candidate generate
and test" methods is the computational cost when filter-
ing out the infrequent itemsets. Fig. 4 shows the execu-
tion time of the Apriori algorithm by itemset levels when
using T20I7D200K dataset. When investigating the exe-
cution times by itemset levels the fact is proved that the
algorithm uses most of its time to discover the small fre-
quent itemsets. In general it uses more than 70% of its ex-
ecution time to discover the 4-frequent itemsets, and more
than 50% of this time is used to find the 2-frequent item-
sets. Its reason is the huge number of candidates in the first
four levels. The candidate numbers in each single level are
depicted in Fig. 5. It can be seen well that the number of
the candidates in the second level is two orders of magni-
tude higher than in the further levels, however the number
of the frequent itemsets, depicted in Fig. 6, are about the
same.

The Apriori algorithm stores the candidates in a hash tree



FAST DISCOVERY OF FREQUENT ITEMSETS. . . Informatica 29 (2005) 71–78 75

in order to quick find those candidates, which are to be
checked whether they are contained by a certain transac-
tion. The benefit of using a hash-tree is to reduce the num-
ber of candidates to be checked when processing a transac-
tion. During a database scan each transaction is processed
and its subsets are checked whether a counter belongs to it
in the hash tree or not. This method is faster than finding
the candidates by linear search, but in case of huge candi-
date number, using a hash tree is inefficient. The number of
the database accesses of the Apriori algorithm equals to the
size of the maximal frequent itemset. It accesses the data-
base k times even than when only one k-frequent itemset
exists. If the dataset is huge, the multiple database scans
can be one of the drawbacks of the Apriori algorithm.

Figure 1: Execution time of the two algorithms as a func-
tion of the number of transactions by 0.9% minimum sup-
port threshold

Figure 2: Peak memory of the two algorithms as a function
of the number of transactions by 0.9% minimum support
threshold

5 Cubic algorithm
The previous section describes the advantages and the dis-
advantages of the Apriori and the FP-growth algorithms.
The main motivation of the novel method, called Cubic, is
to enhance the aforementioned algorithms both regarding
the execution time behavior and the memory requirement.

Figure 3: Sizes of the first generated FP-tree as a func-
tion of the number of transactions by 0.8%, 1.3% and 1.5%
minimum support thresholds

Figure 4: 7 Execution time on each level of the Apriori
algorithm when using T20I7D200K dataset

The aim was to develop an algorithm whose memory usage
is significantly lower than that of the FP-growth algorithm,
and its execution time is smaller than the execution times of
both of the algorithms described earlier. The new method
is based on the Apriori algorithm, its aim is to enhance the
discovering of the small patterns. Thus the novel method
is faster than the introduced algorithms especially in those
cases when the characteristics of the dataset shows much
more small patterns than long ones.

5.1 Description of the algorithm
The Cubic algorithm is a novel method to find the frequent
4-itemsets quickly. It discovers the 4-itemsets in only two
database scans. During the first disk access the support
of the one and two itemsets are counted using an upper
triangular matrix M . If n stands for the cardinality of the
items in the database, then the size of M equals to n(n+1)

2 .
The diagonal elements of the matrix contains counters for
the items, and the other cells are counters for the item pairs.
The support counting can be achieved by a direct indexing
method using the matrix and in this manner it is the fastest
way.

The three and four frequent itemsets are counted during
a further database scan. For efficient counting the support
of the candidates their counters are stored in an index table-



76 Informatica 29 (2005) 71–78 R. Ivancsy et al.

Figure 5: Sizes of the candidates in each level when using
T20I7D200K dataset

Figure 6: Sizes of the frequent itemsets in each level when
using T20I7D200K dataset

based cubic structure. This is built when traversing the ma-
trix M . A cube is created for those rows of the matrix
whose value of the diagonal element is over the minimum
support threshold. It means, that one cube is created in
order to store the 3 and 4-candidates which belong to the
frequent 2-itemsets beginning with the same item. In this
manner the first item of a candidate selects the appropriate
cube and the further items addresses the cells in the cube.

The matrix M is processed by rows. The ith row is only
processed, if the value of the ith diagonal element in M is
greater than the minimum support threshold. In this case
a new index table is created with size of n, and the val-
ues in the ith row are checked whether they are over the
threshold or not. If M [i, j] > minsup, (i < j), the jth el-
ement in the index structure is set to the number which will
later index the cube. If all the elements of the ith row are
checked, a cube is created. The size of the cube is the num-
ber of the frequent item pairs in the ith row. A reverse in-
dex is created as well, in order to easy converting the index
value, which addresses the cells in the cube, to the original
item when traversing the cubes. This is used by the counter
checking process. During the second database scan every
3 and 4-subsets of the transactions are created, which has
at least one 2-frequent subset, and the appropriate element
in the cube is incremented. The cube is selected by the first
item of the subset. The other items address the counters in
the cube using the index structure belonging to the selected

cube.
The Apriori hypothesis is used only partially because of

the following reason. The Apriori assumption is exploited
when the algorithm creates different cubes for the itemsets
having different first item. However it is not used when
the edges of the cube are created. If the value of M [i, j] is
greater than the minimum support threshold, the item j is
added to the index table of the cube independently whether
the elements M [j, s], (i < s < n) are greater than the min-
imum support or not, where s denotes those items which
satisfy the M [i, s] > minsup condition. The reason for
this is that the storage space for the cube is rather compact,
and there would not be any benefit discarding these items.
In addition it would take more time to discard the item than
to count its support. The main parts of the algorithm are
depicted in Table 5 and Table 6.

The Cubic algorithm discovers the 4-frequent itemsets.
The further itemsets can be found in different ways. One
of the possibilities is a level-wise approach, which simply
invokes the Apriori algorithm. This is the easiest way and
often a very quick solution because the Apriori algorithm
finds the itemsets with cardinality greater than five rela-
tively quick. This algorithm is called Cubic-Apriori.

Another way is to call the FP-growth algorithm after
discovering the frequent 4-itemsets. The FP-tree should
be created by leaving out those transactions, which do not
contain frequent 4-itemsets. So the basic idea of the sug-
gested Cubic FP-growth algorithm is that there is no need
to build a much larger tree, if the rules are contained also
in a smaller. In this case the FP-tree must be generated
only from those transactions, which contains at least one
4-frequent itemset. In this way the profit is the smaller tree
generated by the FP-growth algorithm, thus, in general, the
execution time is enhanced as well. In addition only one
additional database scan is needed in this case than in case
of using the original FP-growth algorithm.

5.2 Simulation results

In Fig. 7 the execution time of the four algorithms is ana-
lyzed when using T20I7D200K dataset. It is clear, that the
Cubic method continued by the Apriori algorithm, called
Cubic Apriori algorithm, is the fastest of all the four meth-
ods. The execution time of the Cubic FP-growth method
is always smaller than that of the Apriori algorithm but
it is not always smaller, than the execution time of the
FP-growth algorithm. The reason for that is illustrated in
Fig. 8. The sizes of the first generated FP-trees are depicted
in it in cases of the FP-growth and of the Cubic FP-growth
algorithms when using T20I7D200K dataset as a function
of the minimum support threshold. Apparently the sizes of
the tree in case of small minimum support thresholds are
near to each other, moreover by minimum support thresh-
old of 0.5% they are about the same. It means that the
Cubic FP-growth algorithm has to accomplish about the
same recursive pattern growth process as the FP-growth
algorithm does, but before this, the Cubic FP-growth al-



FAST DISCOVERY OF FREQUENT ITEMSETS. . . Informatica 29 (2005) 71–78 77

procedure FillCubes()
for each transaction t do

for (i=0; i < t.count; i++)
if ixStruct[t[i]] = null then

continue
for (j=i + 1; j < t.count; j++)

if M [t[i], t[j]] < minsup then
continue

ix1 = IxStruct[t[i]][t[j]]
for (k = j + 1; k < t.count; k++)

ix2 = IxStruct[t[i]][t[k]]
if ix2! = −1 then

CubeL[t[i]][ix1, ix2, 0]++
for (l = k + 1; l < t.count; l++)

ix3 = IxStruct[t[i]][t[l]] + 1
if ix3! = 0 then

CubeL[t[i]][ix1, ix2, ix3]++

Table 5: Pseudo code of the candidate counting procedure
of the Cubic algorithm

gorithm has also to mine the 4-frequent itemsets using the
Cubic method. In this case filtering the transactions by us-
ing the results of the Cubic algorithm causes no significant
profit regarding the number of nodes in the tree. The saving
in the node number is rather by minimum support threshold
higher than 0.7%. In Fig. 9 the peak memory sizes are illus-
trated as a function of the number of transactions when the
average size of the maximal frequent items is 7 and the av-
erage size of the transactions is 20. The minimum support
threshold is set to 0.9%. It is shown, that the memory re-
quirement of the Cubic Apriori algorithm does not depend
on the number of transactions.

Figure 7: Execution time of the four algorithms when using
T20I7D200K

6 Conclusion
This paper is concerned with the problem of efficiently dis-
covering frequent itemsets in transactional databases. The
algorithms dealing with this type of data mining problem
can be divided into several classes regarding their behavior.

procedure CheckCubes()
rI=reverseIndexTable.Clone()
for (i=0;i < cubeL.count;i++)

if cubeL[i]!=null then
for (j=0;j < rI[i].count;j++)

for (k=j + 1;k < rI[i].count;k++)
if cubeL[i][j; k; 0] >= minSup
then

item2 = rI[i][j]
item3 = rI[i][k]
L3.Add(i, item2, item3)
for (l=k + 1;l < rI[i].count;l++)

if cubeL[i][j, k, l] > minSup
then

item2 = rI[i][j]
item3 = rI[i][k]
item4 = rI[i][l − 1]
L4.Add(i, item2, item3, item4)

Table 6: Pseudo code of the candidate checking procedure
of the Cubic algorithm

Figure 8: Sizes of the first generated tree of the FP-
growth and of the Cubic FP-growth algorithm when using
T20I7D200K

The two most representative classes are the one which con-
tains the level-wise methods and the class that contains the
two-phase methods. Two basic algorithms of these classes
were explained in detail. After investigating the execution
time behavior and the memory requirement of the Apri-
ori and the FP-growth algorithm the advantages and disad-
vantages of them were illustrated. The main drawback of
the Apriori algorithm is its relatively slow candidate test-
ing method using the hash-tree data structure in case of
small candidates, when the number of these candidates is
high. The memory requirement dependency on the num-
ber of transactions is proved as the major problem of the
FP-growth algorithm.

A novel method, the Cubic algorithm is presented in or-
der to enhance the Apriori algorithm by finding the short
frequent patterns quickly, using an index table-based cubic
structure. The algorithm exploits the benefits of direct in-
dexing over the hash tree-based searching. Experimental



78 Informatica 29 (2005) 71–78 R. Ivancsy et al.

Figure 9: Peak memory of the algorithms as a function
of the number of transactions by 0.9% minimum support
threshold

results show the time saving when replacing the first four
steps of the Apriori algorithm with the novel method. In
this way, the Cubic Apriori algorithm is even faster than
the FP-growth algorithm, and the memory requirement of
the novel method does not depend on the number of trans-
actions.

Using the Cubic algorithm the performance of the FP-
growth algorithm can be enhanced as well. When a pre-
processing step is inserted before the FP-growth algorithm,
namely discovering the frequent 4-itemsets using the Cu-
bic algorithm, the size of the FP-tree can be reduced. In
this case the memory requirement is reduced.

Acknowledgement
This work has been supported by the fund of the Hungarian
Academy of Sciences for control research and the Hungar-
ian National Research Fund (grant number: T042741)

References
[1] R. Agrawal, T. Imielinski and A.Swami (1993) Min-

ing association rules between sets of items of large
databases, Proc. of the ACM SIGMOD Intl’l Conf.
On Management of Data,Washington D.C.,USA, pp.
207–216.

[2] R. Agrawal and R. Srikant (1994) Fast algorithms for
mining association rules, Proc. 20th Very Large Data-
bases Conference, Santiago, Chile, pp. 487–499.

[3] J. S. Park, M. Chen, and P. S. Yu (1995) An effective
hash based algorithm for mining association rules,
Proc. of the 1995 ACM Int. Conf. on Management of
Data, San Jose, California, USA, pp. 175–186.

[4] S. Brin, R. Motawani, J.D. Ullman and S. Tsur (1997)
Dynamic Item set counting and implication rules for
market basket data, Proc of the ACM SIGMOD Intl’l
Conf. On Management of Data, Tucson, Arizona,
USA, pp. 255–264.

[5] M. J. Zaki (2000) Scalable algorithms for association
mining, IEEE Transaction on Knowledge and Data
Engineering. Vol 12. No 3. May/June 2000, pp. 372–
390.

[6] V. S. Ananthanarayana, D. K. Subramanian and M. N.
Murty (2000) Scalable, distributed and dynamic min-
ing of association rules Proceedings of the 7th Inter-
national Conference on High Performance Comput-
ing - HiPC 2000, Bangalore, India, pp. 559–566.

[7] R. J. Bayardo (1998) Efficiently mining long patterns
from databases Proceedings of the ACM SIGMOD in-
ternational conference on management of data, Sea-
tle, WA, pp 85–93.

[8] P. Shenoy, J.R. Haritsa, S. Sundarshan, G. Bhalotia,
M. Bawa and D. Shah (2000) Turbo-charging vertical
mining of large databases Proceedings of the ACM
SIGMOD, Dallas, TX, pp. 22–33.

[9] R Ivancsy, F. Kovacs and I. Vajk (2004) An Analy-
sis of Association Rule Mining Algorithms, In CD-
ROM Proc. of Fourth International ICSC Symposium
on Engineering of Intelligent Systems (EIS 2004), Is-
land of Madeira, Portugal.

[10] J.Han, J. Pei and Y. Yin (2000) Mining frequent pat-
terns without candidate generation, Proc. of the 2000
ACM-SIGMOD Int’l Conf. On Management of Data,
Dallas, Texas, USA, pp. 1–12.

[11] M. El-Hajj and O. R. Zaïane (2003) Non Recursive
Generation of Frequent K-itemsets from Frequent
Pattern Tree Representations, Proc. of 5th Interna-
tional Conference on Data Warehousing and Knowl-
edge Discovery (DaWak’2003), Prague, Czech Re-
public

[12] J. Pei, J. Han, H. Lu et al (2001) H-Mine: Hyper-
structure mining of frequent patterns in large data-
bases, In Proceedings of the 2001 IEEE International
Conference on Data Mining (ICDM’01), San Jose,
California, pp. 441–448.

[13] Q. Zou, W. Chu, D. Johnson and H. Chiu (2002) Pat-
tern decomposition algorithm for data mining of fre-
quent patterns Journal of Knowledge and Information
System, Volume 4, Issue 4 pp. 466–482.

[14] R. Ivancsy and I. Vajk (2004) Fast Discovery of Fre-
quent Patterns in Market Basket Data In. Proc. of
4th International Conference on Intelligent Systems
Design and Applications (ISDAŠ04), Budapest, Hun-
gary, pp. 575–580.




