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This paper presents a semi-automatic approach to deriving sub-schema similarities from semantically het-
erogeneous XML Schemas. The proposed approach is specific for XML, almost automatic and light. It
consists of two phases: the first phase selects the most promising pairs of sub-schemas, the second one
examines them and returns only those which are similar. This paper describes the approach in all details
and illustrates a large variety of experiments to test its performance. Furthermore, it presents a comparison
between this approach and others which have already been proposed in the literature.

Povzetek: Opisano je iskanje podobnosti podshem v XML.

1 Introduction

The derivation of semantic matchings among concepts of
different sources (known also as “schema matching” ac-
tivity in the literature) has become a challenging issue in
the field of Information Systems; as a matter of fact, their
knowledge allows the improvement of source interoper-
ability and plays a key role in various applications, such as
data source integration, ontology matching, e-commerce,
semantic query processing, data warehousing, source clus-
tering and cataloguing, and so on.

In the past, most of the proposed approaches to deriv-
ing matchings were manual (1); today, due to the enor-
mous number of available sources, it is widely recognized
the need of semi-automatic techniques (4; 5; 11; 13; 20).
Moreover, most of the matching derivation theory has been
developed to operate on classical, structured databases,
and the main focus has been on deriving similarities and

dissimilarities between single classes of objects (e.g., two
entities, two relationships, an entity and a relationship, and
so on).

However, in the last few years, the Web is becoming the
reference infrastructure for many applications conceived to
handle the interoperability among different partners. Web
sources are quite different from classical databases, since
they are semi-structured. In order to make Web activi-
ties easier, World Wide Web Consortium (W3C) proposed
XML (eXtensible Markup Language) as a new standard in-
formation exchange language, that aims at unifying rep-
resentation capabilities, typical of HTML, and data man-
agement features, typical of classical DBMSs. In order to
improve the capability of representing and handling the in-
tensional component of XML sources, W3C proposed to
associate XML Schemas with XML documents. An XML
Schema can be considered as a catalogue of the information
that can be found in the corresponding XML documents.
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The exploitation of the semi-structured paradigm in gen-
eral, and of XML in particular, makes it evident the ne-
cessity to develop new approaches to deriving semantic
matchings; these approaches are quite different from the
traditional ones. As a matter of fact, in semi-structured in-
formation sources, a concept is not generally expressed by
a single class of objects but it is represented by a group
of them; as an example, in XML, concepts are expressed
by elements which can be, in their turn, described by sub-
elements.

In such a situation, the emphasis shifts away from the
extraction of semantic correspondences between object
classes to the derivation of semantic correspondences be-
tween portions of information sources (i.e., sub-sources).
We call sub-schema a self contained sub-source such that a
concept represented therein is connected to other concepts
of the sub-source by means of at least one relationship. We
call sub-schema similarity a similarity between two sub-
schemas belonging to different sources.

Due to its intrinsic complexity, the sub-schema similar-
ity extraction problem goes beyond the classic problem of
deriving semantic correspondences among single concepts
belonging to different schemas and allows more complex
relationships to be handled.

This paper aims at providing a contribution in this set-
ting; in fact, it presents an approach to extracting similari-
ties between XML sub-schemas. Our approach is charac-
terized by the following features:

– It is almost automatic, in that it requires the user in-
tervention only for validating obtained results; the
present overwhelming amount of available informa-
tion sources on the Web makes such a feature particu-
larly relevant.

– It has been specifically conceived for operating on
XML Schemas; in fact, the framework underlying our
approach has been defined for directly covering the
XML specificities (see, below, Section 2.1). With re-
gard to this choice, we point out that XML source in-
teroperability will play a more and more relevant role
in the future; as a consequence, it will be more and
more common the necessity to handle the interoper-
ability of a group of information sources that are all
XML-based. In this scenario, the possibility to exploit
a technique specifically tailored for XML sources ap-
pears extremely useful; our approach has been con-
ceived exactly for providing such a chance.

– It is light, since it does not exploit any threshold or
weight; as a consequence, it does not need any tuning
activity; in spite of this, obtained results are satisfac-
tory, as pointed out in Section 3.

Our approach assumes the existence of an Interschema
Property Dictionary (IPD), i.e., a catalogue storing re-
lationships between single concepts represented in the in-
volved XML Schemas. Specifically, it assumes that IPD

stores the following properties: (i) Synonymies: a syn-
onymy indicates that two concepts have the same mean-
ing; (ii) Hyponymies/Hypernymies: given two concepts c1

and c2, c1 is a hyponym of c2 (which is, in its turn, a hy-
pernym of c1) if c1 has a more specific meaning than c2;
(iii) Overlappings: an overlapping exists between two con-
cepts if they are neither synonyms nor one a hyponym of
the other but represent, to some extent, the same reality.
In the literature, many approaches to deriving synonymies,
hyponymies and overlappings have been proposed (see, for
example, (4; 5; 13; 19)); any of them could be exploited for
constructing IPD. However, in the prototype implement-
ing our approach, we have adopted the technique described
in (6) for deriving properties to be stored in IPD.

It is worth pointing out that the exploitation of IPD does
not introduce scalability problems; in fact, even if IPD
must be computed for each pair of XML Schemas into con-
sideration, the worst case time complexity of its derivation
is smaller than that associated with the extraction of sub-
schema similarities (see (6), Theorems 2.2, 2.4 and 2.5 and
Section 3.9).

Given an XML Schema, the number of possible sub-
schemas that could be derived from it is extremely high; in
certain circumstances it could be even exponential against
the number of elements and attributes of the Schema. In
order to avoid huge numbers of pairs of sub-schemas to
be handled, we propose a heuristic technique for singling
out only the most promising ones. A pair of sub-schemas
is considered “promising” if the sub-schemas at hand in-
clude a large number of pairs of concepts whose similarity
has been already stated (i.e., a large number of pairs of con-
cepts for which a synonymy, a hyponymy or an overlapping
has been already derived). In this way it is probable that the
overall similarity of the promising pair of sub-schemas will
be high.

After the most promising pairs of sub-schemas have
been selected, they must be examined for detecting those
ones that are really similar. The similarity degree associ-
ated with each pair of sub-schemas is determined by ap-
plying some matching functions defined on suitable bipar-
tite graphs, constructed from the components of the sub-
schemas into consideration (see below). The idea underly-
ing the adoption of graph matching algorithms as the core
step for “measuring” the similarity of two sub-schemas is
motivated by the following reasoning: two sub-schemas
can be detected to be similar only if it is possible to state
that there exists a form of similarity (e.g., a synonymy, a
hyponymy or an overlapping) for many of their elements.
The graph matching algorithm is, thus, used to carry out
such a verification.

It is worth pointing out that, in the past, we have pre-
sented in this journal an approach to extracting interschema
properties from XML Schemas (see (6)); this approach was
explicitly conceived to extract synonymies, homonymies,
hyponymies and overlappings. The approach proposed in
this paper derives another kind of interschema properties
(i.e., sub-schema similarities), particularly important in the
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current Internet era, by following the same guidelines fol-
lowed in (6). As a consequence, the two papers, in the
whole, define a new complete approach for uniformly ex-
tracting a large variety of interschema properties. In our
opinion, this is a particularly important issue; in fact, as we
pointed out also in (6), the capability of uniformly deriving
distinct properties appears a crucial feature for a new inter-
schema property derivation approach. As a matter of fact,
different strategies for extracting distinct interschema prop-
erties could lead to different interpretations of the same re-
ality, and this is a situation that should be avoided.

The outline of the paper is as follows: Section 2 provides
a detailed illustration of our approach. Section 3 is devoted
to present the results of several tests we have carried out
for verifying its performance. In Section 4 we compare it
with several approaches previously proposed in the litera-
ture. Finally, in Section 5, we draw our conclusions.

2 Approach description

2.1 Preliminary concepts

In this section we introduce some preliminary concepts
that will be largely exploited in this paper. Preliminarily,
we point out that XML Schemas are usually designed by
adopting one of the following three classical techniques:
(i) the “Russian doll” design, in which the schema struc-
ture mirrors the document structure; in particular, it defines
one single global element whereas all other elements are
local; (ii) the “Salami slice” approach, in which, contrar-
ily to the Russian doll, all elements declarations are global;
(iii) the “Venetian blind” technique, which defines one sin-
gle global element, as the Russian doll design, but exploits
named complex types and element groups instead of ele-
ment declarations.

Since simple rules have been defined to switch among
these three representations, in the following, for the sake
of simplicity, we assume that XML Schemas have been de-
signed with the “Salami slice” approach.

First of all we introduce the concept of x-component; it
denotes an element or an attribute of a Schema S. Given
two x-components xS and xT of an XML Schema S:

– xS is defined veryclose to xT if and only if: (i) xT =
xS , or (ii) xT is an attribute of xS , or (iii) xT is a
simple sub-element of xS .

– xS is defined close to xT if and only if xT is a com-
plex sub-element of xS .

– xS is defined near to xT if and only if xS is either
veryclose or close to xT .

– xT is defined reachable from xS if and only if
there exists a sequence of k distinct x-components
x1, x2, . . . , xk such that xS = x1, x1 is near to x2,
x2 is near to x3, . . ., xk−1 is near to xk, xk = xT .

We now introduce the concept of Connection Cost
CC(xS , xT ) from an x-component xS to an x-component
xT . Specifically, (i) CC(xS , xT ) = 0 if xS is veryclose
to xT ; (ii) CC(xS , xT ) = 1 if xS is close to xT ; (iii)
CC(xS , xT ) = CST if xT is reachable from xS and
xS is not near to xT ; CC(xS , xT ) = +∞ if xT is not
reachable from xS . Here CST = minxA (CC(xS , xA) +
CC(xA, xT )) for each xA such that reachable(xS , xA) =
reachable(xA, xT ) = true.

We are now able to introduce the concept of neighbor-
hood of an x-component, that plays a key role in our ap-
proach.

Definition 2.1. Let S be an XML Schema and let xS be an
x-component of S. The dth neighborhood of xS is defined
as:

nbh(xS , d) = {xT | xT is an x-component of S,
CC(xS , xT ) ≤ d} 2

We call significant neighborhoods of xS all neighbor-
hoods nbh(xS , d) such that nbh(xS , d) 6= nbh(xS , d− 1).

As far as the previous concepts are concerned, the
following propositions and the following theorem can
be introduced; the interested reader can find the corre-
sponding proofs in the Appendix available at the address
http://www.ing.unirc.it/ursino/informatica/

Appendix.pdf.

Proposition 2.1. Let S be an XML Schema; let xS and
xT be two x-components of S; let m be the number of
complex elements of S. If CC(xS , xT ) 6= +∞, then
CC(xS , xT ) < m. 2

Proposition 2.2. Let S be an XML Schema; let xS be an x-
component of S; let m be the number of complex elements
of S; then nbh(xS , d) = nbh(xS ,m − 1) for each d such
that d ≥ m. 2

Theorem 2.1. Let S be an XML Schema; let n be the num-
ber of x-components of S. The worst case time complexity
for constructing all neighborhoods of all x-components of
S is O(n3). 2

Theorem 2.1 is particularly important since it guarantees
that our approach is polynomial (see, below, Theorems 2.4
and 2.5). It could appear that a polynomial complexity
to the degree of three for neighborhood derivation causes
scalability problems for the whole approach. Actually, this
is not the case. In fact, in an XML source exploited as a
database, the intensional component (i.e., the schema-level
information, corresponding, in our application context, to
XML Schemas) is generally much smaller than the exten-
sional one (i.e., the instance-level information, correspond-
ing, in our application context, to XML documents); as a
consequence, the number of involved x-components (i.e.,
n) is generally very small. Moreover, the derivation of the
neighborhoods of a Schema S must be carried out once and
for all when S is examined for the first time; derived neigh-
borhoods can be, then, exploited each time a sub-schema
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similarity extraction task involving S is performed. Only
a change in the intensional component of S requires to up-
date the corresponding neighborhoods; such a task, how-
ever, is uncommon and, in any case, it does not imply to
re-compute, but simply to incrementally update, them.

A more detailed analysis concerning the scalability of
our approach can be found in Section 3.9.

2.1.1 A case example

Consider the XML Schema S1, shown in Figure 1, repre-
senting a University. Here, professor is veryclose to iden-
tifier because identifier is an attribute of professor; analo-
gously, university is close to professor because professor
is a complex sub-element of university; as a consequence,
university is near to professor and professor is near to
identifier; finally, identifier is reachable from university be-
cause university is near to professor and professor is near
to identifier. As for neighborhoods, we have that:

nbh(university, 1) = {university, professor, phd-
student, paper, course, student, identifier, name, cul-
tural_area, papers, advisor, thesis, research_interests,
authors, type, volumes, pages, argument, duration,
attended_by, taught_by, program, students, enroll-
ment_year, attends}

For instance, professor belongs to nbh(university, 1) be-
cause CC(university, professor) = 1. All the other neigh-
borhoods can be determined analogously.

2.2 Selection of the most promising pairs of
sub-schemas

2.2.1 Overview

The first problem our approach must face is the extremely
high number of possible sub-schemas that could be derived
from an XML Schema S; in fact, this number might be
exponential against the number of x-components of S.

In order to avoid huge numbers of pairs of sub-schemas
to be examined, we have designed a heuristic technique
for singling out only the most promising ones. This tech-
nique receives two XML Schemas S1 and S2 and an In-
terschema Property Dictionary IPD, storing synonymies,
hyponymies and overlappings holding between complex el-
ements of S1 and S2. The most promising pairs of sub-
schemas are derived as follows: for each pair 〈x1j , x2k

〉
belonging to IPD, such that x1j ∈ S1 and x2k

∈ S2, x1j

and x2k
are taken as the “seeds” for the construction of

promising pairs of sub-schemas.
Specifically, our technique:

– considers the pairs 〈nbh(x1j , δ), nbh(x2k
, γ)〉, such

that nbh(x1j , δ), (resp., nbh(x2k
, γ)) is a significant

neighborhood (see Section 2.1) of x1j (resp., x2k
);

– derives a pair of sub-schemas
〈prosub1jδ

, prosub2kγ 〉, from each pair
〈nbh(x1j , δ), nbh(x2k

, γ)〉, such that prosub1jδ

(resp., prosub2kγ
) is obtained from nbh(x1j

, δ)
(resp., nbh(x2k

, γ)) by removing from it those
portions that are dissimilar with nbh(x2k

, γ) (resp.,
nbh(x1j

, δ)), i.e., those x-components not involved
in semantic relationships with x-components of
nbh(x2k

, γ) (resp., nbh(x1j
, δ)) - see below for more

details.

2.2.2 Technical Details

In this section we formalize our technique for selecting the
most promising pairs of sub-schemas. Specifically, given
two XML Schemas S1 and S2, the set SPS of the most
promising pairs of sub-schemas associated with them is ob-
tained by calling a suitable function Φ as follows:

SPS = Φ(S1, S2, IPD)

For each tuple 〈x1j , x2k
〉 ∈ IPD, Φ invokes a function

Ψ for deriving the set of the most promising pairs of sub-
schemas having x1j and x2k

as their seeds. The formal
definition of Φ is:

Φ(S1, S2, IPD) =⋃
〈x1j

,x2k
〉∈IPD Ψ

(
S1, S2, x1j , x2k

, IPD
)

The function Ψ receives two XML Schemas S1 and S2,
two complex elements x1j ∈ S1 and x2k

∈ S2 and an Inter-
schema Property Dictionary IPD; for each pair of signifi-
cant neighborhoods nbh(x1j , δ) and nbh(x2k

, γ), Ψ calls a
function ξ, which extracts the most promising pair of sub-
schemas 〈prosub1jδ

, prosub2kγ 〉 associated with it. Ψ can
be defined as follows:

Ψ
(
S1, S2, x1j , x2k

, IPD
)

=⋃
0≤δ<µ(S1)
0≤γ<µ(S2)

ξ
(
S1, S2, nbh(x1j , δ), nbh(x2k

, γ),

ν
(
IPD, nbh(x1j , δ), nbh(x2k

, γ)
))

Here, the function µ receives an XML Schema and re-
turns the number of its complex elements. The function ν
receives an Interschema Property Dictionary IPD and two
neighborhoods nbh(x1j , δ) and nbh(x2k

, γ); it returns the
set IPDδγ ⊆ IPD of interschema properties involving
only pairs of x-components belonging to both nbh(x1j , δ)
and nbh(x2k

, γ).
The function ξ receives two XML Schemas S1 and S2,

two neighborhoods nbh(x1j , δ) and nbh(x2k
, γ) and the

set IPDδγ , as constructed by ν; in order to extract the most
promising pair of sub-schemas 〈prosub1jδ

, prosub2kγ 〉,
associated with nbh(x1j , δ) and nbh(x2k

, γ), ξ acti-
vates functions ζ, θ and π for pruning nbh(x1j , δ) and
nbh(x2k

, γ) in such a way as to eliminate the most dis-
similar portions. ξ can be formalized as follows:

ξ
(
S1, S2, nbh(x1j , δ), nbh(x2k

, γ), IPDδγ

)
=

〈ζ(θ(nbh(x1j , δ), π(S1, IPDδγ)), S1),
ζ(θ(nbh(x2k

, γ), π(S2, IPDδγ)), S2)〉
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<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attribute name="identifier" type="xs:ID"/>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="cultural_area" type="xs:string"/>
<xs:attribute name="papers" type="xs:IDREFS"/>
<xs:attribute name="advisor" type="xs:IDREF"/>
<xs:attribute name="thesis" type="xs:string"/>
<xs:attribute name="research_interests" type="xs:string"/>
<xs:attribute name="authors" type="xs:IDREFS"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="volumes" type="xs:integer"/>
<xs:attribute name="pages" type="xs:integer"/>
<xs:attribute name="argument" type="xs:string"/>
<xs:attribute name="duration" type="xs:duration"/>
<xs:attribute name="attended_by" type="xs:IDREFS"/>
<xs:attribute name="taught_by" type="xs:IDREFS"/>
<xs:attribute name="program" type="xs:string"/>
<xs:attribute name="students" type="xs:IDREFS"/>
<xs:attribute name="enrollment_year" type="xs:date"/>
<xs:attribute name="attends" type="xs:IDREFS"/>

<xs:element name="professor">
<xs:complexType>

<xs:attribute ref="identifier"/>
<xs:attribute ref="name"/>
<xs:attribute ref="cultural_area"/>
<xs:attribute ref="papers"/>

</xs:complexType>
</xs:element>
<xs:element name="phd-student">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="advisor"/>
<xs:attribute ref="thesis"/>
<xs:attribute ref="research_interests"/>
<xs:attribute ref="papers"/>

</xs:complexType>
</xs:element>
<xs:element name="paper">

<xs:complexType>

<xs:attribute ref="identifier"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="type"/>
<xs:attribute ref="volumes"/>
<xs:attribute ref="pages"/>

</xs:complexType>
</xs:element>
<xs:element name="course">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="name"/>
<xs:attribute ref="argument"/>
<xs:attribute ref="duration"/>
<xs:attribute ref="attended_by"/>
<xs:attribute ref="taught_by"/>
<xs:attribute ref="program"/>
<xs:attribute ref="students"/>

</xs:complexType>
</xs:element>
<xs:element name="student">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="name"/>
<xs:attribute ref="enrollment_year"/>
<xs:attribute ref="attends"/>

</xs:complexType>
</xs:element>
<!-- root -->
<xs:element name="university">

<xs:complexType>
<xs:sequence>

<xs:element ref="professor" maxOccurs="unbounded"/>
<xs:element ref="phd-student" maxOccurs="unbounded"/>
<xs:element ref="paper" maxOccurs="unbounded"/>
<xs:element ref="course" maxOccurs="unbounded"/>
<xs:element ref="student" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 1: The XML Schema S1

Here, the function π receives an XML Schema Sh, h ∈
{1, 2}, and the set IPDδγ , computed by ν; it returns the
set AtLeastOne of the complex elements belonging to Sh

and involved in at least one property of IPDδγ .
The function θ receives a neighborhood nbh(xS , d), as-

sociated with an XML Schema S, and the set AtLeastOne
as computed by the function π. It constructs a set of x-
components XSetSd

⊆ nbh(xS , d) by removing from
nbh(xS , d) each complex element xR (along with all its
sub-elements and attributes) that satisfies both the follow-
ing conditions: (i) xR /∈ AtLeastOne; (ii) for each com-
plex element xRi

such that reachable(xR, xRi
) = true

and xRi ∈ nbh(xS , d), xRi /∈ AtLeastOne.
In other words a complex element xR, belonging to

nbh(xS , d), is not inserted in XSetSd
if both it and all

complex elements in nbh(xS , d) reachable from it are not
involved in any interschema property stored in IPDδγ .
Note that the two conditions above guarantee that if xR is
not inserted in XSetSd

, then no x-components reachable
from it are inserted therein. In fact, if the two conditions
above are valid for xR, then they must be also valid for all
x-components reachable from it.

The function ζ receives the set of x-components XSetSd

returned by θ and constructs a sub-schema prosubSd
tak-

ing into account the initial structure of S. Specifically,
prosubSd

is constructed from XSetSd
in such a way that

the following two conditions hold: (i) it must contain
all, and only, the x-components of XSetSd

; (ii) all x-
components of XSetSd

must preserve, in prosubSd
, the

same hierarchical organization they have in S1.

1Note that the sub-schema prosubSd
obtained by the function ζ is

a well-formed and self contained XML Schema because of the function
θ. In fact, this function constructs XSetSd

in such a way that, if an x-

The next theorems state the worst case time complexity
for computing all promising pairs of sub-schemas, as well
as an upper bound to the number of promising pairs of
sub-schemas returned by the function Φ. Their proofs
can be found in the Appendix available at the address
http://www.ing.unirc.it/ursino/informatica/

Appendix.pdf.

Theorem 2.2. Let S1 and S2 be two XML Schemas. Let
IPD be the Interschema Property Dictionary associated
with S1 and S2; let m be the maximum between the num-
ber of complex elements of S1 and S2; let n be the max-
imum between the number of x-components of S1 and
S2. The worst case time complexity for computing, by
means of the function Φ, the set SPS of the most promis-
ing pairs of sub-schemas associated with S1 and S2 is
max{O(m7), O(m4 × n2)}. 2

Theorem 2.3. Let S1 and S2 be two XML Schemas; let
IPD be the corresponding Interschema Property Dictio-
nary; let m be the maximum between the number of com-
plex elements of S1 and S2. The maximum cardinality of
SPS is O(m4). 2

As for these two theorems, all considerations about the
value of n, that we have drawn after Theorem 2.1, are still
valid. Moreover, since in an XML document the number
of attributes and simple elements is generally much greater
than the number of complex elements, the value of m is
even much smaller than that of n.

component is not inserted in XSetSd
, then no x-components reachable

from it are inserted therein.
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<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attribute name="ID" type="xs:ID"/>
<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="roles" type="xs:string"/>
<xs:attribute name="research" type="xs:string"/>
<xs:attribute name="argument" type="xs:string"/>
<xs:attribute name="budget" type="xs:string"/>
<xs:attribute name="funds" type="xs:string"/>
<xs:attribute name="responsibles" type="xs:IDREFS"/>
<xs:attribute name="termination" type="xs:date"/>
<xs:attribute name="authors" type="xs:IDREFS"/>
<xs:attribute name="title" type="xs:string"/>
<xs:attribute name="volume" type="xs:integer"/>
<xs:attribute name="pages" type="xs:integer"/>
<xs:attribute name="year" type="xs:date"/>
<xs:attribute name="booktitle" type="xs:string"/>
<xs:attribute name="address" type="xs:string"/>
<xs:attribute name="publisher" type="xs:string"/>
<xs:attribute name="chief" type="xs:IDREF"/>
<xs:attribute name="people" type="xs:IDREF"/>
<xs:attribute name="projects" type="xs:IDREFS"/>
<xs:attribute name="locations" type="xs:string"/>
<xs:attribute name="labs" type="xs:string"/>
<xs:element name="article">

<xs:complexType>
<xs:choice>

<xs:element ref="journal"/>
<xs:element ref="conference"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="researcher">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="first_name"/>
<xs:attribute ref="last_name"/>
<xs:attribute ref="type"/>
<xs:attribute ref="roles"/>
<xs:attribute ref="research"/>

</xs:complexType>
</xs:element>
<xs:element name="project">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="argument"/>
<xs:attribute ref="budget"/>

<xs:attribute ref="funds"/>
<xs:attribute ref="responsibles"/>
<xs:attribute ref="termination"/>

</xs:complexType>
</xs:element>
<xs:element name="journal">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="title"/>
<xs:attribute ref="volume"/>
<xs:attribute ref="pages"/>
<xs:attribute ref="year"/>

</xs:complexType>
</xs:element>
<xs:element name="conference">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="title"/>
<xs:attribute ref="booktitle"/>
<xs:attribute ref="address"/>
<xs:attribute ref="year"/>
<xs:attribute ref="pages"/>
<xs:attribute ref="publisher"/>

</xs:complexType>
</xs:element>
<xs:element name="department">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="chief"/>
<xs:attribute ref="people"/>
<xs:attribute ref="projects"/>
<xs:attribute ref="locations"/>
<xs:attribute ref="labs"/>

</xs:complexType>
</xs:element>
<!-- root -->
<xs:element name="university">

<xs:complexType>
<xs:sequence>

<xs:element ref="article" maxOccurs="unbounded"/>
<xs:element ref="project" maxOccurs="unbounded"/>
<xs:element ref="researcher" maxOccurs="unbounded"/>
<xs:element ref="department" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 2: The XML Schema S2

x-component of S1 x-component of S2 interschema property typology

university university synonymy
professor researcher overlapping

phd-student researcher overlapping
paper article synonymy
paper journal hyponymy
paper conference hyponymy

Table 1: The Interschema Property Dictionary IPD asso-
ciated with S1 and S2

2.2.3 A case example (cnt’d)

Consider the XML Schemas S1 and S2, associated with
a University and illustrated in Figures 1 and 2. Consider
the corresponding Interschema Property Dictionary IPD
shown in Table 1 2.

In order to construct SPS, first the function Φ is ac-
tivated. For each tuple of IPD, Φ calls the function Ψ.
In order to show the behaviour of Ψ, we consider its ap-
plication to the pair of complex elements 〈university[S1],
university[S2]〉 3.

For each pair 〈nbh(university[S1], δ), nbh(uni-
versity[S2], γ)〉 of significant neighborhoods, Ψ activates
the function ξ. In order to illustrate the behaviour of ξ,

2As previously pointed out, we have chosen to construct IPD by ap-
plying the approaches described in (6); however, any other approach pro-
posed in the literature for deriving synonymies, hyponymies and overlap-
pings among elements of different XML Schemas could be exploited.

3Here and in the following, whenever necessary, we use the notation
x[S] for indicating the x-component x of an XML Schema S.

we consider its application to nbh(university[S1], 1) and
nbh(university[S2], 2); nbh(university[S1], 1) has been
shown in the previous section; nbh(university[S2], 2) is
as follows:

nbh(university[S2], 2) = {university, article,
project, researcher, department, journal, conference,
ID, first_name, last_name, type, roles, research,
argument, budget, funds, responsibles, termination,
authors, title, volume, pages, year, booktitle, address,
publisher, chief, people, projects, locations, labs}

For this pair of neighborhoods the set IPDδγ , returned
by the function ν, is equal to IPD. ξ activates θ for prun-
ing nbh(university[S1], 1) and nbh(university[S2], 2) in
such a way as to remove the most dissimilar portions. As
an example, the complex element student[S1] and all its at-
tributes are pruned from nbh(university[S1], 1) because:
(i) student[S1] is not involved in any interschema prop-
erty of IPDδγ ; (ii) there does not exist any complex el-
ement xRi such that reachable(student[S1], xRi) = true,
xRi ∈ nbh(university[S1], 1), and xRi is involved in
some interschema property of IPDδγ .

The final sets of x-components returned by the func-
tion θ, when applied on nbh(university[S1], 1) and
nbh(university[S2], 2), are:

{university, professor, phd-student, paper, identifier,
name, cultural_area, papers, advisor, thesis, re-
search_interests, authors, type, volumes, pages}
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{university, article, researcher, journal, conference,
ID, first_name, last_name, type, roles, research, au-
thors, title, organization, year, booktitle, address,
pages, publisher}

After this, ξ activates ζ that constructs the promising
sub-schemas corresponding to nbh(university[S1], 1) and
nbh(university[S2], 2).

The final promising pair of sub-schemas corresponding
to nbh(university[S1], 1) and nbh(university[S2], 2) re-
turned by ξ is illustrated in Figure 3. All the other promis-
ing pairs of sub-schemas can be determined analogously.

2.3 Derivation of sub-schema similarities

In the previous section we have seen how the most promis-
ing pairs of sub-schemas can be determined. In this section
we illustrate how these pairs can be analyzed in order to
derive sub-schema similarities. Before describing this task
in detail some preliminary considerations are needed.

Applications possibly exploiting sub-schema similari-
ties (and, more in general, interschema properties) are ex-
tremely heterogeneous. Some of them (i.e., the most crit-
ical ones) require, for each pair of involved sub-schema
similarities, a high level of trustworthiness; in other words
they require the correspondences between the elements be-
longing to the involved sub-schemas to be precisely and
unambiguously determined. In order to achieve this guar-
antee, it is necessary to pay the price of filtering out the
weakest sub-schema similarities, i.e., those involving sub-
schemas whose elements might have a form of similarity
different from synonymy. In fact, synonymy represents the
strongest form of similarity; it is the only one capable of
guaranteeing that the similar elements belonging to the in-
volved sub-schemas can be precisely and unambiguously
mapped each other.

By contrast, other (possibly non critical) applications
could prefer to have a more complete picture of exist-
ing sub-schema similarities and, therefore, could choose to
consider also the weakest ones. As previously pointed out,
while a strong similarity requires most of the elements of
the corresponding schemas to be related by a synonymy, a
weak similarity can accept other kinds of similarity prop-
erty, e.g., hyponymies and overlappings; it can also ex-
ist between two schemas characterized by quite a differ-
ent structure. As a consequence of these reasonings, even
if weak similarities cannot be considered in critical appli-
cations, in non-critical scenarios they can provide a richer
vision of the reality.

Clearly, the two exigencies outlined above (i.e., strength
and breadth of discovered similarities) are divergent and,
consequently, it appears extremely difficult to satisfy both
of them simultaneously.

In order to address this issue, our technique allows the
derivation of two levels of sub-schema similarities, namely
strong similarities, that guarantee a strong correspondence
between the x-components of similar sub-schemas, and

weak similarities, that allow the existence of less charac-
terizing semantic relationships between the corresponding
x-components. Specifically, strong sub-schema similari-
ties are derived by taking only synonymies into account;
weak sub-schema similarities cannot be derived with the
only support of synonymies but need also the contribution
of hyponymies and overlappings.

Our technique for deriving sub-schema similarities be-
tween two XML Schemas S1 and S2 receives the set SPS
of the most promising pairs of sub-schemas and the Inter-
schema Property Dictionary IPD associated with S1 and
S2 and selects two sets of pairs of similar sub-schemas,
namely:

SSSstrong = ρstrong(SPS, IPD)
SSSweak = ρweak(SPS, IPD)

Here, the function ρstrong derives the strong sub-schema
similarities, whereas the function ρweak extracts the weak
ones.

2.3.1 Derivation of strong similarities

ρstrong operates by computing the objective func-
tion associated with a maximum weight matching de-
fined on a suitable bipartite graph. Specifically, let
〈prosub1jδ

, prosub2kγ 〉 ∈ SPS be a promising pair of
sub-schemas; let BGδγ = 〈NSet,ESet〉 be the bipartite
graph associated with prosub1jδ

and prosub2kγ . NSet =
PSet∪QSet is the set of nodes of BGδγ ; there is a node in
PSet (resp., QSet) for each complex element of prosub1jδ

(resp., prosub2kγ ). ESet is the set of edges of BGδγ ;
in ESet there exists an edge 〈p, q〉 between two nodes
p ∈ PSet and q ∈ QSet if and only if, in IPD, there
exists a synonymy between the element corresponding to p
and that corresponding to q.

The maximum weight matching on BGδγ is the set
ESet∗ ⊆ ESet such that, for each node x ∈ NSet,
there exists at most one edge of ESet∗ incident onto x and
|ESet∗| is maximum (the interested reader is referred to
(15) for details about the maximum weight matching prob-
lem). The objective function we associate with the max-
imum weight matching is χBG = 2|ESet∗|

|PSet|+|QSet| . Here
|ESet∗| represents the number of matches associated with
BGδγ , as well as the number of synonymies involving
prosub1jδ

and prosub2kγ . 2|ESet∗| indicates the number
of matching nodes in BGδγ , as well as the number of simi-
lar complex elements present in prosub1jδ

and prosub2kγ .
|PSet| + |QSet| denotes the total number of nodes in
BGδγ as well as the total number of complex elements
associated with prosub1jδ

and prosub2kγ . Finally, χBG

represents the share of matching nodes in BGδγ , as well as
the share of similar complex elements present in prosub1jδ

and prosub2kγ .
We assume that prosub1jδ

and prosub2kγ are similar if
χBG > 1

2 . Such an assumption derives from the consider-
ation that two sets of objects can be considered similar if
the number of similar elements is greater than the number
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<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attribute name="identifier" type="xs:ID"/>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="cultural_area" type="xs:string"/>
<xs:attribute name="papers" type="xs:IDREFS"/>
<xs:attribute name="advisor" type="xs:IDREF"/>
<xs:attribute name="thesis" type="xs:string"/>
<xs:attribute name="research_interests" type="xs:string"/>
<xs:attribute name="authors" type="xs:IDREFS"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="volumes" type="xs:integer"/>
<xs:attribute name="pages" type="xs:integer"/>
<xs:element name="professor">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="name"/>
<xs:attribute ref="cultural_area"/>
<xs:attribute ref="papers"/>

</xs:complexType>
</xs:element>
<xs:element name="phd-student">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="advisor"/>

<xs:attribute ref="thesis"/>
<xs:attribute ref="research_interests"/>
<xs:attribute ref="papers"/>

</xs:complexType>
</xs:element>
<xs:element name="paper">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="type"/>
<xs:attribute ref="volumes"/>
<xs:attribute ref="pages"/>

</xs:complexType>
</xs:element>
<!-- root -->
<xs:element name="university">

<xs:complexType>
<xs:sequence>

<xs:element ref="professor" maxOccurs="unbounded"/>
<xs:element ref="phd-student" maxOccurs="unbounded"/>
<xs:element ref="paper" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attribute name="ID" type="xs:ID"/>
<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="roles" type="xs:string"/>
<xs:attribute name="research" type="xs:string"/>
<xs:attribute name="authors" type="xs:IDREFS"/>
<xs:attribute name="title" type="xs:string"/>
<xs:attribute name="organization" type="xs:string"/>
<xs:attribute name="year" type="xs:date"/>
<xs:attribute name="booktitle" type="xs:string"/>
<xs:attribute name="address" type="xs:string"/>
<xs:attribute name="pages" type="xs:integer"/>
<xs:attribute name="publisher" type="xs:string"/>
<xs:element name="article">

<xs:complexType>
<xs:choice>

<xs:element ref="journal"/>
<xs:element ref="conference"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="researcher">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="first_name"/>
<xs:attribute ref="last_name"/>
<xs:attribute ref="type"/>
<xs:attribute ref="roles"/>
<xs:attribute ref="research"/>

</xs:complexType>

</xs:element>
<xs:element name="journal">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="title"/>
<xs:attribute ref="organization"/>
<xs:attribute ref="year"/>

</xs:complexType>
</xs:element>
<xs:element name="conference">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="title"/>
<xs:attribute ref="booktitle"/>
<xs:attribute ref="address"/>
<xs:attribute ref="year"/>
<xs:attribute ref="pages"/>
<xs:attribute ref="publisher"/>

</xs:complexType>
</xs:element>
<!-- root -->
<xs:element name="university">

<xs:complexType>
<xs:sequence>

<xs:element ref="article" maxOccurs="unbounded"/>
<xs:element ref="researcher" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 3: The promising pair of sub-schemas associated with nbh(university[S1], 1) and nbh(university[S2], 2)

of the dissimilar ones or, in other words, if the number of
similar elements is greater than half of the total number of
elements.

The following theorem states the worst case
time complexity for computing all strong similar-
ities. Its proof can be found in the Appendix at
the address http://www.ing.unirc.it/ursino/

informatica/Appendix.pdf.

Theorem 2.4. Let S1 and S2 be two XML Schemas; let
IPD be the corresponding Interschema Property Dictio-
nary; let m be the maximum between the number of com-
plex elements of S1 and S2. The worst case time complex-
ity for computing SSSstrong is O(m7). 2

With regard to this result, the same reasoning about
the extremely small number of complex elements in an
XML Schema, that we have presented after Theorems 2.2
and 2.3, is still valid.

2.3.2 Derivation of weak similarities

ρweak receives SPS and IPD and returns weak sub-
schema similarities. We call them “weak” because, differ-

ently from ρstrong , which takes only synonymies into ac-
count, ρweak considers also overlappings and hyponymies,
that are weaker properties than synonymies in the represen-
tation of concept similarities.

When we introduce hyponymies and overlappings in the
computation of sub-schema similarities we must consider
that, often, more than one element of a schema could be
hyponymous or overlapping with an element of the other
schema.

A consequence of this reasoning is that, in order to de-
rive weak sub-schema similarities, it is not suitable to apply
maximum weight matching techniques; in fact, they would
associate an element of a schema with at most one element
of the other schema.

Taking into account the reasoning above, ρweak has
been defined as follows. Let 〈prosub1jδ

, prosub2kγ 〉 ∈
SPS be a promising pair of sub-schemas; let BG′δγ =
〈NSet′, ESet′〉 be a bipartite graph associated with
prosub1jδ

and prosub2kγ . Here, NSet′ = PSet′ ∪QSet′

is the set of nodes of BG′δγ ; there is a node in PSet′

(resp., QSet′) for each complex element of prosub1jδ

(resp., prosub2kγ ). ESet′ is the set of edges of BG′δγ ;
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Figure 4: The bipartite graph BGδγ associated with the
promising pair of sub-schemas illustrated in Figure 3

in ESet′ there exists an edge 〈p, q〉 between two nodes
p ∈ PSet′ and q ∈ QSet′ if and only if, in IPD, a syn-
onymy, a hyponymy or an overlapping holds between the
element corresponding to p and that corresponding to q.

Let ηp and ηq be the sets of nodes of PSet′ and QSet′

involved in at least one interschema property; specifically,
ηp = {p ∈ PSet′ such that at least one edge of BG′δγ

is incident onto it} and ηq = {q ∈ QSet′ such that
at least one edge of BG′δγ is incident onto it}; we as-
sume that prosub1jδ

and prosub2kγ are weakly similar if
χ′BG′ = |ηp|+|ηq|

|PSet′|+|QSet′| > 1
2 . Such an assumption indi-

cates that two sub-schemas are weakly similar if at least
half of their elements are someway related by an inter-
schema property. The justification underlying such an as-
sumption is analogous to that we have seen for strong sim-
ilarities.

The following theorem states the worst case
time complexity for computing all strong similar-
ities. Its proof can be found in the Appendix at
the address http://www.ing.unirc.it/ursino/

informatica/Appendix.pdf.

Theorem 2.5. Let S1 and S2 be two XML Schemas; let
IPD be the corresponding Interschema Property Dictio-
nary; let m be the maximum between the number of com-
plex elements of S1 and S2. The worst case time complex-
ity for computing SSSweak is O(m6). 2

2.3.3 A case example (cnt’d)

Consider the XML Schemas illustrated in Figures 1 and 2
and the promising pair of sub-schemas derived in Sec-
tion 2.2.3 and illustrated in Figure 3.

For this pair, BGδγ is shown in Figure 4; the objective
function χBG computed on it is equal to 4

9 < 1
2 ; as a con-

sequence, we can conclude that the sub-schemas of the pair
are not strongly similar.

For the same pair, BG′δγ is shown in Figure 5; the value
of χ′BG′ , computed by ρweak, is equal to 9

9 > 1
2 , which

allows us to conclude that a weak similarity holds between
the two sub-schemas into consideration.

Figure 5: The bipartite graph BG′δγ associated with the
promising pair of sub-schemas illustrated in Figure 3

3 Experimental results

3.1 Introduction
In this section we provide a detailed description of the ex-
periments we have carried out in order to test the perfor-
mance of our approach. Specifically, in Section 3.2 we
describe the characteristics of the sources exploited in our
experimental tests. The adopted accuracy measures are il-
lustrated in Section 3.3; the results we have obtained by ap-
plying these measures are presented in Section 3.4. In Sec-
tion 3.5 we compare the accuracy of our approach with that
achieved by some other approaches previously proposed
in the literature. Section 3.6 illustrates our study about
the role of our heuristics for the extraction of promising
pairs of sub-schemas in the improvement of the efficiency
of our approach. An analysis about the improvements of
our approach against manual “naive” approaches, based on
identifying synonyms and expanding around them for con-
structing sub-schemas, is illustrated in Section 3.7. The
robustness of our approach is estimated in Section 3.8. Fi-
nally, Section 3.9 is devoted to discuss our experimental
results about its scalability.

3.2 Characteristics of the exploited sources
In our tests we have exploited a large variety of XML
Schemas associated with disparate application contexts,
such as Biomedical Data, Project Management, Property
Register, Industrial Companies, Universities, Airlines, Sci-
entific Publications and Biological Data.

Specifically, we have compared all pairs of schemas
within a particular domain. Biomedical Schemas have
been derived from various sites; one of these sites
has been http://www.biomediator.org. Schemas
concerning Project Management, Property Register
and Industrial Companies have been derived from
Italian Central Government Office sources and are
shown at the address http://www.mat.unical.it/

terracina/tests.html. Schemas con-
cerning Universities have been downloaded
from the Web address http://anhai.cs.

uiuc.edu/archive/domains/courses.html.
Schemas concerning Airlines have been found in
(26). Schemas concerning Scientific Publications
have been supplied by the authors of (17). Fi-
nally, Biological Schemas have been downloaded
from the addresses http://smi-web.stanford./
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edu.projects/helix/pubs/ismb02/schemas/,
http://www.cs.toronto.edu/db/clio/

testSchemas.html and http://www.genome.ad.jp/
kegg/genes.html.

Examined sources were characterized by the following
properties: (i) Number of schemas: we have considered 30
XML Schemas whose characteristics are reported in Ta-
ble 2. (ii) Maximum depth of schemas: for each domain
we have computed the maximum depth of the involved
schemas; it is shown in the third column of Table 2. In
our opinion, this parameter is particularly interesting for
an approach specifically conceived for XML Schemas; in
fact, the maximum depth is an indicator of the complex-
ity of the sub-schemas that can be generated. (iii) Size of
schemas: the size of the evaluated XML Schemas, i.e., the
number of their elements and attributes, are shown in the
fourth column of Table 2. The size of a test schema is rele-
vant because it influences the quality of obtained results; in
fact, as mentioned in (8), the bigger the input schemas are,
the greater the search space for candidate pairs is, and the
lower the quality of obtained results will be.

The total number of pairs of schemas we have compared
for each domain is shown in the last column of Table 2.

3.3 Accuracy Measures exploited in our
experimental tests

All accuracy measures adopted in our experimental tests
have been computed according to the following general
framework: (i) a set of experts has been asked to iden-
tify the sub-schema similarities existing among involved
schemas; (ii) sub-schema similarities among the same
schemas have been determined by running our algorithm;
(iii) the sub-schema similarities provided by the experts
and those returned by our algorithm have been compared
and accuracy measures have been computed.

The number of experts that have been involved in manu-
ally solving the match tasks is as follows: 6 for Biomedical
Data, 3 for Project Management, 3 for Property Register, 4
for Industrial Companies, 4 for Universities, 2 for Airlines,
2 for Scientific Publications and 7 for Biological Data.

Let A be the set of sub-schema similarities provided by
the experts and let C be the set of sub-schema similarities
returned by our approach; two basic accuracy measures are:

– Precision (hereafter Pre), that specifies the share of
correct sub-schema similarities detected by the system
among those it derived. It is defined as: Pre = |A∩C|

|C| .

– Recall (hereafter Rec), that indicates the share of cor-
rect sub-schema similarities detected by the system
among those the experts provided. It is defined as:
Rec = |A∩C|

|A| .

Precision and Recall are typical measures of Information
Retrieval (see (29)). Both of them fall within the real inter-
val [0, 1]; in the ideal case (i.e., when A ≡ C) they are both
equal to 1.

Property Typology Average Average Average Average
Precision Recall F-Measure Overall

weak similarities 0.89 0.77 0.83 0.67
strong similarities 0.92 0.72 0.81 0.66

Table 3: Accuracy measures of our approach for weak and
strong similarities

However, neither Precision nor Recall alone can accu-
rately measure the quality of an interschema property ex-
traction algorithm; in order to improve the quality of re-
sults, it appears necessary the computation of a joint mea-
sure of them. Two very popular measures satisfying these
requirements are:

– F-Measure (3; 29), that represents the harmonic mean
between Precision and Recall. It is defined as: F -
Measure = 2 · Pre·Rec

Pre+Rec .

– Overall (9; 22), that measures the post-match effort
needed for adding false negatives and removing false
positives from the set of similarities returned by the
system to evaluate. It is defined as: Overall = Rec ·
(2− 1

Pre ).

F-Measure falls within the interval [0, 1] whereas Overall
ranges between −∞ and 1; the higher they are, the better
the accuracy of the tested approach will be.

3.4 Discussion of obtained results
As for the evaluation of Precision and Recall associated
with our approach we considered particularly interesting
to compute them by distinguishing weak and strong sim-
ilarities. Before the experiments we expected that pass-
ing from weak to strong similarities would have caused an
increase of the Precision and a decrease of the Recall of
our approach. This intuition was motivated by considering
that strong similarities are a subset of the weak ones, ob-
tained from them by eliminating the most uncertain ones;
this should cause the set of strong similarities to be more
precise than the set of the weak ones. However, this filter-
ing task could erroneously discard some valid similarities;
for this reason the set of strong similarities could have a
lower Recall w.r.t. the set of the weak ones.

In order to verify this intuition and, possibly, to quan-
tify it, we have applied our approach on all pairs of XML
Schemas belonging to the same application domain and we
have computed Precision, Recall, F-Measure and Overall
for each pair into consideration; after this, we have com-
puted the average values of all obtained measures for weak
and strong similarities; they are reported in Table 3. From
the analysis of this table we can draw the following conclu-
sions:

– As for weak similarities, (i) Precision is quite high,
even if our approach returns some false positives; (ii)
Recall is quite high, given the specificity of the in-
terschema property typology we are studying in this
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Application context Number of Schemas Maximum depth Minimum, Average and Minimum, Average and Total Number
of Schemas Maximum Number of Maximum Number of of Comparisons

x-components complex elements

Biomedical Data 6 8 15 - 26 - 38 4 - 8 - 16 15
Project Management 3 4 37 - 40 - 42 6 - 7 - 8 3
Property Register 2 4 64 - 70 - 75 14 - 14 - 14 1
Industrial Companies 5 4 23 - 28 - 46 6 - 8 - 9 10
Universities 5 5 15 - 17 - 19 3 - 4 - 5 10
Airlines 2 4 12 - 13 - 13 4 - 4 - 4 1
Scientific Publications 2 6 17 - 18 - 18 8 - 9 -9 1
Biological Data 5 8 70 - 136 - 262 21 - 41 - 103 10

Table 2: Characteristics of the XML Schemas exploited for testing the performance of our approach

paper (see below); as a consequence, our approach re-
turns most of the valid properties or, in other words, it
returns a very small number of false negatives.

– If we consider the strong similarities, (i) the set of sim-
ilarities returned by our approach contains a smaller
number of false positives w.r.t. the previous case;
specifically, Precision increases about 4%; (ii) Recall
decreases of about 6% w.r.t. the previous case; in
other words, a certain increase of false negatives can
be observed.

All these experiments confirm our original intuition
about the trend of Precision and Recall when passing from
weak to strong similarities.

Note that in the weak similarity context a user is willing
to accept false positives if this allows him to obtain a wide
set of similarities. On the contrary, in the strong similar-
ity context, a user is willing to receive an incomplete set
of similarities by the system but he desires that proposed
properties are (almost surely) correct. These observations
fully agree with the trend of Precision and Recall registered
in our tests.

As a final remark about this experiment, we observe that
the not particularly high values of Recall are explained by
considering that: (i) the possible number of sub-schema
similarities might be exponential against the number of x-
components of the corresponding XML Schemas; (ii) we
have used a heuristics for selecting the most promising
pairs of sub-schemas.

After this, we have computed the variation of our ac-
curacy measures in presence of a variation of the dimen-
sion of the input schemas. Specifically, given two XML
Schemas S1 and S2 such that n1 = |XCompSet(S1)| and
n2 = |XCompSet(S2)|, we have computed the average
values of Precision, Recall, F-Measure and Overall for the
extraction of weak and strong similarities for different val-
ues of the number of involved x-components nt = n1+n2.

The obtained results are shown in Figures 6, 7, 8 and 9.
From their analysis it is possible to conclude that all our
accuracy measures slightly decrease in presence of an in-
crease of nt. Such quite an intuitive result confirms obser-
vations and results presented in (8).

Finally, we have verified if the accuracy of our approach
depends on the application domain which the test XML
Schemas belong to. The value of each accuracy measure
for a domain has been determined by computing the accu-

racy measure for all possible pairs of XML Schemas be-
longing to the domain and, then, by averaging these values.
The results we have obtained are shown in Figures 10, 11,
12 and 13. From the analysis of these figures it is possi-
ble to conclude that the accuracy of our approach is quite
independent of the application domain (the only, quite sig-
nificant, differences can be found in the biological domain).
As far as our experiments are concerned, we have obtained
the best accuracy for the Airlines domain; here, Precision
reaches its best value, i.e., 0.94, obtained for the deriva-
tion of strong similarities; Recall, F-Measure and Overall
are maximum for the extraction of weak similarities and
are 0.79, 0.84 and 0.71, respectively. The worst accuracy
results have been obtained in the Biological domain; here,
Precision is maximum for the strong similarity derivation
and is 0.86; Recall, F-Measure and Overall reach their best
values for the weak similarity extraction and are 0.70, 0.76
and 0.55, respectively.

3.5 Comparison of the accuracy of our
approach with that achieved by some
related approaches

In this section we report the results of some experimental
tests aiming to compare the accuracy of our approach with
that achieved by other approaches already presented in the
literature.

Our experimental comparison has been inspired by the
ideas and methodologies proposed in (8). The authors of
(8) considered the following systems: Autoplex (2), Au-
tomatch (3), COMA (9), Cupid (20), LSD (10), GLUE
(12), SemInt (18) and SF (Similarity Flooding) (22); they
ran each of these prototypes on the same data sources. For
each prototype, Precision, Recall, F-Measure and Overall
were computed; these measures were averaged across all
input data sources.

We believe that the authors of (8) have provided a mean-
ingful survey which can help us to objectively assess the
accuracy of our system with that achieved by the systems
mentioned above. To this purpose, we ran our system
on the same data sources exploited in (8) and computed
the Precision, the Recall, the F-Measure and the Overall
achieved by it. Obtained results are reported in Table 4
4. Before discussing them, we point out that the accuracy

4It is worth pointing out that the values of the accuracy measures of
the other systems reported in this table are exactly those specified in (8).
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Figure 6: Variation of the Average Precision when the di-
mension nt of involved XML Schemas grows
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Figure 7: Variation of the Average Recall when the dimen-
sion nt of involved XML Schemas grows
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Figure 8: Variation of the Average F-Measure when the
dimension nt of involved XML Schemas grows
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Figure 9: Variation of the Average Overall when the di-
mension nt of involved XML Schemas grows

System Precision Recall F-Measure Overall

Our system (weak) 0.88 0.78 0.84 0.67
Our system (strong) 0.94 0.71 0.81 0.66
Autoplex & Automatch 0.84 0.82 0.82 & 0.72 0.66
COMA 0.93 0.89 0.90 0.82
Cupid − − − −
LSD ∼ 0.80 0.80 ∼ 0.80 ∼ 0.60
GLUE ∼ 0.80 0.80 ∼ 0.80 ∼ 0.60
SemInt 0.78 0.86 0.81 0.48
SF − − − ∼ 0.60

Table 4: Comparison of the accuracy of our approach with
that of the other approaches evaluated in (8)

measures of the other approaches described in (8) concern
both the derivation of sub-schema similarities and the ex-
traction of similarities between single concepts; this last
problem is simpler and, generally, the corresponding task
shows better accuracy measures, especially for Recall.

From the analysis of Table 4 we can conclude that:

– If strong similarities are computed, our approach
achieves the highest Precision and the lowest Recall.
This result confirms the main findings emerging from
Section 3.4 stating that if strong sub-schema similari-
ties are computed then only few similarities are found
but, generally, they are characterized by a high level

of reliability. As for weak similarities, our approach
achieves the third highest value of Precision and its
Recall is high if we consider that we are extracting
sub-schema similarities that are complex properties.
This result points out the great flexibility of our ap-
proach which can be adapted to prioritize Precision
over Recall (or vice versa) depending on the exigen-
cies of the application context which it operates in.

– Approaches like Autoplex, Automatch, LSD, GLUE
(12) and SemInt (18) use machine learning techniques
and, as will be clear in Section 4, analyze data in-
stances along with a wealth of auxiliary information
(i.e., data type information or key constraints) to de-
rive semantic matchings. This explains the high val-
ues of Precision and Recall achieved by them. The
flip side of the coin is that they require a meaningful
human effort to provide an initial set of training ex-
amples; moreover, if these examples are incomplete
and/or incorrect, the accuracy achieved by these ap-
proaches may drastically decrease (7; 8; 10; 11).

– Approaches like SF and COMA may yield highly ac-
curate results; however, their accuracy strongly de-
pends on the feedbacks provided by human operators.
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Figure 10: Average Precision of our approach in different
application domains

Figure 11: Average Recall of our approach in different ap-
plication domains

Figure 12: Average F-Measure of our approach in different
application domains

Figure 13: Average Overall of our approach in different
application domains

In fact, SF iteratively computes semantic matchings;
a human user is asked to check the matchings gen-
erated at each iteration and to fix a threshold beyond
which no further iteration must be performed. Clearly,
this threshold influences the number and the quality of
discovered matchings.

COMA is a flexible library of matchers; a user exploit-
ing COMA can select the matchers best fitting both his
needs and the scenario he is operating in and can suit-
able combine them to improve the quality of obtained
results. Clearly, the combination strategy adopted by
him influences the overall quality of the results re-
turned by COMA.

3.6 Role of our heuristics for the extraction
of the most promising pairs of
sub-schemas

In order to evaluate the role of our heuristics for the ex-
traction of the most promising pairs of sub-schemas in the
improvement of the efficiency of our approach, we have
implemented a simple prototype that receives an XML
Schema and evaluates the number of possible pairs of
(well-formed and self contained) sub-schemas that can be
derived from it. The prototype has been exploited for com-
puting the following parameter:

Application context Average EP romising

Biomedical Data 2.47 × 10−8

Project Management 1.61 × 10−10

Property Register 9.18 × 10−13

Industrial Companies 2.36 × 10−8

University 3.88 × 10−5

Airlines 5.07 × 10−4

Scientific Publications 3.66 × 10−5

Biological Data 1.97 × 10−20

Table 5: Values of EPromising for the various application
domains

EPromising =
Number of promising pairs of sub-schemas
Number of possible pairs of sub-schemas

We have carried out some tests for evaluating this param-
eter; Table 5 shows the average values we have obtained
in the various application domains; these values have been
computed by following a procedure analogous to that pre-
viously illustrated for accuracy measures.

From the analysis of this table it is possible to conclude
that the value of EPromising is extremely low in all ap-
plication domains; this confirms the importance, for our
approach, of the task that singles out the most promising
pairs of sub-schemas. The results shown in this table, cou-
pled with the results about the accuracy measures reported
previously, allow us to conclude that the extraction of the
most promising pairs of sub-schemas plays a fundamental
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role for obtaining a scalable approach, applicable on real
cases and producing good results. Such an idea is further
enforced if we consider that the number of possible sub-
schemas in an XML Schema might be exponential against
the number of its x-components and, consequently, neither
a manual approach nor an automatic one, exhaustively ex-
amining all pairs of sub-schemas, might be applied.

3.7 Improvement w.r.t. “naive” approaches
This class of experiments has been performed for veri-
fying the improvements of our approach against manual,
“naive” ones; here we use the term “naive” for indicating
an approach that is capable of constructing only immediate
and quite simple pairs of similar sub-schemas; it is gener-
ally based on identifying synonyms and expanding around
them for constructing sub-schemas. Usually, a “naive” ap-
proach is little time expensive, but it tends to detect only
immediate sub-schema similarities, whereas it tends to ex-
clude many complex and potentially significant similari-
ties. In our opinion, a comparison between our approach
and the “naive” one is useful to identify the capabilities of
our approach of finding complex sub-schema similarities
that could be discovered by a human expert only spend-
ing a great amount of time in the analysis of the involved
Schemas.

In order to carry out such a comparison, we applied our
approach to our test schemas by following the guidelines il-
lustrated in the previous experiments. For each considered
pair of sub-schemas we asked human experts to determine
the number NNaive of sub-schema similarities, identified
by our approach, that, in their opinion, had a “naive” struc-
ture. After this, we have computed the following parame-
ter:

RNaive = NNaive

NT otal

where NTotal indicates the total number of sub-schema
similarities derived by our approach. Clearly, the lower
RNaive is, the higher the improvement caused by our ap-
proach will be.

Table 6 shows the average value of RNaive for weak and
strong sub-schema similarities in the various application
domains. The average values have been computed by fol-
lowing the same guidelines illustrated in the previous ex-
periments.

From the analysis of this table we can observe that the
best values of RNaive can be obtained for domains char-
acterized by large information sources, such as Biological
Data and Property Register. This fact is explained by con-
sidering that, if involved information sources have a great
number of x-components, the structures of the sub-schemas
can be more complex and, consequently, NTotal can be ex-
tremely greater than NNaive.

This result is confirmed by Figure 14 that illustrates the
values of the average RNaive for the extraction of weak
and strong similarities for different values of the dimen-
sion of the input XML Schemas, i.e., of the parameter nt,

Application context RNaive for RNaive for
Application context weak similarities strong similarities

Biomedical Data 0.53 0.62
Project Management 0.36 0.43

Property Register 0.21 0.28
Industrial Companies 0.51 0.60

University 0.61 0.70
Airlines 0.64 0.72

Scientific Publications 0.51 0.63
Biological Data 0.08 0.09

Table 6: Values of RNaive for the extraction of weak and
strong sub-schema similarities in the various application
domains
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Figure 14: Variation of RNaive for the extraction of weak
and strong similarities when the parameter nt, measuring
the dimension of involved XML Schemas, grows

measuring the dimension of involved XML Schemas (see
Section 3.4).

From the analysis of this figure we can observe that
RNaive significantly decreases, for both weak and strong
sub-schema similarities, when nt grows. This implies
that, for large XML Schemas, the fraction of “naive” sub-
schema similarities identified by our approach is actually
negligible if compared with the total number of similarities
it derives. This further confirms that a “naive” approach,
even if it is less time expensive, might exclude many po-
tentially significant similarities.

3.8 Robustness analysis

3.8.1 Robustness against structural dissimilarities

XML is inherently hierarchical; it allows nested, possibly
complex, structures to be exploited for representing a do-
main. As a consequence, two human experts might model
the same reality by means of two XML Schemas character-
ized by deep structural dissimilarities. We have performed
a robustness analysis of our approach, devoted to verify if
it is resilient to structural dissimilarities.

Before describing our experimental tests about this is-
sue, we point out that the particular features of our ap-
proach make it intrinsically robust for a specific case, that
is very common in practice. Specifically, if the typology
of an x-component x1j of an XML Schema S1 is changed
from “simple element” to “attribute”, or vice versa, no
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modifications of the sub-schema similarities involving x-
components of S1 occur. This result directly derives from
the definitions of veryclose and neighborhood (see Sec-
tion 2.1).

There are further structural modifications that could in-
fluence the results of our approach and for which it is not
intrinsically robust; for these cases an experimental mea-
sure of its robustness appears necessary. As an exam-
ple, consider Figure 15 illustrating two portions of XML
Schemas representing persons; in the first XML Schema,
the concept “Person” is represented by means of a nested
hierarchical structure; on the contrary, in the second XML
Schema, the same concept is represented by means of a flat
structure.

In order to determine the robustness of our approach
in the management of these cases, for each pair of XML
Schemas into consideration, we have progressively altered
the structure of one of them by transforming a certain per-
centage of its x-components from a nested structure to a flat
one. For each of these transformations, we have derived
the sub-schema similarities associated with the “modified”
versions of the XML Schemas and we have computed the
corresponding average values of the accuracy measures.
Specifically, for each pair of XML Schemas within each
domain, we have considered five cases, corresponding to
a percentage of flattened x-components (hereafter FXP -
Flattened X-component Percentage) equal to: (a) 0%; (b)
7%; (c) 14%; (d) 21%; (e) 28%. The results we have ob-
tained are shown in Figures 16, 17, 18 and 19.

From the analysis of these figures it is possible to ob-
serve that our approach shows a good robustness against
increases of FXP . In fact, even if structural dissimilari-
ties occur, the changes in the accuracy measures are gen-
erally quite small. However, we stress that if the increases
of FXP would be significantly greater than those consid-
ered above, the changes in the accuracy measures could
be significant; this behaviour is correct since it guarantees
that our approach shows the right degree of sensitivity to
changes to the structure of involved XML Schemas.

3.8.2 Robustness against errors in IPD

In this experiment we have tested the effects of errors and
inaccuracies in the IPD received in input by our approach.
We have performed the experiment as follows. First, we
have exploited the approaches described in (6) for con-
structing IPD5; then, we have asked experts to validate
IPD properties in such a way as to remove any possible
error.

After this, we have performed some variations on the
correct IPD and, for each of them, we have computed
the Average Precision, the Average Recall, the Average F-
Measure and the Average Overall; this activity has been
performed by following the same guidelines illustrated for

5We point out again that any other approach conceived for deriving
synonymies, hyponymies and overlappings could be exploited for con-
structing IPD.

Case Average Average Average Average
Precision Recall F-Measure Overall

No errors 0.89 0.77 0.83 0.67

(a) 0.88 0.71 0.79 0.62
(b) 0.88 0.65 0.75 0.56
(c) 0.87 0.60 0.71 0.51
(d) 0.87 0.51 0.64 0.43

(e) 0.82 0.77 0.79 0.59
(f) 0.75 0.76 0.76 0.51
(g) 0.69 0.76 0.72 0.42
(h) 0.58 0.76 0.66 0.22

Table 7: Variation of the Average Precision, the Average
Recall, the Average F-Measure and the Average Overall
w.r.t. possible errors in IPD for the extraction of weak
similarities

Case Average Average Average Average
Precision Recall F-Measure Overall

No errors 0.92 0.72 0.81 0.65

(a) 0.91 0.67 0.77 0.61
(b) 0.91 0.62 0.74 0.56
(c) 0.90 0.58 0.71 0.52
(d) 0.90 0.50 0.64 0.44

(e) 0.86 0.72 0.78 0.60
(f) 0.80 0.71 0.75 0.54
(g) 0.75 0.71 0.73 0.47
(h) 0.65 0.71 0.68 0.33

Table 8: Variation of the Average Precision, the Average
Recall, the Average F-Measure and the Average Overall
w.r.t. possible errors in IPD for the extraction of strong
similarities

the previous experiments. Specifically, we have performed
two different typologies of variations on IPD; in a first
series of experiments we have discarded a certain percent-
age of correct properties from the correct IPD, without
adding any new wrong property; in a second series of ex-
periments, we have added a certain percentage of wrong
properties to the correct IPD, without removing any ex-
isting correct property. Variations we have carried out on
IPD are: (a) 10% of correct properties have been filtered
out; (b) 20% of correct properties have been filtered out; (c)
30% of correct properties have been filtered out; (d) 50% of
correct properties have been filtered out; (e) 10% of wrong
properties have been added; (f) 20% of wrong properties
have been added; (g) 30% of wrong properties have been
added; (h) 50% of wrong properties have been added.

Tables 7 and 8 present the values of Precision, Recall,
F-Measure and Overall we have obtained for the extraction
of weak and strong similarities in all these tests. These re-
sults show that our system is quite robust w.r.t. errors and
inaccuracies in IPD. In fact, its accuracy significantly de-
creases only for cases (d) and (h); i.e., when the correct
properties of IPD that are filtered out or the wrong prop-
erties of IPD that are added are greater than 30%. This
shows, also, that our system presents a good sensitivity in
addition to a satisfying robustness.
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<xs:element name="person">
<xs:complexType>

<xs:sequence>
<xs:element ref="address"/>

</xs:sequence>
<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="gender" type="xs:string"/>
<xs:attribute name="birthdate" type="xs:date"/>

</xs:complexType>
</xs:element>
<xs:element name="address">

<xs:complexType>
<xs:attribute name="city" type="xs:string"/>
<xs:attribute name="state" type="xs:string"/>
<xs:attribute name="country" type="xs:string"/>
<xs:attribute name="zip" type="xs:string"/>

</xs:complexType>
</xs:element>

<xs:element name="person">
<xs:complexType>

<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="gender" type="xs:string"/>
<xs:attribute name="birthdate" type="xs:date"/>
<xs:attribute name="city" type="xs:string"/>
<xs:attribute name="state" type="xs:string"/>
<xs:attribute name="country" type="xs:string"/>
<xs:attribute name="zip" type="xs:string"/>

</xs:complexType>
</xs:element>

Figure 15: Example of “nested” and “flat” structures

Figure 16: Average Precision of our approach for various
values of FXP

Figure 17: Average Recall of our approach for various val-
ues of FXP

3.9 Scalability Issues
3.9.1 Analysis of the cardinality of SPS

One of the most important factors that may influence the
scalability of our system is the number of the most promis-
ing pairs of sub-schemas, i.e., the cardinality of SPS. In
the previous sections we have shown that our heuristics for
the construction of SPS allow both a very high accuracy
of results to be maintained and the number of pairs of sub-
schemas into examination to be significantly reduced. In
this section we analyze how this number grows when the
number of complex elements of the input Schemas grows.
Specifically, Figure 20 plots the increase of the cardinality
of SPS against m, i.e., the maximum between the number
of complex elements of S1 and that of S2.

From the analysis of this figure we can observe that this
increase is much lower than that we could expect from the
theoretical worst case analysis (see Theorem 2.3). This
result is quite interesting because it further confirms that
the number of promising sub-schemas generated by our ap-
proach is large enough to yield accurate results (see Section
3.4) but small enough to prevent a untenable computational
effort.

This result depends on the following factors:

– In order to construct SPS, we need to apply the func-
tion Ψ, introduced in Section 2.2, on all pairs of com-
plex elements belonging to the Interschema Property
Dictionary (IPD) associated with the input sources.
In real cases, a complex element is involved in a very
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Figure 20: Cardinality of SPS against the number m of
complex elements
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Figure 18: Average F-Measure of our approach for various
values of FXP

Figure 19: Average Overall of our approach for various
values of FXP

low number of interschema properties and, conse-
quently, the cardinality of IPD is much less than the
overall number of possible pairs of complex elements
existing between S1 and S2. As a consequence, the
number of times our approach needs to call the func-
tion Ψ is significantly lower than that we could expect
from the theoretical analysis, and this produces a sig-
nificant time saving.

– In order to construct a promising sub-schema we need
to apply also functions ξ and θ (see Section 2.2). Re-
call that θ receives a pair 〈nbh(x1j , δ), nbh(x2k

, γ)〉,
where x1j (resp., x2k

) is a complex element of S1

(resp., S2) and δ (resp., γ) is an integer ranging from 0
to m. It may be that θ receives a pair of neighborhoods
〈nbh(x1j , δ), nbh(x2k

, γ)〉 such that no elements of
nbh(x1j , δ) share any interschema property with any
element of nbh(x2k

, γ). In this case nbh(x1j , δ)
and nbh(x2k

, γ) would be completely “pruned” by
θ and, then, ξ would not return any promising sub-
schema. This contributes to reduce the overall number
of promising sub-schemas w.r.t. the theoretical upper
bound specified by Theorem 2.3.

3.9.2 Analysis of the average size of a promising
sub-schema

A second, important, factor that can influence the scala-
bility of our approach concerns the average cardinality of
promising sub-schemas; in fact, in order to derive sub-
schema similarities, our approach computes some match-
ings on suitable bipartite graphs constructed starting from
the complex elements of the involved sub-schemas (see
Section 2.3). According to the reasoning illustrated in Sec-
tion 2.2, measuring the average cardinality of a promising
sub-schema is equivalent to measure the average cardinal-
ity of the set of complex elements generated by applying
the function θ.

In Figure 21 we plot the Average Cardinality AC
of a promising sub-schema against the number n of x-
components of the corresponding XML Schema. From
the analysis of this figure we can observe that AC de-
pends on n in a sub-linear fashion. This result is encourag-
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Figure 21: Average Cardinality against the number n of
involved x-components

ing because it shows that the size of the promising sub-
schemas generated by our approach does not “explode”
when the number of x-components of the corresponding
input Schemas grows; this influences the scalability of our
approach positively.

This behaviour can be justified by the following reason-
ing: if the overall number of x-components of an XML
Schema grows then both the number of its complex ele-
ments and that of its simple elements and attributes grows.
However, in real cases, this growth is not “balanced”, in the
sense that the number of complex elements does not grow
as quick as the number of simple elements and attributes;
as a consequence, if n becomes large, we expect that the
number of complex elements of the Schema into consider-
ation grows slowly, whereas the number of its simple ele-
ments/attributes increases significatively. This implies that
the Interschema Property Dictionary IPD associated with
input Schemas grows slowly in presence of an increase of n
because IPD contains only pairs of complex elements and
they must be also semantically related. Now, the number
of interschema properties stored in IPD has a substantial
impact on the pruning activity performed by θ (see Sec-
tion 2.2) and, ultimately, on the average cardinality of a
promising sub-schema; this impacts on the scalability of
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our approach positively.

3.9.3 Analysis of the Response Time

A third important parameter that we have considered in or-
der to evaluate the scalability of our approach is its Re-
sponse Time. To this purpose we have conducted an ex-
perimental study on our test XML Schemas to compute the
increase of the Response Time caused by an increase of the
sizes of schemas. All these tests have been performed on a
machine with a Pentium IV 3 GHz CPU and 1 Gb of RAM.

This experiment was carried out as follows: given
two XML Schemas S1 and S2 such that n1 =
|XCompSet(S1)| (resp., n2 = |XCompSet(S2)|) and
m1 (resp., m2) is the number of complex elements of
S1 (resp., S2), we have computed the average values of
the Response Time of our approach against the values of
nt = n1 + n2 and mt = m1 + m2. The obtained results
are shown in Figures 22 and 23.

From the analysis of Figure 22 we can observe that the
increase of the Response Time against mt is much “softer”
than that we could expect from the theoretical, worst case,
analysis (see Theorems 2.4 and 2.5). In our opinion this
result is even more important if we consider that:

– in real XML Schemas the number of complex ele-
ments is generally very low;

– even when the number of complex elements in one
or both of the involved XML Schemas is quite high
(e.g., mt ' 50) the time necessary to our system to
determine sub-schema similarities is quite low (e.g.,
at most some minutes for mt ' 50);

– the extraction of sub-schema similarities is generally
an activity to be performed offline.

All these considerations are further strengthened by Fig-
ure 23 where we analyze the increase of the Response Time
of our system against the increase of nt i.e., against the in-
crease of the total number of x-components belonging to
the involved XML Schemas (which is a reliable and pre-
cise indicator of the complexity of the involved Schemas).

All the reasonings above allow us to conclude that our
approach is scalable and really adequate in those contexts
characterized by numerous and large information sources.

Finally, Figures 22 and 23 show also that the Response
Time for deriving the strong properties is comparable with
that required for extracting the weak ones. This confirms
the theoretical results illustrated in Theorems 2.4 and 2.5.

3.9.4 Analysis of the percentage of Response Time
spared by a human expert

Finally, an interesting study, someway related to scalabil-
ity, regards the computation of the average percentage of
time spared by the experts by applying our approach and
validating its results w.r.t. doing the same task manually.

Figure 24: Average percentage of time spared by the ex-
perts by applying our approach and validating its results
than doing the same task manually

Actually, this percentage is not a direct measure of the
scalability of our approach; however, in our opinion, it pro-
vides a precise idea of the positive impact of our approach
on the daily life of a human expert working in this applica-
tion context.

The obtained results are shown in Figure 24. From the
analysis of this figure we can see that the exploitation of
our system really allows experts to save a great amount of
time, especially in those domains involving large source
schemas, such as the Property Register domain (97% of
spared time) and the Biological Data domain (99% of
spared time).

4 Related works

4.1 Introduction
The problem of deriving interschema properties is also
called schema matching or ontology alignment in the
Information Systems and Artificial Intelligence research
communities; the corresponding algorithms are known as
matchers (27). The problem of extracting semantic sim-
ilarities between two single elements of different schemas
or ontologies is often referred as 1:1 matching, whereas the
problem of deriving similarities between two groups of el-
ements or attributes is also known as 1:n, n:1 or, more in
general, m:n matching.

In the literature various classification criteria have been
proposed for comparing schema matching approaches (see,
for example, (27)). They allow approaches to be examined
from various points of view. In the following we report
those criteria appearing particularly interesting in our con-
text and exploit them to compare our approach with the
other ones already presented in the past. The most com-
mon of these criteria are the following:

– Schema Types: Some matching algorithms can operate
only on a specific kind of data source (e.g., XML, rela-
tional, and so on); these approaches are called specific
in the following. On the contrary, other approaches
are able to manage various kinds of data source; we
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Figure 22: Response Time of our approach against the
number mt of involved complex elements
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Figure 23: Response Time of our approach against the
number nt of involved x-components

call them generic in the following. A generic ap-
proach is usually more versatile than a specific one
because it can be applied on data sources character-
ized by heterogeneous representation formats. On the
contrary, a specific approach can take advantage of the
peculiarities of the corresponding data model.

– Instance-Based versus Schema-Based: In order to de-
tect interschema properties, matching approaches can
consider data instances (i.e., the so-called extensional
information) or schema-level information (i.e., the so-
called intensional information). The former class of
approaches is called instance-based; the latter one is
known as schema-based. An intermediate category is
represented by mixed approaches, i.e. those ones ex-
ploiting both intensional and extensional information.

Instance-based approaches are generally very precise
because they look at the actual content of the involved
sources; however, they are quite expensive since they
must examine the extensional component of the in-
volved sources; moreover, the results of an instance-
based approach are valid only for the sources it has
been applied to. On the contrary, schema-based ap-
proaches look at the intensional information only and,
consequently, they are less expensive; however, they
could be also less precise; the results of a schema-
based approach are valid for all sources conforming
to the considered schemas.

– Exploitation of Auxiliary Information: Some ap-
proaches could exploit auxiliary information (e.g.,
dictionaries, thesauruses, and so on) for their activ-
ity; on the contrary, this information is not needed
in other approaches. Auxiliary information represents
an effective way to enrich the knowledge that an ap-
proach can exploit. However, in order to maintain its
effectiveness, the time required to compile and/or re-
trieve it must be negligible w.r.t. the time required by
the whole approach to perform its matches. For this

reason, pre-built or automatically computed auxiliary
information would be preferred to the manually pro-
vided one.

– Individual versus Combinatorial: An individual
matcher exploits just one matching criterion; on the
contrary, combinatorial approaches integrate differ-
ent individual matchers to perform schema match-
ing activities. Combinatorial matchers can be fur-
ther classified as: (i) hybrid matchers, if they di-
rectly combine several schema matching approaches
into a unique matcher; (ii) composite matchers, if they
combine the results of several independently executed
matchers; they are sometimes called multi-strategy
approaches. The individual matchers are simpler, and
consequently less time-consuming, than the combina-
torial ones; however, the results they obtain are often
not very accurate.

4.2 Some related approaches

In (23) the authors propose a logic-based matcher called
SKAT (Semantic Knowledge Articulation Tool). In SKAT
the user has to initially specify matching and mismatch-
ing relationships existing between two ontologies/schemas.
After this, the system exploits a set of first-order logic rules
to refine available relationships and derive new semantic
matchings. These matchings can be approved or rejected
by the user. Obtained results can be reused in the subse-
quent schema matching activities.

In (22) the Similarity Flooding (SF ) algorithm, capa-
ble of operating on a wide variety of data sources, is pro-
posed. SF is a graph-based matcher; first it converts input
schemas into labeled graphs; then it uses a fixpoint compu-
tation to determine semantic matchings between the nodes
of the graphs; these matchings are refined by means of spe-
cific software modules called filters. Generated matchings
are checked by the human experts at each iteration of the
fixpoint computation.
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In (20) Cupid, a system for deriving interschema prop-
erties among heterogeneous information sources, is pre-
sented. Cupid takes an external thesaurus as input; its ap-
proach consists of two phases, named linguistic and struc-
tural. Cupid exploits sophisticated techniques, taking into
account various characteristics of involved schemas; as a
consequence, it is particularly suited when the precision of
results is compulsory and the involved schemas are not nu-
merous.

In (7) the authors propose the iMAP prototype. iMAP
operates in two phases: the first one exploits Artificial
Intelligence techniques (like Bayesian Network or beam
search) to generate a set of rough matchings; the second
one uses auxiliary information (like domain integrity con-
straints, past matchings, etc.) for refining these matchings.
Interesting properties of iMAP are its modularity and its ex-
tensibility, since new matching algorithms might be easily
embodied in it. It is worth observing that in iMAP the re-
quired user effort is (quite) limited; in this aspect it follows
the same philosophy of our approach.

In (18) the system SemInt is presented. SemInt operates
on relational schemas. First it associates each attribute with
a coefficient (signature), computed by taking into account
both intensional and extensional information. Then, it ex-
ploits the signatures of the attributes of the first schema to
train a neural network that is used to cluster similar at-
tributes of the first schema. Finally, it feeds the neural
network with the signatures of the attributes of the second
schema to find the attributes (resp., the groups of attributes)
of the first schema best mapping the attributes (resp., the
groups of attributes) of the second schema.

In (9) the authors describe a graph-based system called
COMA (COmbining MAtch). It first transforms input
schemas into rooted, directed, acyclic graphs; then, it
activates different schema matching algorithms on these
graphs; finally, it suitably combines the results produced
by each algorithm to generate accurate matchings. Interest-
ingly enough, COMA allows a user to specify the matching
strategy, i.e., to choose the algorithms for performing the
schema matching task.

(32) proposes a schema matching approach operating as
follows: first it represents a schema by means of a rooted
graph; in this way it can uniformly manage different data
source typologies; after this, it combines four different
techniques for computing semantic similarities between the
elements of the two schemas; this last information is further
exploited to derive m:n matchings.

In (31) an approach to deriving 1:1 and 1:n seman-
tic matchings holding among Web query interfaces (i.e.,
among data sources containing the results of the execu-
tion of queries posed through Web interfaces) is proposed.
First, it derives 1:1 matchings by means of a hierarchical
agglomerative clustering algorithm. After this, it extracts
1:n matchings by applying a suitable clustering algorithm
on derived 1:1 matchings.

In (16) an algorithm exploiting data mining techniques
for deriving interschema properties holding among Web

query interfaces is presented. This approach first translates
involved sources in a suitable format; after this, it derives
matchings by analyzing the co-occurrence patterns of at-
tributes belonging to involved sources. Differently from
most of the schema matching approaches proposed in the
literature, the approach of (16) simultaneously examines all
involved schemas.

In (11) the system CGLUE is proposed. It exploits ma-
chine learning techniques for deriving both 1:1 and 1:n se-
mantic matchings between two given ontologies O1 and
O2. CGLUE receives an initial set of matchings (train-
ing matches) from the user; then it exploits suitable ar-
tificial intelligence techniques (e.g. Bayesian learner) to
derive new interschema properties. These techniques are
implemented on specific software modules called learners.
Each learner independently operates on input schemas and
generates its set of matchings; the results obtained by each
learner are, then, combined to produce the final set of inter-
schema properties.

In (14) the authors propose a schema matching approach
particularly suited for Web sources. It first derives 1:1
matchings by solving a matching problem on a suitable
weighted bipartite graph; in this task, several parameters
(e.g., constraints associated with data types and ranges, lin-
guistic similarities, etc.) are taken into account. After this,
it derives 1:n matchings by applying a polynomial-time
heuristic algorithm on previously derived 1:1 matchings.

In (21) the MAFRA (ontology MApping FRAmework)
prototype, capable of extracting mappings among dis-
tributed ontologies in the Semantic Web, is presented.
MAFRA derives both 1:1 and 1:n matchings as follows.
First it represents available ontologies as RDF schemas;
then, it adopts a composite approach, taking into account
both structural and linguistic matchings, for deriving in-
terschema properties. In order to carry out its activities,
MAFRA requires quite a limited human intervention.

In (30) an approach to deriving m:n matchings is pro-
posed. It first represents each input schema by means of
a graph; after this, it asks the user to provide some basic
similarities and dissimilarities. Finally, it derives similari-
ties by taking into account information provided by users,
as well as structural and linguistic information; this last is
constructed with the support of a suitable thesaurus.

In (24; 25) the system DIKE is presented; it is devoted
to extract interschema properties from E/R schemas. DIKE
has been conceived to operate with quite a small number
of information sources; as a consequence, it privileges ac-
curacy to computation time. The extraction task is graph-
based and takes into account the “context” of the concepts
into examination; it exploits a large variety of thresholds
and weights in order to better adapt its behaviour to the
sources which it must operate on; these thresholds and
weights must be tuned during a training phase.
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4.3 Contribution of our approach
We are now able to illustrate the main novelties introduced
by our approach w.r.t. the previous ones illustrated above.
These novelties can be summarized as follows:

– For each pair of sub-schemas into examination, our
approach analyzes both interschema properties and
the structural relationships holding among the com-
plex elements stored therein; structural relationships
are modelled and handled by means of the reachable
function.

In the literature some schema-based approaches con-
sider both the similarity of the elements belonging to
promising sub-schemas and their structural relation-
ships; however, the notion of similarity considered
in these approaches is less rich and expressive than
that emerging from the usage of interschema prop-
erties. For instance, Cupid (20) considers only lex-
ical matchings stored in a thesaurus and the “adja-
cency” of schema elements (e.g., if an element X is
a sub-element of an element Y ); Similarity Flood-
ing (22) defines an ad-hoc graph matching algorithm
which uses a string-matching technique to determine
the similarity of two groups of schema elements;
MAFRA (21) and the approach of (14) represent input
Schemas as graphs and use linguistic and structural
constraints to derive 1:1 and 1:m matchings; finally,
the approach of (30) considers structural properties of
input schemas (represented as graphs) and uses infor-
mation extracted from a thesaurus to find sub-schema
similarities.

By contrast, instance-based approaches, like iMAP
(7), SemInt (18), the approach of (31), the approach
of (16) and CGLUE (11), perform a detailed analy-
sis of the extensional component of each data source.
This analysis is quite complex and refined because it
considers not only the similarities existing among sin-
gle elements but also complex co-occurrence patterns
involving concepts belonging to different schemas.
This analysis yields accurate and important results be-
cause it is often able to derive interesting semantic
correspondences which would be usually neglected
by a traditional schema-based approach. However,
these approaches require a significant data prepara-
tion phase (as in (16; 31)) and a, often long, train-
ing phase (as in iMAP (7), SemInt (18), and CGLUE
(11)).

Our approach tries to overcome the shortcomings
characterizing schema-based and instance-based ap-
proaches, while preserving their merits. Specifically,
unlike most of schema-based approaches, it consid-
ers interschema properties, instead of lexical simi-
larities or string matchings, as the basic properties
for the computation of sub-schema similarities. The
exploitation of interschema properties allow our ap-
proach to achieve a great accuracy since these prop-

erties are able to capture the semantic correspon-
dences that would be usually neglected by lexical-
based matchings (because two terms might be con-
ceptually equivalent even though they have different
names), or to discard semantic matchings that are er-
roneously recognized by lexical approaches (because
two terms might represent different real-world con-
cepts even though they are associated with the same,
or at least quite similar, names). In addition, analo-
gously to schema-based approaches, our own is scal-
able (see Section 3.9); this important feature derives
from the fact that it mainly manages schema-based in-
formation.

Unlike instance-based approaches, our approach does
not inspect the extensional component of involved
data sources and does not need a training phase. Ow-
ing to these reasons, it requires a less computational
effort and a much more reduced human intervention.
In spite of this fact, experimental tests performed in
Section 3 show that the accuracy achieved by it is
fully satisfactory and comparable with that obtained
by instance-based approaches.

– Our approach conceptually separates the derivation
of 1:1 matchings and the extraction of 1:m and m:n
matchings. In fact, it proposes a technique for the
derivation of sub-schema similarities (i.e., 1:n and
m:n matchings) which is separate and independent of
(although conceptually uniform with) the approach for
the extraction of 1:1 matchings described in (6). Our
sub-schema similarity derivation approach simply re-
quires an Interschema Property Dictionary as input
and does not oblige the user to apply the approach of
(6) for constructing it.

As a consequence, our approach can take advantage of
the fact that some 1:1 matching derivation techniques
are competitive in some scenarios, whereas other, con-
ceptually different, techniques operate well in other
different scenarios. A human expert could select the
schema matching technique producing the best results
in his scenario and could apply it to derive 1:1 match-
ings; then, he could use these matchings to derive new
sub-schema similarities.

In the literature, some approaches (e.g., (7; 11; 16;
18; 22; 23; 30; 32)) explicitly designed to derive
m:n and 1:n matchings regard 1:1 matchings as spe-
cial cases of m:n matchings. Other approaches (e.g.,
(9; 14; 20; 21; 24; 25)) propose a two-phase tech-
nique: first they derive 1:1 matchings and, then, ex-
ploit these matchings, along with other support infor-
mation derived during the first phase, for extracting
m:n matchings. As previously pointed out, our ap-
proach follows a third philosophy that does not con-
sider 1:1 matchings as special cases of 1:n and m:n
matchings and, at the same time, in order to derive
m:n matchings, it does not need any further informa-
tion derived during the computation of 1:1 matchings.
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– Our approach considers two kinds of sub-schema sim-
ilaritie, namely, strong similarities, computed starting
from synonymies, and weak similarities, computed
by taking also hyponymies and overlappings into ac-
count. Strong similarities detected by our system are
usually few and characterized by a high level of trust-
worthiness; on the contrary, weak similarities are able
to provide a wide picture of the semantic relationships
between two schemas, even if this picture might con-
tain some sub-schema similarities that could be not
completely reliable in some application contexts.

A clear distinction between strong and weak similari-
ties is not present in any of the approaches described
in Section 4.2.

As a consequence of this distinction, our system is
characterized by a great flexibility; in fact, according
to the operating scenario, a human expert could prefer
to manage a small set of highly reliable sub-schema
similarities or, alternatively, he could want to consider
a wide set of sub-schema similarities, some of which
could be not precise.

5 Conclusions

In this paper we have presented a semi-automatic ap-
proach to deriving sub-schema similarities between XML
Schemas; we have shown that our approach is specialized
for XML sources, is almost automatic and “light”. It con-
sists of two steps: the first one selects a set of promising
pairs of sub-schemas, whereas the second one computes
sub-schema similarities.

We have pointed out that our approach is part of a more
general framework that allows a uniform derivation of sim-
ilarities and dissimilarities among concepts and groups of
concepts represented in semantically heterogeneous XML
Schemas. We have also presented the experimental results
we have obtained by applying our approach on some, quite
variegate, XML Schemas. Finally, we have examined vari-
ous other related approaches previously proposed in the lit-
erature and we have compared them with ours by pointing
out their similarities and differences.

At present we are working on the development of an
XML Schema integration approach taking sub-schema
similarities into account. In the future, we plan to study the
possibility to make our sub-schema similarity derivation
technique more refined by taking into account the “context”
which the sub-schemas into consideration are involved in,
in such a way as to define their semantics in a more precise
fashion.

In addition, we plan to develop techniques exploiting
sub-schema similarities in other application contexts such
as those we have mentioned in the Introduction.

Finally, we argue that several other semantic relation-
ships, already studied for single concepts could be ex-
tended to sub-schemas. In the future, we plan to verify if

this intuition is really feasible and, in the affirmative case,
to define suitable approaches.
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