
 Informatica 42 (2018) 61–68 61
  

 

An Inter-domain Study for Arousal Recognition from Physiological 

Signals  

Martin Gjoreski1,2, Mitja Luštrek1 and Matjaž Gams1,2 
1Department of Intelligent Systems, Jožef Stefan Institute 
2Jožef Stefan International Postgraduate School 

Ljubljana, Slovenia 

E-mail: martin.gjoreski@ijs.si 

 

Blagoj Mitrevski 

Faculty of Computer Science and Engineering 

Skopje, R. Macedonia  

 

Keywords: arousal recognition, GSR, R-R, machine learning, emotion recognition, health 

Received: October 27, 2017 

Arousal recognition from physiological signals is a task with many challenge remaining, especially 

when performed in several different domains. However, the need for emotional intelligent machines 

increases day by day, starting with timely detection and improved management of mental disorders in 

mobile health, all the way to enhancing user experience in human-computer interaction (HCI). One of 

the open research questions, which we analyze in this paper, is which machine-learning (ML) methods 

and which input is most suitable for arousal recognition. We present an inter-domain study for arousal 

recognition on six different datasets. The datasets are processed and translated into a common spectro-

temporal space of R-R intervals and Galvanic Skin Response (GSR) data, from which features are 

extracted and fed into ML algorithms. We present a comparison between dataset-specific models, “flat” 

models build on the overall data, and a novel stacking scheme, developed to utilize knowledge from all 

six datasets. When one model is built for each dataset, it turns out that whether the R-R, GSR, or merged 

features yield the best results is domain (dataset) dependent. When all datasets are merged into one and 

used to train and evaluate the models, the stacking scheme improved upon the results of the “flat” 

models. 

Povzetek: Zaznavanje psihološkega vzburjenja iz fizioloških signalov je težka naloga, posebej če se je 

želimo lotiti na enoten način za več različnih domen. Vendar je potreba po inteligentnih strojih, ki so 

zmožni razumeti tudi čustva, vedno večja: uporabljajo se za različne probleme, od obvladovanja 

duševnih motenj z rešitvami mobilnega zdravstva do izboljševanja uporabniške izkušnje pri interakciji 

človeka z računalnikom. Odprto raziskovalno vprašanje, s katerim se ukvarja ta članek, je, katere 

metode strojnega učenja in kakšni vhodni podatki so primerni za zaznavanje vzburjenja. Članek opisuje 

več-domensko študijo zaznavanja vzburjenja na šestih različnih zbirkah podatkov. Zbirke so pretvorjene 

v enoten spektralno-časovni prostor intervalov R-R in galvanskega odziva kože, iz katerih izluščimo 

značilke in jih uporabimo kot vhod v algoritme strojnega učenja. Primerjamo modele, prilagojene 

posamičnim zbirkam podatkov, modele, zgrajene iz združenih podatkov vse zbirk, in inovativen 

ansambel modelov, ki takisto uporablja vseh šest zbirk. Izkaže se, da če zgradimo po en model za vsako 

zbirko podatkov, je od zbirke odvisno, ali se najbolje obnesejo značilke, izluščene iz intervalov R-R, 

galvanskega odziva kože ali obojega. Če zbirke podatkov združimo, pa se ansambel obnese bolje od 

navadnega modela. 

1 Introduction 
In 1897, Wundt [1] set the basis for modeling affective 

states by identifying the two emotional dimensions of 

calm-excitement and relaxation-tension. Almost a 

century later, in 1997, the field of affective computing 

[2] has been introduced, which aims for computational 

modeling of the affective states. Besides the maturity of 

the field of affective computing, modeling affective 

states has still remained a challenging task. Its 

importance is mainly reflected in the domain of human-

computer interaction (HCI) and mobile health. In the 

HCI, it enables a natural and emotionally intelligent 

interaction. In the mobile health, it is used for timely 

detection and management of emotional and mental 

disorders such as depression, bipolar disorders and 

posttraumatic stress disorder. For example, the cost of 

work-related depression in Europe was estimated to €617 

billion annually in 2013. The total was made up of costs 

resulting from absenteeism and presenteeism (€272 

billion), loss of productivity (€242 billion), health care 
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costs of €63 billion and social welfare costs in the form 

of disability benefit payments (€39 billion) [3]. 

Affective states are complex states that results in 

psychological and physiological changes that influence 

behaving and thinking [5]. These psycho-physiological 

changes can be captured by a wearable device equipped 

with galvanic skin response (GSR – measures sweating 

rate), Electrocardiography (ECG – measures heart 

electrical activity) or blood volume pulse (BVP – 

measures cardiovascular dynamics) sensors. For 

example, the affective state of excitement usually 

initiates changes in heartbeat, breathing, sweating, and 

muscle tension, which can be captured using wearable 

sensors. 

There are several approaches for modeling emotions, 

including discrete, continuous, and appraisal-driven 

approach. For the apprise-driven approach, context 

information is needed to model people’s relationship to 

the environment that elicits their emotional response [4]. 

However, in computer science studies, the required 

context information is usually not available. In the 

discrete approach, the affect (emotion) is represented as 

discrete and distinct state, i.e., anger, fear, sadness, 

happiness, boredom, disgust and neutral. In the 

continuous approach, the emotions are represented in 2D 

(see Figure 1) or 3D space of activeness, valance and 

dominance [5]. Unlike the discrete approach, this model 

does not suffer from vague definitions and fuzzy 

boundaries, and has been widely used in affective studies 

[6] [7] [8]. The use of the same annotating model allows 

for an inter-study analysis.  

 

Figure 1: Circumplex model of affect. The model maps 

affective states in a 2D space of Arousal and Valence [5]. 

In this study we examine arousal recognition from 

GSR and heart–related physiological data, captured via: 

chest-worn ECG and GSR sensors, finger-worn BVP 

sensor, and wrist-worn GSR sensor BVP sensor. The 

data belongs to six publicly available datasets for affect 

recognition, in which there are 191 different subjects (70 

females) and nearly 150 hours of arousal-labelled data. 

All of this introduces the problem of inter-domain 

learning, to which ML techniques are sensitive. To 

overcome this problem, we propose a preprocessing 

technique and a novel ML stacking scheme. The 

preprocessing technique translates the datasets into a 

common spectro-temporal space of R-R and GSR data. 

After the preprocessing, R-R and GSR features are 

extracted, which can be fed into ML algorithms to build 

models for arousal recognition. The novel ML stacking 

scheme builds dataset-specific ML models and uses a 

meta-learner to build general models. 

The novelties of this study are: 

(1) First study in affect recognition that analyzes 

data from six different datasets (see Section 3 

Data). 

(2) Methodology for translating physiological data 

into a common spectro-temporal space of R-R 

and GSR data (see Section 4.1 Pre-processing 

and feature extraction). 

(3) Novel ML stacking scheme that generalizes 

from dataset-specific to general ML model for 

arousal recognition (see Section 4.2 Machine 

learning). 

2 Related work 
Affect recognition is an established computer-science 

field, but one with many remaining challenges. Many 

studies confirmed that affect recognition can be 

performed using speech analysis [10], video analysis 

[11], or physiological sensors in combination with ML 

[12]. The majority of the methods that use physiological 

signals use data from ECG, electroencephalogram 

(EEG), functional magnetic resonance imaging (fMRI), 

GSR, electrooculography (EOG) and/or BVP sensors. 

In general, the methods based on EEG data 

outperform the methods based on other data [6] [7], 

probably due to the fact the EEG provides a more direct 

channel to one’s mind. However, even though EEG 

achieves the best results, it is not applicable in normal 

everyday life. In contrast, affect recognition from R-R 

intervals or GSR data, is much more unobtrusive since 

this data can be extracted from ECG sensors, BVP 

sensors, or GSR sensors, most of which can be found in a 

wrist device (e.g., Empatica [13] and Microsoft Band 

[14]). Our methodology is tailored towards this type of 

data. 

Regarding the typical ML approaches for affect 

recognition, Iacoviello et al. have combined discrete 

wavelet transformation, principal component analysis 

and support vector machine (SVM) to build a hybrid 

classification framework using EEG [15]. Khezri et al. 

used EEG combined with GSR to recognize six basic 

emotions via K-nearest neighbors (KNN) classifiers [16]. 

Mehmood and Lee used independent component analysis 

to extract emotional indicators from EEG, EMG, GSR, 

ECG and effective refractory period (ERP) [17]. 

Mikuckas et al. [18] presented a HCI system for 

emotional state recognition that uses spectro-temporal 

analysis only on R-R signals. More specifically, they 

focused on recognizing stressful states by means of the 

heart rate variability (HRV) analysis.  



An Inter-domain Study for Arousal Recognition … Informatica 42 (2018) 61–68 63 

 

Regarding the more advanced ML approaches, Yin 

et al. [20] used an ensemble of deep classifiers for 

recognizing affective states using EEG, 

electromyography (EMG), ECG, GSR, and EOG. Using 

the same data, Verma et al. [19] developed an ensemble 

of shallow classifiers. Similarly, Kuncheva et al. [21] 

introduced AMBER - Advanced Multi-modal Biometric 

Emotion Recognition approach which uses data from 

EEG, EDA and HR sensor. 

In contrast with the related work, which analyzes 

only one dataset, we perform experiments with six 

different datasets (domains), we analyze which ML 

algorithms in combination with which data type (either 

R-R intervals or GSR) yields best performance across all 

six different dataset for arousal recognition, and we 

propose a novel stacking method for learning from all six 

different domains. Finally, the work presented here is 

related to our previous conference paper [39]. Here we 

present more details regarding the data pre-processing 

and feature extraction, we present the novel stacking 

scheme and new experimental results. 

3 Data 
The data belongs to six publicly available datasets for 

affect recognition: Ascertain [6], Deap [7], Driving 

workload dataset [26], Cognitive load dataset [27], 

Mahnob [29], and Amigos [30]. Overall, nearly 150 

hours of arousal-labelled data that belong to 191 subjects. 

Table 1 presents the data summary, which contains: 

number of subjects per dataset, the mean age, number of 

trials per subject, mean duration of each trial, duration of 

data per subject  ̶  in seconds, and overall duration. 

Our goal was to recognize the arouse. Four datasets, 

Ascertain, Deap, Mahnob and Amigos, were already 

labelled with the subjective arousal level. One difference 

between these datasets was the arousal scale used for 

annotating. For example, the Ascertain dataset used a 7-

point arousal scale, whereas the Deap dataset used a 9-

point arousal scale (1 is very low, and 9 is very high, and 

the mean value is 5). Since the problem of arousal 

recognition is difficult, we decided to formulate it as a 

binary classification problem. From both scales, we thus 

split the labels in two classes using the mean value with 

respect the original scales. This is the same split used in 

the original studies. A similar step was performed for the 

Mahnob dataset.  

Two datasets, Driving workload and Cognitive load, 

did not contain labels for subjective arousal level. The 

Driving workload dataset was labelled with subjective 

ratings for a workload during a driving session. For this 

dataset, we presume that increased workload corresponds 

to increased arousal. Thus, we used the workload ratings 

as arousal ratings. The threshold for high arousal was put 

on 50%. Similarly, the Cognitive load dataset was 

labelled for subjective stress level during stress inducing 

cognitive load tasks (mathematical equations). The 

subjective scale was from 0 to 4 (no stress, low, medium 

and high stress). We put the threshold for high arousal on 

2 (medium stress). 

4 Methods 

4.1 Pre-processing and feature extraction 

4.1.1 R-R data 

The preprocessing is essential, since it allows merging of 

the six different datasets. For the heart-related data, it 

translates the physiological signals (ECG or BVP) to R-R 

intervals and performs temporal and spectral analysis. 

First, a peak detection algorithm is applied to detect the 

R-R peaks. Figure 2 presents an example for ECG signal 

and the detected R-R peaks. On the x-axis is the sample 

of the data window, on the y-axis is the output of the 

ECG sensor (voltage) and the detected peaks are marked 

with red.  

Next, is temporal analysis, i.e., calculating the time 

distance between the detected peaks. Once the R-R 

intervals are detected they can be analyzed as a time 

series.  Figure 3 is an example of an R-R time series. On 

the y-axis is the duration of the R-R interval, and on the 

x-axis is the time (in seconds) in which the R-R interval 

has occurred.  

After the detection of R-R intervals, the R-R signal is 

processed. First, each R-R signal is filtered using a 

median filter which removes the R-R intervals that are 

outside of the interval [0.7*median, 1.3*median]. These 

parameters were determined experimentally. 

 

Table 1: Experimental data summary [39]. 

Dataset 

        Duration per 

Subjects Females Mean age Trials trial [s] subject [min]  dataset [h] 

Ascertain 58 21 31 36 80 48.0 46.4 

DEAP 32 16 26.9 40 60 40.0 21.3 

Driving  10 3 35.6 1 1800 30.0 5.0 

Cognitive 21 0 28 2 2400 80.0 28.0 

Mahnob 30 17 26 40 80 53.3 26.7 

Amigos 40 13 28 16 86 22.9 15.3 

Overall 191 70 29.25 135 884.0 251.3 142.7 
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Figure 2: ECG signal and detected R-R peaks (red color). 

ASCERTAIN dataset t, Subject 1, Video 29 [6]. 

 

Figure 3: Example R-R signal as a time-series. 

ASCERTAIN dataset, Subject 1, Video 29 [6]. 

After the median filter, person specific winsorization 

is performed with the threshold parameter of 3 to remove 

outlier R-R intervals. From the filtered R-R signals, 

periodogram is calculated using the Lomb-Scargle 

algorithm [9]. The Lomb-Scargle algorithm allows 

efficient computation of a Fourier-like power spectrum 

estimator from unequally spaced data (as are the R-R 

intervals). Figure 4 presents an example Lomb-Scargle 

periodogram. The red color represent the low frequencies 

and the yellow color represents the high frequencies.    

Finally, based on the related work [36], the following 

HRV features were calculated from the time and spectral 

representation of the R-R signals: the mean heart rate 

(meanHR), the mean of the R-R intervals (meanRR), the 

standard deviation of the R-R intervals (sdnn), the 

standard deviation of the differences between adjacent R-

R intervals (sdsd), the square root of the mean of the 

squares of the successive differences between adjacent 

R-R intervals (rmssd), the percentage of the differences 

between adjacent R-R intervals that are greater than 20 

ms, the percentage of the differences between adjacent 

R-R intervals that are greater than 50 ms, Poincaré plot 

indicies (SD1 and SD2), total spectral power of all R-R 

samples in power between 0.003 and 0.04 Hz (lf - low 

frequencies), between 0.15 and 0.4 Hz (hf  ̶  high 

frequencies), and the ratio of low  to high frequency 

power. 

4.1.2 GSR data 

To merge the GSR data from the six datasets, several 

problems were addressed. Each dataset is recorded with 

different GSR hardware, thus the data can be presented 

in different units and different scales. To address this 

problem, each GSR signal was converted to µS (micro 

Siemens). Next, the GSR signal was filtered using a 

lowpass filter with a cut-off frequency of 1 Hz. Figure 5 

presents an example filtered GSR signal. To address the 

inter-participant variability of the signal, person-specific 

min-max normalization was performed, i.e., each signal 

was scaled to [0, 1] using person specific winsorized 

minimum and maximum values. The winsorization 

parameter was set to 3.  

 

Figure 4: Normalized Lomb-Scargle periodogram 

calculated from R-R signal. ASCERTAIN dataset, 

Subject 1, Video 29 [6]. 

 
Figure 5: Filtered GSR signal. ASCERTAIN dataset, 

person 1, Clip 1 [6]. 

 

Figure 6: GSR signal decomposition (green – tonic 

driver, slow acting component; red – GSR responses, fast 

acting component). ASCERTAIN dataset, person 1, Clip 

1 [6]. 
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Finally, the fast acting component (GSR responses) 

and the slow acting component (tonic component) were 

determined in the signal using the “peakutils.baseline” 

function from the Python’s PeakUtils library. The 

function is used with the default parameters. It iteratively 

performs a polynomial fitting in the data to detect its 

baseline. For example, in Figure 6, the GSR responses 

are marked with red and the tonic component (baseline) 

is marked with green. Based on the related work [30], the 

preprocessed GSR signal was used to calculate GSR 

features: mean, standard deviation, 1st and 3rd quartile 

(25th and 75th percentile), quartile deviation, derivative of 

the signal, sum of the signal, number of responses in the 

signal, rate of responses in the signal, sum of the 

responses, sum of positive derivative, proportion of 

positive derivative, derivative of the tonic component of 

the signal, difference between the tonic component and 

the overall signal. 

4.2 Machine learning 

4.2.1 Flat machine learning 

After the feature extraction, the data is in a format which 

can be input for typical ML algorithms. Models were 

built using seven different ML algorithms: Random 

Forest, Support Vector Machine, Gradient Boosting 

Classifier, AdaBoost Classifier (with a Decision Tree as 

a base classifier), KNN Classifier, Gaussian Naive Bayes 

and Decision Tree Classifier.  The algorithms were used 

as implemented in the Scikitlearn, the Python ML library 

[37]. For each algorithm, a randomized search on hyper 

parameters was performed on the training data using 2-

fold cross-validation. 

4.2.2 Stacking 

The novel stacking scheme, depicted in Figure 7, was 

designed to train a meta-learner which would utilize the 

knowledge from all six datasets. In the example scenario, 

we used the 7 ML algorithms mentioned in the previous 

section. Thus, there are 42 base models (6 datasets x 7 

ML algorithms). The outputs of the base models, which 

are probabilities for the class “high arousal”, are used as 

input to a meta-learner. The meta-learner can be any ML 

algorithm previously mentioned. We experimentally 

chose Random Forest to be our meta-learner. The meta-

learner is trained using a 10 fold-cross validation on the 

training data. That is, the base learners are trained on 

90% of the data, then predictions are provided on the rest 

10% of the data, and this procedure is repeated ten times. 

Finally, the meta-learner is trained on the cross-validated 

predictions of the base learners. In the test phase, the test 

instances are provided as input to all of the 42 base 

models, their output is summed up in a 42 dimensional 

vector (in Figure 7 marked as p11, p12,…,p67 – six datasets 

and seven base models) as input to the meta-learner, 

which provides the final prediction for the test instance. 

5 Experimental results 
Two types of experiments were performed: dataset 

specific experiments, and experiments with merged 

datasets. The dataset-specific experiments were used to 

identify the ML algorithm and the input that would yield 

the best performance per dataset.  

The experiments on the merged datasets were used to 

build general, dataset-independent ML models. This 

evaluation simulates a scenario where the source 

(dataset) is unknown, i.e., we do not know whether the 

subject is watching an affective video (e.g., the DEAP 

dataset), is driving a car (e.g., the Driving workload 

dataset) or he/she is working on a cognitive demanding 

task (e.g., the cognitive load dataset). 

The evaluation was performed using trial-specific 

10-fold cross-validation, i.e., the data segments that 

belong to one trial (e.g., one affective stimuli), can either 

belong only to the training set or only to the test set, thus 

there was no overlapping between the training and test 

data. 

5.1 Dataset specific 

The results for the dataset-specific experiments are 

presented in Table 2. The first column represents the ML 

algorithm, the second column represents the features 

used as input to the algorithm (R-R, GSR or Merged - M) 

and the rest of the columns represent the dataset which is 

used for training and evaluation using the trial-dependent 

10-fold cross-validation. We report the mean accuracy ± 

the standard evaluation for the 10 folds. For each dataset, 

the best performing model(s) is (are) marked with green. 

Figure 7: The novel stacking scheme for training a meta-learner that utilizes knowledge from all six datasets. 
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For example, on the Ascertain and the Driving workload 

dataset, the best performing algorithm is the SVM, on the 

Deap dataset, the best performing algorithm is the RF, on 

the Cognitive Load and the Mahnob datasets, the best 

performing is the NB, and on the Amigos dataset, the 

best performing is the AdaBoost algorithm. 

When we compare which input (R-R features, GSR 

features or Merged-M) provide better accuracy, on two 

datasets, the Asceratin and the Driving workload, the 

results are the same, on the Deap dataset, the R-R 

features provide better results, on the Cognitive Load 

dataset, the highest accuracy is achieved both for the 

GSR and the Merged features, on the Mahnob dataset, 

the GSR features provide best accuracy and on the 

Amigos dataset, the Merged features. 

Regarding the majority class, the biggest accuracy 

improvement was achieved for the Cognitive load 

dataset, which is an improvement of 9 percentage points. 

For the two datasets, the Deap and the Amigos, the 

improvement was 2-3 percentage points, and for the three 

datasets, the Ascertain, the Driving workload and the 

Mahnob, the best performing models were as good as the 

majority classifier. 

5.2 Merged datasets 

In the dataset-specific experiments, none of the 

algorithms yielded best performance (compared to the 

rest of the algorithms) over all datasets, thus there was no 

experimental hint about which algorithm would be able 

to generalize over all datasets. For that reason, we came 

up with the stacking approach, where a meta-learner 

learns how to combine the output of all of the algorithms 

trained on the different datasets. The details are presented 

in section 4.2. Stacking. The input to the algorithms was 

the merged feature set, i.e., R-R and GSR features. 

We compared the meta-learning approach to a 

simple approach where the “flat” ML algorithms are 

trained on all datasets merged. The evaluation is 

performed using the same trial-specific 10-fold cross-

validation. The results are presented in Figure 8. It can be 

seen that all of the “flat” algorithms achieved an 

accuracy bellow or equal to 60%. The meta-learning 

approach slightly improved the results by achieving an 

Table 2: Dataset-specific experimental results. Mean accuracy ± stdDev for trial-specific 10-fold cross validation. The 

best performing models per dataset are marked with green [39]. 

 

Ascertain Deap D. Workload Cog. Load Mahnob Amigos

R-R 0.655 ± 0.07 0.556 ± 0.03 0.785 ± 0.24 0.739 ± 0.13 0.580 ± 0.11 0.536 ± 0.06

GSR 0.638 ± 0.06 0.503 ± 0.04 0.780 ± 0.24 0.763 ± 0.12 0.611 ± 0.07 0.473 ± 0.11

M 0.653 ± 0.05 0.540 ± 0.04 0.785 ± 0.25 0.755 ± 0.13 0.611 ± 0.10 0.559 ± 0.10

R-R 0.664 ± 0.07 0.536 ± 0.05 0.795 ± 0.26 0.717 ± 0.21 0.623 ± 0.15 0.521 ± 0.24

GSR 0.664 ± 0.07 0.525 ± 0.05 0.795 ± 0.26 0.712 ± 0.20 0.588 ± 0.10 0.470 ± 0.12

M 0.664 ± 0.07 0.513 ± 0.03 0.795 ± 0.26 0.691 ± 0.18 0.623 ± 0.15 0.506 ± 0.13

R-R 0.649 ± 0.07 0.554 ± 0.03 0.785 ± 0.20 0.736 ± 0.15 0.578 ± 0.11 0.543 ± 0.06

GSR 0.642 ± 0.05 0.500 ± 0.04 0.800 ± 0.21 0.743 ± 0.12 0.609 ± 0.08 0.527 ± 0.09

M 0.644 ± 0.05 0.533 ± 0.03 0.755 ± 0.23 0.761 ± 0.15 0.609 ± 0.11 0.542 ± 0.09

R-R 0.658 ± 0.06 0.532 ± 0.02 0.750 ± 0.23 0.718 ± 0.13 0.580 ± 0.09 0.531 ± 0.07

GSR 0.633 ± 0.05 0.485 ± 0.03 0.750 ± 0.22 0.740 ± 0.13 0.589 ± 0.08 0.514 ± 0.09

M 0.623 ± 0.05 0.526 ± 0.03 0.755 ± 0.22 0.766 ± 0.16 0.610 ± 0.08 0.560 ± 0.08

R-R 0.625 ± 0.05 0.509 ± 0.02 0.710 ± 0.19 0.715 ± 0.13 0.582 ± 0.07 0.509 ± 0.05

GSR 0.590 ± 0.06 0.496 ± 0.04 0.795 ± 0.26 0.772 ± 0.09 0.605 ± 0.06 0.533 ± 0.08

M 0.600 ± 0.05 0.490 ± 0.02 0.750 ± 0.23 0.770 ± 0.13 0.601 ± 0.09 0.533 ± 0.06

R-R 0.654 ± 0.07 0.537 ± 0.04 0.735 ± 0.15 0.748 ± 0.15 0.574 ± 0.06 0.485 ± 0.09

GSR 0.602 ± 0.04 0.537 ± 0.05 0.540 ± 0.22 0.803 ± 0.09 0.624 ± 0.07 0.454 ± 0.10

M 0.591 ± 0.04 0.535 ± 0.06 0.665 ± 0.17 0.804 ± 0.12 0.592 ± 0.06 0.486 ± 0.09

R-R 0.664 ± 0.07 0.519 ± 0.05 0.685 ± 0.17 0.736 ± 0.15 0.597 ± 0.09 0.505 ± 0.06

GSR 0.640 ± 0.05 0.542 ± 0.05 0.765 ± 0.22 0.734 ± 0.08 0.583 ± 0.09 0.483 ± 0.11

M 0.650 ± 0.05 0.524 ± 0.04 0.615 ± 0.22 0.704 ± 0.09 0.581 ± 0.13 0.551 ± 0.09

Majority 0.664 0.536 0.795 0.717 0.623 0.521

GB

AdaB

KNN

NB

DT

Algorithm Features
Dataset

RF

SVM

 

Figure 8: Accuracy of the meta-learner and the “flat” 

approaches for the merged-datasets experiments. 
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accuracy of 63%. 

6 Conclusion and discussion 
We presented an inter-domain study for arousal 

recognition on six different datasets, recorded with 

twelve different hardware sensors. We experimented 

with dataset-specific models, general models built on the 

overall (merged) data and general models build using the 

novel stacking scheme. For the dataset-specific models, 

we compared the results of seven different ML 

algorithms, using three different feature inputs (R-R, 

GSR or Merged – M features). For the models built on 

the overall (merged) data, we compared the results of the 

novel stacking scheme and “flat” ML models. The results 

on the dataset-specific setup showed that, out of the 

seven ML algorithms tested, none yields the best 

performance on all datasets. In addition to that, a clear 

conclusion cannot be made whether the R-R, GSR or the 

Merged features yield the best results – this is domain 

(dataset) dependent.  

On the merged-datasets experiments, the novel 

stacking scheme slightly outperformed the “flat” models. 

This was expected since the stacking scheme utilizes 

seven different ML models built on the six different 

datasets, thus 42 different models (views). 

However, the experimental results show that there is 

room for improvement regarding the accuracy achieved 

in both types of experiments. In the future, we plan to 

investigate more advanced techniques such as deep 

neural networks and transfer learning, which might be 

able to learn more accurate models that will be able to 

generalize across different domains. Finally, once we 

find the best performing scenario, we will generalize the 

method for arousal recognition to a method for valence 

recognition and method for discrete emotion recognition. 
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