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Streaming processing of XML transformations is practically needed especially when large XML docu-
ments or XML data streams are to be transformed. In this paper, the design of an automatic streaming
processor for XSLT transformations is presented. Unlike other similar systems, our processor guarantees
bounds on the resource usage for the processing of a particular type of transformation. This feature is
achieved by employing tree transducers as the underlying formal base. The processor includes a set of
streaming algorithms, each of them is associated with a tree transducer with specific resource usage (mem-
ory, number of passes), and thus captures different transformation subclass. The input XSLT stylesheet is
analyzed in order to identify the transformation subclass to which it belongs. Then the lowest resource-
consuming streaming algorithm capturing this subclass is applied.

Povzetek: Obravnavano je avtomatično pretakanje XSLT transformacij.

1 Introduction
XML (28) is a meta-language defined by W3 Consortium
in order to store structured data. The initial W3C recom-
mendation for XML was published in 1998 and since then
XML has become a popular format. It is commonly used
for data exchange among applications since it enables them
to add semantics to data explicitly. Furthermore, XML is
a suitable tool in every field where it is necessary to cre-
ate document standards. XML usage is still growing fast
and new technologies for processing XML documents are
emerging.

Transformations of XML documents are needed in many
situations. For instance, let us consider two applications
exchanging data in XML format, each of them requiring
different structure for the same content. Then a transforma-
tion must be performed while the data are being transferred
between these applications. A typical XML transformation
processor reads the whole input document into memory and
then performs particular transformation steps according to
the specification. References to any part of the input docu-
ment are processed in a straightforward way by traversing
the in-memory representation, and the extracted parts are
combined to form the required output fragment. This ap-
proach is called tree-based processing of XML transforma-
tions. In early days of XML, this kind of processing was
sufficient since the existing XML documents were small
and stored in files. However, nowadays it is quite common
to encounter extensive XML data (e.g., database exports)
or XML data streams in practice. In both cases, the tree-
based processing is not suitable - in the former case it is not

acceptable or even possible to store the whole input docu-
ment in the memory, while in the later one the XML data
become available stepwise and need to be processed “on
the fly”.

In our case, the research on efficient process-
ing of XML transformations was in part motivated
by processing large XML data in the semantic
repository Trisolda (9). The repository contains
semantic annotation for various web resources.
A standard format for specify such semantics is Re-
source Description Framework (RDF) which is an instance
of XML. Since the amount of web resources annotated
tends to grow very fast, the transformation of RDF data
into other representations/views and vice versa cannot be
performed in the tree-based manner. At the same time, it
is not suitable to write the transformations by hand using
a SAX parser. The transformations needed are not trivial,
especially due to the complexity of RDF format, and along
with adding new functions into Trisolda repository new
transformations may become necessary. Therefore, a more
flexible approach is employed and a processor is proposed
such that the most efficient strategy for performing a given
transformation is automatically chosen.

A natural alternative to the classical tree-based process-
ing of XML transformations is the streaming (event-driven)
processing. Here the input document is read sequentially,
possibly in several passes; and the output document is gen-
erated sequentially in one pass. Only a part of the input
document is available at a time, and thus advanced tech-
niques must be used to process references to the input doc-
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ument and connect the extracted parts to the proper position
within the output document.

Currently, the most frequently used XML transformation
languages are XSLT (27) and XQuery (29), both general
(Turing-complete) languages intended for tree-based pro-
cessing. There is a great interest to identify XSLT and
XQuery transformations which allow efficient streaming
processing. When designing an XSLT/XQuery streaming
processor, the key task is to find the way of handling the
non-streaming constructs of the languages. The stream-
ing algorithms for XSLT and XQuery transformations are
however still under development and the complexity issues
such as memory requirements and the number of passes
needed for specific, clearly defined transformation classes
have not yet been analyzed.

The main contribution of this work is the design of a
system for automatic streaming processing of XSLT trans-
formations yielding the following properties:

– The transformation classes captured are clearly char-
acterized. Each such class contains transformations
with common properties - it represents an XSLT sub-
set obtained by restricting constructs used in the XSLT
stylesheet.

– A streaming algorithm is designed for each transfor-
mation class. The main design goal is to minimize
the upper bound of memory usage, i.e., to use optimal
(or close to optimal) amount of memory. Such upper
bound is explicitly stated for each algorithm.

These features are achieved by employing tree transduc-
ers as the underlying formal base. Specifically, the de-
sign of the processor is based on the formal framework for
XML transformations introduced in (10). In this paper, the
framework is simplified and customized in order to facili-
tate the implementation. It contains a general model – an
abstract model of general, tree-based transformation lan-
guages, and a set of streaming models that differ in the kind
of memory used and the number of passes over the input al-
lowed. Each streaming model can simulate some restricted
general model. The framework contains a simulation al-
gorithm for each such pair streaming model → restricted
general model. The framework is abstract, and thus can be
used to develop automatic streaming processors for other
general transformation languages as well (e.g., XQuery).

The implementation level of the framework for XSLT
language includes the implementation of streaming mod-
els and two modules: (1) an analyzer that associates the
input XSLT stylesheet with the lowest resource-consuming
streaming model that is able to process it, and (2) the trans-
lator that automatically converts the XSLT stylesheet into
the streaming model chosen according to the associated
simulation algorithm. The processor based on the frame-
work is easily extensible since new transducers and algo-
rithms may be specified and implemented, as well as op-
timizable since the current algorithms may be replaced by
the more efficient ones. Although there are some XML

transformations such that their streaming processing is al-
ways high resource-consuming (e.g., complete reordering
of element children), most of the practical transformations
can be processed with reasonable bounds on the resource
usage and thus, more effectively than when processed in
the tree-based manner.

The rest of this paper is organized as follows: Section
2 contains description of both approaches to processing
XML transformations and the complexity measures related
to streaming processing. In Section 3, the customized for-
mal framework for XML transformations is introduced and
the underlying tree transducers are described. An example
algorithm designed within the framework is presented in
Section 4. In Section 5, the design of our automatic stream-
ing processor for XSLT transformations is introduced. In
Section 6, the relation to other work is discussed. Sec-
tion 7 briefly introduces the implementation of the exam-
ple streaming algorithm and Section 8 concludes with sum-
mary and comments on future work.

2 Complexity of streaming
processing

In this section, the relevant complexity measures for the
streaming algorithms for XML transformations are speci-
fied.

An XML document contains the following basic con-
structs: elements, element attributes, and text values. The
document may be represented as a tree that is obtained by
a natural one-to-one mapping between elements and inter-
nal nodes of the tree. The text values appear in the leaves
of such tree. Reading a document in document order then
exactly corresponds to the preorder traversal of the con-
structed tree.

Figure 1: Two types of XML transformation processing:
(a) tree-based processing, (b) streaming processing.

The tree-based processing of XML transformations (Fig.
1a) is flexible in the sense that the input document is stored
in the memory as a tree and can be traversed in any di-
rection. On the contrary, during the streaming processing
(Fig. 1b) the elements of the input document become avail-
able stepwise in document order and similarly the output
elements are generated in document order. The actual con-
text is restricted to a single input node. Clearly, one-pass
streaming processor without an additional memory is able
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to perform only simple transformations, such as renaming
elements and attributes, changing attribute values, filtering.
It must be extended to perform more complex restructur-
ing. The common extensions are (1) allowing more passes
over the input document, (2) adding an additional memory
for storing temporary data. The extensions can be com-
bined1. We obtain the corresponding complexity measures
for streaming processing of XML transformations:

1. the number of the passes over the input tree,

2. the memory size.

It is reasonable to consider the complexity of the stream-
ing processing in relation to the tree-based processing. As
mentioned in Section 1, all XML transformations can be
expressed in both XSLT and XQuery, and processed by
their tree-based processors. Various transformation sub-
classes can be then characterized by putting restrictions
on these general transformation languages, typically by ex-
cluding certain constructs.

When designing streaming algorithms, we have a choice
regarding three settings – the type of the memory used
(none, stack, buffers for storing XML fragments), and the
values of the two complexity measures mentioned. Stream-
ing algorithms with different settings may capture different
transformation subclasses. Since the transformation sub-
classes are characterized as some subsets of the general
transformation language considered, the key issue in the
algorithms is to realize a streaming simulation of the non-
streaming constructs included in the restricted language
(see Fig. 2).

Figure 2: The streaming simulation of subsets of a general
transformation language.

We use tree transducers to design the streaming algo-
rithms formally and to model transformation subclasses.
They are included in the formal framework for streaming
XML transformations that are described in the next section.

3 Formal framework
The framework is intended as a formal base for automatic
streaming processors of the general transformation lan-
guages. It does not cover all XML transformations. In
order to keep the models employed simple and comprehen-
sible, it is restricted to model primarily the transformations
that capture the relevant problems of streaming processing.
In Section 5, a way how some of the restrictions on the
transformation set can be overcome in the implementation
is described.

The framework consists of the following formal models:
1More passes over the input tree are not possible for XML data streams

that must be processed “on the fly".

Figure 3: A schema of the formal framework.

1. a basic general model for tree-based processing of
XML transformations and its restrictions,

2. a basic streaming model for streaming processing of
XML transformations and its extensions.

The design of both models results from an analysis of vari-
ous tree transformation models, XML transformation mod-
els as well as real-world XML transformation languages
and systems. They are based on tree transducers, mod-
els for tree transformations (25) originated in the formal
language theory. We introduce two novel models – a gen-
eral XML transducer (GXT) used as the general model, and
a streaming XML transducer (SXT) used as the streaming
model. They are defined in common terms in order to fa-
cilitate development of the simulation algorithms.

The overall schema of the framework is shown in Fig.
3. The basic SXT represents a simple one-pass streaming
model without an additional memory. Following the ideas
from Section 2, it can be extended by memory for storing
temporary data and by allowing more passes over the input
document. The basic GXT represents the most powerful
general model. As already mentioned, it does not capture
all XML transformations, but only a subset significant in
the case of streaming processing.

For each extended SXT, the transformation subclass cap-
tured is identified by imposing various restrictions on the
basic GXT. The inclusion is proved by providing an algo-
rithm for simulating this restricted GXT by the given ex-
tended SXT.

3.1 Notions and Notations
XML Document Abstraction. In what follows, element
attributes and data values are not considered2. Let Σ be an
alphabet of element names. The set of XML trees over Σ is
denoted by TΣ, the empty XML tree is denoted by ε. An
indexed XML tree may in addition have some leaves labeled
by symbols from a given set X . A set of XML trees over
Σ indexed by X is denoted by TΣ(X). In the rightmost
indexed XML tree, the element of the indexing set occurs
only as the rightmost leaf. The set of rightmost indexed
XML trees is denoted by TΣ(X)r.

A particular XML tree t ∈ TΣ(X) is uniquely specified
as a triple (Vt, Et, λt) where Vt is a set of nodes, Et ⊆
Vt×Vt is a set of edges, and λt : Vt → Σ∪X is a labeling
function.

2We refer the reader to (10) for the definition of the extended frame-
work including both element attributes and data values.
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Figure 4: An example of the XML tree.

Example 3.1. An XML tree t = (Vt, Et, λt) over the al-
phabet Σ = {α, β, γ} and the empty indexing set X = ∅ is
shown in Fig. 4. The nodes of t are uniquely identified by
dynamic level numbering. The sets Vt, Et and the labeling
function λt are defined as follows:

Vt = {1, 1.1, 1.2, 1.1.1, 1.2.1, 1.2.2},
λt(1) = α, λt(1.1.1) = β,
λt(1.1) = β, λt(1.2.1) = γ,
λt(1.2) = γ, λt(1.2.2) = γ.

Selecting Expressions. Simple selecting expressions,
derived from XPath expressions (26), are used to locate the
nodes within the XML tree. The selecting expression is
a path consisting of a sequence of steps. It can be either
absolute (starting with /), or relative. The step consists of
two components – an axis specifier axis and a predicate
pred. They are specified as outlined below. Comparing to
the XPath language, the set of expressions is restricted and
the syntax of some constructs is simplified – the meaning
is explained in parentheses. The semantics of the selecting
expressions follows the semantics of the equivalent XPath
expressions.

step : axis [ pred ]
axis : × (self),

↓ (child), ↓* (descendant),
↑ (parent), ↑* (ancestor),
← (left sibling), ∗← (preceding),
→ (right sibling), ∗→ (following)

pred : ∗ (select all elements)
name (select the elements named

name)
i (select the element on i-th

position within siblings)
step (select the elements having

context specified by step)

The names of the elements are taken from an alphabet Σ.
The set of selecting expressions over Σ is denoted by SΣ.
The evaluation of a selecting expression in the context of
some XML tree t and one of its nodes u ∈ Vt returns the
same set of nodes of t as the evaluation of the correspond-
ing XPath expression. Note that the context set contains a
single node only.

3.2 XML Transducers
General XML Transducer (Fig. 5a). The input heads of
GXT traverse the input tree in any direction and the output
is generated from the root to the leaves. At the beginning
of a transformation, the transducer has only one input head,
which aims at the root of the input tree, and one output
head, which aims at the root position of the empty output
tree. During a single transformation step, the whole input
tree is available as a context. One or more new computa-
tion branches can be spawned and the corresponding input
control is moved to the input nodes specified by selecting
expressions. At the same time, the output heads may gen-
erate a new part of the output.

Formally, the GXT is a 5-tuple T = (Q, Σ,∆, q0, R),
where

– Q is a finite set of states,

– Σ is an input alphabet,

– ∆ is an output alphabet,

– q0 ∈ Q is an initial state, and

– R is a set of rules of the form

Q× Σ → T∆(Q× SΣ) .

For each q ∈ Q and σ ∈ Σ, there is exactly one rhs
such that (q, σ) → rhs ∈ Q.

The right-hand side of a rule contains an XML tree over the
output alphabet indexed by rule calls – pairs of the form
(q, exp), where q is a state and exp is a selecting expres-
sion that returns a sequence of input nodes to be processed
recursively. A simple example of a GXT transformation
follows.

Example 3.2. Let T = (Q, Σ,Σ, q0, R) be a GXT where
Q = {q0}, Σ = {α, β, γ}. and R consists of the rules

(q0, α) → ε , (3.1)
(q0, β) → α((q0, ↓[∗])) , (3.2)
(q0, γ) → γ((q0, ↓[2]), (q0, ↓[1])) . (3.3)

The transducer processes the input trees over alphabet Σ.
The subtrees at nodes named α are completely removed
(rule 3.1), the nodes named β are renamed and get a new
name α (rule 3.2), and at last, when encountering a node
named γ, the first two children are processed in reversed
order (rule 3.3).

The GXT is inspired mainly by the tree-walking tree
transducer (TWR) (4) and data tree transducer (DTT) (23).
It works on unranked trees, but does not handle data values.
Similarly to TWR, the computation is high-level and based
on rule calls. However, the XPath language is used for pat-
tern matching on the paths of the input tree as it is in DTT.
This choice is natural since XPath is used in the common
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general transformation languages (XSLT, XQuery). The
GXT is tree-walking, i.e., the input tree is traversed in any
direction. It allows more computation branches, but it is
still sequential model in the sense that during a transforma-
tion step only a single rule call is processed.

Figure 5: The processing model of the transducers: (a) the
GXT; (b) the SXT.

Streaming XML Transducer (Fig. 5b). The SXT has
a single input head that traverses the input tree in preorder,
and a single output head that generates the output tree in
preorder. Each node is visited twice during a single pass
– once when moving top–down, and once when moving
bottom–up. Thus, two types of SXT states are recognized
(1) the states indicating the first visit of nodes and (2) the
states indicating the second visit of nodes. During a single
transformation step, the input head either moves one step
in preorder or stays at the current position. At the same
time, an output action is performed, depending on the type
of rule applied. When applying a generating rule, a new
part of the output is connected to the current position of the
output head, and then the output head moves to the position
under the rightmost leaf of the new part. When applying a
closing rule, no output is generated, only the output head is
moved one step upwards in preorder within the output tree.

Formally, the streaming XML transducer (SXT) is a 5-
tuple T = (Q, Σ,∆, q0, R), where

– Q = Q1 ∪Q2, Q1 ∩Q2 = ∅ is a finite set of states,

– Σ, ∆ are the same as in the case of GXT,

– q0 ∈ Q1 is the initial state, and

– R = Rg ∪ Rc, Rg ∩ Rc = ∅ is a finite set of rules of
the form:

Rg : Q× Σ× Pos → T∆(Q× SΣ)r

Rc : Q× Σ× Pos → Q× SΣ

where Pos = {leaf, no-leaf} × {last, no-last}3.
For each q ∈ Q and σ ∈ Σ there is at most one
rhs such that for each pos ∈ Pos there is a rule

3If pos ∈ Pos is a node position, its first component is referred by
pos[1] and to its second component is referred by pos[2].

(q, σ, pos) → rhs ∈ R4. Furthermore, for each
(q, σ, pos) → rhs ∈ R, rec(rhs) = (q′, exp)5, one
of the following preorder conditions holds:

1. moving downwards: q ∈ Q1, and
– pos[1] = no-leaf , q′ ∈ Q1, exp =↓[1], or
– pos[1] = leaf , q′ ∈ Q2, exp = ×[∗],
2. moving upwards: q ∈ Q2, and
– pos[2] = no-last, q′ ∈ Q1, exp =→[1], or
– pos[2] = last, q′ ∈ Q2, exp =↑[∗],
3. no input move: q, q′ are of the same kind, exp =
×.

The left-hand side of a rule consists of a state, an element
name and a node position. The position is used to deter-
mine the preorder move within the input tree and it consists
of two predicates – the first one indicating a leaf node, and
the second one indicating a last node among the siblings.
The right-hand side is an XML tree rightmost indexed by a
rule call.

4 An example algorithm
In this section, a particular streaming simulation designed
within our framework is presented. In particular, a top-
down GXT is simulated by an SXT extended with stack of
the size proportional to the height of the input tree.

The stack-based simulation is efficient - in order to eval-
uate simple top-down selecting expressions in the branches
of the input XML tree the memory size proportional to the
length of the branches, which equals height of the input
tree, is needed. However, it is shown that a restriction to
stack is sufficient. First, the models considered are de-
scribed formally.

Restricted GXT. The restricted GXT, called the top-down
GXT (TGXT) differs from GXT in the rule definition - R
is a set of rules of the form

Q× Σ → T∆(Q× top-SΣ)

where top-SΣ is a set of simple top-down selecting expres-
sions. It is a subset of selecting expressions such that only
top-down axis (child and descendant) and name predi-
cates ([name]) are allowed. The simulated TGXT must in
addition satisfy two input-dependent conditions:

1. The TGXT is order-preserving if and only if, for each
of its rules, the input nodes returned by the selecting
expressions in the rhs are in preorder for arbitrary in-
put tree t and u ∈ Vt.

2. The TGXT is branch-disjoint if and only if, for each
of its rules, the input nodes returned by the selecting
expressions in the rhs are disjoint for arbitrary input
tree t and u ∈ Vt.

4This condition is necessary to keep the model deterministic.
5If rhs is a particular right-hand side, its rule call is referred by

rec(rhs).
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Intuitively, if any of the conditions is not satisfied, it may
happen that a part of the input tree disproportional to the
height of the input tree must be stored in the memory and
thus the stack-based simulation is not applicable.

Extended SXT. The extended SXT, called the stack-based
SXT (SSXT) is a 7-tuple T = (Q, Σ,∆, Γ, q0, z0, R)
where

– Q, Σ, ∆, q0 are the same as in the case of SXT,

– Γ is a finite set of stack symbols,

– z0 ∈ Γ is the initial stack symbol, and

– R is a finite set of rules of the form:

Rg : Q× Σ× Pos× Γ →
T∆(Q× SΣ × Γ∗)r

Rc : Q× Σ× Pos× Γ → Q× SΣ × Γ∗

The lhs now contains, in addition, the current top stack
symbol, and the rhs contains a sequence of stack symbols
to be put on the top of the stack. All other symbols have
the same meaning as in the SXT.

4.1 Construction of Simulating SSXT
The formal proposition follows. It says that, for each order-
preserving and branch-disjoint TGXT, it is possible to con-
struct an SSXT inducing equivalent translations.

Proposition 4.1. Let T = (Q, Σ, ∆, q0, R) be an order-
preserving and branch-disjoint TGXT. Then an SSXT T ′

exists such that, for each tin ∈ TΣ and tout ∈ T∆, if T
translates tin to tout then T ′ translates tin to tout.

The simulation proceeds in cycles. During a cycle, a sin-
gle transformation step of T is simulated, called the current
transformation step. Such simulation consists of several
transformation steps of T ′. A cycle is driven by the cycle
configuration that consists of three items:

1. current context node - the current input node of T dur-
ing the current transformation step,

2. current rule - the rule of T applied during the current
transformation step,

3. matched rule call - a rule call of the current rule.

During the whole simulation, the matched rule call repre-
sents the leftmost6 rule call, for which a match has been
already found.

At the beginning of the simulation, the current context
node is the root node of the input tree, the current rule is the
rule of T of the form (q0, σ) → rhs where q0 is the initial
state of T and σ is the name of the root of the input tree.
The matched rule call is the left sentinel rule call which is

6The positions of rule calls are always considered with respect to the
preorder of the rhs of the rule.

a virtual rule call positioned to the left from all other rule
calls. This special rule call is used to initialize a new cycle.
In case no error is encountered, a cycle includes two phases
- an evaluation phase and a generation phase.

Phase Alternation. During the evaluation phase the input
head of T ′ traverses the subtree at the current context node
in preorder, and at the same time it evaluates all selecting
expressions in the rule calls of the current rule. The evalu-
ation is accomplished in a standard way by means of finite
automata7. Three cases are distinguished depending on the
result of the evaluation phase:

1. A matching node is found for exactly one rule call,
and this rule call (newly-matched rule call) is either
positioned to the right of the matched rule call or it
equals the matched rule call.

This type of cycle is called an entering cycle since it takes
place when the input head of T ′ is moving downwards, and
a new rule call of the current rule is matched and “recur-
sively” processed. The generation phase follows: The out-
put head generates a specific part of the output fragment
of the current rule. The part is a set of nodes that appear
between the matched rule call and the newly-matched rule
call. After the generation, the current cycle configuration
is stored in the stack. The matched node becomes the new
current context node. The rule of the form (q′, σ′) → rhs
where q′ is the state in the newly-matched rule call and σ′

is the name of the matched node becomes the new current
rule, and the left sentinel rule call becomes the new cur-
rent rule call. A new cycle starts driven by the new cycle
configuration.

2. A matching node is found for two or more rule calls,
or a matching node is found for a rule call that is po-
sitioned to the left of the matched rule call.

This situation occurs in case T is non-order-preserving and
an error is reported.

3. No matching node is found and the whole subtree at
the current context node has been traversed.

This type of cycle is called a returning cycle since it takes
place when the input head of T ′ is moving upwards, the
processing of some rule call is finished, and the control
moves back to the processing of the rule containing this
rule call. The current rule is denoted by r. The generation
phase follows directly: The last part of the output fragment
of r is generated. The top stack configuration becomes the
new cycle configuration, and the new cycle starts.

5 Design of XSLT streaming
processor

An automatic streaming processor for XSLT transforma-
tions is described which is based on the framework intro-

7This method was, for example, presented in the Y-Filter algorithm
(5; 8).
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duced. The models within the framework are abstract, and
thus the framework provides means to develop efficient
streaming algorithms for XML transformation subclasses
at abstract level, and to adapt them to an arbitrary general
transformation language. First, the general issues regard-
ing the framework implementation are described, and then
an adaptation for the XSLT transformation language is dis-
cussed in more detail.

5.1 Framework Restrictions
As mentioned in the previous section, the formal frame-
work is restricted in several ways. Some of the restrictions
can be easily overcome in the implementation, while others
require more complex handling.

1. Restrictions on the XML document. Attributes and
data values are associated with elements. They can
be easily added to the implementation – if such con-
struct needs to be processed, it is accessed using the
same path like the parent element. On the other hand,
if the construct needs to be generated in the output,
the action is performed together with the generation
of the parent element.

2. Restrictions on the selecting expressions. The simple
selecting expressions used capture the typical prob-
lems that arise during the streaming location of the
nodes in XML document (context references in pred-
icates, backward axis). Other constructs must be han-
dled separately – however, the techniques used for
constructs included in our restricted set may be often
exploited. Moreover, there has been already carried on
a research on the streaming processing of large subsets
of XPath language (see Section 6 for overview).

3. Restrictions on the general transformation language.
A part of the restrictions in GXT results from the
restrictions on selecting expressions, and others are
caused by excluding certain general transformation
constructs, such as loops, variables, functions. How-
ever, the GXT models transformations that reorder the
nodes within an XML tree with respect to the docu-
ment order, which is probably the most important is-
sue in streaming processing of XML transformations
if the specific issues concerning selecting expression
evaluation are not considered.

5.2 Adaptation for XSLT
Let us now describe the design of the prototype XSLT
streaming processor. The GXT represents an abstract
model for general transformation languages. Since our in-
tention is to adapt the framework for the XSLT language, it
does not need to be implemented directly. Instead, we are
looking for a correspondence between restricted GXTs and
XSLT subsets. The GXT models the XSLT transformations
driven by the structure of the input document. Thus, each

XSLT stylesheet consisting of a list of simple templates ac-
tivated by structure and mode can be directly converted to
GXT. The matching element of such simple template is ref-
erenced by a name only and the body of the template may
contain several output elements (possibly nested) and calls
for applying another templates. The template is called by a
selecting expression and a mode.

Specifically, an XSLT stylesheet xsl convertible to GXT
consists of (1) an initializing template and (2) several rule
templates. The initializing template sets the current mode
to the initial state of the GXT.

<xsl:template match="/">
<xsl:apply-templates

select="child::*" mode="q0"/>
</xsl:template>

Each rule template can be directly translated to a single rule
of GXT. It is of the following form.

<xsl:template match="name" mode="q">
... template body ...

</xsl:template>

The resulting GXT rule r is of the form (q, name) → rhs Thus,
the left-hand side consists of the element name in the match at-
tribute and the state in the mode attribute. The rhs is created by
translation of the template body as described below.

The template body contains a sequence of (possibly nested)
output elements and apply-templates constructs. An out-
put element named name is specified directly as a pair of tags
(alternatively, the element construct might be used):

<name>
...element content ...

</name>

The apply-templates construct has a select attribute
that contains a selecting expression, and a mode attribute
that represents a state of the resulting GXT.

<xsl:apply-templates
select="selexp" mode="q’"/>

Each apply-templates construct can be translated to a
single rule call. For the case above, a rule call of the form
(q′, selexp) is obtained.

The rhs of the rule r is created from the template body
so that each output element corresponds to a single node of
rhs and each apply-templates construct corresponds to
a single rule call of rhs. The structure of rhs is determined
by nesting of the output elements and apply-templates

constructs in the template body. The resulting GXT is of
the form T = (Q, Σ, ∆, q0, R) where

– Q contains the modes appearing in xsl,

– R contains the rules created by translation from par-
ticular rule templates as described above. Moreover,
R contains rule of the form

(q, σ) → (q, child[∗])
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Figure 6: An implementation of the framework for XSLT
language.

for each mode q and name σ ∈ Σ such that xsl does
not contain a template matching σ in the mode q. Such
additional rules correspond to the XSLT implicit built-
in rule templates8.

In a similar way, XSLT subsets corresponding to restricted
GXTs can be identified. According to the principle of the
formal framework, a restricted GXT (GXTr) can be sim-
ulated by some extended SXT (SXTe) such that the sim-
ulation algorithm is known. Then XSLT stylesheets from
the XSLT subset associated with GXTr can be converted
to SXTe using the simulation algorithm. The conversion
can be performed automatically since the simulation algo-
rithm exactly determines how to convert constructs of the
given XSLT subset into the rules of SXTe. The resulting
SXTe is constructed explicitly as an object and its method
transform() performs streaming processing of the trans-
formation specified by the stylesheet. The relation between
the formal framework and the implementation for XSLT is
shown in Fig. 6.

5.3 Modules of Streaming Processor
To sum up, the streaming processor works in three steps
(see also Fig. 7):

1. Analysis. The analyzer examines the constructs in
the input XSLT stylesheet (both XPath constructs and
XSLT constructs themselves). It checks whether there
is specified an XSLT subset that allows all the con-
structs encountered. If there are more such subsets,
the smallest one is chosen.

2. Translation. The translator creates an object for the
extended SXT associated with the XSLT subset cho-
sen. The creation is automatic, following the simula-
tion algorithm provided for the XSLT subset.

3. Processing. The method transform() of the new
SXT object is run on the input XML document. The
streaming transformation performed is equivalent to
the one specified by the input XSLT stylesheet.

8The built-in XSLT rules actually ensure that the resulting GXT is
complete. Note that it is also deterministic since xsl cannot contain two
templates matching the same name in the same mode by definition of the
valid XSLT stylesheet.

Figure 7: Modules os the automatic streaming processor.

6 Related work
Most of the earlier work was devoted to analyzing the
streaming processing of the querying language XPath (1; 2;
6; 7; 14; 16; 22; 24). Recently, several streaming proces-
sors for the transformation languages XQuery and XSLT
have appeared.

XML Streaming Machine (XSM) (19) processes a subset
of XQuery on XML streams without attributes and recur-
sive structures. It is based on a model called XML stream-
ing transducer. The processor have been tested on XML
documents of various sizes against a simple query. Using
XSM the processing time grows linearly with the document
size, while in the case of standard XQuery processors the
time grows superlinearly. However, more complex queries
have not been tested.

BEA/XQRL (12) is a streaming processor that imple-
ments full XQuery. The processor was compared with
Xalan-J XSLT processor on the set of 25 transformations
and another test was carried on XMark Benchmarks. BEA
processor was fast on small input documents, however, the
processing of large documents was slower since the opti-
mizations specially designed for XML streams are limited
in this engine.

FluXQuery (17) is a streaming XQuery processor based
on a new internal query language FluX which extends
XQuery with constructs for streaming processing. XQuery
query is converted into FluX and the memory size is opti-
mized by examining the query as well as the input DTD.
FluXQuery supports a subset of XQuery. The engine
was benchmarked against XQuery processors Galax and
AnonX on selected queries of the XMark benchmark. The
results show that FluXQuery consumes less memory and
runtime.

SPM (Streaming Processing Model) (15) is a simple
one-pass streaming XSLT processor without an additional
memory. Authors present a procedure that tries to converts
a given XSLT stylesheet into SPM. However, no algorithm
for testing the streamability of XSLT is introduced, and
thus the class of XSLT transformations captured by SPM
is not clearly characterized.

The effectiveness of the processors mentioned was ex-
amined only through empirical tests. The test results show
that streaming processors tend indeed to be less time and
space consuming than tree-based processors. However,
since no formal characterizations of the transformation
class captured were given, the results hold only for a few
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(typically one or two) XML transformations chosen for ex-
periments.

In other approaches (3; 13; 21), a new specification lan-
guage is developed which supports streaming processing,
and the streaming processor for this new language is de-
signed. In all cases the connection to the commonly used
transformation languages is not clearly stated and the com-
putational complexity of the streaming processing is not
addressed.

7 Implementation

The formal framework introduced has been implemented
on .Net platform. The pilot implementation includes the
stack-based algorithm described in Section 4. The evalua-
tion of the algorithm implementation shows that it is highly
efficient in practice - it requires memory proportional to the
depth of the input XML document. Since this depth is gen-
erally not depending on the document size and common
XML documents are relatively shallow (99% of XML doc-
uments have fewer than 8 levels whereas the average depth
is 4 according to (20)), the memory requirements for most
of the XML documents are constant, independent to the
document size. On the contrary, standard XSLT processors
are tree-based and thus require memory proportional to the
document size. We refer the reader to (11) for a more de-
tailed description of the stack-based algorithm implemen-
tation and evaluation.

8 Conclusion

A design of an automatic streaming processor for XSLT
transformations have been presented. Comparing to other
similar processors, the contribution of our approach is that
the resource usage for streaming processing of particular
types of XSLT transformations is known. Our processor
includes several streaming algorithms, and it automatically
chooses the most efficient one for a given XSLT stylesheet.
The process of choice has a solid formal base – a frame-
work consisting of tree transducers that serve as models
both for the streaming algorithms and for the transforma-
tion types.

In the future work, we plan to include algorithms for
the local and non-order-preserving transformations to ob-
tain a processor for a a large subset of practically needed
XML transformations. We intend to demonstrate the usage
of such processor by integration into the Trisolda semantic
repository and carry out performance tests and comparison
to other implementations subsequently.
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