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The paper deals with an algebraic semantics for Petri nets, based on a process algebra APC (Algebra of
Process Components) by the authors. APC is tailored especially for describing processes in Petri nets. This
is done by assigning special variables (called E-variables here) to every place of given Petri net, expressing
processes initiated in those places. Algebraic semantics is then given as a parallel composition of all
the variables, whose corresponding places hold token(s) within the initial marking. Resulting algebraic
specification preserves operational behavior of the original net-based specification.

Povzetek: Članek opisuje algebro semantike za Petri mreže.

1 Introduction

An assertion widely accepted in formal methods commu-
nity states, that there will never be invented a single for-
mal method, that will cover all aspects of the system in
acceptable way [12]. The latter is mainly because of the
complexity of the system and vast variety of its features
(aspects) to be covered for the system to be modeled and
designed. As a consequence of that situation, many formal
description techniques (FDTs) exist and are used nowa-
days. That reflects the fact that one feature f of the system
is more readily expressed in FDT (say) F1, than it is the
case for f in F2. To cope with that situation there have
been attempts to integrate two or more formal methods.
Main motivation for using FDT in design and analysis of
computer-based systems lies in everyday growing depen-
dence of human society on such the systems, particulary
those applied in safety-critical domains (such as military
weaponry, aircraft transport, medicine, etc.). The situation
just described put strong requirements on new methods of
the design, analysing and maintaining of such the systems.
Time-critical issue of to be able to cope with malicious
behaviour of the systems in limited time period, dictates
strongly to deal with the problem in an automated way. The
latter is impossible without using FDTs in proper combina-
tion and integration in the frame of computer-based design
and analysis environments. Yet a formal way how to in-
corporate conditions to guarantee the safety of system de-
signed is an example of another problem which underlines
the importance of expolitation of FDTs. Guided by the con-
siderations mentioned an approach has been applied at the
home institution of the authors to create an environment for
the design and analysis of discrete systems based on inte-
gration of three FDTs: Petri Nets (PN), process algebras
and B-Method. That is why we have chosen the acronym
mFDTE for it (multi FDT Environment). The choice of the

FDTs has been motivated by their abilities to cover in some
mutually complementary ways a chosen set of system’s
features. In this work we pay attention to two of the FDTs
chosen: PN and process algebras. While on one side PN
posses nice properties suited for system modelling (formal
and graphical language) and analysis (invariants, reacha-
bility), on the other side they suffer from a lack of formally
sound and effective methods of their de/composition. The
latter can be considered as an essential drawback as far as
the modular system design is concerned. Process algebras
(CCS, CSP, ACP)[1] on the other hand support composion-
ality, by their definition, so PN and process algebras can
be considered to meet the complementarity property in the
above sense.

The paper is organized in the following way: Section 1
is introductory one, whole related works are briefly sum-
marized in Section 2. In Section 3, basic notions and def-
initions for the class of Petri nets used are given. Alge-
bra of Process Components is defined in Section 4. Notion
of term is presented as a mean for describing processes,
axioms are given and operational semantics is assigned to
process expressions (terms). Section 5 concentrates on the
algebraic semantics construction for a Petri net given. A
special variable is assigned to every place of the Petri net.
Construction rules are defined for assigning a term to the
variable which represents all the computations which can
be initiated at the corresponding place. An example pro-
vided in Section 6 demonstrates the approach introduced
above. Section 7 concludes the paper and contains a sum-
mary of the results and concepts presented.

2 Related work

An active research has been performed in the area of com-
bining Petri nets and process algebras during last years
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[4, 5, 2, 6, 10, 11]. It will be mentioned further [3], where
authors propose an approach to algebraic semantics for Hi-
erarchical P/T nets. PTNA (Place/Transition Net Algebra)
is defined there, based on process algebra ACP and an al-
gebraic semantics for P/T nets is given such that a P/T net
and its term representation have the same operational be-
havior. The actions of the algebra presented correspond to
the consumption and production of tokens by transitions.
Results achieved are further extended to hierarchical P/T
nets. In [11] relations among nets, terms and formulas are
treated. Particularly relations are defined via properly de-
fined semantics: net semantics of terms and process seman-
tics of nets. The most influential works in the line we fol-
low here are [5, 2]. In [5] relations between the process
algebra, called there PBC (Petri Box Calculus) and a class
of Place Transition Nets (safe P/T nets) are studied. Syntax
and semantics of PBC terms are carefully selected to al-
low to define a transformation yielding P/T nets preserving
structural operational semantics of the source terms. The
transformation allows composition of P/T nets. In work [2]
authors treat the issue of partial-order algebras and their
relations to P/T nets based on the theory of BPA and ACP.

Within our work we propose the general approach to
characterising PN in form of E-(B-) terms. General (not
only interleaving) semantics is given, and the results ob-
tained in this respect are published in [9]. mFDT Environ-
ment is under construction, based on FDT interfaces by the
authors, which aims to integrate the three formal methods
mentioned above.

3 Petri Nets
We assume the class of ordinary Petri nets [18] within this
paper, and brief description of the basic notions follows [7].

Definition 1. The Petri net is a 4-tuple N =
(P, T, pre, post), where P is a finite set of places, T is a fi-
nite set of transitions (P ∩T = ∅), pre: P ×T → {0, 1} is
the preset function and post: P ×T → {0, 1} is the postset
function.

By the marking of PN N = (P, T, pre, post) we mean a
totally defined function m: P → IN, where IN is the set of
natural numbers. We denote marked net with initial mark-
ing m0 as N0 = (N, m0) or N0 = (P, T, pre, post, m0).

Some useful notations can be defined:

•t = {p|pre(p, t) 6= 0}the set of preconditions of t

t• = {p|post(p, t) 6= 0}the set of postconditions of t

p• = {t|pre(p, t) 6= 0}, •p = {t|post(p, t) 6= 0}
We say that t is enabled in m (and denote it m

t→) if for
every p ∈ •t,m(p) ≥ pre(p, t). The effect of firing t in m

is the creation of a new marking m′ (m t→ m′) and m′ is
defined in the following way:

m′(p) = m(p)− pre(p, t) + post(p, t), p ∈ P, t ∈ T

Denotation (N, m) t→ (N, m′) is alternatively used
within the paper for expressing a step of computation
(m t→ m′) within the Petri net N . The set of reachable
markings for given Petri net N0 = (P, T, pre, post, m0)
we define by

R(N0) = {m|m0
σ→ m}

where σ = t1, t2...tr stands for an admissible firing se-
quence in N0. We also can define the language of Petri net
N0:

L(N0) = {σ ∈ T ∗|m0
σ→ m}

4 APC - Algebra of Process
Components

Process algebra APC [8, 16] is inspired by the process al-
gebra ACP [1]. ACP is modified in a way, that allows
for comfortable description of PN processes in the alge-
braic way. We use the same operators for the sequen-
tial (·) and the alternative (+) composition respectively and
corresponding axioms also hold in algebra APC (Table
1). ACP’s communication function (γ) and its extension -
communication merge operator (|), are not present in APC.
A composition function (π) and a special composition op-
erator (|||) are introduced into the algebra APC instead.
The impact of an introduction of the two operators will be
treated later.

APC is defined as a couple (P, Σ), where P (the domain)
is represented by the set of constants, set of variables and
set of all processes (terms) we are able to express. Σ (the
signature) contains function (operator) symbols. It is sup-
posed that, the set of variables contain arbitrary many of
them (x,y, ...). Terms containing variable(s) are called open
terms, otherwise terms are closed.

4.1 Syntactical issues

From the syntactical point of view APC contains a num-
ber of constants a, b, c, ... (we use the set A = {a, b, c, ...}
for referring to them) a special constant δ (deadlock) and
operators: +, ·, ‖ (parallel composition), bb (left merge)
and ||| (process component composition). It also contains
a (partial) commutative composition function π, denoting
the merging of process components. Now we will define
APC terms:

Definition 2. 1. variables are APC terms,

2. constants a ∈ A and a special constant δ are APC
terms,

3. if u, v are APC terms, then u + v, u · v,
u ‖ v, ubbv, u|||v are APC terms,

4. if u is APC term, then u[c], c ∈ IN is also APC term.
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All these terms are part of P - the domain of APC.
P can further be subdivided into two parts PA and PC

(P = PA ∪ PC). Terms belonging to the set PA defined
by items 1, 2 and 3 of Definition 2 (i.e. those without
the superscript notation) represent the set of true processes.
Terms from the set PC (superscripted) represent the set of
process components.

Only difference between the (true) process and process
component is, that while the process is able to execute ac-
tions, process component is introduced for synchronization
purpose only. The latter is only able to join with its coun-
terpart(s) (other process component(s) fitting for being syn-
chronized to) in order to form a true process. The compo-
sition function π is defined as follows:

π : PC × ...× PC → PA (1)

A connection between the composition function π and
the process component composition operator (|||) can
be expressed as: x1|||...|||xn = π(x1, ..., xn) when
π(x1, ..., xn) is defined. Axioms of algebra APC can be
found in Table 1. Within the table u, v, z, x1, ..., xn stand
for processes, a ∈ A and δ are constants.

u + v = v + u A1
u + u = u A2
(u + v) + z = u + (v + z) A3
(u + v) · z = uz + vz A4
(u · v) · z = u · (v · z) A5
u‖v = ubbv + vbbu + u|||v A6
(u + v)|||z = u|||z + v|||z A7
u|||(v + z) = u|||v + u|||z A8
aubbv = a(u‖v) A9
(u + v)bbz = ubbz + vbbz A10
x1|||...|||xn = π(x1, ..., xn) if A11
π(x1, ..., xn) is defined
x1|||...|||xn = δ otherwise
u + δ = u A12
δ · u = δ A13

Table 1: Axioms of APC

Theorem 1. In the case of the parallel composition of more
than two processes the following equality (expansion theo-
rem) can be proven:

x1‖...‖xn =
∑

1≤i≤n

xibb(
1≤j≤n,j 6=i

‖ xj)+ (2)

∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)bb(
1≤j≤n,j 6=i1,...,ik

‖ xj)

Proof 1. By induction on n, the number of processes. The
case for n = 2 is treated by the axiom A6, Table 1. The
induction step is as follows:

(x1‖...‖xn+1) = (x1‖...‖xn)‖xn+1

Denoting the RHS of original theorem as E, we can write:

(x1‖...‖xn)‖xn+1 = Ebbxn+1+xn+1bbE+E|||xn+1 (3)

Now we have three summands, each of them will be treated
separately. Let’s start dealing with the first of them.

Ebbxn+1 = (
∑

1≤i≤n

xibb(
1≤j≤n,j 6=i

‖ xj))bbxn+1+

(
∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)

bb(
1≤j≤n,j 6=i1,...,ik

‖ xj))bbxn+1 =

∑

1≤i≤n

xibb((
1≤j≤n,j 6=i

‖ xj)bbxn+1)+

∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)

bb((
1≤j≤n,j 6=i1,...,ik

‖ xj)bbxn+1) =

∑

1≤i≤n

xibb(
1≤j≤n+1,j 6=i

‖ xj)+

∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)

bb(
1≤j≤n+1,j 6=i1,...,ik

‖ xj)

The second summand of (3) can be expressed as follows:

xn+1bbE = xn+1bb(
1≤j≤n+1,j 6=n+1

‖ xj)

The third one represents the process components composi-
tion:

E|||xn+1 = (
∑

1≤i≤n

xibb(
1≤j≤n,j 6=i

‖ xj))|||xn+1+

(
∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)

bb(
1≤j≤n,j 6=i1,...,ik

‖ xj))|||xn+1 =

∑

1≤i≤n

(xi|||xn+1)bb(
1≤j≤n,j 6=i

‖ xj)+

(
∑

3≤k≤n+1

1≤i1<...<ik≤n+1∑
(xi1 |||...|||xik

)

bb(
1≤j≤n,j 6=i1,...,ik

‖ xj))
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Summing up the three summands we have:

(x1‖...‖xn‖xn+1) =
∑

1≤i≤n+1

xibb(
1≤j≤n+1,j 6=i

‖ xj)+

∑

2≤k≤n+1

1≤i1<...<ik≤n+1∑
(xi1 |||...|||xik

)

bb(
1≤j≤n+1,j 6=i1,...,ik

‖ xj)

ut

4.2 Semantics issues
Constants a, b, c ∈ A are called atomic actions, and are
considered indivisible actions (events). The sequential
composition operator (·) function can be explained as fol-
lows: x·y is the process that first executes x and after finish-
ing it, starts y. The alternative composition (+): x+y is the
process that either executes x or y (choice). The meaning
of parallel composition (‖) follows: considering the merge
of two processes x‖y, we recognize three possibilities to
proceed. Either we start with a first step of x (given by
xbby), or a first step from y (ybbx) or we check a possibil-
ity to compose processes by means of process components
composition operator - x|||y. The result of this composi-
tion of course is different from δ only in a case, when the
composition function π is defined.

To assign an operational semantics to process expres-
sions, we determine, which actions a process can perform.
The fact, that process represented by the term t can execute
action a and turn to the term s is denoted by: t

a−→ s (or
alternatively a is enabled in t). The symbol

√
stands for

successful termination and thus t
a−→ √

denotes a fact that
t can terminate by executing a. An inductive definition of
action relations is given in the Table 2.

a
a−→ √

u + v
a−→ u′

v + u
a−→ u′

u
a−→ u′ ⇒ u · v a−→ u′ · v

u‖v a−→ u′‖v
v‖u a−→ v‖u′
ubbv a−→ u′‖v

u
a−→ u′,

π(u[1], ..., u[n]) = u ⇒ u[1]|||...|||u[n] a−→ u′

a ∈ A, u ∈ PA, u[1], ..., u[n] ∈ Pc, u′, v ∈ P

Table 2: Transition relations for APC terms

5 APC semantics for Petri Nets
In this section the transformation description is given in
detail [16]. We start with creating a special variable for

every place in the PN N to be transformed. We call
these variables E-variables here, and they will be bound
to terms, representing possible computations started from
given place in PN, later. So the value (term) assigned to a
particular variable depends on the structure of the net in the
vicinity of a place associated. So considering the place p,
variable E(p) will be bound to a term representing all the
computations within the net N , which are initiated in p.

Figure 1: Petri net fragments

Basic situations are captured in Fig. 1. In the case a)
a situation is depicted, where no arcs are connected to the
place investigated.

This results to the assignment of a term representing no
computations to the variable corresponding to such place,
i.e. δ (deadlock). Case b) stands for an alternative compo-
sition (choice). If a token is situated in place p, a choice is
to be made, and only one of transitions t1, ..., tn can fire.
Case c) represents general composition, where tokens must
be present in all pre-places of transition t. If some of these
places does not contain a token, firing of t is not possible.
After firing of t, however post-places of it are marked and
thus processes initiated in those places are enabled.

General composition (case c) can be understood as a
generalization of the three basic compositions - sequen-
tial, parallel and synchronization (Fig. 2) - three of four
basic composition mechanisms (with alternative composi-
tion) used within the APC. If n is the number of pre-places
and m, the number of post-places of a transition t:

– n = 1 ∧ m = 1 we obtain sequential composition
(case a) of Fig. 2),

– n = 1 ∧m > 1 we obtain parallel composition (case
b) of Fig. 2),

– n > 1 ∧m = 1 we obtain synchronization (case c) of
Fig. 2).

Now we can proceed by constructing terms representing
possible computations for given places of PN N . These
will be bound to a corresponding E-variables in a way given
by the definition:

Definition 3. According to the structure of Petri net in the
vicinity of a given place, terms are bound to corresponding
variables for elementary situations depicted in figures Fig.
1 and Fig. 2 as follows:
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Figure 2: Basic compositions as a special cases of the gen-
eral composition

– deadlock (Fig. 1a): E(p) = δ

– alternative composition (Fig. 1b): E(p) =
t1 · E(q1) + t2 · E(q2) + ... + tn · E(qn)

– sequential composition (Fig. 2a): E(p) =
t · E(q)

– parallel composition (Fig. 2b): E(p) =
t · (E(q1) ‖ ... ‖ E(qn))

– synchronization (Fig. 2c): E(p1) =
(t · E(q))[1], E(p2) = (t · E(q))[2], ..., E(pn) = (t ·
E(q))[n],
and the composition function is defined:
π((t · E(q))[1], ..., (t · E(q))[n]) = t · E(q) or
π(E(p1), ..., E(pn)) = t · E(q)

– general composition (Fig. 1c): E(p1) =
(t · (E(q1) ‖ ... ‖ E(qm)))[1],
E(p2) = (t · (E(q1) ‖ ... ‖ E(qm)))[2], ...,
E(pn) = (t · (E(q1) ‖ ... ‖ E(qm)))[n],
and the composition function is defined in the follow-
ing way:
π(E(p1), ..., E(pn)) = t · (E(q1) ‖ ... ‖ E(qm))

– transition without post-place(s) (Fig. 3a): E(p) = t

– transition without pre-place(s) (Fig. 3b): a new place
is added, such that firing properties of a transition
given are preserved (Fig. 3c): E(p) = t · E(q).

In the case of the synchronization we can observe that,
all variables composed are assigned to terms representing
process components instead of true processes. These com-
ponents, if all are present within the term representing the
net computation, can merge together by means of composi-
tion function π, and form the true process (able to execute
action t and then to behave like E(q)).

Taking into account the case, when a transition without
pre-places occurs within the net structure (Fig. 3b), the
following solution is proposed: for every such transition
t, a new pre-place is added, such that the firing properties
of transition t are preserved (Fig. 3c). This is achieved
by setting the initial marking of given place to ω, where

Figure 3: Transitions without input/output

∀n ∈ IN : ω ± n = ω. In fact, this causes the transition t
can be fired infinitely many times. Combining these basic
principles, we are able to construct terms for more compli-
cated net structures.

Definition 4. Let the PN N is given by N =
(P, T, pre, post), m ∈ INk stands for its initial marking,
and k = |P |. Then the APC semantics for N with marking
m is given by the formula:

A(N, m) = E(p1)(i1)‖...‖E(pk)(ik) (4)

Within the Definition 4, E(pi) stands for an APC-
term defined according to PN structure in the vicinity of
the place pi (Definition 3). The value ij is given by
ij = m(pj), so it represents the marking with respect
to place pj , 1 ≤ j ≤ k. E(pj)(i) is defined as a term
E(pj)‖...‖E(pj), and represents a multiple (i-times) paral-
lel composition of a process E(pj). Note that E(pj)(0) =
δ. When ij = ω for place pj , it means that E(pj) can occur
infinitely many times in resulting composition.

Theorem 2. For given PN N = (P, T, pre, post), APC-
term p, representing an algebraic (APC) semantics for the
net N , transition t ∈ T and m, m′ markings of N , follow-
ing implication holds:

(N, m) t→(N, m′) ⇒ A(N,m) t→A(N, m′)

Proof 2. The proof is given by the induction on a structure
of the net. Let us suppose, that a step in computation of N

exists: (N, m) t→(N, m′), then

∀pi ∈ (•t) : m(pi) ≥ pre(pi, t)

∀pi ∈ P : m′(pi) = m(pi)− pre(pi, t) + post(pi, t)

Algebraic semantics for Petri net N with marking m is
given by:

A(N,m) = E(p1)(i1)‖...‖E(pk)(ik), k = |P | (5)

Transition t fired in N within a step can be of two kinds:

1. |•t| = 1

2. |•t| ≥ 2
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According to the transition relations of APC (Table 2), a
step can be made by executing the action of the true pro-
cess or by merging the process components together with
execution of an action associated. Let us explore the two
cases:

1. If |•t| = 1 is the case, the situation is captured in the
Fig. 4, case a). Then within the Petri net N holds:
m(pa) ≥ pre(pa, t) (so the place pa contains a to-
ken(s)) and also m′(pi) = m(pi) + post(pi, t) −
pre(pi, t), pi ∈ P is a new marking after firing of
the transition t. If E(pa) = t · (E(pc)‖...‖E(pd))
is corresponding APC semantics for process initiated
in the place pa, then a step (action t) is enabled
E(pa) t→E(pc)‖...‖E(pd), since E(pa) is present in
specification A(N, m). Let values jl, l ∈ {1, ..., k}
are given by: jl = il − pre(pl, t) + post(pl, t). When
a step A(N, m) t→A(N,m′) occurs, corresponding
APC semantics of the net (N,m′) is given by:

A(N, m′) = E(p1)(j1)‖...‖E(pk)(jk), (6)

k = |P |

Figure 4: Two cases considered for a step in computation
of N

2. Here transition t firing in Petri net N occurs, for
which |•t| ≥ 2 holds. Situation is depicted in Fig. 4,
case b). Within the Petri net N there holds: m(pa) ≥
pre(pa, t), . . . ,m(pb) ≥ pre(pb, t) (so the places
pa, . . . , pb contain enough tokens) and thus transition
t can fire. From the definition of APC semantics for
Petri net N (5) and Definition 3, we have that a step
from (N,m) is represented by:

E(pa)(ia) ‖ ... ‖ E(pb)(ib) t→ (7)

E(pc)(jc) ‖ ... ‖ E(pd)(jd)

The step is enabled inA(N,m) since values ia, . . . , ib
are given by number of tokens in correspond-
ing places. According to the definition, variables
E(pa),...,E(pb) are bound to process components and
composition function is defined:

π(E(pa), ..., E(pb)) = t · (E(pc) ‖ ... ‖ E(pd)). The
step (7) thus is enabled, and (6) holds, where: j1 =
i1+post(p1, t)−pre(p1, t),...,jk = ik+post(pk, t)−
pre(pk, t).

We can conclude, that if a step in Petri net N with mark-
ing m is enabled, so it is enabled also in corresponding
algebraic representation A(N, m).

ut

We give a small example here, representing the configu-
ration of Petri net N sometimes called confusion (Fig. 5)
for the sake of clarity.

Figure 5: Confusion

First, APC-terms are assigned to variables created for
every place of Petri net N .

E(p1) = t1 · E(q1) + (t2 · E(q2))[1],
E(p2) = (t2 · E(q2))[2]

Next, the composition function π is defined:

π((t2 · E(q2))[1], (t2 · E(q2))[2]) = t2 · E(q2) (8)

Within the initial marking m0 of Petri net N , the only
place holding a token is p1, so only the variable corre-
sponding to this place will be included within the equation
describing the algebraic semantics of N .

A(N, m0) = E(p1) = t1 · E(q1) + (t2 · E(q2))[1] =
t1 · E(q1) + δ = t1 · E(q1)

In the configuration depicted, the only transition enabled
is t1 and it can fire. This is not the case of the transition
t2, because the place p2, the pre-place of t2 is not marked.
The same could be observed within the APC representation
- only one process component ((t2 · E(q2))[1]) is present
within the equation (so the mapping π cannot be used to
produce a true process) and it thus cannot perform any ac-
tion and is replaced by the δ.

6 An example
An example has been chosen to demonstrate a way how the
transformation rules proposed can be used. The Petri net N
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(depicted in Fig. 6) represents a synchronization problem
for sharing one resource by two processes. System mod-
eled consists of two processes (let the first process repre-
sented by the places p1, p2 and transitions t1, t3, be named
A, and the second one (p3, p4, t2, t4) be named B). The
resource shared is represented by the place p0. The token
at this place indicates the resource is free to be shared ei-
ther by process A or process B. The place p2 stands for the
condition ’process A is using the resource’, firing transition
t1 starts the resource usage and firing t3 ends it. Similarly,
for process B, firing t2 starts and firing t4 ends the usage
respectively. A token occurrence in the place p3 indicates
the resource is used by the process B.

Figure 6: Petri net for resource sharing

We start with assigning APC-terms to variables created
for every place of PN N , according to the structure of the
net in the vicinity of the corresponding place.

E(p1) = (t1 · E(p2))[1], E(p2) = t3(E(p0) ‖ E(p1)),
E(p3) = t4(E(p0) ‖ E(p4)), E(p4) = (t2 · E(p3))[1],

E(p0) = (t1 · E(p2))[2] + (t2 · E(p3))[2]

Composition function π is defined in two cases:

π((t1 · E(p2))[1], (t1 · E(p2))[2]) = t1 · E(p2) (9)

π((t2 · E(p3))[1], (t2 · E(p3))[2]) = t2 · E(p3) (10)

Since the initial marking of Petri net N is given as m0 =
(1, 1, 0, 0, 1), only three places (p0, p1 and p4) hold tokens,
and only variables corresponding to these places will take
place in equation describing the algebraic semantics of PN
N .

A(N, m0) = E(p0) ‖ E(p1) ‖ E(p4) (11)

Since the term on the RHS of equation (11) represents
parallel composition of three processes, we expand it ac-
cording to (2):

= E(p0)bb(E(p1) ‖ E(p4)) + E(p1)bb(E(p0) ‖
E(p4)) + E(p4)bb(E(p0) ‖ E(p1))+

(E(p0)|||E(p1))bbE(p4) + (E(p0)|||E(p4))bbE(p1) +
(E(p1)|||E(p4))bbE(p0)+ (E(p0)|||E(p1)|||E(p4))

After substituting terms assigned (bound) to variables
E(p0), E(p1) and E(p4), we can write:

= [(t1 · E(p2))[2] + (t2 · E(p3))[2]]bb((t1 · E(p2))[1] ‖
(t2 · E(p3))[1])+

(t1 · E(p2))[1]bb[((t1 · E(p2))[2] + (t2 · E(p3))[2]] ‖
(t2 · E(p3))[1])+

(t2 · E(p3))[1]bb[((t1 · E(p2))[2] + (t2 · E(p3))[2]] ‖
(t1 · E(p2))[1])+ ([(t1 · E(p2))[2] + (t2 · E(p3))[2]]|||(t1 ·

E(p2))[1])bb(t2 · E(p3))[1]+ ([(t1 · E(p2))[2] + (t2 ·
E(p3))[2]]|||(t2 · E(p3))[1])bb(t1 · E(p2))[1]+

((t1 · E(p2))[1]|||(t2 · E(p3))[1])bb[(t1 · E(p2))[2] + (t2 ·
E(p3))[2]]+ ([(t1 · E(p2))[2] + (t2 · E(p3))[2]]|||(t1 ·

E(p2))[1]|||(t2 · E(p3))[1])

Using the composition (π) definition (9, 10) and axioms
associated (A11, A13), we have:

(t1 ·E(p2))bb(t2 ·E(p3))[1] + (t2 ·E(p3))bb(t1 ·E(p2))[1]

Using the left merge operator axiom (A9) and substitut-
ing for E(p2) and E(p3) we obtain:

= t1(E(p2) ‖ (t2 ·E(p3))[1])+ t2(E(p3) ‖ (t1 ·E(p2))[1])
= t1(t3(E(p0) ‖ E(p1)) ‖

(t2 · E(p3))[1]) + t2(t4(E(p0) ‖ E(p4)) ‖ (t1 · E(p2))[1])

Considering all the cases for two processes composed by
the parallel composition operator (‖) and using the axiom
A6:

= t1(t3(E(p0) ‖ E(p1))bb(t2 · E(p3))[1]+
(t2 · E(p3))[1]bbt3(E(p0) ‖ E(p1))+
t3(E(p0) ‖ E(p1))|||(t2 · E(p3))[1])+
t2(t4(E(p0) ‖ E(p4))bb(t1 · E(p2))[1]+
(t1 · E(p2))[1]bbt4(E(p0) ‖ E(p4))+
t4(E(p0) ‖ E(p4))|||(t1 · E(p2))[1])

= t1(t3(E(p0) ‖ E(p1))bb(t2 · E(p3))[1] + δ + δ)+
t2(t4(E(p0) ‖ E(p4))bb(t1 · E(p2))[1] + δ + δ)
= t1t3((E(p0) ‖ E(p1)) ‖ (t2 · E(p3))[1])+

t2t4((E(p0) ‖ E(p4)) ‖ (t1 · E(p2))[1])

Since E(p4) = (t2 · E(p3))[1] and E(p1) = (t1 ·
E(p2))[1], we can write:

= t1t3((E(p0) ‖ E(p1)) ‖ E(p4))+
t2t4((E(p0) ‖ E(p4)) ‖ E(p1))

= t1t3(E(p0) ‖ E(p1) ‖ E(p4))+
t2t4(E(p0) ‖ E(p1) ‖ E(p4))

Using axiom A4, the term becomes even simpler:

= (t1t3 + t2t4)(E(p0) ‖ E(p1) ‖ E(p4))
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Here we can observe a parallel composition of the three
variables, from which we started our derivation (E(p0) ‖
E(p1) ‖ E(p4)). In terms of Petri nets, the initial marking
was reached again. Prefix (t1t3+t2t4) represents the traces
of processes. The sequential composition operator is often
omitted, so we can state that the APC semantics is finally
given by the following equation:

A(N, m0) = (t1t3 + t2t4)ω

7 Conclusion
In this paper a general method was presented for construct-
ing an algebraic semantics of Petri nets, based on Algebra
of Process Components (APC) by the authors. The notion
of process component is introduced in order to model syn-
chronization, which, in case of Petri nets, is modeled in a
natural way. A variable is created for every place of given
net and a term is bound to this variable, which express the
process initiated in the corresponding place. The descrip-
tion of process representing computations of Petri net is
given by the parallel composition of all the variables asso-
ciated with places holding token(s) within the initial mark-
ing. Traces of processes can be observed in addition to
changes on the PN marking along the computation. Re-
sulting algebraic specification can further be analyzed us-
ing process algebra tools like CWB-NC, etc. A proof of
identical operational behavior has also been provided.

The PETRI2APC tool, a practical implementation of
method presented, is intended to be a part of multi FDT
(mFDT) environment - an environment for designing and
analysing of discrete systems based on three formal meth-
ods with useful complementary properties. The methods
considered are Petri nets, Process algebra and B-Method.
The mFDT environment is under development at DCI FEEI
TU of Košice.
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