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This paper presents a framework to support Open Distributed and Embedded (ODE) application develop-
ment based on the Actor-Role-Coordinator (ARC) model. The ARC model is a role-based coordination
model developed to address three main concerns inherent in an ODE system: dynamicity, scalability, and
stringent QoS requirements. It treats an ODE system as a composition of concurrent computation and
coerced coordination. In particular, the ARC model uses concurrent objects that communicate with each
other through asynchronous messages, i.e., actors, to model the concurrent computation of an ODE sys-
tem, while the system’s QoS requirements are mapped to coordination constraints. Coordination entities,
i.e., roles and coordinators, impose coordination constraints on concurrent actors transparently through
message interceptions and manipulations. In the ARC model, roles provide actor behavior abstractions
for coordinators and coordinators are responsible for coordinating roles. In addition, a role also has local
coordination responsibilities among actors belonging to that role. This coordination is called intra-role co-
ordination which complements the inter-role coordination performed by the coordinators. In other words,
under the ARC model, an ODE application is modeled by three orthogonal layers: computation, intra-
role coordination and inter-role coordination. This separation not only improves software modularity and
reusability, but also allows different levels of compositions. Our experiments show that the model scales
well as the number of entities involved in the system increases, and that the performance overhead intro-
duced by the external coordination layers is limited.

Povzetek: Opisano je ogrodje za model aktor-vloga-koordinator (ARC).

1 Introduction

Unlike most traditional software systems, open, dis-
tributed, and embedded (ODE) systems must be concerned
with the environment in which they are executed. Such sys-
tems usually have rigid requirements on both the accuracy
of the delivered functionality and the punctuality of its de-
livery. These requirements are manifested through Quality
of Service (QoS) constraints, such as real-time, fault tol-
erance, energy consumption, and others. Another aspect
of the environment is its extent. There can be many com-
putational entities involved, and these entities are free to
join or leave (intentionally or because of failures) at any
time, introducing dynamicity into the system. The dynam-
icity and stringent QoS constraints add complexity to ODE
systems, and distinguish them from traditional concurrent
distributed systems.

Concurrent distributed computation models have been
well studied over the past decades. CSP [21], π-
calculus [33], and the actor model [1, 2] are good exam-
ples. These models are still widely used today as they pro-
vide a uniform way to model diversified applications. For
instance, the Actor model treats "actors" as universal prim-
itives: in response to a message an actor receives, the actor

may make local decisions and decide how to respond to
the next message received, create more actors, and/or send
more messages. It is often used as a framework for mod-
eling, understanding, and reasoning about a wide range of
modern concurrent systems. For instance, Web Services
with SOAP endpoints can be modeled as actors [20, 19];
an agent-based system can be modeled as an actor sys-
tem, where (mobile) agents are modeled as (mobile) ac-
tors [28, 24]; and Sensor and Actor Network (SAN) is re-
cently proposed to use the Actor model as the theoretical
basis for sensor networks [26, 12, 7].

However, these models are well-defined mathematical
abstractions for concurrent computation in an ideal dis-
tributed environment, in which simplifying assumptions
are made to reduce the complexity of the models. For
instance, communication among distributed entities is as-
sumed to be both reliable and instantaneous. The focus of
these models is on the functional behaviors of the compu-
tation. This may suffice for traditional and general purpose
concurrent distributed applications, but for ODE systems,
such assumptions about the run-time environment often do
not hold. For example, in most embedded applications, a
message that does not arrive on time is considered a fault,
but traditional distributed computation models do not make
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any guarantees about such QoS promises. What we need is
a model to study QoS aware interaction, or coordination,
among distributed computational entities in ODE systems.
This model should accurately exhibit an ODE application’s
functional behaviors, and also precisely reflect the applica-
tion’s context, taking into account the dynamicity and strin-
gent QoS requirements.

In order to conquer the complexity and dynamicity in-
herent to ODE systems, we may decompose these systems
into different concerns. Separation of concerns as a soft-
ware engineering principle is not new [18, 3]. However,
how a concern is delineated plays a critical role in the qual-
ity of the delivered software models. A concern should be
logically self-contained and, ideally, orthogonal and trans-
parent to the other concerns in order to minimize the inter-
ference among them.

For instance, an open embedded real-time application,
such as an environmental monitoring system, will send data
from wide-area sensors to data processing entities on the
Internet. The results are fed back into the physical world
for actuation. In order to interact with the physical world
in real time, open embedded applications must be able to
fulfill a fundamental requirement, that fresh data be avail-
able at the right computation site at the right time. How-
ever, as Kang et. al [23] pointed out, current computing and
communication-oriented paradigms face a huge obstacle in
achieving this vision of open embedded real-time systems.
Therefore, instead of interacting directly with a number of
distributed data sources or actuators, it is important to have
high level abstractions that federate distributed entities, co-
ordinating them to abide by QoS requirements.

Consider the following simplified scenario as an exam-
ple of the problem our research addresses. Suppose we
have deployed infrared and radio wave sensors in an open
space to detecting foreign objects. As shown in Figure 1,
depending on the exact location of the foreign object, dif-
ferent groups of sensors will be active and generate data.
In order for a control center to take appropriate action, data
from the two types of sensors must be semantically consis-
tent (i.e., indicating the same type of object) and they must
arrive at the center within a specified time range.

Figure 1: Open Space Surveillance

Clearly, it is a must that the infrared and radio wave sen-
sors be coordinated in a timed fashion, but the nature of
the problem prohibits us from statically pairing them up.
The key technical challenge is that coordination is neces-
sary, and that coordination itself is subject to QoS con-
straints. Furthermore, the coordinatees constitute a large
and dynamically changing set. Integrating the coordina-

tion requirements into the basic computation description
is not a viable solution; it only complicates an already
hard problem. Unfortunately, existing research has not ap-
proached ODE applications from the coordination angle,
neither have earlier coordination models addressed coor-
dination under QoS constraints in depth. Therefore, new
research is needed to support the development of ODE ap-
plications.

In this paper, we present a framework for developing
ODE applications based on a role-based distributed coordi-
nation model, the Actor, Role and Coordinator (ARC) [44]
model. The focus of this ARC model is to separate the QoS
or non-functional requirements from the embedded appli-
cations’ functional logic, and at the same time to address
the dynamicity and scalability issues inherent to ODE sys-
tems. In particular, the actor layer models the concurrent
computational part of an ODE system, while an indepen-
dent coordination model is developed to address the fed-
eration of distributed entities to satisfy the system’s QoS
requirements. The coordination model contains both the
coordinator layer and the role layer; the role layer provides
a level of abstraction to mask the dynamicity of the actor
layer from the coordinators, and each role coordinates the
local group of actors that share that role. This further re-
duces the complexity of coordinators and improves coor-
dination scalability. We present in detail a CORBA based
implementation of ARC that provides architectural support
for transparent application of QoS constraints on concur-
rent computations. The design criteria of the framework
are performance, scalability, and flexibility.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 presents the ARC model
and the composition of three autonomous entities, i.e., ac-
tors, roles, and coordinators. Section 4 presents an ARC
framework and preliminary evaluation results. Finally, we
conclude in Section 5.

2 Related work

Recent research has yielded significant results on coordina-
tion models and languages. In their landmark survey [41],
Papadopoulos et. al. conclude that coordination models
can be classified into two categories, namely data-driven
and control-driven. The tuple space model (Linda) [10]
represents the data-driven category, and has been extended
with such systems as Lime[42], Klaim[36], and related
extensions [37]. Systems such as the Ideal Worker Ideal
Manager (IWIM) model [4] presents a control-driven or
“exogenous” category. Recently, tuple center and Re-
SpecT [40, 38] provide a hybrid view.

Control-driven models, such as Abstract Behavior
Types (ABT) [5], Law Governed Interaction (LGI) [34],
ROAD [11], Reo [6], Orc [35], and CoLaS [13] isolate
coordination by considering functional entities as black
boxes. For example, the ABT model extends the IWIM
model by treating both computation and coordination com-
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ponents as composable Abstract Behavior Types. Like
IWIM, ABT is a two-level control-driven coordination
model where computation and coordination concerns are
achieved in separate and independent levels. The Reo
model uses a circuit-like network of composable channels
to provide communication between components. Compo-
nents send messages across these channels, and the geome-
try of the channels determine the destination or destinations
of the messages. The Orc model uses “site calls” to model
computation [43]. Unlike Reo channels, Orc’s site calls are
not expected to be persistent.

The concept of role is seen in object-oriented systems
when a set of common behaviors is abstracted and can be
assigned to an object [15, 25]. Roles are an important tech-
nique in a variety of computing systems. For example, in
the computer security area, the Role Based Access Con-
trol (RBAC) [14] model uses roles to separate users from
security policies in order to achieve scalability and flex-
ibility. In object-oriented programming [27] and in de-
sign patterns [17], roles are used to represent solutions
and experiences. There are control-driven models, such
as ROAD, CoLaS, TuCSoN with Agent Coordination Con-
texts (ACC) [39] and Finesse [8], to name a few, that try
to mitigate the scalability issues of open distributed sys-
tems by adopting role concepts. Most current role-based
coordination models are based on organizational concepts,
where roles abstract coordination behaviors among par-
ticipants who play the roles. Cabri presents a survey of
role-based coordination models in [9]. Additionally, quite
a few coordination models take decentralization into ac-
count. TuCSoN [40] distributes communication abstrac-
tions (tuple centers) to Internet nodes. Every tuple center
produces and maintains its own local coordination rules.
CoLaS divides the whole distributed system into multi-
ple coordination groups. Each coordination group takes
care of an independent set of coordination policies. ROAD
provides a recursive structure that composes fine-grained,
small coordination groups into coarse-grained, large ones.
LGI follows a controller metaphor and provides a con-
troller for every object in the system, and hence implements
a full-fledged decentralization.

The ARC [44] model differs from these models by sep-
arating inter-role coordination and intra-role coordination
and distributing the coordination activities to coordinators
and roles respectively. Roles are active entities with coor-
dination ability instead of merely abstract interfaces. The
distribution of coordination responsibility is based on the
functionalities of the roles and is therefore more logical
and customizable. The emphasis on active roles and the
corresponding separation of inter-role and intra-role coor-
dination distinguishes the ARC model from previous role-
based coordination models.

A similar actor oriented model is advocated by Lee et
al. [30, 31]. In this model, actor executions and commu-
nications are under the guidance of a “model of compu-
tation,” which gives operational rules to determine when
and how actors can perform their computations, update

their states, or send messages to other actors. The model
of computation separates the communication mechanisms
and work flows of actors from their computational designs,
such that reusability is possible and compositions of com-
ponents are more robust.

Though the above actor-based models, like ARC, sep-
arate coordination from the functional core of a system
based on concurrent actors, the focus of ARC is to address
the dynamicity and scalability issues in coordinating large
set of autonomous and asynchronous entities. The em-
phasis on role-based coordination distinguishes the ARC
model from previous multi-level actor-based coordination
architectures.

A set of coordination models has been proposed to ad-
dress the coordination issues based on the Actor model [1,
2], such as Frølund’s Synchronizer [16], Venkatasubrama-
niam’s TLAM (Two-Level-Actor-Model) [50], and Varela’s
director [49]. One common theme of these models is the
use of reflection with actors. This can be seen is sys-
tems such as ActorNet [29], and Reflective Russian Dolls
(RRD) [32]. ActorNet provides a platform designed for
small, heterogeneous systems. It provides a uniform en-
vironment for the actors, and makes use of call/cc to
allow actors to migrate themselves to other nodes in the
system. RRD is similar to ARC in that there are levels of
coordination. Both achieve coordination by using reflec-
tion to modify the delivery of messages.

ARC, however, is a three-layer system, with functional
behavior confined to the lowest level, and coordination to
the upper two levels. The formal semantics of the ARC
model is given in [44]. The RRD is a multi-level sys-
tem; each level encapsulating the levels below it. The for-
mal comparison between the ARC model two other co-
ordination models, i.e. the and Reflective Russian Dolls
(RRD) [47] and Reo [6], is given in [46]. Yu and et al.
used Maude to further verify safety properties that can be
imposed through the ARC model [51].

3 The Actor, Role, and Coordinator
(ARC) model

In this section, we discuss in detail the Actor-Role-
Coordinator model.

3.1 The actor model

We use active objects, i.e., actors [1, 2], to model asyn-
chronous and distributed computations. The choice of the
actor model as a foundation for the underlying computa-
tions of an ODE system is in many ways a natural one.
The actor model is inherently concurrent, and systems of
actors are open and distributed. However, the basic actor
model does not enable the coordination of groups of ac-
tors to be specified in a modular fashion. This greatly lim-
its their usefulness in the ODE domain. The ARC model
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eliminates this impediment by introducing exogenous co-
ordination objects, i.e., roles and coordinators.

Actors are autonomous, active entities that communicate
with each other through asynchronous messages. Each ac-
tor has a unique mail address and a mailbox to receive mes-
sages. Unprocessed messages are buffered at the receiving
actor’s mailbox. Within each actor, there is a single thread
of control that processes messages sequentially. Each ac-
tor has its own states and state dependent behaviors. The
states are encapsulated and can only be changed by the ac-
tors themselves while processing messages. Different actor
states may decide different behaviors that in turn affect how
messages are processed. While processing a message, an
actor may perform three primitive operations: send asyn-
chronous messages to other actors, create new actors, or
change its own states (become) and then become ready to
retrieve the next available message in the mailbox. Figure 2
pictures the internal structure of the actors.

Here is a simple example to demonstrate the actor model.
Assume an operation can be performed by a computational
entity (namely, an actor) called an “executor” once and
only once. Any actor that is not an executor is called a “for-
warder.” We distinguish an executor from a forwarder by
looking at its internal state executed. If executed is false,
then this actor is an executor, otherwise it is a forwarder.
The behavior of an executor is as follows: when it receives
a message requesting the service, it performs the service,
and sets its state executed to be true, which triggers the ac-
tor to become a forwarder. Finally, the former executor cre-
ates another actor with the same behavior (i.e., perform the
same operation) and with its state executed set to be false.
In other words, this actor becomes a forwarder and cre-
ates a new executor. After becoming a forwarder, this actor
changes its behavior. When the same message arrives at the
forwarder, instead of executing the operation, it forwards
the message to the executor that it created. This behavior
is recursive; the “executor” to which it forwards the mes-
sage may also have become a forwarder, and will in turn
continue forwarding the message to successive forwarders
until the current executor is located. This example explains
the basic concepts of an actor and its three primitives: send,
create, and become. All actor based computations can be
implemented by these three primitives.

3.2 The abstraction levels of ARC

In the ARC model, a role is a static abstraction for be-
haviors shared by a set of underlying computational ac-
tors. This abstraction decouples behaviors from their im-
plementors and eliminates static binding among computa-
tional actors. It also shares coordination responsibilities.
More specifically, there are two types of active coordina-
tion objects in the model: roles and coordinators. The co-
ordination is partitioned into intra-role and inter-role co-
ordinations and distributed among roles and coordinators,
respectively. The coordinators (i.e., inter-role coordination
objects) coordinate behaviors while the roles (i.e.,intra-role
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Figure 2: The Actors

coordination objects) coordinate members that share the
same behavior.

Coordinators constrain the coordination behavior of
roles. This eventually affects a message’s dispatch time
and location (target) in a computation. However, com-
putational actors and coordinators are transparent to each
other. Hence, the dynamicity inherent in the computation
is hidden from the coordinators. Compared to the number
of actors involved in an ODE application, the number of
behaviors (and therefore the number of roles) contributed
by these actors is usually order(s) of magnitude smaller.
Therefore, the model is not only stable, but also scalable.

Under the ARC model, the open space surveillance sys-
tem introduced in Section 1 (Figure 1) can be mapped to a
set of sensor actors, two roles for the infrared sensors and
radio wave sensors, respectively, and a coordinator (Fig-
ure 4). The inter-role constraint is on the time relation of
the data coming from the infrared sensor role and the radio
wave sensor role. Each role can have different intra-role
coordination policies. For instance, the infrared role may
ensure synchrony by waiting for data from all its members,
while the radio wave role only waits for data from a major-
ity of its members.

Figure 3: The ARC Model
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Figure 4: The ARC View of an Open Space Surveillance
System

The separation of computation, intra-role, and inter-role
coordination advocated by the ARC model is clean and
orthogonal. This separation mitigates the complexity of
each individual type — coordinators only concern them-
selves with coordinating a small scale of roles while roles
care only about actors of the same behavior. This provides
grounds for independent modeling and compositional rea-
soning.

Separation and transparency are the results of the follow-
ing properties of the ARC model:

1. The actor layer does not depend on the coordination
layer. The actors fulfill their functional behaviors
independently by exchanging messages without any
knowledge that the coordination entities even exist.

2. The coordination layer intercepts messages among ac-
tors and applies coordination constraints on the mes-
sages. Coordination does not require direct message
interactions between actors and coordination entities.

Computation actors carry out their logical computations
by reacting to messages received. As a result, if the roles
or coordinators do not send any computational messages
to the computation actors, the underlying computation will
retain its computational properties.

The role layer bridges the actor and the coordinator lay-
ers and may therefore be viewed from two perspectives.
From the perspective of a coordinator, a role enables the
coordination of a set of actors that share the same static de-
scription of behaviors without requiring the coordinator to
be aware of the individual actors in the set. From the per-
spective of an actor, the role is a coordinator that actively
imposes coordination constraints on messages sent and re-
ceived by the actor.

Though actors, roles, and coordinators have different re-
sponsibilities, we uniformly model their behaviors using
actors. To comply with the separation of concern princi-
ple, we categorize these actors into two types: computation
actors that capture system computation concerns, and coor-
dination actors that abstract system coordination concerns.
More specifically, roles and coordinators are coordination
actors, whereas actors in the actor layer are computation
actors. Thus, coordination actors are actors which satisfy
the basic actor semantics by providing the actor operational

primitives. However, they are special actors that are able to
handle specific types of messages, namely, events.

In our model, actors communicate with each other via
messages, which are defined as a three-tuple < rcver −
actor, op, par >. Here rcver − actor is the name of the
recipient actor, op is the behavior name that the recipient
actor is required to apply, and par contains the parameters
that the recipient needs to perform its behavior.

Events are special messages that are atomically dis-
patched on coordination actors. Unlike computation mes-
sages, the recipient of an event is not an individual coor-
dination actor, instead, events are broadcast to all coor-
dination actors in the system. Thus, an event is defined
as < All, op, par > where All indicates that the event is
broadcast. Though events are broadcast to all roles, we
may instead use an intermediate “default” role as a medi-
ator to receive and forward events between actors. This
optimization can convert the broadcast into a two-element
group-cast, reducing the communication overhead and syn-
chronization complexity.

Another important characteristic of events is that an
event is instantaneous and atomic. In other words, the gen-
eration of an event and the consumption of an event are
atomic, and no actor computation messages can be pro-
cessed during this period of time. This requirement guar-
antees that coordination constraints are applied on related
messages before these messages are dispatched on compu-
tation actors.

To maintain coordination transparency and avoid inter-
fering with the computation actors’ functionalities, coordi-
nation actors are not allowed to generate or send messages
to computation actors. The computation level and coordi-
nation level are connected through events. While messages
are used between computation actors to carry out compu-
tations, events represent state changes in the system and
trigger coordination related behaviors on coordination ac-
tors.

There are three events defined in an actor layer: send (a
message is sent by an actor), new (creation of a new actor),
and ready (change actor behavior if necessary and ready
for next available message). All these events from com-
putation actors are observable by roles. Upon observing
the events, the roles cooperate with coordinators through
inter-role and intra-role constraints to coordinate when and
where messages should be dispatched among computation
actors.

3.3 Roles and their responsibilities

Since an ODE system may have a large number of compu-
tational entities that are free to join or leave autonomously,
the underlying actors modeling them could also be both
large in number and very dynamic. Basing the stability
and scalability of coordination policies on the actors them-
selves will be difficult. In an ODE system, however, the
set of well-defined behaviors is limited and less dynamic.
Therefore we introduce roles as a means of representing
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abstractions for these system behaviors; this enables us to
conceal the dynamicity and scale of the ODE environment.

In addition to representing abstractions for the proper-
ties of the system behaviors, roles also are responsible for
actively coordinating their players to achieve coordination
requirements. Roles serve as an abstraction by specify-
ing membership criteria, i.e., a static specification of func-
tional behaviors that computation actors belonging to the
role must have. The role is responsible for managing the
integrity of its membership. Roles also actively coordi-
nate their member actors in order to satisfy coordination
requirements. The intra-role coordination coerced by roles
realizes and complements the inter-role coordination en-
acted by coordinators.

Membership management behavior Before a role can
perform its membership management activities, the behav-
ior abstraction, i.e. the role membership criteria, must be
specified. We use logic expressions of actor states and op-
erations to describe the criteria. More specifically, the role
membership criteria are represented by a tuple < O, A >,
where O is a set of message types (operations) that an ac-
tor must be able to process, and A is a set of attributes that
actors need to display for joining the role. Any actor that
is controllable by coordination rules must declare its own
functional behavior, using the same tuple format.

Upon observing a new event or a ready event from a
computation actor, the role acquires the newly updated be-
havior from the computation actor and compares it against
its membership criteria. It then determines whether the ac-
tor should be added to the membership list (the actor be-
havior matches the role criteria), ignored (the actor was not
a member and its behavior does not match the role criteria),
or removed from the role (the actor was a member but its
new behavior does not match the role criteria). More pre-
cisely, a role’s management behavior is a mapping from a
set of actor events to membership updates. Note that ac-
cording to the semantics of the actor model, actors are free
to reject exposing their internal states to the roles. This
allows an actor to reject coordination. Such actors will be-
long to a “default” role that performs no coordination.

Each role has a distinct purpose. This requirement disal-
lows overlapping criteria among roles, eliminating the pos-
sibility that conflicting constraints will be imposed on an
actor by multiple roles simultaneously. This requirement
has its basis in the underlying actor model: each actor has
only a single thread of control and therefore may play only
one role at any given time. More precisely, let C(γ) de-
note the role membership criteria declared by role γ, and
let B(α) denote the functional behaviors provided by an
actor α. As we have discussed, the actor functional behav-
iors and the membership criteria are both represented as a
comparable tuple < O, A >. To be added to a role, the ac-
tor functional behaviors have to match the role’s member-
ship criteria. A and Γ denote the set of actors and roles in
the system, respectively, and F : A → Γ is a function that
assigns an actor to a role. At any given time, well-defined

roles and actors in a system must satisfy the following re-
quirements:

1. Roles are exclusive: role declared behaviors do not
overlap, i.e.,

∀γ, γ′ ∈ Γ : C(γ) ∩ C(γ′) = φ

2. Roles are exhaustive: every actor belongs to one of the
roles, i.e.,

(
n⋃

i

B(αi) =
m⋃

j

C(γj)), and

(∀α ∈ A,∃γ ∈ Γ : B(α) = C(γ))

3. Roles are repetitive: repeated actor behaviors replicate
the assignment of the actor to the same role, i.e.,

∀αi, αj ∈ A : B(αi) = B(αj) ⇒ F (αi) = F (αj)

4. Each actor only plays one role at a given time, i.e.,

∀i, j, j 6= i : B(α) = C(γi) ⇒ B(α) 6= C(γj)

Coordination Behavior As roles are abstractions of
functional behaviors, it is possible that more than one ac-
tor may belong to a specific role at any given time. Actors
playing the same role may need to coordinate with each
other to satisfy certain QoS constraints. Such constraints
are called intra-role coordination constraints.

A role’s coordination behavior thus has two aspects:
(1) it retrieves inter-role constraints specified by the co-
ordinators; (2) it is responsible for enforcing both the
inter-role and intra-role coordination constraints on ac-
tors. Since roles are coordination actors and are not al-
lowed to send/receive messages to/from computation ac-
tors, message interception and manipulation is the only fea-
sible means to apply the constraints. Furthermore, all these
behaviors are triggered by observed events on computation
actors. Therefore, the coordination behavior of a role can
be given the following interpretation: upon observing an
event from a computation actor, and based on its current
states, the role may manipulate messages, generate events
(which are observable by coordinators), or change its own
states.

The coordination rules are enforced on actors without
their awareness. The involvement of roles in the coordina-
tion process causes coordination in the ARC model to be
decentralized. Active roles cause our coordination model
itself to become a distributed subsystem, inheriting the full
benefits that a distributed system may offer.

We can use a “Video on Demand” (VoD) application
as an example to depict a role’s behaviors. We assume
there are multiple VoD client actors and VoD server ac-
tors in a distributed environment. Each VoD client actor
can perform a request_video operation, while the server ac-
tor can perform send_video operation. However, clients
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may have different requirements, which need to be met
by receiving different services from servers. We there-
fore separate the client actors into different roles depend-
ing on their level of service attributes, i.e. a VOD client ac-
tor has a Regular_VOD_Client Role if its level_of_service
attribute is set to regular; while a VoD client has a
VIP_VoD_Client role if its level_of_service attribute is set
to very_important. Therefore, when an actor is created or
moves into the system, the roles will check its operations
and attributes. For example, if a VIP_VoD_Client role finds
that the new actor has a behavior tuple <<request_video>,
<level_of_service:regular>>, which matches its role cri-
teria, it will then help the actor join its group by performing
its member management behavior.

To explain the role’s coordination behavior, we assume
that there are multiple VoD server actors in the environ-
ment, each of which has different resources (CPU speed,
workload, memory, reserved network throughput, and so
on). Based on the requests from different types of VoD
clients, the VoD_Server role decides which server actor
shall be assigned to process the current request. For exam-
ple, if the request is from an actor with a VIP_VoD_Client
role, this request will be forwarded to a VoD_Server actor
with the highest available resources. This coordination rule
is applied on the actors directly within a role, but not among
roles, therefore it belongs to intra-role coordination.

3.4 Inter-role coordination — coordinators

In contrast to intra-role coordination, coordination among
high-level coarse-grained roles are called inter-role coor-
dination. We define another type of coordination actor,
the coordinator, to specify inter-role coordination policies.
These policies are written in terms of roles. A policy is
a set of constraints over a set of properties. Values asso-
ciated with a property are drawn from an enumerable do-
main. A constraint specifies a boolean relation involving a
set of properties.

Similar to roles, coordinators are also active objects
and impose coordination constraints based on their states.
However, in our model the actor layer and the coordinator
layer are mutually transparent. Coordinators do not directly
apply coordination constraints on computation actors, nei-
ther do actors know of the existence of coordinators. Co-
ordinators specify and impose policies based on abstract
actor functionalities, but not on individual actors.

The role layer bridges the coordinator and actor layers.
Roles propagate the events observed from the actors to the
coordinators. Upon receiving such events, the coordinator
locates constraints in its constraint store based on current
states, and propagates the constraints to roles where these
constraints are imposed on computation actors.

Consider an example in which multiple producers and
multiple consumers share the same buffer. We use a pro-
ducer role and a consumer role to capture the producers and
consumers, respectively. The two roles must coordinate to
respect the causal order (an item must be produced before it

can be consumed) and buffer size. Instead of specifying the
coordination among each pair of producer and consumer,
we impose the coordination upon the roles which will in
turn propagate the constraints to the role players.

3.5 Composition of concurrent computation
and coerced coordination

Based on the ARC model, an ODE system can be speci-
fied in three steps. First, establishing the underlying func-
tional computations (modeled by computation actors). Sec-
ond, implementing the computational actors to carry out
the computation. Finally, embedding the functional ob-
jects in an environment constrained by coordination actors.
Here we focus on QoS constraints that can be achieved
by manipulating the messages in the time and actor space
dimensions. Example manipulations on the time-axis in-
clude moving messages to the beginning of the actor’s
mail queue, blocking them, or postponing them to later
time. Manipulations on the actor space domain include tak-
ing messages sent to one particular actor and duplicating,
rerouting, or broadcasting them to other actors to satisfy
fault tolerance, security and other QoS requirements.

Coordination actors observe events occurring at the com-
putation actor layer, and perform coordination behaviors
accordingly. However, coordination actors are partitioned
into roles and coordinators, and these two types of coordi-
nation actors also need to collaborate with each other. Their
collaborations are achieved through event exchanges. The
events that are observable in the ARC model are presented
in Table 1.

Note that the events specified in Table 1 do not exactly
follow those defined in the traditional actor model [1, 2]. In
Agha’s actor model, there are only three primitive events,
send, new, and ready, where ready actually represents two
behaviors of an actor: become a new actor and ready for
next available message. After processing a message, even
if an actor does not change its behavior, it still has to per-
form become to become itself. However, in the ARC model
the change of behavior triggers the roles’ membership man-
agement behaviors. If we perform become each time a mes-
sage is finished processing, we will continuously trigger the
member management actions in roles, which in most cases
will be unnecessary. For this reason, in the ARC model
we separate the ready event into two events, namely the
become event and ready for next available message event,
where become explicitly specifies that an actor changes its
behavior and triggers membership management actions.

After a message has been sent out to a recipient compu-
tation actor, and before it can be processed, a send(msg)
event is broadcast and needs to be handled by the coor-
dination actors. The argument msg is the message that
has been sent. After processing the current message, the
actor will enter a state in which it is ready to process the
next available message in the mail queue. This will cause a
ready(msg) event to be broadcast to trigger coordination
behaviors. Events are instantaneous; coordination actors
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Location Event Triggered By
Actor send(msg) A computation actor performs a send(msg) operation.

new(beh) A computation actor performs a create(beh) operation.
become(beh) A computation actor performs a become(beh) operation,

where beh represents a behavior that is different from the
actor’s current behavior.

ready(msg) A new message in the actor’s mailbox is dispatched at the
actor.

Role propSend(msg) A send(msg) event from a computation actor is observed.
propReady(msg) A ready(msg) event from a computation actor is ob-

served.
Coordinator tell(inter − roleconstraints) A propSend() or propReady() event is observed.

Table 1: Events Observable in the ARC Model

observe and handle events atomically. Message deliveries,
on the other hand, always take time. The dispatch of a
message will always happen at a later time than when the
message was sent. Therefore, it is guaranteed that coordi-
nation actors can perform their coordination behaviors on
messages in the recipient actors’ mailboxes before those
messages are processed.

The new(beh) or become(beh) events are triggered
when a new actor is created or when an actor changes its
behavior. The argument beh is the behavior of the new ac-
tor to be created, or the new behavior an actor obtains. All
roles in the system are able to observe such an event and
compare the behavior with their membership criteria. The
role whose membership criteria matches the computation
actor’s behavior adds the computation actor into its group.
For completeness of the roles in our system, we also intro-
duce a default role. If the actor’s behavior does not match
any membership criteria of all the existing roles, the actor
is added to the default role.

Upon observing the send or ready event from a compu-
tation actor belonging to a role group, the role propagates
these events to coordinators to inquire about corresponding
inter-role constraints. Unlike the original messages sent
from actors, the message parameters in these events may
contain extra information, such as the names of the sender
and receiver actors, and their currently attached roles. This
information helps the coordinator to determine what con-
straints need to be propagated to which role.

After observing the propSend or propReady event
propagated from the roles, a coordinator checks its con-
straint store and locates the corresponding constraints,
which may depend on both the message parameters and the
coordinator’s own states. The coordinator then enacts these
constraints by sending a tell event to the roles.

The formal operational semantics of the ARC model is
given in [44].

4 Framework
In this section, we briefly describe several critical design is-
sues of the framework, and then present the design in detail,
along with a prototype implementation of the ARC model.
Finally, we show the results of experiments demonstrating
the scalability and performance overhead of the framework.

4.1 Design issues

The main design and implementation concern of the ARC
framework is to provide the abstractions that implement the
Actor, Role and Coordinator semantics, and at the same
time provide good performance, scalability and flexibility
for different applications. Based on this goal, there are sev-
eral design issues we need to consider:

Implement coordination actors and events.
According to the definition of the ARC model, roles

and coordinators are “coordination actors” communicating
through event broadcasts. Therefore, we need to explicitly
distinguish events and messages in the implementation.

As defined in [1, 2], computation actors are autonomous
and active entities that communicate with each other
through asynchronous messages, as are coordination ac-
tors. However, unlike computation messages that commu-
nicate among actors in a point-to-point fashion, events are
broadcast to all coordination actors. Furthermore, events
have a higher priority than computation messages. This en-
sures that messages that need to be coordinated will be ma-
nipulated by coordination actors before they are dispatched
on computation actors. In both our model and implementa-
tion framework, the generation and consumption of events
are treated as atomic behaviors and are enforced by using
synchronization protocols.

Maintain scalability and performance as the number of
entities increases.

One of the characteristics of ODE systems is that they
usually have large numbers of computational entities. The
introduction of active roles into the ARC model helps mit-
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igate the scalability issues in coordination management by
allowing coordinators to only coordinate roles, while roles
only coordinator actors that share the same behaviors.

Because coordination in the ARC model is enforced
transparently on the underlying actors, two problems may
occur when the number of actors increases. First, every co-
ordinated message triggers at least one event that must be
handled by remote coordination actors. This may bring ad-
ditional communication overhead. Second, roles and coor-
dinators become potential bottlenecks, which may degrade
performance and make systems hard to scale.

To alleviate these problems, we have developed a decen-
tralized architecture to further distribute coordination be-
haviors and states to local physical nodes, thus avoiding
bottlenecks and communication overhead. Because both
roles and coordinators are active and stateful entities, mul-
tiple update and query operations may concurrently be ap-
plied to the states of those distributed replicas. Therefore,
a synchronization protocol must be in place to ensure the
consistency of the states among different nodes. If such
synchronizations occur very frequently, the overhead of
achieving synchronizations may exceed the benefit of dis-
tributing roles and coordinators to local platforms. Hence,
tradeoffs need to be made to balance the communication
and synchronization costs. Whether distributing the coor-
dinator/role states will have performance gains is applica-
tion dependent.

Avoid re-inventing the wheel to solve common prob-
lems.

Instead of developing our framework from scratch, we
take advantage of existing technologies and tools to support
distributed communication, i.e., distributed naming, syn-
chronous and asynchronous communication, and locking
schemes.

In the next section, we give the details of our frame-
work’s design, taking into account the above issues and
providing our solutions to them.

4.2 An ARC framework

Figure 5 gives an overview use case diagram depicting the
functional requirement from three categories of users in
the system, i.e. the actors, roles, and coordinators. From
this figure, the part within the dashed line box represent
the functionality of traditional Actor system. By importing
the concepts of role and coordinator, the use cases in ARC
system become richer. The purpose of the framework is
therefore to fulfill the functional requirements indicated in
this use case diagram, while taking into account the design
issues presented in Section 4.1.

The ARC framework is built on top of TAO (v1.4.1) [45],
an implementation of the CORBA 3.x specification. To
minimize the overhead and footprint of the ARC frame-
work, we only use a small subset of services provided by
TAO. Actors in the ARC framework are built as CORBA
objects. They register themselves and locate other actors

through the CORBA naming service, and communicate
with each other through the TAO asynchronous message
service. Figure 6 outlines the architecture of the frame-
work. The Role Representative and Coordinator Represen-
tative objects localize the functionalities of coordination-
actors to further increase scalability of the system. These
concepts will be discussed in detail in a later in this section.

4.2.1 Actor platform and message manager

In the framework, an Actor Platform is installed on every
physical node. It provides a uniform way to create actors
and register actors as CORBA services. An Actor Plat-
form is implemented as a “system actor” that creates ac-
tors, roles, and coordinators, initializes their states and be-
haviors, sends messages, and generates events.

With each actor creation, the Actor Platform also creates
a Message Manager object for each actor (including both
computation and coordination actors) to handle actor com-
munication tasks. When an actor tries to send a message to
another actor, it delegates the message to its Message Man-
ager. For the sending actor, the Message Manager acts as a
CORBA client object to send the message asynchronously
to the destination actor’s message manager, which acts as
a CORBA server object. The receiving message manager
then forwards the message to the receiving actor for pro-
cessing. Thus, the CORBA middleware details are encap-
sulated in the implementation of the message manager and
are transparent to application developers who use actors.

4.2.2 Modes

In our framework, users have the option to have logically
remote coordinators and roles physically distributed to lo-
cal Actor Platforms to reduce the communication overhead.
Therefore, we provide three modes:

Fully Centralized Mode (FCM) In this mode, every co-
ordination message has to go through potentially re-
mote roles and remote coordinators. This mode is
suitable for applications that require very frequent
state updates in both coordinators and roles.

Partially Distributed Mode (PDM) The coordinator is
distributed to the nodes where the coordinated roles
are located, but roles are not distributed to the actor
platforms. Therefore coordination requests from lo-
cal nodes have to go through possibly remote roles,
but these roles use local coordinator representatives
instead of remote coordinators. Applications that do
not anticipate frequent state updates in coordinators
will benefit by using this mode.

Fully Distributed Mode (FDM) Both coordinator and
roles are distributed to every related node. This mode
brings best performance for applications with less fre-
quent synchronization needs.
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Figure 5: ARC Use Case Diagram

In the framework, we define two supporting entities: Co-
ordinator Representative and Role Representative. As their
names suggest, they represent coordinators and roles and
perform coordination behaviors in local Actor Platforms.
To facilitate deploying different modes, these representa-
tives are implemented as coordination-actors. According
to the definitions of coordination actors, they are able to
communicate with each other through event communica-
tions. Based on the currently applied mode, different Coor-
dinator Representative and Role Representative instances
are bound to these interfaces during runtime and have dif-
ferent responsibilities. The relationship among Message
Manager, Role, Coordinator, representative interfaces and
their instances is depicted in Figure 7.

4.2.3 State synchronization

In situations when synchronization is required among rep-
resentatives, we apply the primary-backup and two-phase
locking (2PL) protocol. The coordinators and roles are re-
sponsible for synchronizing the updates with their repre-
sentatives distributed among other actor platforms. In the
primary-backup protocol, these coordinators or roles act as
primary objects and the representatives are backups. The
Concurrency Service provided by TAO enables the primary
objects to obtain and release locks in the 2PL algorithm.

Figure 7: Multi-mode Class Diagram

4.2.4 Fully distributed mode implementation

In this paper we focus on the implementation of the Fully
Distributed Mode (FDM). The implementations of the Par-
tially Distributed Mode and Fully Centralized Mode are
very similar and can be easily inferred from the current in-
troduction.

With FDM, the local Actor Platform creates a Role Rep-
resentative coordination actor for every existing role to ful-
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Figure 6: The Architecture of the ARC Framework

fill both its membership management behavior and coor-
dination behavior. In the ARC model, it is the roles, but
not the actors, that manage group membership. Whenever
a new actor is created or an actor changes its behavior, the
roles apply their bind and unbind operations to maintain
the consistency of the membership. Figure 8 demonstrates
the procedure of a Role Representative performing mem-
bership management and implementing the binding mech-
anism.

In the ARC model, coordination constraints are transpar-
ently applied to actors. This is achieved by (1) buffering the
messages in receiver actors’ mailboxes via Message Man-
agers, (2) obtaining coordination constraints by forwarding
events to the corresponding role representatives and coordi-
nator representative for constraint checks, and (3) applying
the coordination constraints by manipulating the messages
in the mailboxes. The communication between two actors
is shown in Figure 9.

If a constraint is found in its local store, the Role Repre-
sentative requires the corresponding Message Manager to
enact the constraint on the actor. As all these operations

are performed locally and no remote communication is re-
quired, the constraint propagations do not introduce much
performance overhead.

4.3 Evaluation
We have developed a prototype of the ARC framework.
The experimental settings are as following: We have two
Intel x86 machines. The first machine is a Pentium IV 1.7
GHz with 512MB RAM and the second is a Pentium IV
3.06GHz with 1GB RAM. Both of them are running Win-
dows XP and connect with each other through a 100M eth-
ernet switch. In our experiments, we developed a simple
Ping-Pong application, that asks two actors, the Ping actor
and the Pong actor, in different machines to continuously
send and reply to a specific number of messages to each
other.

Figure 10 shows the performance comparisons between
the Actor Architecture (AA) framework [22] and the ARC
framework. AA is an actor-based framework developed by
Agha’s group at UIUC. AA is implemented in Java and pro-
vides its own ad-hoc solutions to core distributed applica-
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Figure 8: Actor-Role Binding Mechanism

Figure 9: Communication between Coordinated Actors in
FDM

tion features, such as the Naming Service. The ARC frame-
work is implemented in C++ and utilizes CORBA services.

In this test we use AA and ARC to send messages (with
a size of 100 bytes) between two actors on different ma-
chines. From figure 13, we can see that ARC outperforms
AA in actor communications. The average throughput by
using ARC is 85% higher than using AA. This is mainly
because the Java Virtual Machine brings heavy overhead
to AA. In addition, the optimized naming and communi-
cation services provided by TAO also improve the ARC
framework’s communication performance.

Figure 11 demonstrates the situation when multiple ac-
tor pairs run and send messages concurrently. We ran up
to 100 actors on each machine. These pairs of actors sent
messages and replied to them concurrently. As the figure
shows, increasing the number of actors had little impact
on the performance of the ARC. However, the figure also
shows an ‘unintuitive’ result: the performance of the 40
actor case is better than the 20 and 10 actor cases. This
happened because the larger number of actors increases the
odds that messages will share transportation connections.

Figure 10: ARC vs. AA on actor communication

This reduced the overhead of opening and closing connec-
tions. Once the number of actors is greater than 40, the con-
nections are saturated and the performance becomes stable.

Figure 11: Performance of ARC when the number of actors
increases

In the previous experiments, we performed actor com-
munications without considering coordination constraints.
When coordination requirements are taken into account,
actors need to collaborate with each other to achieve sys-
tem requirements. For example, in the Ping-Pong applica-
tion, we could have an extra mutual exclusion requirement
that at any time only one pair of Ping and Pong actors can
send messages to each other. To satisfy this requirement,
the Ping and Pong actors that want to send messages have
to communicate with each other to make sure that there are
no other actors competing for the permission to send a mes-
sage. If there is more than one actor seeking permission, a
decision needs to be made about which one gets permis-
sion first. This will require communications to be sent, and
some kind of election protocol to be followed.

If there are n Ping actors competing for permission to
send a message, then there will be at least 2n(n − 1) [48]
communication messages to achieve synchronization be-
fore a message can be sent out. This is a typical synchro-
nization problem for networking and distributed environ-
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ments. An obvious solution is to use an explicit coordi-
nator to synchronize the “sending message” requirements
among actors. To achieve the same synchronization with
an explicit coordinator requires most 3n [48] extra com-
munication messages. Thus, in an ODE system or simi-
lar environment where the number of actors is large and
coordination among them is frequent, an explicit coordina-
tor can drastically reduce communication overhead and im-
prove scalability. Figure 12 depicts the difference between
the solution using a coordinator, which is represented by a
star topology, and the one without an explicit coordinator,
which is represented by a mesh topology.

Figure 12: With or Without Coordinator - a Topology View

From the above analysis, it is clear that adding an ex-
tra coordinator layer actually increases performance when
the number of actors is large and coordination among them
is unavoidable. The next question to ask is if adding an
extra layer (the role layer) will seriously degrade the per-
formance of the system with a single coordinator layer. We
test this by introducing role coordination entities to achieve
intra-role coordination constraints. The current test case
is under FDM and follows the procedure demonstrated in
Figure 9.

In this experiment, we arranged for 10, 000 messages to
be sent between two actors on different machines. We also
provided both inter-role and intra-role constraints. After
introducing two roles, the PingRole and the PongRole, we
divided the constraints into three categories: 20% became
inter-role constraints stored in a coordinator, 40% became
intra-role constraints stored in PingRole, and the remaining
40% were intra-role constraints stored in PongRole. Con-
straint checks were simulated using simple string compar-
isons. Figure 13 gives the measurements.

As shown in Figure 13, when there are 100 constraints
in a single coordinator, the overhead of introducing two ex-
tra role entities is about 3.5%; when there are 500 con-
straints, the overhead is about 2.7%. The main overhead
comes from the two extra communications between the
sender and receiver actors and their attached roles. This
number is fixed no matter how many constraints need to
be checked. The total number of constraints is the same in
two situations. When there are no roles, a coordinator has
to check all these constraints; in contrast, when there are
two extra roles, the coordinator only handles 20% of the
constraints, and rest of the constraints are handled by the
two roles concurrently. As a result, the overhead actually

Figure 13: Overhead of introducing role layer

decreases when the number of constraints increases.
Though these tests have not conducted on FCM and

PDM, we can expect by looking at their descriptions that
because roles and actors live in different nodes, the com-
munication overhead will be larger than in the current FDM
test. However, in such modes, synchronization overhead
will become the focus of the application and trade-offs are
made to satisfy that.

Finally, we look at the modularity brought by separating
the coordination layers from the underlying computational
logic in the ARC framework. We demonstrate this by intro-
ducing an extra requirement for the Ping-Pong application:
after a Pong actor receives a message in its mailbox from
the Ping actor, it has to wait for a specific period of time
t1 before it sends back a response. The following gives
the pseudo-code that enforces this timing constraint in the
Pong actor:

HandleMsg(String message, Int waitTime){
Message msg = parse(message);
String responseMsg = getResponse();
if (msg.SenderTypeName == "Ping") {

wait(waitTime);}
send(Ping, responseMsg);

}

If we have multiple Pong actors in the system, then we
will have to add this code to every Pong actor to maintain
the timing constraint. Furthermore, if in the future we want
to modify the time period, for example from t1 to t2, we
have to update the codes for all the Pong actors, change the
constraints and re-compile them. But if we have an explicit
coordination actor, we can use it to specify these timing
constraints.

Computational logic is separated from coordination con-
straints, and can be developed independently. Below shows
the code with the ARC model. The HandleMsg is the
code in a Pong actor to implement the "response" logic,
and the HandleEvt is the code in a coordinator to specify
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the timing constraint. The timing constraint is further en-
forced by a role that reroutes a message in the Pong actor’s
mailbox to a sink for a period of time waitTime before
dispatching it for processing. This coordination operation
is transparent to the actor computation, and we can modify
such constraints without affecting the underlying computa-
tional logic.

HandleMsg(String message){
Message msg = parse(message);
String responseMsg = getResponse();
send(Ping, responseMsg);

}

HandleEvt(String event, Int waitTime){
Event evt = parse(event);
if (evt.eventTypeName == "PropSendMsg")
if (evt.senderRoleTypeName ==

"PingRole")
tell(PongRole,

"reroute, sink, waitTime");
}

5 Conclusion

In this paper, we presented a framework based on the ARC
model to support the development of ODE applications.
The ARC model is a role-based and decentralized coordi-
nation model. Under this model, a system’s QoS require-
ments are treated as coordination concerns and are sepa-
rated from concurrent computation logic. The coordination
constraints are imposed on computations through message
manipulations that are transparent to the computation itself.
In addition, to address the dynamicity and the openness in-
herent in an ODE system, we introduced active roles that
not only provide abstractions for actor functional behav-
iors, but also take part in the coordination activities. Hence,
the coordination subsystem itself becomes distributed and
thus inherits all the benefits a distributed system may offer.

The framework provides an interface to allow users to
create actors, roles and coordinators. Based on detailed ap-
plication requirements, the framework distributes the co-
ordinators and roles and collocates them with local ac-
tors so that both performance and scalability can be im-
proved. In addition, the framework also provides efficient
mechanisms to support automatic and runtime role group
management, and message management. Our prototyping
and empirical experiments have shown that we are able to
achieve role-based coordination with limited performance
overhead. The experiments also indicate that the frame-
work scales well when the number of entities involved in
the system increases.

Our future work is to apply the ARC model and its real-
ization to help mitigate the difficulties in developing practi-
cal QoS aware applications in ODE systems. Such systems
may have multiple dimensions of QoS requirements such

as real-time, fault tolerance, energy consumption, and se-
curity constraints, etc. To be more specific, we want to
extend our framework to combine resource management,
real-time features and fault tolerance mechanisms, so that
multiple non-orthogonal QoS requirements can be studied
and supported based on a uniform coordination model. To
achieve this, we plan to use classic ODE applications, such
as a simulation of a simplified Air Traffic Control (ATC)
system, as cases studies to demonstrate and evaluate the
advantages of the model and the framework.
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