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Feature ranking is a machine learning task that is related to estimating the relevance (importance) of indi-
vidual features in a dataset. Relevance estimates can be used to induce an ordering of the features from
a dataset, also called a feature ranking. In this paper, we consider the problem of the evaluation of dif-
ferent feature rankings. For that purpose, we propose an intuitive evaluation method, based on iterative
construction of feature sets and their evaluation by learning predictive models. By plotting the obtained
predictive performance of the models, we obtain error curves for each feature ranking. We then propose a
scoring function to quantitatively assess the quality of the feature ranking. To evaluate the proposed met-
hod, we first define a synthetic setting in which we analyse the method and investigate its properties. By
using the proposed method, we next perform an empirical comparison of several feature ranking methods
on datasets from different domains. The results demonstrate that the proposed method is both appropriate
and useful for comparing feature rankings of varying quality.

Povzetek: Rangiranje značilk je naloga strojnega učenja, povezana z ocenjevanjem pomembnosti značilk
v podatkih. Značilke lahko nato uredimo glede na dobljene ocene in tako dobimo ureditev, ki ji prav
tako pravimo rangiranje značilk. V tem delu obravnavamo problem evalvacije različnih metod za urejanje
značilk. Predlagamo postopek, ki temelji na iterativni konstrukciji množic značilk ter njihovi evalvaciji s
pomočjo napovednih modelov. Če dobljene ocene natančnosti modelov narišemo na graf, dobimo krivulje
natančnosti za vsako rangiranje značilk. Te krivulje s predlaganim postopkom pretvorimo v kazalec, ki
poda kakovost rangiranja številsko. Metodo najprej evalviramo na sintetičnih podatkih, nato pa jo preiz-
kusimo še na realnih podatkih iz različnih domen. Rezultati pokažejo, da je predlagana metoda uporabna
za razločevanje rangiranj značilk različnih kvalitet.

1 Introduction

In many application domains, such as bioinformatics and
computer vision, supervised learning methods are beco-
ming more frequently applied to high-dimensional pro-
blems. In such problems, one typically expects only a re-
latively small proportion of all input features to be relevant
for predicting the output. Also, all relevant features are not
equally important. In many practical applications, the pro-
blem of discovering the relevant features and/or qualitati-
vely assessing their relative importance can be the main ob-
jective of the application of machine learning techniques,
even taking precedence over the need to obtain the best pos-
sible predictive model. In bioinformatics, for example, the
main objective of the analysis of microarray datasets is to
identify genes whose expression is, individually or jointly,
indicative of some biological state of interest (e.g., a dise-
ase), with the goal of improving the understanding of this
biological state.

There are two machine learning tasks related to the ana-
lysis of feature relevance, namely feature selection (FS)
and feature ranking (FR) [9]. The purpose of feature se-
lection is typically to solve the so-called minimal-optimal

problem [15], i.e., to find a minimal subset of features that
best explain the output [8]. Feature ranking, on the other
hand, solves the so-called all-relevant problem [15], i.e.,
providing an ordered list of the features from the most to
the least important according to a given notion of relevance.
Feature ranking methods range from univariate techniques,
that assess the relevance of each feature independently of
the others (e.g., using mutual information or p-values deri-
ved from some statistical test), to multivariate techniques,
that derive more complex feature importance scores taking
into account potential interactions among the features (e.g.,
ReliefF [18] or Random forests [2]). These two problems
of feature selection and feature ranking are linked: A solu-
tion to the feature selection problem can be found by setting
a cut-off point on a feature ranking.

The present paper focuses on feature ranking, and more
specifically addresses the challenging problem of the eva-
luation of the output of feature ranking algorithms. Fea-
ture selection as stated above is a well-defined optimiza-
tion problem and as a consequence, the output of two dif-
ferent feature selection methods can be directly compared
according to the predictive performance of a model trained
from the selected features and/or according to to the size
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of the selected subsets. The problem of feature ranking, on
the other hand, can not be as easily formulated as an op-
timisation problem, mainly because there is no commonly
accepted notion of feature relevance. Actually, feature ran-
king methods typically correspond to different definitions
of relevance or assumptions of dependence (e.g., univa-
riate versus multivariate, linear versus non-linear). As a
consequence, when run on the same dataset, different met-
hods will typically provide different rankings of the featu-
res. Determining the best ranking among several ones for
a problem at hand is thus a practically very relevant ques-
tion. For specific problems, this question can be addressed
by using domain specific knowledge. In the general case,
however, this is an unsolved problem that we would like to
address in this paper.

The remainder of this paper is organized as follows. We
start by discussing related work in Section 2. We then
propose a new algorithmic procedure for evaluating fea-
ture rankings that does not require any prior knowledge and
can thus be applied on real problems. Following previous
works, this method is based on the evaluation of the pre-
dictive performance of models trained from nested feature
subsets derived from the rankings (described in Section 3).
More precisely, two error curves are constructed: the for-
ward feature addition curve (FFA) and the reverse feature
addition curve (RFA). They depict the performance of mo-
dels built on nested feature subsets obtained by taking fea-
tures from either the top or the bottom of the ranking. Next,
we propose a score based on the differences between the
FFA and RFA curves as a way to compare different feature
ranking methods. We investigate the performance of the
proposed method on a wide range of datasets. We start by
experiments on the synthetic datasets (Section 4) and pro-
ceed with a description of its use on real-world benchmark
datasets (Section 5). Section 6 concludes with a summary
of our contributions and an outline of possible directions
for further work.

2 Related work

The evaluation of feature ranking methods has been typi-
cally performed on artificial problems, where the relevant
and irrelevant features are known by construction. In such
a setting, feature ranking algorithms can be evaluated ba-
sed on their capability to delineate relevant from irrelevant
features. This capability can be measured, for example,
through a ROC curve showing the trade-off achieved by
the algorithm between assigning high ranks to relevant fe-
atures and low ranks to irrelevant ones [11]. In the context
of the ReliefF algorithm [18] the concepts of separability
and usability are defined to evaluate feature rankings. Se-
parability measures how well the algorithm separates the
relevant from the irrelevant features by the difference bet-
ween the lowest estimated relevance of the relevant features
and the highest relevance of the irrelevant features. Usabi-
lity, on the other hand is defined as the difference between

the highest estimated relevance of the relevant features and
the highest estimated relevance of the irrelevant features.
When a ground truth ranking of the features is known (and
not only which features are relevant/irrelevant), finer mea-
sures can be used to compare a learnt feature ranking to the
ground truth, such as the Spearman’s rank correlation.

Evaluating feature ranking methods on artificial pro-
blems is very useful to assess a newly proposed ranking
algorithm or to highlight overall differences between met-
hods. In practice however, the best method is expected to
be problem dependent. This stresses the need for methods
to quantitatively assess feature ranking methods in real-
world scenarios, where it is not known a-priory which fe-
atures are relevant and which are irrelevant. In such set-
tings, the performance of feature ranking algorithms has
been mostly evaluated from the point of view of their pre-
dictive performance associated to feature subsets derived
from the rankings.

A way to assess feature rankings is to estimate the pre-
dictive performance obtained by using subsets of feature
derived from these rankings. For example, for a given num-
ber of features k, a ranking A could be considered better
than a ranking B if a model trained from the top-k features
of rankingA is more accurate than a model trained from the
top-k features of ranking B. Variations of this evaluation
procedure are given in [9, 7, 16, 21] where the predictive
models are compared for different numbers of top-k featu-
res.

3 Evaluation method for feature
rankings

In general, the purpose of feature ranking algorithms is to
solve the all-relevant feature selection problem [15]. Ho-
wever, besides delineating relevant from irrelevant features,
a feature ranking algorithm should also provide a proper
ordering of features according to their relevance to some
target concept. An ideal feature ranking algorithm should
produce the ground truth ranking. In reality however, the
ranking methods provide only an approximation of it.

A good feature ranking method would produce a ranking
that is well ordered. This means that the more relevant fe-
atures would have a higher rank, i.e., all of them are con-
centrated at the beginning of the feature ranking. In con-
trast, a bad feature ranking method is not necessarily the
one that produces an inverse ground truth ranking. Namely,
we consider as a worst-case scenario if the feature ranking
produces a random ranking. In this case the relevant featu-
res are uniformly distributed in the ranked list. Estimating
and comparing this distribution of relevant features across
a ranking is the intuition on which we base our evaluation
approach.
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3.1 Evaluation method definition
Formally, we would like to evaluate a feature ranking al-
gorithm r(·). The input to the algorithm is a dataset D,
consisting of a set of n input features F and a target Ft,
while the output is a feature ranking R = r(D), i.e., a list
whose i-th component gives us the rank of i-th feature.

For an arbitrary feature subset S ⊆ F , we can assess if
it contains relevant features by constructing and evaluating
predictive modelsM(S, Ft). We evaluate them, obtain the
value of error measure err(M(S, Ft)), and decide whether
the set S contains important features or not.

The error estimates should provide insight into the cor-
rectness of the feature ranking and constitute an evaluation
thereof, thus we construct the feature subsets of two types.
The sets of the first type, denoted by Si, contain the top i
ranked features, 1 ≤ i ≤ n. The sets of the second type,
denoted by Si, contain the bottom i features. Note that in
the special case where i = n, i.e., the number of features,
we have Sn = Sn

For each constructed feature subset S, S = Si or
S = Si, we build predictive models M(S, Ft), and eva-
luate their prediction errors. In that way, we obtain two
curves: the forward feature addition (FFA) curve consists
of points (i,FFA(i)) = (i,M(Si, Ft)) (see Fig. 1a), while
the reverse feature addition (RFA) curve consists of points
(i,RFA(i)) = (i,M(Si, Ft)) (see Fig. 1b).

In practical scenarios, if the number of features n is high,
running the algorithm might be costly. One simple way for
a speed up would be to avoid forming all the feature sub-
sets, and instead add ∆i > 1 features to the set Si to obtain
Si+∆i. The rationale behind this is that in real-world sce-
narios involving high-dimensional data, only a small por-
tion of the features are relevant. Therefore, the values of
FFA(i) would not change much when adding more fea-
tures to a relatively large number of features i. Also, the
number of features added can be dependent on i. In the
same manner, we can form the set Si+∆i from the set Si.

3.2 Quantitative comparison of two
rankings

A visual inspection of the curves can only provide a quali-
tative intuition about which ranking method is better. For
quantification purposes, it would be necessary to have a
function which provides a cumulative assessment of the
differences between the error estimates at different points
of the curves. In the most general case, this would be an
aggregation function agg : Rn → R, which would take a
sequence of the weighted point-wise differences between
two curves for its argument. For the FFA curve, we would
have

FFAδ(rA, rB) = agg
i

wi(FFArA(i)− FFArB (i)), (1)

while for the RFA curve we would have

RFAδ(rA, rB) = agg
i
wi(RFArA(i)− RFArB (i)). (2)
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Figure 1: Comparison of different ranking methods rA and
rB

There are several sensible choices for instantiations of
the aggregation function agg. The choice depends on the
specific task at hand. Considering that we are comparing
feature rankings, two aspects are important. The first is
the position of most of the relevant features in the ranking.
The second relates to the position of the “most” relevant
features. In a comparative sense, the first aspect relates to
the position of the FFA/RFA curves differences, while the
second relates to the magnitude of these differences.

Differences between the FFA/RFA curves of two ranking
methods at the beginning of the curves are more important
than differences at the end of the curves. Namely, if two
FFA curves are different at the beginning, this means that
one of the ranking methods is not putting the most relevant
features at the top of the ranking. Correspondingly, for the
RFA curves, differences at the beginning of the curve (at
the bottom of the ranking), mean that one of the feature
ranking methods is giving low ranks to features which are
relevant. The second aspect is related more to the magni-
tude of the differences between the FFA/RFA curves than
to their position. The intuition is that if “more” relevant
features are misranked, then this is worse than “fewer” re-
levant features being misranked.

From a technical perspective, in order to emphasise
the importance of position, the weighting function from
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Eqs. 1 and 2, should be a function of the position, i, namely
wi = f(i). In the same manner, in order to emphasise the
importance of magnitude, the weighting function should
depend on the size of the difference, namely wi = f(δi)
with δi the difference between the two compared curves at
i. In addition, it is also possible to construct a weighting
function that takes into account both position and magni-
tude, wi = f(i, δi). To this end, we define four instanti-
ations of Eq. 1 and Eq. 2, which we use to calculate the
difference between the FFA/RFA curves from Fig. 1. We
consider the following weighting functions:

– wi = 1, equal weight for all differences;

– wi = f(i) = 1/|Si|, weight inverse to feature subset
size;

– wi = f(δi) = |δi|, weight proportional to the diffe-
rence magnitude;

– wi = f(i, δi) = |δi|/|Si|, weight which includes both
position and magnitude.

The aggregation function used for summarising the dif-
ferences (in all of the four instantiations) is the weighted
average:

agg
i
wiδi =

∑n
i=1 wiδi∑n
i=1 wi

. (3)

The obtained values are given in Table 1. They are cal-
culated for the FFA/RFA examples in Fig. 1a and Fig. 1b.
The difference is calculated for rA with respect to rB . As
seen in Table 1, the values for the FFA curves are positive,
which can be interpreted as “rA is better than rB”. While
the values for the RFA curves are negative, the interpreta-
tion is the same: “ranking method rA is better than ranking
method rB”.

In order to obtain a single number that quantifies the dif-
ference between two feature ranking algorithms, we can
combine both values into a single value by calculating the
so-called error curve average (ECA)

ECAδ(rA, rB) =
FFAδ(rA, rB)− RFAδ(rA, rB)

2
. (4)

Note that the minus sign in the equation is due to the in-
verse interpretation of negative values for the RFA curve.
Namely, if rA is better than rB , then the differences of the
RFA curves should be negative. This places the overall in-
terpretation of the ECAδ value on the positive scale. Na-
mely, if rA is better than rB , then the overall score should
be positive.

wi 1 1/|Si| |δi| |δi|/|Si|
FFA δ 0.018 0.019 0.032 0.03
RFA δ -0.042 -0.054 -0.08 -0.077

Table 1: Different quantitative comparisons of error curves

3.3 Quantitative score for a single ranking
In real-world scenarios, the ground truth ranking is not
known. Therefore, when evaluating just a single ranking
algorithm, the FFA/RFA curve of the algorithm can not be
compared to the one of the ground truth ranking. However,
the opposite to the ground truth ranking is the uniformly
random ranking, for it is the least informative. The motiva-
tion for introducing the random ranking FFA/RFA curves is
the following: If we can not say how good a single ranking
R is, maybe we can say how close to random it is.

At the point i, the expected value of the FFA/RFA curve,
which belong to the uniformly random ranking RRND, pro-
duced by the algorithm rR, is dependent solely on the i and
properties of the dataset under consideration. Moreover, it
is the same for both the FFA and the RFA curve. For sim-
plicity reasons, we refer to these curves as expected curves.

The expected value of the error measure err, is the
average of the error estimations of all possible subsets
S ⊆ F , whose cardinality equals i, i.e.,

E[err(M(S, Ft))] =
1(
n
i

) ∑
S⊆F
|S|=i

err(M(S, Ft)) (5)

Calculating the expected curves by following Eq. 5 to the
letter is intractable, especially for high-dimensional spaces,
as we have to consider an exponentially high number of
feature subsets. However, for practical purposes, this pro-
blem can be circumvented by sampling the space of possi-
ble feature subsets for each i.

Suppose we have somehow calculated or approximated
the expected FFA/RFA curve. If we have a ranking algo-
rithm r that produces a good (mostly correct) ranking, its
FFA curve would be above the expected FFA curve. For the
RFA curve, the opposite would apply and the algorithm’s
curve would be below the expected RFA curve. The score
ECA δ(r, rR) between the FFA/RFA curves of this ranking
versus the expected curves can thus be used as an abso-
lute quantitative measure of the quality of this ranking. It
should be noted that when calculating ECA δ(r, rR) by
using wi = 1, it is not necessary to compute the ex-
pected curve in order to calculate thisECAδ score. Indeed,
ECA δ can be simply computed as the sum over all positi-
ons of the difference between the FFA and RFA curves we
want to evaluate:

ECA δ(r, rR) =
(FFA δ(r, rR)− RFA δ(r, rR))

2

=
1

2

(
n∑
i=1

FFAr(i)− RFAr(i)

n

)
,

since FFArR(i) = RFArR(i).

4 Evaluation on synthetic data
The goal of the experiments presented in this section is to
demonstrate the usefulness of our feature ranking evalu-
ation method. As previously mentioned, feature ranking
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methods provide an approximation of the ground truth ran-
king that can be viewed as a noisy ground truth. A noisier
ranking is more distant from the ground truth ranking and
therefore of worse quality.

An evaluation method should be sensitive to the amount
of noise and should provide a corresponding quality esti-
mate of the feature ranking. For that purpose, we design
experiments to demonstrate that our evaluation method is
sensitive to the addition of noise to the ground truth ran-
king. We first generate noisy feature rankings and then
construct FFA/RFA curves from them.

4.1 Generating synthetic data

We first perform an empirical evaluation of the proposed
notion of FFA/RFA curves in a controlled setting by using
synthetic datasets. The main advantage of using synthetic
data is the possibility of defining a good baseline ranking
that allows us to assess our proposed feature ranking eva-
luation method.

The complete statistics of the generated datasets and
their feature interaction sets are summarized in Table 2. All
of the datasets consisted of 1000 instances and 100 features
in total. Among the 100 features, the “single” dataset has
9 relevant features, the “pair” dataset contains 18 relevant
features and the “combined” dataset contains 27 relevant
features. In all three datasets, every set Fint of relevant fea-
tures has two additional redundant copies. Irrelevant featu-
res are realized independently of each other. More details
on the generation of the datasets are available in [20].

For each dataset, we would like to define a good base-
line ranking against which to compare feature ranking met-
hods. We define this ranking from feature relevance scores
rel(Fi, Ft) for each feature Fi, calculated directly from the
specified feature interaction structure, by using the follo-
wing equation:

rel(Fi,Ft) =
I(Fint;Ft)

|Fint|
,

where Fint is the (unique) interaction set that contains Fi
and I(Fint;Ft) is the mutual information between features
in Fint and the target Ft. By dividing the mutual informa-
tion by the number of features, we distribute the informa-
tion equally between all features in an interaction set. As
a consequence, features that brings information about the
target Ft individually are considered more relevant than fe-
atures that bring the same amount of information about the
target only in conjunction with other features.

Note that this baseline ranking is not guaranteed to be
optimal in terms of the FFA and RFA curves for a given le-
arning algorithm, but is nevertheless expected to be close to
optimal. In our experiments, we will consider this ranking
as a ground truth ranking, denoted RGT, against which we
will compare other rankings.

n |Fint| f(Fint) P
3 1 Fi 0.8
3 1 Fi 0.7
3 1 Fi 0.6

91 1 Fi 0.5
(a) “single” dataset

n |Fint| f(Fint) P
3 2 XOR(Fi, Fj) 0.8
3 2 XOR(Fi, Fj) 0.7
3 2 XOR(Fi, Fj) 0.6

82 1 Fi 0.5
(b) “pair” dataset

n |Fint| f(Fint) P
3 2 XOR(Fi, Fj) 0.8
3 2 XOR(Fi, Fj) 0.7
3 2 XOR(Fi, Fj) 0.6
3 1 Fi 0.8
3 1 Fi 0.7
3 1 Fi 0.6

73 1 Fi 0.5
(c) “combined” dataset

Table 2: Synthetic datasets statistics: The feature inte-
raction sets (Fint) contained in each dataset; The inte-
raction function for the feature sets (f(Fint)); The values
P (f(Fint) = Ft) are denoted by P . The value of n in the
last row of each table corresponds to the number of irrele-
vant features in a dataset. In the other rows, n denotes the
number of copies of each interaction set, which are identi-
cally defined but independently realized (and differ in the
random component).

4.2 Adding noise to the ground truth
ranking

The noise is introduced into the ranking by selecting a pro-
portion, θ, of the features, which are randomly selected.
For these features, random relevance values are assigned
while the remaining features preserve their ground truth re-
levance. By considering these partially changed relevance
values, a new noisy feature ranking, Rθ, is defined.

As the random relevance values can be distributed dif-
ferently throughout the ranking, different FFA/RFA curves
can be constructed for the same amount of noise.

We estimate the expected error values by sampling the
space of possible FFA/RFA curves for a given θ. First, we
generate N different noisy feature rankings and then con-
struct N FFA/RFA curves based on them. The expected
values of FFA/RFA curve are estimated by averaging the
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N individual curves, namely

E[FFA]θ =
1

N

N∑
i=1

FFAθ,i

E[RFA]θ =
1

N

N∑
i=1

RFAθ,i

for a specified N and θ.
For estimating the error values of the FFA/RFA curves,

SVMs with a polynomial (quadratic) kernel were used and
a 10-fold cross validation was performed on the dataset un-
der consideration. The epsilon parameter of the SVMs was
set to 1.0E-12, while the complexity parameter was set to
0.1.

For our experiments, we consider several different
amounts of noise θ, namely: 5%, 10%, 15%, 20%, 30%
and 50%, as well as the completely random ranking (100%
of noise). Each noisy error curve was produced by sum-
marizing the errors of 100 noisy rankings produced for a
given θ. We additionally constructed error curves based on
the ground truth ranking.

The experiments were performed on the three synthetic
datasets described in Section 4.1, each with its correspon-
ding ground truth ranking, RGT .

4.3 Results on synthetic data
The results of our experiments are first plotted as graphs
containing error curves. In Fig. 2, we only show the cur-
ves obtained on the “combined” dataset. These curves are
representative of the curves obtained on the other datasets.

The FFA/RFA curves plotted on each graph are for ran-
kings with different noise levels θ, as well as for the ground
truth RGT and random rankings. In both Figs. 2a and 2b,
the FFA and the RFA curves seem to be sensitive to the
addition of noise. To begin with, the FFA/RFA curves of
all the noisy rankings are located between the ground truth
ranking FFA/RFA curve and the random ranking FFA/RFA
curve. As noise is added to the ground truth ranking,
the FFA/RFA estimates are slowly moving away from the
ground truth FFA/RFA curve and towards the random ran-
king FFA/RFA curve.

Next, for performing quantitative analysis of the feature
rankings, we begin by summarising the differences of the
noisy rankings error curves w.r.t. the ground truth error
curve. Additionally, some kind of baseline is required for
comparison. As the ground truth ranking is known, the dis-
tance between the ground truth ranking and the noisy ran-
kings can serve as a baseline.

For summarising the differences between the noisy ran-
kings FFA/RFA curves we use the ECA difference, calcu-
lated by using Eq. 4 from Section 3.2. For comparative
purposes,when calculating the ECA differences, we use the
different weighting functions as discussed in Section 3.2.

For calculating the baseline values, i.e., the distance bet-
ween the ground truth ranking RGT and the noisy rankings

Rθ,i, we use the average Spearman rank correlation coeffi-
cient ρ between the vectors RGT and Rθ,i. The i-th com-
ponent of such a vector gives the rank of the i-th feature in
dataset. The distance between rankings is then computed
as

dist(RGT ,Rθ) = 1− ρ̄GT,θ = 1− 1

N

N∑
i=1

ρ(RGT ,Rθ,i)

where N is the number of different noisy rankings consi-
dered for a given θ.

We obtain the results for all of the three synthetic da-
tasets. Since there are no major differences among them,
we show summarised results only for the “combined” da-
taset. Table 3 contains values calculated with respect to
the ground truth ranking. The first row of the table re-
fers to the distance dist(RGT ,Rθ). The other rows are
the ECA differences between the FFA/RFA curves of the
GT ranking and the FFA/RFA curves of the noisy rankings.
Each row containing the ECA differences refers to diffe-
rent weighting functions. All columns, except the last one,
refer to different levels of noise, θ. The final column gi-
ves the correlation between dist(RGT ,Rθ) (row one) and
the FFA/RFA curve distances (rows 2 to 5), across different
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(a) FFA curves for the “combined” dataset
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(b) RFA curves for the “combined” dataset

Figure 2: Plots comparing the FFA (on the left) and RFA
(on the right) curves for the “combined” dataset. Each fi-
gure contains error curves for the ground truth ranking, ran-
kings with different noise levels θ and the random ranking.
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θ = 0.05 θ = 0.1 θ = 0.15 θ = 0.2 θ = 0.3 θ = 0.5 θ = 1
dist 0.1 0.171 0.252 0.32 0.432 0.652 1.048 corr.
w = 1 0.009 0.02 0.027 0.037 0.061 0.117 0.223 0.992
w = 1/r 0.018 0.042 0.047 0.064 0.084 0.132 0.178 0.991
w = |δ| 0.029 0.061 0.070 0.09 0.115 0.174 0.263 0.998
w = |δ| /r 0.044 0.091 0.095 0.121 0.142 0.199 0.254 0.982

Table 3: Comparison of different ECA values obtained by different weighting functions w. The ECA values are compared
with the distance between the noisy rankings Rθ and the GT ranking RGT . The final column of each table “corr.” is the
value of the correlation coefficient calculated between the ranking distance (first row) and each of the ECA difference
rows.

noise levels θ.
The final column gives an indication of how well the

ECA differences relate to the distance between the ground
truth ranking and the noisy rankings. As it can be seen, the
curve distances correlate very well to the rank distances,
regardless of which weighting function is used.

From this quantitative analysis, it can be concluded that
the ECA difference derived from the error curves has the
same sensitivity to noise as the actual distance between the
ground truth and the noisy rankings. This implies that our
method can be used in practical scenarios not just to quali-
tatively distinguish between different rankings, but also to
quantify the difference between them. As for the specific
weights used for calculating the ECA differences, it can be
concluded that any of the considered weighting schemes
can be used to properly compare the error curves.

5 Evaluation on real data

Thus far, our analysis only involved artificially generated
problems. In this section, we want to illustrate the use of
our feature ranking evaluation method on datasets origina-
ting from various real-life domains. The purpose of the ex-
periments is to examine the quality of the feature rankings
produced by several feature ranking methods on data with
different characteristics.

The analysis is primarily a comparative one, performed
solely by calculating the numeric scores derived from the
FFA and RFA error curves. The datasets we consider are
quite diverse, with unknown interaction structure and the-
refore unknown ground truth ranking. However, for each
dataset, it is possible to generate the expected error curves
of random rankings. These expected curves are used as a
baseline for comparing the different feature ranking met-
hods.

5.1 Datasets description

For our experiments, 28 diverse classification datasets with
a single target class were selected. Most of them origi-
nate from the UCI data repository [14] and are from vari-
ous domains. Of the remaining 3 datasets, one is from a
medical study of acute abdominal pain in children (aapc)
[4], while the remaining two (“water” and “diversity”) are
from an ecological study of river water quality [5].

Besides covering different domains (including biology,
medicine, ecology etc.) these datasets have a wide range of
different properties, including number/type of features and
number of instances.

The main characteristics of each dataset are summarised
in Table 4.

Dataset #Inst. #Feat. #Cl.
aapc 335 84 3
amlPrognosis 54 12625 2
arrhythmia 452 279 16
australian 690 14 2
bladderCancer 40 5724 3
breast-cancer 286 9 2
breast-w 699 9 2
breastCancer 24 12625 2
car 1728 6 4
chess 3196 36 2
childhoodAll 110 8280 2
cmlTreatment 28 12625 2
colon 62 2000 2
diversity 292 86 5
dlbcl 77 7070 2
german 1000 20 2
heart 270 13 2
heart-c 303 13 2
heart-h 294 13 2
ionosphere 351 34 2
leukemia 72 5147 2
mll 72 12533 3
prostate 102 12533 2
sonar 208 60 2
srbct 83 2308 4
tic-tac-toe 958 9 2
water 292 80 5
waveform 5000 21 3

Table 4: Statistics for the benchmark datasets

5.2 Experimental setup
Four feature ranking methods were applied to each dataset:

– Information gain, calculating the information gain of
each feature Fi as IG(Ft, Fi) = H(Ft)−H(Ft|Fi).
This does not require any specific parameter setting.

– SVM-RFE is the recursive feature elimination (RFE)
procedure that employs an SVM to evaluate the fea-
ture weights at each iteration. A linear SVM was em-
ployed [9] with the epsilon parameter set to 1.0E-12,
while the complexity parameter was set to 0.1.

– ReliefF algorithm as proposed in [18]. The number of
neighbours was set to 10 and all of the instances were
used for estimating the relevance values.
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– Random forests, which can be used for estimating
feature relevance as described in [2]. A forest of 100
trees was used, constructed by randomly choosing a
log2 of the number of features.

To generate the error curves, SVMs with polynomial (qua-
dratic) kernel, were employed as classifiers. The epsilon
parameter was set to 1.0E-12, while the complexity para-
meter was set to 0.1. This classifier was showed to be ap-
propriate in our previous experiments [20].

As a baseline of the comparison, expected FFA and RFA
curves were used. They were produced by generating 100
random rankings for each dataset under consideration. This
was done in a similar manner as described in Section 3.3.

5.3 Results on real data
The results summarizing the error curves average (ECA)
differences are given in Table 5. The ECA differences
are calculated by using Eq. 4 and the weighting function
wi = 1, i.e., as a standard mean value. Each row of Table 5
refers to a single dataset, while each column corresponds
to a single feature ranking method. The ECA values in the
table are calculated w.r.t. the baseline error curve, namely,
the expected error curve. This gives an indication of how
much each feature ranking method is better than a random
ranking generator, but also allows for comparison between
the quality of the feature rankings of the different methods.

A positive value of an ECA difference indicates that a
feature ranking method performs better than the random
ranking generator. The negative values, however, do not
necessarily indicate that it performs worse than random,
but that it provides a non-random ranking that is inverse to
the correct one. A value close to zero means the feature
ranking method provides rankings that are more (or less)
random.

An intial inspection of the results in Table 5 reveals that
random forests often have negative ECA values. The FFA
and RFA curves of random forests, for these particular da-
tasets, are below/over the expected FFA/RFA curves of
random rankings. Upon closer inspection of their feature
rankings (results not shown here due to space limitations)
we find that they are inverse to those of the other feature
ranking methods.

In order to summarise the results from Table 5 and to
draw meaningful conclusions about the performance of the
different ranking methods across the different datasets, we
use statistical tests. We adopt the recommendations of
Demšar [3] and use the Friedman [6] test for statistical
significance with the correction by Iman [10]. If the null
hypothesis H0 that all ranking methods perform equally
well, can be rejected, we use the Nemenyi post-hoc test
[13] and additionally check between which feature ranking
methods the statistically significant differences appear. The
level of significance p = 0.05 was used.

When comparing the four feature ranking methods, sta-
tistically significant differences occur. We present the re-
sults with a critical distance diagram [3] in Fig. 3. In the

1 2 3 4

ReliefF

IG

RF

SVM-RFE

crit ical distance: 0.8864

Figure 3: Critical distance diagrams representing the sta-
tistical comparison of the ECA differences of three ranking
methods on the 28 datasets. The critical distance is calcula-
ted for a p value of 0.05 and is represented by a horizontal
line. If the feature ranking methods are connected by a
line, then their performance is not statistically significantly
different.

diagram, the feature ranking methods are ordered accor-
ding to which one is better on average (across all datasets).
A method is better if it is positioned closer to the value
one on the axis. It can be observed that ReliefF, Info Gain
and SVM-RFE significantly outperform Random Forests,
while not differing significantly among each other.

dataset IG RF ReliefF SVM-RFE
aapc 0.269 0.299 0.316 0.297
amlPrognosis 0.056 0.007 0.027 0.043
arrhythmia 0.041 0.041 0.057 0.053
australian 0.277 0.260 0.266 0.209
bladderCancer 0.125 0.059 0.167 0.161
breast-cancer 0.025 0.013 0.012 −0.003
breast-w 0.246 0.206 0.190 0.194
breastCancer 0.050 0.037 0.128 0.110
car 0.085 −0.081 0.079 0.066
chess 0.279 −0.056 0.283 0.248
childhoodAll 0.083 0.040 0.033 0.154
cmlTreatment 0.028 −0.009 −0.026 0.004
colon 0.099 0.049 0.163 0.116
diversity 0.167 0.192 0.215 0.149
dlbcl 0.032 0.008 0.067 0.086
german 0.023 −0.002 0.013 0.022
heart 0.159 0.039 0.150 0.130
heart-c 0.178 0.057 0.163 0.163
heart-h 0.146 0.058 0.110 0.147
ionosphere 0.116 0.088 0.041 0.136
leukemia 0.140 0.056 0.175 0.164
mll 0.118 0.045 0.355 0.281
prostate 0.212 0.067 0.236 0.232
sonar 0.066 0.060 0.096 0.070
srbct 0.142 0.084 0.292 0.261
tic-tac-toe 0.072 −0.052 0.082 0.069
water 0.193 0.181 0.217 0.144
waveform 0.180 −0.190 0.188 0.210

Table 5: ECA differences between the FFA/RFA curves of
four feature ranking methods w.r.t. the curves of a random
ranking. The missing values are due to SVM-RFE’s in-
ability to handle multi-valued discrete/nominal attributes.
Boldfaced values are the largest ECA differences in each
row.
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6 Conclusions

In this paper, we focus on the problem of evaluating the
output of feature ranking algorithms. We define and for-
malize an intuitive evaluation method for quantitative com-
parison of feature rankings. The method is based on ite-
rative construction and evaluation of predictive models, re-
sulting in so-called error curves: forward feature addition
curve (FFA), starting from the top of a feature ranking, and
the reverse feature addition curve (RFA), starting from the
bottom of a ranking. From these two curves, we calcu-
late the error curves average (ECA) difference that we pro-
pose as a numerical indicator for comparing different fea-
ture rankings.

We first test our method in a controlled environment on
synthetic data. We compare feature rankings with different
amount of added noise, starting from the known ground
truth ranking and ending with completely random rankings.
By comparing the different ECA values obtained for the
different noise levels, we show that our method is sensitive
to changes in the quality of the feature ranking.

In order to demonstrate the practical application of our
evaluation method, we consider a collection of classifica-
tion datasets from various domains with different proper-
ties. We compare the performance of four feature ranking
methods across these different datasets and evaluate their
outputs by using our proposed method. The analysis of the
comparative evaluation shows that the best algorithm is of-
ten domain dependent and often simple approaches such as
info gain can be used to produce a proper feature ranking.

Several directions of work can be taken to further deve-
lop the proposed evaluation methodology. The first is to
directly use the feature relevance values produced by the
ranking algorithm when inducing predictive models. This
can be easily done in feature-weighted classifiers, such as
weighted kNN. The second concerns feature ranking sta-
bility, another important aspect of the feature ranking pro-
cess. Although we have not considered it explicitly in this
work, we would like to include it in the feature ranking eva-
luation process, in a manner similar to that of [19]. Also, as
structured data [1] are becoming increasingly common, we
would like to adapt and investigate our method for diffe-
rent types of structured targets. To this end, we need to use
a feature ranking method for structured targets and couple
it with a predictive model for structured outputs [12, 17].
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