
https://doi.org/10.31449/inf.v43i2.2090 Informatica 43 (2019) 253–262 253 

 

The Permutable k-means for the Bi-partial Criterion 

Sergey Dvoenko 

Tula State University, 92 Lenin Ave., Tula, Russian Federation 

E-mail: sergedv@yandex.ru 

 

Jan Owsinski  

Systems Research Institute, Polish Academy of Sciences, 6 Newelska, 01 447 Warsaw, Poland 

E-mail: owsinski@ibspan.waw.pl, http://www.ibspan.waw.pl/glowna/en / 

 

Keywords: distance, similarity, dissimilarity, cluster, k-means, objective function 

 

Received: December 18, 2017 

 

The bi-partial criterion for clustering problem consists of two parts, where the first one takes into account intra-

cluster relations, and the second – inter-cluster ones. In the case of k-means algorithm, such bi-partial criterion 

combines intra-cluster dispersion with inter-cluster similarity, to be jointly minimized. The first part only of such 

objective function provides the “standard” quality of clustering based on distances between objects (the well-

known classical k-means). To improve the clustering quality based on the bi-partial objective function, we de-

velop the permutable version of k-means algorithm. This paper shows that the permutable k-means appears to 

be a new type of a clustering procedure. 

Povzetek: Študija se ukvarja z gručenjem znotraj in med gručami, pri čemer izvirna metoda uporablja 

permutirano verzijo običajnega algoritma za gručenje. 

1 Introduction and related works

1.1 Clustering by k-means  

According to the basic idea of the classical k-means algo-

rithm [1-5], a set 
1{ ,... }N =  of N  elements is di-

vided into clusters 
k , 1,...k K= , represented in a fea-

ture space by their “representative” objects 
kx , and/or 

“mean” objects 
kx  (centers), where 1( ,... )T

nx x=x  is a 

vector in the n− dimensional space.  

In this paper, we consider means as representatives and 

calculate new means as in the classical procedure.  

The well-known respective clustering criterion mini-

mizes average of squared distances to cluster centers 
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where 
2

k  is the dispersion of the cluster k  having size 

kN , and ( , )d x y  is the Euclidean distance between vec-

tors x  and y . 

As it is well-known [6–10], cluster dispersions can be 

calculated without direct use of cluster means, based on 

pairwise distances between vectors 
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Empirical data often appear in the form of a matrix of 

pairwise comparisons of elements of the set. Such com-

parisons can be nonnegative values of dissimilarity or sim-

ilarity of objects from the set   [11].  

This is important for our approach, since the permuta-

ble k-means, developed in this paper, uses only distance 

𝐷(𝑁,𝑁) or similarity 𝑆(𝑁, 𝑁) matrices. Therefore, cluster 

means are not presented in them, and we need to develop 

equivalent forms of (1) and (2).  

The basis of our approach is the Torgerson’s idea of 

the “gravity center”, developed for multidimensional scal-

ing problem [6] in the method of double centering for prin-

cipal projections to get the appropriate feature space with 

the raw distance matrix, immersed in it.  

Our goal is different: we do not want to restore a fea-

ture space itself, since it is sufficient to suppose that ob-

jects are immersed in some metric (more closely, Euclid-

ean) space, as we show this later on. 

Naturally, the two-component criteria, similar to the 

bi-partial one (Dunn, Calinski-Harabasz, Xie-Beni etc.), 

are used in cluster-analysis [9, 12]. They are mainly used 

to assess the proper number of clusters K. Such criteria are 

usually heuristic constructions, used to assess the results 

of some algorithms of quite different origins and proper-

ties. 

Here we are interested in improving the results of the 

classical clustering problem with a predefined number of 

clusters K. Namely, we try to develop here the bi-partial 

objective function to build a homogeneous and strict met-

ric criterion for standard k-means algorithm only for a pre-

defined number K, and not to use any other idea of proce-

dure than that of k-means. 

1.2 The bi-partial criterion  

In order to introduce here a general bi-partial objective 

function, we refer to an illustrative problem of dividing a 
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unidimensional empirical distribution of real values into a 

set of categories to get the “best” set in a definite sense 

[13–15]. This case serves merely the purpose of illustra-

tion, and assumptions made on data do not apply to the 

general bi-partial approach. 

Let a sequence of N  positive real observations 

, 1,...ix i N=  be given in non-decreasing order, i.e. with 

1i ix x+   for all of them. Any such sequence can be repre-

sented through a cumulative form, obtained via transfor-

mation 
1

i

i pp
z x

=
= , 1,...i N= . 

As a result, we deal with a convex non-decreasing se-

quence , 1,...iz i N= . This means that a straight line, con-

necting two observations, 
qz  and 

sz , with 1 q s N    

has all values not under the corresponding observations 

, ,...iz i q s= . 

Obviously, for the sequence of constant values 

1 ... Nx x c= = =  the convex cumulative form is the line 

, 1,... ,iz ic i N= =
 
with 

1 , Nz c z cN= = , represented per-

fectly by the single linear piece.  

Otherwise, for non-constant values, by increasing the 

number of linear segments from the single one (with 
1,q s N= = ), we steadily decrease the error of approxi-

mation of the original distribution {zi} by the broken line, 

composed of such segments, down to zero, when the max-

imal number 1N −  of linear segments, corresponded to 

the number of observations N, is used to represent the dis-

tribution. 

Under these conditions, the problem of obtaining the 

optimal piece-wise linear approximation of the cumulative 

sequence with the number of linear segments also being 

optimized was investigated in [13-15].  

According to [13-15], the respective bi-partial objec-

tive function 
DSJ  penalizes, first, deviation 

DC  of linear 

segments from the respective distribution, and, second, 

penalizes similarity 
SC  of linear segments to each other, 

and was represented in the form  

           ( ) (1 ) ( ) ( ) minDS D SJ K C K C K = − + → ,      (3) 

where 1K   is the number of segments, 0 1   is the 

coefficient of linear combination of two parts of the crite-

rion.  

The criterion 
DSJ , investigated in [13, 14] for the 

above problem, is a particular case of the general bi-partial 

form, representing the fundamental “intra-cluster cohe-

sion + inter-cluster separation” paradigm [15, 16]. 

It should be noted that the parameter   in (3) need not 

appear at all, if two parts of the objective function are as-

sumed to reflect correctly the respective inner and outer 

measures. Note that by solving with respect to (3) we get 

both the cluster (segment) content and the number of clus-

ters (segments). We can also represent (3) in different 

forms to obtain different data analysis problems as partic-

ular cases. So, e.g., (3) can be transformed to the linear 

regression problem for 1K = , 0 = . 

In other interesting cases, the problem (3) can be con-

sidered for other kinds of parameters than , say, K. Thus, 

we can treat 1K   as a hyper-parameter and find the op-

timal linear combination of parts in ( )DSJ K . 

Thus, in the context of the illustrative problem quoted, 

we would fix the number of line segments K, and look 

with (3) for the optimum weight , meaning the signifi-

cance we attach to accuracy of the approximation vs. dis-

tinctiveness of the consecutive segments. 

In this paper, we investigate the single-parametric re-

duced form of (3) to find the optimal   for the predefined 

hyper-parameter K based on the direct implementing of 

the well-known k-means algorithm. 

2 Distance and similarity k-means 
In this paper, we use the specially developed k-means al-

gorithm only for the case of distances or similarities be-

tween objects [17, 18]. 

A positive definite similarity matrix can be obtained 

as a matrix of pairwise scalar products of object descrip-

tions in some metric space with the dimensionality of not 

more than a set cardinal number. This matrix of scalar 

products can be transformed into a distance matrix and 

vice versa. As a result, the dissimilarity matrix can be used 

as the distance matrix in the same space.  

In this case, the mean object ( )k x  cannot be defined 

in   by the distance matrix ( , )D N N  as a center of a 

cluster. Usually, the object minimizing the sum of dis-

tances to the others in the cluster can be used as the center

k . Therefore, if representatives and centers coincide 

each with other, 
k k =  for all clusters, then we get an 

unbiased clustering.  

Nevertheless, if we immerse the set  in some feature 

space, we obtain in general the biased clustering, since the 

center ( )kx  may not be the mean object 
kx  in the un-

known feature space.  

The classical k-means algorithm was developed for 

distances and similarities in [17, 18]. Centers 
k  provide 

the unbiased clustering with cluster dispersions 
2 2

1
(1/ ) ( , )

kN

k k i ki
N d  

=
=   minimizing ( )J K . If the 

set   is immersed in a feature space, then two criteria 

1 ,...( ) min ( )
K

XJ K J K= x x , 
1 ,...( ) min ( )

K

DJ K J K =  

have not the same values, since ( ) ( )D XJ K J K  in gen-

eral. Yet, ( ) ( )X DJ K J K= , if objects ( )kx  and 
kx  are 

the same.  

We would like to guarantee this condition. For some 

l  , as a point of the origin and a pair ,i j  , the sca-

lar product is 
2 2 2( ) / 2ij l i l j i js d d d= + − , where distance is 

( , )pq p qd d  =  and 
2

ii l is d=  for i j= . Therefore, the 

main diagonal of the matrix ( , )lS N N  represents the 

squared distances from the origin 
l   to other objects.  

According to [6], it is convenient to put the origin of 

the feature space in the center of all objects 

, 1,...i i N  = . Therefore, we put the origin of the 
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feature space, cluster by cluster, in each center 
k  to rep-

resent it by its distances to all other objects in the unknown 

feature space (
kN  is the number of objects in 

k ,

,p q k   ): 
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where, according to (1), (4), the cluster dispersion is 
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          (5) 

Hence, we develop the distance k-means algorithm 

based on the classical principle of the “minimum distance 

to a cluster center”: 

(a) Step 0. Determine in some way K centers 
1

k  and put 

them as representatives 
1 1 , 1,... ;k k k K = =  1s = . 

Step s.  Reallocate all objects between clusters:  

1. 
s

i k  , if 𝑑(𝜔𝑖 ,  �̄�𝑘
𝑠) ≤ 𝑑(𝜔𝑖 ,  �̄�𝑗

𝑠) for s

i j k  , 

    1,... ,j K= 1,... .i N=  

2. Recalculate centers , 1,... ,s

k k K = represented by 

    distances ( , ), 1,... .s

i kd i N  =  

3. Stop, if 
s s

k k = , 1,... ,k K=  

     else 
1s s

k k + = , 
1s s

k k + = , 1,... ;k K=  

    1s s= + . 

Based on the direct recalculation of the criterion (1), 

the equivalent realization is: 

(b) Step 0. Determine in some way K  centers 
1

k  and put 

them as representatives 
1 1 , 1,... ;k k k K = =  calcu-

late 
1 1 ( )J J K=  and put 

1 1 1( )J J K J= =  relative to rep-

resentatives; 1s = . 

Step s.  Reallocate all objects between clusters:  

1. 
s

i k  , if 𝐽𝑖𝑘
𝑠 ≤ 𝐽𝑖𝑝

𝑠  for 
s

i p k  , 1,... ,p K=  

    1,... .i N=  

2. Recalculate centers , 1,... ,s

k k K = represented by 

    distances ( , ), 1,... ;s

i kd i N  = recalculate .sJ  

3. Stop, if s sJ J= , else 1s sJ J+ = , 1s sJ J+ = ;  

    1s s= + . 

A positive definite similarity matrix ( , )S N N  with el-

ements ( , ) 0ij i js s  =   can be obtained as a matrix of 

scalar products in the positive quadrant of the feature 

space. Relative to some point k   as the origin, 

with 
2 2 2( ) / 2ij ki kj ijs d d d= + − , 

2

ii kis d= , distances are de-

fined as 
2 2ij ii jj ijd s s s= + − . The cluster center k  is rep-

resented by its similarities with other objects 

 
1
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N

 
=

=  , p k  , , 1,...i i N  = . (6) 

The cluster compactness is the mean similarity of the 

cluster center with respect to other objects (6): 

1

1
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ip

i pk

s
N = =

 ; ,i p k   . 

The unbiased clustering minimizes the cluster disper-

sion 
2

k  and maximizes the compactness 
k  according to 

(5): 

2

2
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and for all clusters: 
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For similarity clustering, we maximize compactness 

( )I K , with ( ) ( )I K C J K= − . The similarity k-means al-

gorithm is the analogue of algorithms (a) and (b) relative 

to ( )I K . 

3 The bi-partial criterion for clustering 

In this paper, we develop the bi-partial objective function 

like (3) for the dissimilarity k-means 

                  
( ) (1 ) ( ) ( )J K J K K  = − + ,                  (7) 

so as to combine ( )J K  for intra-cluster distances with the 

inter-cluster similarity ( )K . We define the inter-cluster 

similarity 01
( ) (1 / ) ( , )

K

kk
K K s  

=
=   relative to the 

center of the whole set, being the object 
0 , represented 

by its similarities with respect to all other centers 

0 1
( , ) (1 / ) ( , )

K

k k pp
s K s   

=
=  ; , 1,...k k K = :  

                      
2

1 1

1
( ) ( , )

K K

k l

k l

K s
K

  
= =

=  .                   (8) 

Unfortunately, the bi-partial criterion ( )J K , as de-

fined here, does not work for the classical k-means (b), 

since (8), as the second part of ( )J K  in (7), cannot be 

changed for constant centers while attempting to transfer 

objects in step s. 

Therefore, for any 0 1  , the clustering results are 

the same as for the classical case with 0 = . And the al-

gorithm does not work properly with 1 = . 

We develop here the new “permutable” version of the 

classical k-means (b) without direct calculation of cluster 

centers. Here, the new permutable k-means is the meanless 

clustering for the classical k-means (b). 

As we can see in (5), the cluster dispersion is half of 

the average of squared distances between objects in the 

cluster. This representation does not contain centers them-

selves, and we calculate the criterion (1) without centers 

in the form 

             
2 2

1 1 1 1

1 1
( )

2

k kN NK K
k

k pq

k k p qk

N
J K d

N N N


= = = =

= =   .      (9) 

Next, we would like to calculate the similarity 

( , )k ls    between cluster centers in (8). According to (6), 
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the average similarity of the center 
k  with the objects 

from the other cluster 
i l   is  

1 1 1

1 1
( , ) ( , )

l l kN N N

l k i k ip

i i pl l k

s s s
N N N

  
= = =

 = =  , 
p k  . 

It is evident that ( , ) ( , )l k k ls s  =  , as ij jis s= . 

Therefore, we can use the suitable notation 

( , ) ( , ) ( , ) ( , )l k k l l k l ks s s s    =  =   = . Hence, 

(8) is converted into (
p k  ,

q l  ):
 
 

                 
2

1 1 1 1

1 1
( ) .

k lN NK K

pq

k l p qk l

K s
N NK


= = = =

=                (10) 

The goal of ( )J K  is to produce clusters with possibly 

low dispersion and possibly dissimilar centers. We note 

that (10) is in a way an inconsistent function, since for 

k l=  it contains the cluster compactness 
k . Hence, we 

modify (10) to get the inter-cluster similarities only and 

take into account the symmetry  

           
1 1, 1 1

1 1
( ) ,

2 ( 1)

k lN NK K

pq

k l l k p qk l

K s
K K N N


= =  = =

=
−
      (11)  

for , .p k q l    

We develop here the classical k-means (b) in the new 

form of the permutable k-means based on (9)–(11): 

(c) Step 0. Determine in some way the sets 1, 1,...l l K = ; 

define , calculate 1 1 ( )J J K= ; 1s = . 

Step s. Reallocate all objects between clusters: 

1. Remember, but do not move: 
s

i k  , if 𝐽𝑖𝑘
𝑠 ≤ 𝐽𝑖𝑝

𝑠  for 

   
s

i p k  , 1,... ,p K= 1,... .i N=   

2. Reallocate all objects , 1,...i i N =  at once;  

    calculate 1sJ + . 

3. If 1s sJ J+ =  then stop; 

    If 1s sJ J+   then: cancel last reallocations, 1s sJ J+ = ,  

    stop; 

    If 1s sJ J+  then: 1 ,s sJ J+ = 1s s= + . 

As we can see, in the step (s.1) we recalculate the cri-

terion sJ  in order to get its modified value s

ipJ . Let 

s

i j  . When trying to move 
i  from 

s

j  to some other 

s

p , we try to change the respective sets to \s

j i  and to 

s

p i . Changes in the sets result in implicit changes of 

their centers, even though we do not calculate them. Con-

sequently, this action differs from the same one in algo-

rithms (a) and (b) for constant centers.  

Algorithm (c) appears to be a new type of clustering 

procedures, since its result differs, in general, from those 

of the classical (a) and (b) procedures, both for the classi-

cal ( 0) =  and the proper bi-partial ( 0)  cases. In ad-

dition, we can use some optimal initial clusters to enhance 

the quality of results, and optimal recalculations to im-

prove performance of permutations. 

As we can see, the algorithm (c) is the same as the clas-

sical ones (a) and (b) for the standard criterion ( )J K  and 

differs (sometimes subtly and finely) from them for the bi-

partial criterion ( )J K .  

It is clear that the new algorithm gives the classical re-

sult for non-intersecting clusters. Nevertheless, its result 

can be improved for intersecting clusters, since by means 

of the criterion ( )J K
 a cluster center can be shifted in 

some vicinity without changing the cluster itself. Such 

possibility depends on the gaps between real points in con-

tinuous feature space and the discrete cluster structure su-

perimposed. 

4 Redistribution of data dispersion by 

the bi-partial criterion 
Here, we explain why by means of the criterion (7) it is 

possible to improve the classical clustering of k-means. 

Consider the classical case. Let the set of size N be 

divided into K subsets (clusters). In our perspective, we 

consider balancing of total dispersion between its intra- 

and inter- parts. We know [19, 20] that 
T W BS S S= + , 

where 
TS  is the total scatter matrix, 

WS  is the intra-cluster 

and 
BS  is the inter-cluster scatter matrices. Therefore, 

T W BtrS trS trS= +  for diagonal elements only. Since 

2

T TtrS N=  , 
2

W WtrS N=  , and 
2

B BtrS N=  , then finally 

2 2 2

T W B =  + . 

Let the set 
1{ ,... }N=    be immersed in some met-

ric space and represented by the distance matrix ( , )D N N

only with elements ( , ) 0ij i jd d=    . Let   be split 

into groups , 1,...k k K = . Based on the Torgerson’s for-

mula, we define the following:  

for single group dispersions 

2 2

2
1 1

1
( , ), 1,...

2

k kN N

k p q

p qk

d k K
N = =

 =   = ; 

for the intra-group dispersion 

2 2 2

2
1 1 1 1

2

1 1 1

1
( , )

2

1 1
( , ) ;

2

k k

k k

N NK K
k k

W k p q

k k p qk

N NK

p q

k p qk

N N
d

N N N

d
N N

= = = =

= = =

 =  =   =

 

  

 

 

for the total dispersion 

2 2

2
1 1

2

2
1 1 1 1

1
( , )

2

1
( , ) ;

2

k l

N N

T p q

p q

N NK K

p q

k l p q

d
N

d
N

= =

= = = =

 =   =

 





 

for the inter-center dispersion 

2 2 2

0 2
1 1 1

1 1
( , ) ( , )

2

K K K

IC k p q

k p q

d d
K K= = =

 =   =    , 

where the center 
0  of the set   is represented by its 

distances to other centers 
k  through 

2 2 2

0

1

1
( , ) ( , )

K

k k p IC

p

d d
K =

  =   − . 

We remark that the classical inter-group dispersion is 

not given by the Torgerson’s formula 
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2 2

0

1

( , )
K

k

B k

k

N
d

N=

 =   . 

Therefore, the classical inter-group dispersion is 

2 2 2

1 1

1
( , )

K K
k

B k p IC

k p

N
d

N K= =

 
 =   − = 

 
   

2 2

1 1 1

1
( , )

K K K
k k

k p IC

k p p

N N
d

K N N= = =

  −  =    

2 2

1 1

1
( , )

K K
k

k p IC

k p

N
d

K N= =

  −  . 

As shown above, we minimize the classical criterion 

( )J K  based on the distance matrix ( , )D N N , and max-

imize the criterion in the dual form  ( ) ( )I K C J K= −
 

based on the similarity matrix ( , )S N N . 

Hence, in the dual form of the bi-partial criterion we 

try to maximize the classical part ( )I K  and the new sec-

ond part for the inter-center dispersion 
2

IC , as based on 

the Torgerson’s formula. Since the classical inter-group 

dispersion
2

B  is not based on the Torgerson’s formula, we 

calculate it with distances 
2

0( , )kd   . Such distances re-

fer to distances between sets, not being a topic here.  

Hence, in the dual form by maximizing ( )I K , we min-

imize strictly equivalent classical ( )J K  and maximize the 

inter-center dispersion 
2

IC . Since 
2 2 2

T W B =  + , we have 

the decomposition 

2 2 2 2

1 1

1
( , )

K K
k

T W k p IC

k p

N
d

K N= =

 =  +   −  . 

Let us denote 
2 2

1 1

1
( , )

K K
k

B IC k p

k p

N
d

K N= =

 =     and 

represent the classical inter-group dispersion in the form 
2 2 2

B B IC IC =  −  without the contribution of the inter-

center dispersion, where 
2 2 2 2

T IC W B IC +  =  +  . 

As we can see, the permutable k-means is targeted to 

minimize 
2( ) WJ K =  . Since the total dispersion 

2

T const = , at the same time the classical inter-group dis-

persion 
2 2 2

B B IC IC =  −  is maximized. Therefore, the 

balance 
2 2 2

T W B =  +  remains true. The decomposition 

2 2 2 2

T IC W B IC +  =  +   shows that the balance of two parts 

is maintained, while we increase both of them.  

In this case, the bi-partial criterion influences 
2

IC  

only. Hence, by means of the bi-partial criterion we ma-

nipulate to maximize the inter-center dispersion 
2

IC  with 

the other part 
2

B IC  being maximized “as is”. 

5 Experiments 

5.1 Experimental setup 

Experimental data are the original Fisher’s Iris data [21]. 

We chose this data set as a simple illustration for the basic 

properties of the approach developed. Such data consist of 

150 measurements of 50 plants, belonging to three varie-

ties: Iris setosa, Iris versicolor, and Iris virginica. Four 

flower measurements are made: petal length and width, 

and sepal length and width. 

It is known that the 1st class (Iris setosa) is well sepa-

rated from other two classes (2nd class, Iris versicolor, and 

3rd class, Iris virginica). The 2nd and 3rd classes intersect 

each other. Another peculiarity of Iris data is the coinci-

dence of objects 102 and 143 from the 3rd class. Iris data 

are also included in Matlab.  

There are also other available variants of the Iris data, 

differing from the classic set of [21]. Such differences usu-

ally concern corrections in some measurements.  

Since the classification of data has been defined, we 

show that the bi-partial objective function ( )J K , devel-

oped above, allows us to improve the classical clustering 

result. According to it, we separate as usual 1st class cor-

rectly from two others, and decrease the errors in separa-

tion of the 2nd and the 3rd class. 

According to the formulation above, we investigate the 

problem 

   ( )
0 1 0 1

* arg min ( ) arg min (1 ) ( ) ( )J K J K K
 

  
   

= = − + . 

As we can see, this formulation implies balancing of 

two parts of the criterion. Therefore, it would be good to 

measure ( )J K  and ( )K  on the same scale.  

The dispersion of standardized data is n, i.e. the num-

ber of features (n=4 for Iris data), and usually more than 

n for original (non-standardized) data. The clustering re-

sults for original and standardized data can differ.  

In order to get rid of the potential scale bias, we nor-

malize inter-cluster similarities /kl kl kk lls s s s =  to get 

1kks = , 0 1kls  ; , 1,...k l K= . 

The last technical remark regarding the correctness of 

the criterion ( )J K  is that in the case of usual standard 

multidimensional data, we need to move the origin out of 

the convex cover of the set relative to its center and pro-

vide positive scalar products as similarities between ob-

jects. This problem was discussed in [22].  

Indeed, as it is mentioned above, all similarities in (6), 

(8), (10), (11) must be nonnegative for correct ( )I K  and 

( )K . According to (4), the origin is placed in the center 

of the data set in the feature space.  

Unfortunately, it this case we cannot use scalar prod-

ucts 
2 2 2( ) / 2ij ki kj ijs d d d= + −  in ( )J K , since they can 

have negative values. Nevertheless, scalar products 

change to nonnegative values with respect to the origin 

placed out of the convex cover of the set, since all of them 

appear to be in the positive quadrant of the feature space. 

Hence, it does not matter at all for distances (they have 

been calculated and not changed for any place of the 

origin), but it is correct to represent nonnegative similari-

ties by scalar products. 

It is known that the k-means algorithm is the locally 

optimal procedure with results dependent on initial deci-

sions (partition or choice of centers). 

For all classes, we test three initial partitions: 50/50/50 
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(plant varieties as classes), 50/70/30 (20 plants from the 

3rd class are wrongly placed in the 2nd class), 50/30/70 (20 

plants from the 2nd class are wrongly placed in the 3rd 

class). 

For just two intersecting classes (2nd and 3rd) we test 

also three initial partitions: 50/50 (plant varieties as clas-

ses), 70/30 (20 plants from the 3rd class are wrongly placed 

in the 2nd class), 30/70 (20 plants from the 2nd class are 

wrongly placed in the 3rd class). 

In yet another case we investigate two classes of the 

entire set, organized as the small one (1st class) and the big 

one (2nd and 3rd classes). We test three initial partitions: 

50/100 (plants from the 1st class versus all plants from the 

2nd and 3rd classes together), 100/50 (all plants from the 1st 

and the 2nd classes together versus plants from the 3rd 

class), 30/120 (only first 30 plants from the 1st class versus 

all others). 

In all experiments, we first get the classical result with 
0 = , starting from the predefined initial partitions as 

above. Second, starting, as well, from the predefined ini-

tial partitions characterized above, we vary the parameter 

0 1   with increment 0.01 to find the optimal *  

among the tested 100 points. 

5.2 Results and discussion 

In the first experiment with original Iris data for all initial 

partitions for three classes, we correctly separate the 1st 

class and decrease errors in separation of intersecting 2nd 

and 3rd classes (Table 1, Fig.1). For two intersecting clas-

ses only, we decrease errors in the separation of the 2nd and 

3rd classes, too (Table 1, Fig. 2, 3). It can be seen that the 

optimal intervals for *  depend on the number of clusters 

(Table 1), hence on data dispersion, and can slightly differ 

for different initial partitions. Error diagrams are not mon-

otonic functions (Fig. 1–3). 

As we can see, original Iris data are some sort of “well 

structured” data, since for different initial partitions we get 

the same 16 misclassified objects for the classical ( 0) =

criterion and the same 15 misclassified objects for the bi-

partial ( *)  criterion (Table 1). For the classical criterion, 

misclassified objects are generally from the 3rd class (Ta-

ble 2). The object 135 is well classified and shown here, 

since it is misclassified for the bi-partial criterion.  

Misclassified objects for the bi-partial criterion are 

from the 3rd class, too (Table 3). Here, objects 53 and 78 

are well classified, and the object 135 is misclassified. 

We repeat this experiment for standardized data (Ta-

ble 4). Such data are more complicated. As we know, Iris 

classes are not so spherical ones in the original feature 

space, and that is why the k-means type of approach is not 

the best suited for them. 

After data standardization, classes appear to be more 

spherical and contain more “mixed” objects from inter-

secting classes, usually giving more misclassifications in 

the classical case (Table 4). 

Hence, for the classical criterion ( 0) =  for standard-

ized data, 25 misclassified objects are from two intersect-

ing classes, 2nd and 3rd, with well classified all objects 

from the 1st class (Table 5). Objects 104, 109, 112, 126, 

129 are well classified and shown too, since they are mis-

classified for the bi-partial criterion. 

Misclassified objects for the bi-partial criterion are 

mainly from the 3rd class again (Table 6). Here, objects 52, 

57, 66, 71, 76, 86, 87 are well classified and objects 104, 

109, 112, 128, 129 are misclassified. 

Table 1: Clustering results of original Iris data. 

Initial 

partitions 

Errors 

( 0) =  
*  

Errors 

( *)  
Diagrams 

50/50/50 16 0.6 ÷ 0.75 15 

Fig. 1 50/70/30 16 0.6 ÷ 0.75 15 

50/30/70 16 0.6 ÷ 0.75 15 

50/50 16 0.81 ÷ 0.92 15 
Fig. 2 

70/30 16 0.81 ÷ 0.92 15 

30/70 16 0.81 ÷ 0.91 15 Fig. 3 

Table 2: Classical 16 misclassifications  

of original Iris data. 

0 =  

50/50/50  50/50 

50/70/30  70/30 

50/30/70  30/70 

2nd cluster 3rd cluster 

Iris versicolor 

2nd class (51-100) 
 

53 

78 

Iris virginica 

3rd class (101-150) 

102 120 128 147 

107 122 134 150 

114 124 139 

115 127 143 

Correct: 135 

Table 3: Bi-partial 15 misclassifications of  

original Iris data. 

*  

50/50/50  50/50 

50/70/30  70/30 

50/30/70  30/70 

2nd cluster 3rd cluster 

Iris versicolor 

2nd class (51-100) 

53 

78 
 

Iris virginica 

3rd class (101-150) 

102 120 128 147 

107 122 134 150 

114 124 139_ 

115 127 143 

135_ 

 

Table 4: Clustering results of standardized Iris data. 

Initial 

partitions 

Errors 

( 0) =  
*  

Errors 

( *)  
Diagrams 

50/50/50 25 0.85 22 

Fig. 4 50/70/30 25 0.85 22 

50/30/70 25 0.85 22 

50/50 17 0.94 ÷ 0.97 15 Fig. 5 

70/30 17 0.92 ÷ 0.97 15 Fig. 6 

30/70 17 0.83 ÷ 0.95 14 Fig. 7 
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Table 5: Classical 25 misclassifications of  

standardized Iris data. 

0 =  

50/50/50 

50/70/30 

50/30/70 

2nd cluster 3rd cluster 

Iris versicolor 

2nd class (51-100) 
 

51 57 76 86 

52 66 77 87 

53 71 78 

Iris virginica 

3rd class (101-150) 

102 120 134 147 

107 122 135 150 

114 124 139 

115 127 143 

Correct: 

104 129 

109 

112 

128 

Table 6: Bi-partial 22 misclassifications 

of standardized Iris data. 

*  

50/50/50 

50/70/30 

50/30/70 

2nd cluster 3rd cluster 

Iris versicolor 

2nd class (51-100) 

52 71 86 

57 76 87 

66 77 

51 

53 

78 

Iris virginica 

3rd class (101-150) 

102 122 139  104 

107 124 143  109  

114 127 147  112 

115 134 150  128 

120 135         129 

 

Table 7: Classical 17 misclassifications  

of standardized Iris data. 

0 =  2nd cluster 3rd cluster 

50/50 

Iris versicolor 

2nd class  

(51-100) 

 

51 

53 

78 

Iris virginica  

3rd class 

(101-150) 

102 122 134 

147 

107 124 135 

150 

114 127 139 

120 128 143 

Correct: 112 

70/30 

Iris versicolor 

2nd class  

(51-100) 

 51 

53 

78 

Iris virginica  

3rd class 

(101-150) 

102 122 134 

147 

107 124 135 

150 

114 127 139 

120 128 143 

Correct: 112 

30/70 

Iris versicolor 

2nd class  

(51-100) 

Correct: 

52 71 87 

57 77 

66 86 

51 

53 

78 

Iris virginica  

3rd class 

(101-150) 

102 122 134 

147 

107 124 135 

150 

114 127 139 

120 128 143 

 

 

Table 8: Bi-partial misclassifications of  

standardized Iris data. 

*  2nd cluster 3rd cluster 

50/50 

Iris versicolor 

2nd class  

(51-100) 

51 

53 

78 

 

Iris virginica  

3rd class 

(101-150) 

102 122 134 

147 

107 124 135 

150 

114 127 139 

120 128 143 

112 

 

70/30 

Iris versicolor 

2nd class  

(51-100) 

51 

53 
78 

Iris virginica  

3rd class 

(101-150) 

102 122 134 

147 

107 124 135 

150 

114 127 139 

120 128 143 

 

30/70 

Iris versicolor 

2nd class  

(51-100) 

52 71 87 

57 77 

66 86 

51 52 71 87 

53 57 77 

78 66 86 

Iris virginica  

3rd class 

(101-150) 

107 

114 

120 

135 

102 128 147 

122 134 150 

124 139 

127 143 

For two intersecting classes of standardized data and 

for the classical ( 0) =  criterion (Table 7), we get the 

same 3 misclassified objects from the 2nd class and 14 mis-

classified objects from the 3rd class. 

We get different misclassified objects (Table 8) for 

different initial partitions in the bi-partial case (15 objects 

for the 50/50 and 70/30 initial partitions, 14 objects for the 

30/70 initial partition). 

For standardized data, we usually get different results 

for three and two classes relative to original data. As we 

can see, the best result with the minimum of 14 errors for 

the initial partition 30/70 differs in terms of objects from 

the results for other initial partitions (Table 8).  

Even though standardization is a usual step in data pro-

cessing, we can see that the clustering results for standard-

ized Iris data are not so “natural” as for the original ones. 

This is the well known and unwanted effect of standardi-

zation.  

Clustering results for Iris data by both classical and by 

bi-partial criteria are more “natural” for original data than 

for standardized data.  

In the second experiment, we investigate the already 

mentioned general defect of the criterion (1). As it is well 

known, the classical k-means clustering tries to get clus-

ters, which are approximately equal by size.  

In case of classes that differ as to their sizes, the new 

permutable algorithm decreases usually the size of the big-

ger class (2nd and 3rd together) and increases the size of the 

smaller class (1st).  

This is the classical result for 0 =  with three errors 

for original Iris data (objects 58, 94, 99 were misclassified 

to the 1st class).  



260 Informatica 43 (2019) 253–262 S. Dvoenko et al.  

 

 

Figure 1. Clustering errors of original Iris data for Se-

tosa/Versicolor/Virginica varieties (50/50/50, 50/70/30,  

50/30/70) with 15 misclassified objects. 

 

Figure 2. Clustering errors of  original  Iris data for Ver-

sicolor/Virginica varieties (50/50, 70/30) with 15 misclas-

sified objects. 

 

Figure 3. Clustering errors of  original  Iris data for Ver-

sicolor/Virginica varieties (30/70) with 15 misclassified 

objects. 

 

Figure 4. Clustering errors of standardized Iris data for 

Setosa/Versicolor/Virginica varieties (50/50/50, 50/70/30, 

50/30/70) with 22 misclassified objects. 

 
Figure 5. Clustering errors of standardized Iris data for 

Versicolor/Virginica varieties (50/50) with 15 misclassi-

fied objects. 

 
Figure 6. Clustering errors of standardized Iris data for 

Versicolor/Virginica varieties (70/30) with 15 misclassi-

fied objects. 
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Figure 7. Clustering errors of standardized Iris data for 

Versicolor/Virginica varieties (30/70) with 14 misclassi-

fied objects. 

 
Figure 8: Clustering errors of  original  Iris data for Setosa 

versus Versicolor/Virginica varieties (50/100, 100/50, 

30/120). 

We reduce errors to zero (Fig. 8) and correctly separate 

the smaller 1st class from the bigger one (2nd and 3rd) in the 

optimal interval 0.97 * 1   for all initial partitions, i.e. 

50/100, 100/50, 30/120. For standardized data, the result 

contains no errors at all for the whole interval 0 1   

for all initial partitions.  

6 Conclusion 
The k-means procedure is very popular in machine learn-

ing and data mining fields. This procedure is very natural 

and understanding its principles and results is easy. Addi-

tionally, this procedure is deeply connected with other 

ideas, like the EM-algorithm, SOMs, etc. 

On the other hand, the use of the bi-partial criterion can 

improve the classical clustering result. The bi-partial ob-

jective function consists of two parts, the first one support-

ing the best approximation of individual categories, and 

the second one supporting the appropriate separation 

among the categories. In the case of the k-means algo-

rithm, the bi-partial objective function combines intra-

cluster dispersions with the inter-cluster similarity, to be 

jointly minimized. In dual form, the bi-partial objective 

function combines cluster concentrations with the inter-

cluster dispersion, to be maximized.  

In this paper, we investigate the direct form of the bi-

partial criterion function. The first part of this criterion 

provides the classical quality measure of k-means cluster-

ing, based on distances between objects.  

As it is shown in this paper, the bi-partial criterion does 

not work directly through the standard procedure of the 

classical k-means, since the second part of the criterion 

cannot be changed within the classical procedure. 

Therefore, to improve the clustering quality based on 

the bi-partial criterion, we develop here the new permuta-

ble version of the classical k-means algorithm. 

As it is shown in this paper, the permutable k-means 

appears to be a new type of clustering procedures. 

The permutable k-means uses distances and similari-

ties only. Therefore, it does not need to use the feature-

based representation of experimental data. To reduce the 

computational complexity of permutations we can use in 

further work the optimal iterative techniques.  

It is easy to show that in the dual form the bi-partial 

objective function combines cluster concentrations with 

the inter-cluster dispersion, to be jointly maximized. The 

first part of both bi-partial objective functions provides the 

“standard” quality of clustering based on distances be-

tween objects (the classical k-means) or similarities be-

tween them in dual form (the similarity k-means). 

As a result, what the algorithm have we built? It is 

clear, that we have merely shown the principle of devel-

oping a class of criteria and corresponding algorithms. As 

we can see in Figs. 1–7, error lines are not convex func-

tions of   in general. The future study should, then, be 

oriented at defining conditions for convexity, on the one 

hand, and developing effective algorithms of extrema 

finding of the similar functions, on the other. 
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