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This paper presents an efficient scheme for blind watermark estimation embedded using additive water-
mark embedding methods. The scheme exploits mutual independence between the host media and the
embedded watermark and non-Gaussianity of the host media for watermark estimation. The proposed
scheme employs the framework of independent component analysis (ICA) and poses the problem of wa-
termark estimation as a blind source separation (BSS) problem. Analysis of the scheme shows that the
proposed detector significantly outperforms existing correlation-based blind detectors traditionally used
for SS-based watermarking. The proposed ICA-based blind detection/decoding scheme has been simu-
lated using real-world audio clips. The simulation results show that the proposed ICA-based method can
detect and decode watermark with extremely low decoding bit error probability (less than 0.01) against
common watermarking attacks and benchmark degradations.

Povzetek: Opisana je metoda odkrivanja vodnega tiska.

1 Introduction
Digital forgeries and unauthorized sharing of digital media
have emerged as a growing concern over the last decade.
The widespread use of multimedia information is aided by
factors such as the growth of the Internet, the prolifera-
tion of low-cost and reliable storage devices, the deploy-
ment of seamless broadband networks, the availability of
state-of-the-art digital media production and editing tech-
nologies, and the development of efficient multimedia com-
pression algorithms. Multimedia piracy has subjected the
entertainment industry to enormous annual revenue losses.
For example, music industry alone claims multi-million il-
legal music downloads on the Internet every week. It is
therefore imperative to have robust technologies to protect
copyrighted digital media from illegal sharing and tamper-
ing. Traditional digital data protection techniques, such as
encryption and scrambling, alone cannot provide adequate
protection as these technologies are unable to protect dig-
ital content once they are decrypted or unscrambled. Dig-
ital watermarking technology complements cryptography
for protecting digital content even after it is deciphered [1].

Digital watermarking refers to the process of impercepti-
ble embedding information (watermark) into the digital ob-
ject ( or the host object). Existing watermarking schemes
based on the watermark embedding method used can be
classified into two major categories:

1. blind embedding, in which the watermark embed-
der does not exploit the host signal information dur-
ing watermark embedding process. Watermarking
schemes based on spread-spectrum (SS) [1, 2, 3, 4, 5]

fall into this category.

2. informed embedding, in which the watermark embed-
der exploits knowledge of the host signal during wa-
termark embedding process. Watermarking schemes
based on quantization index modulation [1, 6] belong
to this category.

Similarity, existing watermarking schemes based on the
detection method used cab be classified into two major cat-
egories:

1. informed detector, which assume that the host signal
is available at the detector during watermark detection
process, and

2. blind detector, which assume that the host signal is
not available at the detector for watermark detection.

Although the performance expected from a given wa-
termarking system depends on the target application area
[1], but robustness of the embedded watermark and effi-
cient detection are desirable features of a give watermark-
ing scheme. In addition, fidelity (or imperception) of the
embedded watermark is additional requirement of percep-
tion based watermarking schemes [1]. To meet fidelity re-
quirement, the power of the embedded watermark (water-
mark strength) is generally kept much lower than the host
signal power.

In this paper we consider additive watermark embedding
model, e.g. SS-based watermarking, where the watermark
signal is added to the host signal in the marking space to
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obtain the watermarked signal. Existing watermark detec-
tion schemes for SS-based watermarking generally employ
statistical characterization of the host signal to develop an
optimal or suboptimal watermark detector [6, 7, 8]. It is im-
portant to mention that blind watermark detectors for SS-
based watermarking perform poorly as the host-signal acts
as interference at the blind decoder. Therefore, nonzero
decoding error probability at the blind watermark decoder
even in the absence of attack-channel distortion is one of
the limitations of existing blind watermark detectors for
SS-based watermarking schemes.

This paper presents a novel blind watermark detec-
tion method for the blind additive watermark embedding
schemes[1, 2, 3, 4, 5]. The main motivation of this pa-
per is to design a blind detector for SS-based watermarking
schemes capable of suppressing host-signal interference (or
improving watermark-to-host ratio) at the detector, hence
improving decoding as well as detection performance. To-
wards this end, the proposed detector uses ICA framework
by posing watermark detection problem as a blind source
separation (BSS) problem. The proposed detector models
the received watermarked signal as a linear mixture of un-
derlying independent components (the host signal and the
watermark). It also assumes non-Gaussianity of the host
signal. Recently, we have shown in [15, 16, 17] that the
watermark estimation problem for SS-based watermarking
can be modeled as that of BSS of underdetermined mix-
ture of independent sources. Therefore, the ICA framework
could be used to estimate the watermark from the water-
marked signals obtained using additive embedding model.

The proposed ICA-based detector first estimates the hid-
den independent components (i.e., the watermark and the
host signal) from the received watermarked signal using the
ICA framework, and then these estimated components are
used to detect the embedded watermark. We present the-
oretical analysis to show that the proposed ICA-based de-
tector performs significantly better than the existing water-
mark detectors operating without canceling the host signal
interference at the watermark detector for watermark detec-
tion [6, 7]. Simulation results also show that the proposed
detector in estimation-correlation based detection settings
also outperforms the normalised correlation based detector
(commonly used for watermark detection in SS-based wa-
termarking community [1, 2, 3]) operating without host in-
terference suppression. Simulation results presented in this
paper are evaluated against variety of signal manipulations
and degradations applied to the watermarked media. These
signal degradations include addition of colored and white
noise, resampling, requantization, lossy compression, fil-
tering, time- and frequency-scaling, and StirMark for audio
benchmark attacks [20, 19, 18]. The proposed ICA-based
watermark detector is applicable to SS-based watermarking
of all media types, i.e. audio, video and images. However,
in this paper the proposed detector is tested for digital au-
dio (which includes music and voiced speech signals only)
as the host media for watermark embedding, detection, and
performance analysis.

In the past ICA-based framework has been used for mul-
timedia watermarking [9, 10, 11, 13, 14, 12]. However,
existing ICA-based data-hiding schemes are either not ap-
plicable to SS-based watermarking [9, 10, 11, 13] or use
an informed detection framework for watermark extrac-
tion/extraction [14, 12] therefore are not discussed in this
manuscript. For example, Yu et al in [14] have proposed
ICA-based watermark detector that can be used for SS-
based watermarking but their detector uses the embedded
watermark and a private data during watermark extraction
process. Similarly, Sener et al’s proposed ICA based wa-
termark detector in [12] is also applicable to SS-based wa-
termark detection, but their proposed detector also also re-
quires the original watermark during watermark detection
process; therefore, cannot be used for blind watermark de-
tection/extraction applications.

Rest of the paper is organized as follow: basics of SS-
based watermarking are discussed in Section 2; a brief
overview of the independent component analysis theory is
provided in Section 3. The proposed ICA-based watermark
detector along with its decoding, detection, and maximum
watermarking-rate performance analysis are described in
Section 4. Simulation results for decoding bit error prob-
ability performance of the proposed ICA-based watermark
detector and a correlation-based detector against different
attacks and signal degradations are described in Section 5.
Finally the concluding remarks along with future research
directions are presented in Section 6.

2 Basics of SS-based watermarking
The SS based watermarking system can be modeled using
a classical secure communication model [1], as shown in
Fig. 1. In Fig. 1, S ∈ Rn is a vector containing coeffi-
cients of the host signal in marking space. It is assumed
that the coefficients, Si : i = 0, 1, · · · , n− 1, are indepen-
dent and identically distributed (i.i.d.) random variables
(r.v.) with zero mean and variance σ2

s . A watermark, V,
is generated using: (1) a message bit, b ∈ {±1}, to be
embedded into n coefficients of the host signal, (2) a key-
dependent pseudo-random sequence W ∈ {±1}n, and
(3) a perceptual mask, α ∈ Rn, estimated based on the
human auditory system (HAS) and the host signal S, i.e.
α = f(S, HAS). We further assume that the watermark
sequence W and the host signal coefficients S are mutu-
ally independent. The amplitude-modulated watermark is
spectrally shaped according to perceptual mask α to meet
the fidelity requirement of the perception based watermark-
ing. The watermarked signal X is obtained by adding an
amplitude-modulated watermark V = α¯Wb, here¯ de-
notes element-wise product of the two vectors, to the host
signal S. The watermarked signal X can be expressed as

X = S + V, (1)

The embedding distortion, De can be expressed as,

De = X− S. (2)
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Figure 1: Perceptual based data hiding system with blind receiver

The mean-squared embedding distortion, de is expressed
as,

de =
1
n

E{‖De‖2}

=
1
n

E{‖X− S‖2}

=
1
n
‖α¯Wb‖2

=
1
n

n−1∑

i=0

α2
i = σ2

v , (3)

where ‖ · ‖ represents the Euclidian norm, E{·} denotes
expected value of a r.v., and σ2

v represents variance of the
watermark V.

The signal distortion due to an active adversary attack
can be viewed as channel noise, N, as shown in Fig. 1.
The received watermarked signal at the detector, X̃,

X̃ = X + N, (4)

is processed for watermark detection.
The watermarking schemes based on blind additive em-

bedding model generally use probabilistic characterization
of the host signal to develop an optimal or suboptimal wa-
termark detector (in ML sense). The statistical character-
izations of real-world host signal are available in spatial
domain as well as in the transform domain. For exam-
ple, stationary speech samples/coefficients both in the time
domain and in the DWT domain can be approximated by
Laplacian distribution [21] (see Appendix A for the proba-
bility distribution function (pdf) of DWT coefficients) i.e.,

fs(τ) =
β

2
e−β|τ |, | τ |< ∞, (5)

where β =
√

2
σs

The average decoding bit error probability, Pe, under
zero-channel distortion scenario, i.e. Ni = 0, can be calcu-
lated by assuming that

1. the watermarked sample Xi is obtained by adding
a binary amplitude-modulated watermark Vi, i.e.
αiWib,

2. the detector is based on Neyman-Pearson criterion,

3. no pre-processing is applied to the watermarked audio
to suppress host interference,

4. Wi takes values ±1 with probability 1
2 ,

In addition, for performance analysis we will consider two
information embedding scenarios: (1) one bit b ∈ {±1}
of information is embedded in each coefficient of the host
signal, Si, and (2) one bit b ∈ {±1} of information is em-
bedding in |ζ| coefficients of the host signal S, where |ζ|
denotes the cardinality of the selected coefficient indices
set ζ.

Consider one bit embedding per coefficient, i.e. n = 1,
case first. It has been shown in [7] that the ML decoder
estimates b̂ = 1 if X̃0W0 > 0 and an error will occur when
X̃0W0 < 0. The average Pe is given by

Pe = Pr{X̃0W0 < 0|b = 1}

=
∫ 0

−∞
fs(τ − α) dτ. (6)

Assuming the Laplacian distribution model for the host,
it can be shown

Pe =
1
2
e−
√

2/λ0 , (7)

where λ0 = σs

σv0
which is generally referred as signal-

to-watermark ratio (SWR), when expressed in dB i.e.
SWR = 20 log10 λ.

It can be observed from Eq. (7) that non-zero Pe is not
achievable even in the absence of attack-channel distortion,
and Pe = f(λ). In addition, the value of the parameter λ
determines the tradeoff between fidelity of the embedded
watermark and Pe.

Consider second embedding scenario, i.e., one bit infor-
mation is embedded in |ζ| = n coefficients of the host. In
this case the watermarked audio is given by,

Xi = Si + αiWib, i ∈ ζ. (8)

Let us assume that the watermarked signal used for detec-
tion is free of attack-channel distortion, and message sym-
bols are equally probable. In this case, the ML decoder
that minimizes the decoding error probability will assign
decision regions D− and D+ as follow,

ln
fx(x|b+)
fx(x|b−)

= ln
fx(x− α̂w)
fx(x + α̂w)

D+

≷
D−

0, (9)



52 Informatica 33 (2009) 49–68 H. Malik

where b+(resp.b−) represent the event that binary infor-
mation b = +1(resp.b = −1) is embedded in the selected
indices and α̂ is the masking threshold estimated from wa-
termarked audio. It is shown in Section 4 that the estimated
of masking threshold from the unwatermarked and water-
marked audio clip are very close given that attack-channel
distortion induced into the watermarked audio is below cer-
tain threshold. It is therefore reasonable to assume that
α̂ ≈ α.

The ML sufficient statistic, T , assuming Laplacian pdf
for the host coefficients Si, can be written as,

T (x| s, α̂) =
∑

i∈ζ

β (|Xi + α̂iWi| − |Xi − α̂iWi|) . (10)

If b = 1 was embedded, then the sufficient statistics T can
be expressed as,

T (x| s, α̂) =
∑

i∈ζ

β (|Si + 2α̂iWi| − |Si|) . (11)

Here the ML detector is a bit-by-bit hard decoder, i.e.,

b̂ = sgn(T ). (12)

To determine the bit error probability for this ML decoder,
a statistical characterization of T is required. Here T is
sum of |ζ| i.i.d. random variables. Therefore, by applying
the central limit theorem (CLT), T can be approximated by
the Gaussian random variable. Mean of T , E{T} can be
calculated as,

E{T (x| s, α̂)} =
∑

i∈ζ

β (Es,w (|Si + 2α̂iWi| − |Si|)) , (13)

and variance,

E{T} =
∑

i∈ζ

(
e−2

√
2/λi +

2
√

2

λi
− 1

)
, (14)

Var{T (x| s, α̂)} =
∑

i∈ζ

β (Vars,w (|Si + 2α̂iWi| − |Si|)) (15)

Var{T} =
∑

i∈ζ

(
3− e−4

√
2/λi − e−2

√
2/λi

(
1 +

4
√

2

λi

))
. (16)

In this case, the Pe is given as,

Pe = Q

(
|E{T}|√
Var{T}

)
, (17)

where Q (x) = 1√
2π

∫∞
x

e−t2/2 dt

Eq. (17) shows that the decoding error probability Pe is
non-zero even in the absence of attack-channel distortion,
and Pe is a function of λ. The above analysis also shows
that the detection/decoding performance of a blind detec-
tor for additive embedding schemes is inherently bounded
below by the host-signal interference at the detector. The
main motivation behind this paper is to design a water-
mark detector for additive embedding schemes with an
improved watermark detection, decoding, and maximum
watermarking-rate performances by suppressing the host-
signal interference at the blind detector. Towards this end,
theory of ICA is used by posing watermark estimation

for additive embedding as a BSS problem. The proposed
framework first estimates embedding watermark using BSS
based on ICA which is then used for detection and decod-
ing. The fundamentals of the ICA theory are briefly out-
lined in the following section followed by the details of the
proposed ICA-based detector.

3 Independent Component Analysis
Independent component analysis (ICA) is a statistical
framework for estimating underlying hidden factors or
components of multivariate statistical data. In the ICA
model, the data variables are assumed to be linear or non-
linear mixtures of some unknown latent variables, and the
mixing system is also unknown [23, 22]. The hidden vari-
ables are also assumed to be non-Gaussian and mutually
independent. The ICA model can be considered as an ex-
tension of the principal component analysis (PCA) and fac-
tor analysis [23, 22]. In fact, ICA can be treated as non-
Gaussian factor analysis, since data is modeled as a lin-
ear mixture of underlying non-Gaussian factors. The ICA
framework has been used in diverse application scenarios
including blind source separation (BSS), feature extraction,
telecommunication, and economics [23, 22]. In the follow-
ing we will review only the linear ICA framework since
only that is relevant to the SS-based watermarking model.
In general, the linear ICA model can be defined for noise-
free as well as noisy scenarios as follows.

Noise-free ICA model: ICA of a random vector X ∈
Rm consists of estimating the following generative model
of the data:

X = AS, (18)

where X represents n-realizations of the observed m-
dimensional random vector, S ∈ Rn1 is the hidden random
variables and A ∈ Rm×n1 is mixing matrix. The hidden
variables, S(i), in the vector S =

[
S(1), · · · ,S(n1)

]t
are

assumed statistically independent.
Noisy ICA model: ICA of a random vector X consists

of estimating the following generative model of the data:

X = AS + N, (19)

where N is n-realizations of an m-dimensional random
noise, while X, S, and A are the same as in the
noise-free model in Eq. (18).

In this paper, we use the noisy ICA generative model
to design an ICA-based watermark detector for SS-based
watermarking schemes. The proposed ICA-based water-
mark detector attempts to estimate the embedded water-
mark from the watermarked signal while reducing the host-
signal interference at the watermark detector. Before esti-
mating the underlying independent components from ob-
served data using ICA framework, the generative model
should meet certain conditions to ensure the identifiability
of the ICA model. The identifiability constraints defined
in [22, 24, 25, 29, 26, 27] underdetermined ICA (UICA)
model are outlined below:



BLIND WATERMARK ESTIMATION. . . Informatica 33 (2009) 49–68 53

1. Statistical independence: The hidden (latent) vari-
ables/sources are statistically independent.

2. Non-Gaussianity: At most one of the underlying inde-
pendent components S(i), i = 1, 2 · · ·n1, is normally
distributed.

Therefore, independence and maximum non-Gaussianity
are two fundamental ingredients of the UICA framework.
Independence of the underlying components is one of the
assumptions that is made to estimate components from the
linear mixture. Note that independence of the underlying
components is a stronger condition than uncorrelatedness,
e.g., for the BSS problem, there might be many depen-
dent but uncorrelated representations of the observed sig-
nals and these uncorrelated but dependent representations
of the observed signals cannot separate the mixed sources
[22]. Therefore, uncorrelatedness itself is insufficient to
solve the BSS problem. In fact, independence implies non-
linear uncorrelatedness [22], that is, if S(1) and S(2) are
two independent components then any nonlinear transfor-
mations of these components, say, φ1(S(1)) and φ2(S(2))
, are uncorrelated as well (i.e. their covariance is zero).
On the other hand, if S(1) and S(2) are assumed to be just
uncorrelated then in general, the corresponding nonlinear
transformations do not necessarily have zero covariance.
Thus to perform ICA, a stronger form of decorrelation of
the underlying components is required, that is, nonlinear
decorrelation. A suitable selection of nonlinearities, i.e.
φ1(·) and φ2(·), can be achieved by using tools like max-
imum likelihood and mutual information from estimation
theory and information theory [22].

Maximum non-Gaussianity is another important require-
ment of ICA-based hidden components estimation [23, 22,
38, 30]. A quantity kurtosis defined in terms of the fourth-
order central moment κ is generally used as a measure of
non-Gaussianity of a random variable. Kurtosis of a real
random variable S can be defined as,

κ =
(
E{(S − E(S))4}/E2{(S − E(S))2}

)
− 3. (20)

A normal random variable has zero kurtosis; therefore, kur-
tosis is a measure of the distance of a random variable from
a Gaussian distribution. Distributions that are peakier (flat-
ter) about the mean than a Gaussian distribution generally
have positive (negative) kurtosis. Random variables with
positive kurtosis, i.e. κ > 0, are generally called super-
Gaussian. The Laplacian distribution is a typical exam-
ple of this case. Random variables with negative kurtosis
value, i.e., κ < 0 are called sub-Gaussian, e.g., the uniform
distribution.

The BSS is one of the most widely explored applica-
tions of the ICA model [23, 22]. In case of BSS using ICA
framework, the recovery of the underlying sources relies on
the assumption that the constituent sources are mutually in-
dependent. The cocktail party problem is a classical exam-
ple of BSS, where several people are simultaneously speak-
ing in the same room and objective is to separate voices

of different speakers using microphone recordings (in the
room). In order to illustrate the idea n1 speakers (sources)
are considered here. The observation X ∈ Rm× n is gen-
erated by mixing sources S ∈ Rn1× n by a mixing matrix
A ∈ Rm× n1 . The static linear mixing model can be ex-
presses as,

Xi = ASi + Ni, i = 1, 2, · · · , n (21)

The aim of BSS is the recover the underlying sources
S(l), l = 1, 2, · · · , n1 from the observation X only. The
ICA achieves the separation relying on the assumption that
the underlying sources are mutually independent. To this
end the ICA framework finds a linear representation in
which the underlying components are statistically indepen-
dent. In other words, BSS using ICA tries to estimate
the demixing (separating) matrix, B ∈ Rn1×m, from the
observed data X. The estimated demixing matrix is the
inverse (or generalized inverse) of mixing matrix A, i.e.,
B̂ = Â† = (ÂT Â)−1ÂT . Most of existing BSS schemes
using ICA model are based on the information-theoretic
framework. For example, Bell et al’s [21] ICA scheme is
based on the idea of information maximization, or infomax
among the estimated independent components. P. Comon
in [23] has used higher-order cumulants whereas, Gaeta et
al in [28] used ML estimation framework for BSS. Many
existing BSS methods are extensions of infomax, higher-
order cumulants, and ML method [23, 22].

4 Proposed ICA Based Watermark
Detector

The proposed ICA-based watermark detector consists of
two stages: 1) watermark estimation stage, and, 2) wa-
termark decoding and/or detection stage. The watermark
estimation stage estimates watermark V̂ from the received
watermarked audio X̃ using ICA framework, whereas, the
watermark decoding (resp. detection) stage decodes (resp.
detects) the embedded watermark using the ML approach.
The block diagram of the proposed watermark detector is
given in the Fig. 2.
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Figure 2: Block diagram of the proposed ICA-based water-
mark detector

In general the ICA model for BSS estimates the demix-
ing matrix B̂ from the observed data X, and hence the un-
derlying independent components Ŝ(i). This model is ex-
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tendable to the watermark estimation problem for the wa-
termarked signal, assuming identifiability conditions of the
UICA model are satisfied. To verify whether the additive
embedding model (Eq. (1)) satisfies the identifiability con-
straints of an ICA model, rewrite Eq. (1) with b = 1, i.e.,

X = S + α¯W.

The non-Gaussianity of the host signal and the watermark
is the only requirement to satisfy constraints of UICA.
As mentioned in Section (2) that real-world audio sam-
ples/coefficients in the time domain as well as in the DWT
domain can be approximated by the Laplacian distribu-
tion (see Appendix A) and therefore if the watermark,
W, is generated based on some non-Gaussian distribu-
tion then non-Gaussianity constraint of UICA model is sat-
isfied as well. Once the identifiability conditions of the
UICA model are satisfied, the noisy ICA model can be ex-
tended to estimate the watermark from the watermarked au-
dio generated using Eq. (1).

4.1 Watermark Estimation
For watermark estimation, the proposed watermark detec-
tor first estimates the watermark-mixing matrix Â which
is then to estimate the underlying independent components
(i.e., the host signal S and the watermark W). An esti-
mate of the watermark-mixing matrix, Â, is usually ob-
tained by optimizing a highly nonlinear function of the hid-
den sources also known as contrast function [23, 22]. The
pseudo-inverse of the estimated watermark-mixing matrix
Â† is applied to the observed mixture to estimate the host
signal Ŝ and the watermark Ŵ. However, as noted earlier,
in the case of blind detectors for SS-based watermarking
schemes, watermark estimation using ICA framework is a
degenerate case, i.e., m < n1. Therefore, just the esti-
mation of watermark-mixing matrix is insufficient to sepa-
rate the underlying independent components perfectly. In
the case of additive embedding, the equation X = ÂS
has an affine set of solutions [34]. A preferred solution
in this affine set is generally selected using probabilistic
prior model of the independent components [39]. The per-
formance of the proposed ICA-based watermark estimator
depends on the separation quality of the separated (esti-
mated) watermark. The separation quality of the separated
source is generally measured in terms of, 1) source-to-
interference ratio (watermark-to-interference ratio (WIR),
in case of watermark estimation), source-to-noise ratio,
and 2) source-to-artifact ratio (for further details on these
separation quality measures please see [35] and references
therein). For performance analysis of the proposed ICA
detector, only WIR distortion measure is considered here;
therefore, the estimated watermark can be expressed as

V̂i = η1iαiWib + Sinterf
i , (22)

where η1i ∈ R, 0 < η1i ≤ 1 and Sinterf
i is interference due

to the host signal.

Let Sinterf
i = η2iSi, η2i ∈ R, and 0 < η2i ≤ 1 then Eq.

(22) can be rewritten as,

V̂i = η1iαiWib + η2iSi. (23)

The relative distortion due to interference in the estimated
watermark is defined as,

Dinterf = (η1/η2)
2
, (24)

where WIR = 10 log10

(
Dinterf

)
dB.

In general, Dinterf > 0 dB for most of existing BSS
schemes based on ICA framework [34, 35]. Several re-
searchers have proposed elegant BSS algorithms based on
ICA model for noisy data [38, 36, 31], these algorithms can
be used for watermark estimation from the watermark au-
dio. Among these, the FastICA for noisy data [38] is used
in this paper due to its better computational and separation
quality performance over existing algorithms [34].

It can be observed from Eq. (23) that the ICA stage acts
as a pre-processing stage that suppresses the host interfer-
ence or improves watermark-to-host ratio. Once estimated
watermark V̂ is available, an optimal detector can be de-
signed based on the statistics of V̂ for watermark detection
(resp. decoding). It is important to notice that ICA based
pre-processing stage uses constraints like mutual indepen-
dence of the underlying sources, non-Gaussianity, and mul-
tichannel observation i.e. m ≥ 2. A constrained opti-
mization of highly nonlinear cost function e.g. tanh(x),
x exp(−x2), etc. is used to suppress the host interference
in the estimated watermark [22, 23]. In addition, under
practical scenarios, BSS using ICA also requires reason-
ably large number of data samples n to separate the un-
derlying sources. Therefore, ICA based pre-processing to
suppress host interference is inherently different from fil-
tering based pre-processing schemes i.e., optimal linear fil-
tering [44], wiener filtering, non-linear filtering, etc. The
ICA-based pre-processing stage is to improve watermark-
to-host ratio hence expected to improve the detection per-
formance [41, 42]. It is however important to mention that
improvement comes at the cost of higher computational
power.

In the following subsections we analyze the performance
of the proposed ICA-based detector in terms of three pa-
rameters: (1) detection rate in terms of false positives and
true positives 4.2, (2) decoding error probability 4.3, and
(3) maximum watermarking rate 4.4.

4.2 Watermark Detection: Performance
Analysis

A watermark detector is generally characterized by two
performance measures: the probability of false alarm PF

and the probability of detection PD. The probability of de-
tection represents the probability of deciding on the pres-
ence of a watermark when the received audio indeed con-
tains a watermark. The probability of false alarm represents
chances of deciding the presence of a watermark when in
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fact the received audio does not contain a watermark. The
watermark detection process can be treated as a binary de-
cision problem in the presence or absence of attack-channel
distortions.

We first consider the case where the received water-
marked audio has not suffered attack-channel distortion.
The estimated watermark is given by,

V̂i = η1iαiWib + η2iSi, i ∈ ζ. (25)

In this scenario, the watermark detection can be formulated
as a binary hypotheses test,

H1 : V̂i = η1iα̂iWib + η2iSi

H0 : V̂i = η2iSi, i ∈ ζ. (26)

In this detection problem, the watermark W is the target
signal and host interference, η2S acts as additive noise.
The goal of watermark detector is to determine presence
or absence of the watermark in the estimated watermark
V̂ based on the statistics of S and W. Let us assume
that statistics of unwatermarked and watermarked audio are
same [43], therefore pdfs under each hypothesis are known.
The decision rule, in this scenario is based on likelihood ra-
tio which is given as:

Λ(V̂) =
∏

ζ

(
fv̂(v̂|H1)
fv̂(v̂|H0)

)
H1

≷
H0

ξ́ (27)

where Λ(V̂) is likelihood ratio and ξ́ is decision thresh-
old.

The log-likelihood is defined as,

L(V̂) = ln
(
Λ(V̂)

)
(28)

= ln


∏

ζ

(
fv̂(v̂|H1)

fv̂(v̂|H0)

)


= ln


∏

ζ

(∑

l

(
p(bl)fv̂(v̂|H1)

fv̂(v̂|H0)

))


= ln


∏

ζ

(∑

l

(
p(bl)fś(v̂ − α̂¯wbl)

fś(v̂)

))


H1≷
H0

ξ (29)

where, l ∈ {±1}, ξ = ln(ξ́) and r.v. Śi is defined as
Śi = η2iSi.

In the above test, the decision threshold ξ can be min-
imized based on Neyman-Pearson rule, that is, maximize
the PD for a given value of PF [41, 42].

Assuming Laplacian distribution for the host audio, the
L(V̂) can be written as,

L(V̂| s, α̂, η̂1, η̂2) =
∑

i∈ζ

β́i

(
|V̂i| − |V̂i − η̂1iα̂iWi|

)
, (30)

where β́i =
√

2/η̂2iσs, η̂1, and η̂2 are estimates of scaling
coefficients of V and S in V̂. Estimation details of η̂1, and
η̂2 are discussed in Section 4.5.

The statistical characterization of L(V̂ ) under hypothe-
sis H0 can be determined as,

L(V̂|H0, s, α̂, η̂1, η̂2) =
∑

i∈ζ

β́i

(
|V̂i| − |V̂i − η̂1iα̂iWi|

)
, (31)

L(V̂|H0, s, α̂, η̂1, η̂2)
def=

∑

i∈ζ

β́i (Zi) , (32)

where Zi
def= |V̂i| − |V̂i − η̂1iα̂iWi|. (33)

Here L(V̂|H0, s, α̂, η̂1, η̂2) is the sum of |ζ| statistically
independent random variables that can be approximated by
the Gaussian random variable based on the CLT, mean, m0

and variance, σ2
0 of L(V̂|H0, s, α̂, η̂1, η̂2) is calculated

as follows,

m0
def= E{L(V̂|H0, s, α̂, η̂1, η̂2)} (34)

=
∑

i∈ζ

β́iE{Zi},

σ2
0

def= Var{L(V̂|H0, s, α̂, η̂1, η̂2)} (35)

=
∑

i∈ζ

β́2
i Var{Zi}.

Averaging Eq. (36) over W , we have,

Ew{Zi} = |Śi| − 1

2

(
|Śi|+ η̂1iα̂i +

∣∣∣|Śi| − η̂1iα̂i

∣∣∣
)

, (36)

Varw{Zi} =
1

4

(
|Śi|+ η̂1iα̂i +

∣∣∣|Śi| − η̂1iα̂i|
∣∣∣
)2

. (37)

These equation can be rewritten as,

Ew{Zi} =

{
|Śi| − η̂1iα̂i |Śi| ≤ η̂1iα̂i

0 |Śi| > η̂1iα̂i,
(38)

Varw{Zi} =

{
|Ś2

i | |Śi| ≤ η̂1iα̂i

η̂2
1iα̂

2
i |Śi| > η̂1iα̂i.

(39)

Averaging it over Ś we have,

E{Zi} = Eś (Ew{Zi}) (40)

=
1

β́i

(
1− e−β́iη̂1iα̂i − β́iη̂1iα̂i

)
,

Var{Zi} = Eś (Varw{Zi}) + Varś (Ew{Zi}) (41)

=
1

β́2
i

(
3− e−2β́iη̂1iα̂i − 2e−β́iη̂1iα̂i

(
1 + 2β́iη̂iα̂i

))
.

Substituting E{Zi}, and Var{Zi} in Eq. (36), we have,

m0 =
∑

i∈ζ

(
1− e

− η̂1i
√

2
η̂2iλi − η̂1i

√
2

η̂2iλi

)
, (42)

σ2
0 =

∑

i∈ζ

(
3− e

− η̂1i2
√

2
η̂2iλi − 2e

− η̂1i
√

2
η̂2iλi

(
1 +

2η̂1i

√
2

η̂2iλi

))
. (43)

Similarly, L(V̂ ) under hypothesis Hi can be written as,

L(V̂|H1, s, α̂, η̂1, η̂2) =
∑

i∈ζ

β́i

(
|V̂i + η̂1iα̂iWi| − |V̂i|

)
(44)
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Here L(V̂) can be approximated by a Gaussian random
variable with the same set of assumptions as under hypoth-
esis H0. In addition, the distribution of L(V̂) under hy-
pothesis H1 is symmetrical to the distribution of under H0

with respect to the origin. Therefore,

m1
def= E{L(V̂|H1, s, α̂, η̂1, η̂2)} (45)

= −E{L(V̂|H0, s, α̂, η̂1, η̂2)},
σ2

1
def= Var{L(V̂|H1, s, α̂, η̂1, η̂2)} (46)

= Var{L(V̂|H0, s, α̂, η̂1, η̂2)}
Now the probability of false alarm PF and the probability
detection PD are given as,

PF = Q

(
ξ + m1

σ1

)
, (47)

PD = Q

(
ξ −m1

σ1

)
. (48)

Lets define the watermark-to-noise ratio (WNR1) as

WNR1 def=
m2

1

σ2
1

. (49)

If we denote by Q−1(PF ) the value x ∈ R such that
Q(x) = PF then receiver operating characteristics (ROC)
of the proposed detector can be expressed as:

PD = Q
(
Q−1(PF )− 2

√
WNR1

)
. (50)

It can be observed from Eq. (50) that the detection per-
formance of the proposed detector is a function of WNR1.
Since the proposed ICA-based detector is designed to re-
duce the host-signal interference before detection, there-
fore, the ICA-based detector is expected to perform better
than the existing blind detectors [6, 3, 1] operating with-
out reducing host signal interference. The detection per-
formance improvement can be attributed to its host inter-
ference suppression or watermark-to-host ratio improving
capability. To illustrate this notion the theoretical ROC per-
formance of the proposed detector based on Eq. (50) for
different values of host interference suppression values (or
WIR) is given in Fig. 3. It can be observed from Fig. 3 that
the proposed detector performs superior that the detector
operating without host interference canceling.

4.3 Watermark Decoding: Performance
Analysis

To evaluate performance of the proposed detector in terms
of decoding error probability, let us consider watermark
embedding model given in Eq. (1) and decoding frame-
work discussed in Section 2. Consider one bit per coeffi-
cient embedding case first, that is, X0 = S0 + α0W0. The
Pe in this case for V̂0 can be expressed as,

Pe_ICA =
1
2
e−{

η̂10
η̂20

}(
√

2/λ0). (51)
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Figure 3: ROC performance of the proposed detector for
different values of WIR, SWR = 13 dB, and one bit per |ζ|
coefficients embedding, where |ζ| = 5 (theoretical values)

Here Eq. (51) shows that ICA-based detector does improve
decoding error performance. The decoding error perfor-
mance gain for the proposed ICA-based detector over the
traditional detector can expressed,

G =
Pe

Pe_ICA
= e−

√
2

λ0
{1− η̂10

η̂20
}. (52)

It is important to mention that in general BSS using ICA
have relatively small interference distortion, i.e., η̂10/η̂20

[34], therefore, G ≥ 0 for WIR > 0dB. The performance
gain ot the proposed ICA-based detector over that of the
decoder given by Eq. (7) is plotted in Fig. 4. It can be ob-
served from Fig. 4 that for a fixed value of SWR, decoding
error probability of the proposed detector improves with
the increase in the separation quality of the ICA scheme
used for watermark estimation.
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Figure 4: The decoding performance gain due to host-
interference suppression at the detector (theoretical values)

Now consider second embedding scenario, that is, one
bit is embedded into |ζ| coefficients of the host signal S,
i.e.,

Xi = Si + α̂iWib, i ∈ ζ. (53)

In this case, the estimated watermark V̂ using proposed
ICA-based watermark detector, under zero attack-channel
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distortion, can be expressed as,

V̂i = η2iSi + η1iα̂iWib, i ∈ ζ. (54)

For equally probable message symbols the ML decoder that
minimizes the Pe will satisfy the following condition,

ln
fv̂(v̂|b+, α̂, η̂1, η̂2)

fv̂(v̂|b−, α̂, η̂1, η̂2)
= ln

fś(v̂ − η̂1α̂w)

fś(v̂ + η̂1α̂w)
> 0. (55)

The ML sufficient statistics for Laplacian Ś can be written
as,

T (V̂| s, α̂, η̂1, η̂2) = (56)
∑

i∈ζ

β́i

(
|V̂i + η̂1iα̂iWi| − |V̂i − η̂1iα̂iWi|

)

Assuming b = 1, then T (V̂| s, α̂, η̂1, η̂2) can be expressed
as,

T (V̂| s, α̂, η̂1, η̂2) =
∑

i∈ζ

β́i

(
|Śi + 2η̂1iα̂iWi| − |Śi|

)
, (57)

T (V̂| s, α̂, η̂1, η̂2)
def=

∑

i∈ζ

β́iZi, (58)

where, Zi
def=

(
|Śi + 2η̂1iα̂iWi| − |Śi|

)
The ML decoder

is a bit-by-bit hard decoder

b̂ = sgn(T ) (59)

To determine the Pe for the ML decoder, a statistical
characterization of T (V̂) is required. As T (V̂) is sum
of |ζ| i.i.d. random variables, therefore, using CLT, T (V̂)
can be approximated by the Gaussian random variable, the
mean and variance of T can be computed as,

E{T (V̂| s, α̂, η̂1, η̂2)} def
=

∑

i∈ζ

β́iE{Zi}, (60)

Var{T (V̂| s, α̂, η̂1, η̂2)} def
=

∑

i∈ζ

β́2Var{Zi}. (61)

In Zi, W and Ś are the only r.v.s, so averaging Zi over r.v.
W condition to the selected host indices Ś and Wi ∈ {±1}
with probability 1

2 we have,

Ew{Zi} =
1

2

(
|Śi|+ 2η̂1iα̂i +

∣∣∣|Śi| − 2η̂1iα̂i

∣∣∣
)
− |Śi|, (62)

Varw{Zi} =
1

4

(
|Śi|+ 2η̂1iα̂i +

∣∣∣|Śi| − 2η̂1iα̂i

∣∣∣
)2

. (63)

rewriting the above equations, we have,

Ew{Zi} =

{
−|Śi|+ 2η̂1iα̂i |Śi| ≤ 2η̂1iα̂i

0 |Śi| > 2η̂1iα̂i,
(64)

Varw{Zi} =

{
|Ś2

i | |Śi| ≤ 2η̂1iα̂i

4η̂2
1iα̂

2
i |Śi| > 2η̂1iα̂i.

(65)

Now averaging over r.v. Śi, we have,
E{Zi} = Eś (Ew{Zi})

=
1

β́i

(
e−2β́iη̂1iα̂i + 2β́iη̂1iα̂i − 1

)
, (66)

Var{Zi} = Eś (Varw{Zi}) + Varś (Ew{Zi}) (67)

=
1

β́2
i

(
3− e−4β́iη̂1iα̂i − 2e−2β́iη̂1iα̂i

(
1 + 4β́iη̂iα̂i

))
.

Substituting E{Zi}, and Var{Zi} in Eq. (61) and Eq. (61),
we have,

E{T (V̂| s, α̂, η̂1, η̂2)} =
∑

i∈ζ

(
e
− η̂1i2

√
2

η̂2iλi +
2η̂1i

√
2

η̂2iλi
− 1

)
,

(68)
Var{T (V̂| s, α̂, η̂1, η̂2)} = (69)

∑
i∈ζ

(
3− e

− η̂1i4
√

2
η̂2iλi − 2e

− η̂1i2
√

2
η̂2iλi

(
1 + 4η̂1i

√
2

η̂2iλi

))
.

Therefore, Pe for an ICA-based detector is given as,

Pe_ICA = Q

(
|E{T}|√
Var{T}

)
(70)

It can be observed from Eq. (70) that the decoding error
probability of the ML decoder applied to the estimated wa-
termark is a function of WIR and SWR. The performance
of the proposed ICA-based detector given by Eq. (70) for
different values of WIR and SWR is plotted in Fig. 5. It
can observed from Fig. 5 that the proposed ICA-based de-
tector perform superior than the detector operating without
host-interference cancelation.
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4.4 Maximum Watermarking-Rate:
Performance Analysis

Maximum watermarking-rate (MWR) is another water-
marking performance measure which indirectly depends on
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the detector structure. Researchers in data hiding commu-
nity have proposed various host interference suppression
methods based on linear as well as non-liner filtering to
improve MWR performance of a blind detector. For exam-
ple, Su et al in [44] used optimal linear filtering to suppress
host interference at the blind detector to improve MWR.
The MWR performance of the proposed ICA-based water-
mark detector is evaluated for one bit per coefficient em-
bedding case, i.e, X0 = S0 + α0W0b. Let us assume the
the received watermarked sample is corrupted by indepen-
dent additive white Gaussian noise, with mean zero and
variance σ2

n0
. Here using CLT X̃0 can be approximated by

a Gaussian r.v. with mean zero and variance

σ2
x̃0

= σ2
s0

+ σ2
v0

+ σ2
n0

. (71)

In this case, the estimated watermark sample, V̂0 can be
expressed as,

V̂0 = η10α0W0 + η20S0 + N0 (72)

Again V̂0 can also be approximated by Gaussian r.v. with
mean zero and variance

σ2
v̂0

= η2
10σ

2
v0

+ η2
20σ

2
s0

+ σ2
n0

. (73)

The MWR of watermarking schemes based on additive em-
bedding using blind correlation-based watermark detector
can be approximated by the capacity of an additive white
Gaussian noise channel, i.e.,

RCor =
1
2

log2

(
1 +

σ2
v0

σ2
s0

+ σ2
n0

)
(74)

Similarly, MWR using an informed detector can be ex-
pressed as,

RInformed =
1
2

log2

(
1 +

σ2
v0

σ2
s0

)
(75)

And, MWR of the proposed ICA-based watermark detector
is given as,

RICA =
1
2

log2

(
1 +

η̂2
10σ

2
v0

η̂2
20σ

2
s0

+ σ2
s0

)
(76)

Since the ICA scheme used for watermark estimation has
reasonably good source separation performance [34, 35],
therefore following inequality will hold,

η̂2
10σ

2
v0

η̂2
20σ

2
s0

+ σ2
n0

≤ σ2
v0

σ2
s0

+ σ2
n0

(77)

⇒ RICA ≥ RCor (78)

It can be observed from Eq. (78) that the proposed ICA-
based detector performs better than the blind detector op-
erating without suppressing the host signal interference.
In addition, MWR performance of ICA-based detector is
bounded below by the blind detector (0% suppression) and

bounded above by an informed detector (100% suppres-
sion).

Performance analysis of the proposed ICA-based water-
mark detector indicates that it performs better than existing
blind watermark detectors [1, 2, 3, 4, 5] operating without
reducing host signal interference. This improved detection
performance of ICA-based detector can be attributed to its
host signal interference suppression at the detector.

4.5 Estimation of Masking Threshold,
Distribution Parameter and WIR factor

This section provides details on how to estimate masking
threshold, α̂, host distribution parameter, β̂, and η̂1, η̂2 at
the blind detector. The x̃ is analyzed at the blind detector to
estimate α̂ based on HAS. It is reasonable to assume that α̂
estimated from watermarked audio is similar to the α̂ from
the corresponding an unwatermarked audio clip given that
embedding and attack-channel distortion are impercepti-
ble. To validate this assumption, we estimated α̂ from both
the unwatermarked and corresponding watermarked music
clips. To this end four music clips (Pos1, Pop2, Classic, and
Vocal) listed in Table 1) were used. Here music clips Pop1
and Classic were watermarked using FSSS based water-
marking scheme proposed in [5] and Pop2 and Vocal, were
watermarking using audio watermarking scheme presented
in [3]. Plots of the α̂ estimated from the each watermarked
music clip, α̂W and corresponding unwatermarked music
clip α̂UW are given in Fig. 6.

It can be observed from Fig. 6 that for both embed-
ding schemes α̂W ≈ α̂UW . Similarity between α̂W and
α̂UW , for the music clips listed in Table 1, in terms of mean
squared error (MSE) (in dB) is {Pos1, Melodic, Pop2, Clas-
sic, Vocal} = {0.21566, 1.7321, 2.4507 , 1.7716, 0.21566}.
Here watermarked music clips were generated using FSSS-
based watermarking. These results shows that it is reason-
able to estimated masking threshold from the watermarked
audio at the blind detector.

Distribution parameter, β, can be estimated from the es-
timated variance σ̂2

s of the host audio, which can be esti-
mated from the watermarked audio available at the detector

σ̂2
s = σ̂2

x −
1
M

∑

j

α̂2
j (79)

where α̂2
m is the variance of the watermark sequence for

mth audio segment and M is total number of watermarked
segments.

Here σ̂2
x is estimated using sample variance, i.e.,

σ̂2
x =

1
M

∑

j

X2
j − 1

M2


∑

j

Xj




2

(80)

It is important to mentions that if this estimate is used
to calculate sufficient statistics, this will introduce addi-
tional dependence between watermark and sufficient statis-
tics which is hard to analyze theoretically. Due to this



BLIND WATERMARK ESTIMATION. . . Informatica 33 (2009) 49–68 59

1400 1600 1800 2000 2200 2400 2600

55

60

65

70

75

80

85

90

95

100 Estimated Masking Threshold from Unwatermarked
 and Watermarked Music Clip Pop1 

f (hz)

Ma
ks

ing
 Th

res
ho

ld,
 α 

(dB
)

α
UW

α
W

1400 1600 1800 2000 2200 2400 2600
50

55

60

65

70

75

80

85

90

95

100 Estimated Maksing Threshold from Unwatermarked 
and Watermarked Music Clip Classic 

f (Hz)

Ma
sk

ing
 Th

res
ho

ld,
 α 

(dB
)

α
UW

α
W

0 0.5 1 1.5 2

x 10
4

40

50

60

70

80

90

100
Estimated Masking Threshold from Unwatermarked 

and Watermarked Music Clip Pop2 

f (Hz)

Ma
sk

ing
 Th

res
ho

ld,
 α 

(dB
)

α
UW

α
W

0 0.5 1 1.5 2

x 10
4

45

50

55

60

65

70

75

80

85

90

95

100
Estimated Masking Threshold from Unwatermarked 

and Watermarked Audio Clip Vocal

f (Hz)

Ma
sk

ing
 Th

res
ho

ld,
 α 

(dB
)

α
UW

α
W

Figure 6: Plots of the estimated masking threshold from watermarked music clips α̂W and unwatermarked music clips
α̂UW

added dependence, slight variation between theoretical ap-
proximation and experimental results is expected.

The problem of estimating η1 and η2 is bit hard due to
ambiguity in the scale and sign of the estimated sources
using ICA. However, if we assume that scale and sign am-
biguity of the separated sources is resolved and WIR factor
Dinterf = η1

η2
is known then, using Eq. (23) and (24), η1 and

η2 can be estimated by simultaneously solving the follow-
ing expressions,

σ̂2
v̂ = η2

1α̂2 + η2
2σ̂2

s , η2
1 = Dinterfη2

2 . (81)

Here Dinterf can calculated using separation quality mea-
sure of the ICA method used as discussed in [34, 35].

5 Simulation Results

This section provides detection performance of the pro-
posed ICA-based watermark detector (ICAWD) and its
comparison with the conventional normalized correlation
watermark detector (NCWD) [1]. The proposed ICAWD
can be used to detect watermark for almost all existing
SS-based watermark embedding schemes [1, 2, 3, 5, 4].
However detection performance of the proposed detector is
compared with Swanson et al’s SS-based audio watermark-
ing scheme [3]. Swanson et al’s [3] proposed scheme used
correlation based detector for watermark detection. To pro-
vide a fair performance comparison of both the proposed
ICAWD and the NCWD, the proposed ICAWD is used
in the estimation-correlation-based detection settings. The
simulation results presented based on FSSS-based audio
watermark embedding scheme presented in [5]. Detains
of watermark embedding using FSSS [5] outlined here.

5.1 FSSS-based Watermark Embedding
The block diagram of the FSSS-based watermark genera-
tion and embedding used for simulations is illustrated in
Fig. 7. The watermark is generated using a pseudo-random
noise generator obeying non-Gaussian distribution to sat-
isfy the non-Gaussianity requirement of the ICA model. A
secret key Kw is used as a ’seed’ for the pseudo-random
noise generator for watermark generation. In addition,
same watermark is embedded in two consecutive audio seg-
ments, i.e., if watermark V is embedded into ith audio seg-
ment then same watermark is also embedded into (i + 1)th

segment. Repeated embedding is a necessary condition of
the proposed detector to separate hidden signals obeying
heavy-tail distribution, especially for BSS from underde-
termined linear mixtures [40, 16]. For audio watermarking
using FSSS, a secret key, Ksb is used to select subband from
watermark embedding.

5.2 Watermark Detection
The proposed modified ICA-based detector has access to
the secret key K only, which is combination of Ksb and
Kw, i.e., K = Ksb|Kw. The watermark detection process
for FSSS-based audio watermarking under proposed detec-
tion scheme consists of watermark estimation using ICA
framework followed by correlation based detection. The
main steps of the detection process are outlined below:

– Sync Point Extraction: The received audio signal is
analyzed first to extract the set of sync points (SP) [4,
5] used to combat desynchronization attacks.

– Segmentation: An audio frame consisting of n-
samples is selected around each SPi : i = 1, 2 · · ·M .
Where M is cardinality of SP set.



60 Informatica 33 (2009) 49–68 H. Malik

ORIGINAL

AUDIO

AUDIO CONTENT

ANALYSIS

WATERMARK  SYNC

LOCATION

EXTRACTION

SUBBAND

SELECTION

MASKING THRESHOLD

EXTRACTION

(USING PSYCHOACOUSTIC

MODEL)

WATERMARK SHAPING

(USING MASKING

THRESHOLD)

SUBBAND ANALYSIS

(USING MODIFIED

WAVELET ANALYSIS

FILTER BANK)

Key :
Ksbi

SPi ,  i = 1...M

WATERMARK

EMBEDDINGINPUT

MESSAGE CHANNEL

ENCODING

SUBBAND SYNTHESIS

(USING MODIFIED

WAVELET SYNTHESIS

FILTER BANK)

DATA

MERGING
WATERMARKED

AUDIO

Key :
 Kw

PN-SEQUENCE

GENERATOR

WATERMARK

SPREADING

j
iWSb

j
iSb

bilW ),(

j
ia

p
iSb

1
iSb

p
iSb

X

1
iSb ),( ilWX

),( ilY

Y

...11010110 aWbb

l = 1...n

Figure 7: Block diagram of the FSSS-based watermark embedding

– Frame Decomposition: Each frame is then decom-
posed into p–subband signals using l–level analysis
filter bank described in [5] .

– Subband Selection: A secret key Ksbi , is used to se-
lect a subband from lower (p−1)–subbands of ith and

(i + 1)th frame i.e. S̃b
j

i , and S̃b
j

i+1 .

– Watermark Estimation: The selected subband sig-

nals, i.e. S̃b
j

i and S̃b
j

i+1 are used to estimated the em-
bedded watermark, V Here, observation matrix, X,

can be expressed as, X =
[
S̃b

j

i , S̃b
j

i+1

]T
.

Existing BSS schemes for underdetermined mixtures
based on ICA model [27, 39] to estimate watermark
from the watermarked image for the proposed detec-
tor. However, in this paper, the proposed ICAWD uses
the statistical ICA using mean-field approaches pre-
sented in [39] for watermark estimation from the wa-
termarked audio. The watermark detection stage uses
the correlation based similarity measure to determine
the presence or the absence of the embedded water-
mark from the estimated sources. It is important to
mention that permutation ambiguity in the estimated
sources using ICA will contribute nonzero Pe due to
incorrect source decoding. The error due to ambigu-
ity in the permutation of the estimated sources is re-
duced by adding correlation based watermark detec-
tion (resp. decoding). However for the sake of sim-
plicity, during analysis part in Section 4, error due to
incorrect source decoding is neglected here.

– Information Decoding: A binary hypothesis test is
used to determine the presence or the absence of the
embedded watermark in the estimated signal. For fast
and reliable information decoding, normalized corre-
lation between the estimated watermark and the key
dependent watermark generated at the watermark de-
tector are used. The normalized correlation is then
compared against decision threshold, Th, to determine
the presence or the absence of watermark. Following
binary hypothesis test is used to decode binary infor-

mation,
H1 : max

∣∣∣ncor
(
Ŝ(r),W(q)

)∣∣∣ ≥ Th Decode q

H0 : otherwise no watermark

where ncor(.,.) is the normalized correlation function
defined as:

ncor
(
Ŝ(r),W(q)

)
= (82)

∑n
l=−n Ŝ

(r)
l W

(q)
t+l√∑n

l=0

(
Ŝ

(r)
l

)2 ∑n
l=0

(
W

(q)
l

)2

where Ŝ(r) is the estimated signals using ICA, Th is
the decision threshold (for our simulation results Th
was set to 0.15, which corresponds to false positive
rate, Pfp = 10−4), r = 1, 2, 3, and q ∈ {0, 1}.

5.3 Experimental Results
To evaluate the robustness performance of the proposed
ICAWD, several experimental tests were performed in
which the watermarked audio is subjected to commonly en-
countered degradations. These degradations include addi-
tion of white and colored noise, resampling, lossy com-
pression (MP3 Audio compression), filtering, time- and
frequency-scaling, and stirmark benchmark attacks for au-
dio [18, 20].

Decoding error probability, Pbe, at the watermark detec-
tor is used for performance evaluation. Here Pbe is defined
as,

Pbe =
(

1− Nd

Ne

)
(83)

where Nd is number of bits correctly detected and Ne num-
ber of bits embedded into the audio clip.

Block diagram of the proposed ICAWD and the tradi-
tional correlation based detector e.g. NCWD used for FSSS
audio watermark detection process is given in Fig. 8. The
watermark detector given in Fig. 8 acts as ICAWD when
switch S is connected to terminal 1 and NCWD when S is
connected to 2.
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Figure 8: Block diagram of the ICAWD and the NCWD used for performance comparison

5.4 Robustness Performance

To evaluate the robustness performance of the proposed
watermarking scheme we have performed several experi-
mental tests in which the watermarked audio is subjected to
commonly encountered degradations. These degradations
include addition of white and colored noise, resampling,
lossy compression (MPEG audio compression), filtering,
time- and frequency-scaling, multiple watermarking, and
StirMark benchmark attacks for audio.

The robustness performance of the proposed scheme
against common degradations for the above settings is dis-
cussed next.

5.5 Data Set

Experimental results presented here are based on the data
set consisting of the sound quality assessment material
(SQAM) audio database downloaded from [45] and five au-
dio clips listed in Table 1. All audio clips used for the per-
formance evaluation here are based on mono audio channel
sampled at 44.1 kHz with 16 bits resolution.

In our experiments, the watermarks are generated and
embedded using FSSS-based audio watermarking scheme
presented in [5]. A perceptual mask is estimated using
method discussed in [5]. This mask is then multiplied
by 200 independently generated pseudo-random sequences
W, with zero-mean and unit variance, to generate 200 in-
dependent watermarks. In case of ICAWD, the pseudo-
random sequences, W, follow Laplacian distribution, i.e.,

fW (τ) =
β

2
e−β|τ |, | τ |< ∞ (84)

where β =
√

2
σW

, and for the NCWD W follows normal
distribution. These 200 random watermarks are embedded
in each audio clip according to Eq. (1) that resulted 4000
watermarked audio clips. Experimental results presented in
the following sections are averaged over 4000 watermarked
audio clips.

5.6 Parameter Settings
Simulation results presented in this section are based on the
following system settings:

– Salient point list (SP) was assumed to be available at
the detector, therefore decoding bit error probability
Pe presented here is due decoding bit error only.

– Audio frame size (2lN1) was set to 213 for fs = 44.1
kHz.

– Five-level wavelet decomposition was used, i.e. l =
5, therefore eight target subbands were available for
watermark embedding.

– Only one subband was selected at random from eight
target subbands for watermark embedding (except
multiple watermark embedding case).

– Target false positive rate Pfp was set to 3.5 × 10−4

which corresponds to decoding threshold Th = 0.15
(using Eq. (42)).

– False positive bit rate, Pfp, was calculated by apply-
ing original (unwatermarked) music clip the proposed
detector, and average false positive for the the 20 au-
dio clips used for performance evaluation was calcu-
lated to be 2.9× 10−4.

– Robustness performance in terms of average decoding
bit error rate was calculated without channel coding.

– In case of ICAWD, watermark repeating factor of two
was used during watermark embedding process, i.e.,
two consecutive audio frames were watermarked with
same watermark w.

The above settings for watermark embedding using
FSSS-based audio watermarking yielded per sample em-
bedding capacity of 1 bit per 512 sample.

Fidelity (or transparency) performance of the embedded
watermark is evaluated based on the objective degradation
measure. Signal-to-watermark ratio (SWR) is used for the
objective degradation here which is calculated as,
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Table 1: Audio Clips used for Performance Evaluation

Singer Name, Song Title Genre Duration (sec)

Back Street Boys, Pop, 22
I Want It That Way· · · (Pop1)

L. Mangeshkar, Melodic, (Melodic) 15
Kuch Na Kaho· · · (Melodic)

A. Bhosle, & R. Sharma, Pop, (Pop2) 10
Kahin Aag Laga· · · (Pop2)

N. F. A. Khan, Semi-Classic, 20
Afreen Afreen· · · (Classical)
Suzanne Vega, Female Vocal, 5
Tom’s diner· · · (Spoken Language)

SWR = 10 log10

(
σ2

s

σ2
ν

)
(85)

where σ2
ν is calculated using Eq. (3).

The average SWR the watermark audio clips used for
simulation was AveSWR = 42.7 (dB), σSWR = 9.17,
maxSWR = 74.5 (dB), and minSWR = 21.5 (dB). Cal-
culated SWR from watermarked audio clips indicates that
on the embedded watermark is very weak compared to the
original audio.

5.7 Detection Performance

Detection performance of the proposed detector is evalu-
ated for various audio degradations. Detection of the pro-
posed ICAWD and its comparison with NCWD for each
degradation is provided next.

5.7.1 Addition of White Noise

: White Gaussian noise ranging from zero to 200 % of the
power of the audio signal was added to the corresponding
watermarked audio clips. The Pe average over 4000 wa-
termarked audio clips for ICAWD and NCWD for differ-
ent SNR values are plotted in Fig. 9 which shows that the
ICAWD performs better than the NCWD. Superior detec-
tion performance of ICAWD than the NCWD can be at-
tributed to its host signal interference cancellation capabil-
ity. It can be observed from Fig. 9 that for SS-based water-
marking very low decoding bit error probability is achiev-
able even in the presence of noise with 60 - 70 % power of
the audio signal.

5.7.2 Resampling

To simulate resampling attack, a watermarked audio signal
was down-sampled at a sampling rate of fs

rf
(where rf de-

notes resampling factor) and then interpolated back to fs.
The watermark detection was then applied to the resulting
watermarked audio clips. Average Pe for rf = 2, · · · 10,
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Figure 9: Detection performance comparison for AWGN
attack.

is given in Fig. 10 which shows that the proposed wa-
termarking scheme (using ICAWD) can withstand resam-
pling attacks with rf value up to 5 for each watermarked
audio clip, similar decoding performance is achievable for
NCWD by using channel coding. Again ICAWD performs
better than the NCWD and its superior detection perfor-
mance can be attributed to its host signal interference sup-
pression capability.

5.7.3 Lossy Compression

Lossy compression for audio (e.g. MP3) is generally ap-
plied to the digital audio for multimedia applications like
transmission and storage to reduce the bit rate. To test the
survivability of the watermark, audio encoding/decoding
was applied to the watermarked audio using ISO/MPEG-
1 Audio Layer III [47] coder at bit rates 32, 64, 96, 112,
128, 192, 256, and 320 k bits/s (kbps). The average Pe

for lossy compression attacks for bit rates rates 32, 64, 96,
112, 128, 192, 256, and 320 (kbps) is given in Fig. 11.
It has been observed from Fig. 11 that the detection per-



BLIND WATERMARK ESTIMATION. . . Informatica 33 (2009) 49–68 63

10 8 6 4 2 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Resampling Factor, r
f

P
e

ICAWD
NCWD

Figure 10: Detection performance comparison for resam-
pling attack.

formance for both detectors deteriorates as the bit rate of
the encoder/decoder decreases; this is due to the stronger
distortion introduced by the encoder for lower bit rates. In
addition, the ICAWD performs better than the NCWD.
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Figure 11: Detection performance comparison for MP3
compression attack

5.7.4 Addition of Colored Noise

To simulate an attack with colored noise, white Gaussian
noise was spectrally shaped according to the estimated
masking threshold using corresponding watermarked au-
dio clip based on the HAS model [46, 47]. This just audible
colored noise was then added to the watermarked audio sig-
nal. Average Pe for the resulting watermarked audio clips
is presented in Fig. 12. It has been observed from Fig. 12
that NCWD performs poorly, this is due to increase in in-
terference level, as the colored noised is generated with a
process almost identically to that of the watermark gener-
ation. Therefore, additive colored noise acts as a second

watermark interfering with the watermark to be detected.
On the other hand, ICAWD is efficient in handling such
attacks due to its interference cancellation ability.

5.7.5 Rescaling

Rescaling attacks include time- and frequency-scaling.
Time-scaling attacks can be used to desynchronize a wa-
termark detector for SS-based watermarking systems. To
test the robustness of the proposed scheme against time-
scaling attacks, the watermarked audio clips were time-
scaled with time-scaling factor, TSp(n) = +(-) 1 %. The
detection performance for time-scaling attack using both
detection schemes, e.g., ICAWD and NCWD is given in
Fig. 12.
The frequency-scaling attacks are generally used to deteri-
orate the detection performance of the frequency domain
watermarking schemes. As the proposed watermarking
scheme is also a frequency domain watermarking scheme;
therefore, it is reasonable to test the robustness perfor-
mance of the proposed scheme against frequency-scaling
attacks as well. To simulate frequency-scaling attack,
the watermarked audio clips were frequency-scaled using
frequency-scaling factor, FSp(n) = +(-) 1%. The detec-
tion performance for the resulting audio clips for both de-
tection schemes, e.g., ICAWD and NCWD is presented in
Fig. 12. It can be observed from Fig. 12 that the proposed
scheme can withstand rescaling attack of TS ≤ ±1% and
FS≤ ±1% (especially for ICAWD).

5.7.6 Filtering

To test the robustness of the proposed watermarking
scheme against filtering attacks, the watermarked audio
signals were subjected to lowpass filtering (LPF), highpass
filtering (HPF), and bandpass filtering (BPF) attacks. The
specification of filters used for the filtering attacks are,

1. Lowpass Filter: cut-off frequency: fc = 5 kHz with
12 dB/octave roll-off

2. Highpass Filter: cut-off frequency: fc = 1000 Hz
with 12 dB/octave roll-off

3. Bandpass Filter: cut-off frequencies: fclow = 50 Hz,
and fcup = 5.5 kHz with 12 dB/octave roll-off

Detection performance comparison of the ICAWD and the
NCWD for LPF, HPF, and BPF attacks is given in Fig. 12.

5.7.7 StirMark Audio Benchmark Attacks

For StirMark for audio benchmark attack, watermarked au-
dio clips were subjected to StirMark audio benchmark at-
tacks. The StirMark audio benchmark software, available
at [20], was used in the default parameters settings. The
decoding bit error probability, Pe, averaged over 100 wa-
termarked audio clips with the ICAWD and the NCWD,
is given in Table 2. It can be observed from Table 2 that
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Figure 12: Detection performance comparison between the
ICAWD and the NCWD for filtering (LPF, HPF, BPF),
rescaling (TSp, TSn, FSp, FSn), requantization (Res), and
colored noise addition (ACNA) attacks

the proposed ICAWD based scheme using exhibits supe-
rior detection performance than the NCWD. Better perfor-
mance of ICAWD can be attributed to its better host signal
suppression capability.

6 Conclusion

An improved watermark detector for additive embedding
is presented here. The proposed watermark detector is
capable of canceling the host-signal interference at the
watermark detector. Bind watermark detection, lower
host-signal interference at the detector, improved decod-
ing, detections and watermarking-rate performances are the
salient features of the proposed ICAWD. The proposed
ICAWD can be used for SS-based watermarking for all
types of multimedia data, e.g., audio, video, images, etc.
The theoretical results show that the proposed detector
performs significantly better than existing blind detectors.
Simulation results for real-world data show that the pro-
posed ICAWD performs much better than the traditional
NCWD. Moreover, the detection performance of the pro-
posed detector can be improved further by employing chan-
nel coding. It is important to mention that better detec-
tion performance of ICAWD comes at the cost of security,
as ICAWD requires repeated embedding (at least twice)
which makes embedded watermark more vulnerable to wa-
termark estimation attacks than without repeated embed-
ding.
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7 Appendix A: Statistical
characterization of the wavelet
coefficients of audio signals

To determine the statistical characterization of the sub-
band coefficients of the real-world speech samples, the
speech samples, Yi, i = 0, 1 · · ·n − 1 are assumed to be
i.i.d. Laplacian random variable with mean zero and vari-
ance σ2

y . The one-dimensional discrete wavelet transform
(DWT) of audio signal, Y, can be calculated using Mallat’s
algorithm [49]. The DWT coefficients using Mallat’s algo-
rithm [49], e.g., approximate coefficients ak and detailed
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coefficients dk, at different scales can be expressed as,

aj−1
i =

N1−1∑

k=0

hk−2ia
j
k (86)

dj−1
i =

N1−1∑

k=0

gk−2ia
j
k (87)

where j denotes the resolution and i is the index.
Eq. (86) and (87) describe linear filtering operation us-

ing filters h and g followed by down-sampling. Here h
and g are finite impulse response (FIR) quadrature-mirror
filters, also known as the scaling and the wavelet filters, re-
spectively. The scaling filter is a lowpass filter, while the
wavelet filter is a highpass filter. Moreover, the top-level
coefficients aJ represent the original signal y. Eq. (86)
and (87) can be expressed using a single equation,

Sj−1
i =

N1−1∑

k=0

δk−2iS
j
k (88)

where δi is the weighting factor depending on the filter co-
efficients hi and gi, i.e. approximate coefficients or de-
tailed coefficients, and Sj

i is the wavelet coefficient at jth-
level.

Here Eq. (88) states that a wavelet coefficient at an ar-
bitrary level j − 1, is a weighted sum of N1 wavelet coef-
ficients from jth-level wavelet. The wavelet coefficients at
J − 1 level can be expressed as

SJ−1
i =

N1−1∑

k=0

δk−2iS
J
k (89)

According to Eq. (88), each wavelet coefficient an arbi-
trary level j : 1 ≤ j ≤ J − 1 is a weighted sum of i.i.d.
r.v. (e.g. audio samples in our case), therefore, the pdf of
a wavelet coefficient Sj

i at jth-level, can be determined us-
ing joint characteristic function Φsj

i
(ω). If we assume that

audio sample Yi, is a Laplacian r.v., then pdf of Yi can be
expressed as,

fy(τ) =
γ

2
e−γ|τ |, |τ | < ∞ (90)

where γ =
√

2
σ2

y

Here characteristic function of r.v. Yi, Φyi(ω), can be
expressed as [48],

Φyi(ω) =
γ2

i

ω2
(91)

Let us consider a r.v. Z which is obtained by magnitude
scaling of a r.v. Y i.e., Z = δY , the characteristic function
of Z, Φz(ω), in terms of Φy(ω) can be expressed as [48],

Φz(ω) = Φz(δω) (92)

Therefore, the characteristic function of r.v.
SJ−1

i ,ΦsJ−1
i

(ω), can be expressed as

ΦsJ−1
i

(ω) =
N1∏

k=1

Φyk
(δk−2iω) (93)

=
N1∏

k=1

γ2
i(

γ2
i + (δk−2iω)2

) (94)

=
N1∏

k=1

γ́2
i

(γ́2
i + ω2)

(95)

where γ́i = γi/γk−2i and N1 is the length of the wavelet
filter.

In order to determine the pdf of wavelet coefficients
SJ−1

i , fsJ−1
i

(τ) characteristic function ΦsJ−1
i

(ω) (given by
Eq. (95)) is used. The pdf of a r.v. can be determined ei-
ther using the uniqueness theorem or the convolution theo-
rem [48]. The pdf of wavelet coefficients SJ−1

i , fsJ−1
i

(τ)
using ΦsJ−1

i
(ω) based on the convolution theorem can be

expressed,

fsJ−1
i

(τ) =
γ́i

2
e−γ́i|t|

(
N1−1∑

k=0

ck
i γ́k

i tk

)
(96)

where ck ∈ R is a real constant.
For different values of N1, the polynomial coefficients,

ck, are given as:
N1 = 2, c0 = c1 = 1

2 , and N1 = 3, c0 = c1 =
3
8 , and c1 = 1

8 and so on.
According to the Eq. (95) and (96), as the pdf of wavelet

coefficients at jth level, fsj−1
i

(τ), is a obtained by convolv-
ing the pdf of r.v. Yi, therefore, based on the CLT, the pdf
of the subband coefficients move to words Gaussianity as
value of N1 increases or in other words, pdf of wavelet co-
efficients at coarser level is closer to the Gaussianity than
higher level coefficients. This is because at coarser level,
for each wavelet coefficient more audio samples contribute
in the weighted-sum equation (given by Eq. (89)) than
higher level coefficients.

In order to provide evidence in support of this model, a
4–level DWT decomposition of an arbitrary frame of the
music clip I Want It That Way· · · by Backstreet Boys, us-
ing ’Daubechies-8’ decomposition filter, is given in Fig.
13. The pdf (based on histogram approximation) of corre-
sponding wavelet coefficients at different levels is plotted
in Fig. 13. This is clear from Fig. 13 that the higher level,
wavelet coefficients exhibit non-Gaussian distribution and
distribution moves towards Gaussianity for coarser coef-
ficients due to longer weighted-sum effect at the coarser
level.

Therefore, the pdf of each subband coefficient (at higher
level) of the host signal, Si, can be approximated by Lapla-
cian distribution, which is given as,

fs(τ) =
β

2
e−β|τ | : |τ | < ∞ (97)
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Figure 13: Plots of empirical distribution based histogram approximation of detailed and approximate coefficients at each
level of 4-Level wavelet decomposition of an audio signal, y

where β =
√

2
σ2
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