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In this position paper, we present a brief overview of the ways topological tools, in particular persistent
homology, has been applied to machine learning and data analysis problems. We provide an introduction
to the area, including an explanation as to how topology may capture higher order information. We also
provide numerous references for the interested reader and conclude with some current directions of rese-
arch.

Povzetek: V tem članku predstavljamo pregled topoloških orodij, predvsem vztrajno homologijo, ki je upo-
rabna na področju strojnega učenja in za analizo podatkov. Začnemo z uvodom v področje in razložimo,
kako topologija lahko zajame informacije višjega reda. Članek vsebuje tudi reference na pomembna dela
za zainteresiranega bralca. Zaključimo s trenutnimi smernicami raziskav.

1 Introduction

Topology is the mathematical study of spaces via connecti-
vity. The application of these techniques to data is aptly na-
med topological data analysis (TDA). In this paper, we pro-
vide an overview of one such tool called persistent homo-
logy. Since these tools remain unfamiliar to most computer
scientists, we provide a brief introduction before providing
some insight as to why such tools are useful in a machine
learning context. We provide pointers to various successful
applications of these types of techniques to problems where
machine learning has and continues to be used.

We begin with a generic TDA pipeline (Figure 1). The
input is a set of samples, usually but not always embedded
in some metric space. Based on the metric and/or additio-
nal functions (such as density), a multiscale representation
of the underlying space of data is constructed. This goes
beyond considering pairwise relations to include higher-
order information. Persistent homology is then applied.
This is a tool developed from algebraic topology, which
summarizes the whole multiscale representation compactly
in the form of a persistence diagram. This compact repre-
sentation can then be applied to various applications.

The goal of this paper is to provide a brief overview and
introduce the main components in the TDA pipeline.

2 Simplicial complexes

Representations of the underlying space are built up simple
pieces glued together. There are many different approaches
to this, however the simplest is perhaps the simplicial com-
plex. A simplex is the convex combination of k points. A
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Figure 1: The TDA pipeline - taking in a points in in sime metric
space along with potentially other information, the data is turned
into a compact representation called a persistence diagram. This
summary can then be input into machine learning algorithms rat-
her than the raw point cloud.

single point contains only itself, an edge is the convex com-
bination of two points, three points make a triangle, four
points a tetrahedron and so on (see Figure 2). More gene-
rally, a k-dimensional simplex is the convex combination
of (k + 1) points. Just as an edge in a graph represents a
pairwise relationship, triangles represent ternary relations-
hips and higher dimensional simplices higher order relati-
ons. A graph is an example of a one-dimensional complex,
as it represents all pairwise information - all higher order
information is discarded. As we include higher dimensi-
onal simplices, we include more refined information yiel-
ding more accurate models. Note that these models need to
not exist in an ambient space (i.e. may not be embedded),
but rather represents connectivity information. The geome-
tric realization of simplicial complexes has a long history
of study in combinatorics but we do not address it here.

There are three main obstacles to this type of modeling.
The first is lack of data. While it may be counterintui-
tive, in the age of big data we are often still faced with
a lack of data. This is due to the non-uniformity and non-
homogeneity of data. It may not make sense to consider 10-
way relationships, if this data is only available for a small
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Figure 2: Simplicies come in different dimension. From left to
right, a vertex is 0-dim, an edge is 1-dim, a triangle 2-dim and a
tetrahedron is 3-dim.

subset of data. The second is computation. As we consi-
der higher order relationships, there is often a combinato-
rial blow-up as one must consider all k-tuples, leading to
preprocessing requirements which are simply not feasible.
The final obstacle is interpretability. While we can under-
stand a simplex locally, understanding the global structure
becomes increasingly challenging.

This is the starting point for the tools we discuss below.
Much of the effort of machine learning on graphs is trying
to understand the qualitative properties of an underyling
graph. This is often done by computing statistical features
on the graph: degree distributions, centrality measures, di-
ameter, etc. To capture higher order structure, we require
a different set of tools. First, we note that a collection of
simplices fit together. Just as in a graph, edges can only
meet at an edge, simplices can only be glued together al-
ong lower dimensional simplices, e.g. triangles meet along
edges or at a vertex. This represents a constraint on how
simple building blocks (e.g. simplices) can be glued toget-
her to form a space. While this does not seriously limit the
resulting spaces which can be represented, it does give us
additional structure.

The starting point for the introduction is to describe the
gluing map, called the boundary operator. For each k-
simplex it describes the boundary as a collection of k − 1
simplices. For example, the boundary of an edge consists
of its two end points, the boundary of a triangle consists
of its three edges (Figure 3). This can be represented as
a matrix with the columns representing k-simplices and
the rows k − 1 simplices, which we denote ∂k. The k-
dimensional homology can be defined as

Hk =
ker ∂k
im ∂k+1

The kernel is simply the collection of k-simplices which
form the nullspace of the matrix which correspond to cycles
(note that this agrees with the notion of graph-theoretic cy-
cles). We the disregard all such cycles which bound regions
filled-in by higher dimensional simplices. What remains
is the numner of k-dimensional holes in the space. Spe-
cifically, 0-dimensional homology corresponds to the num-
ber of connected components, 1-dimensional homology the
number of holes and so forth. The k-th Betti number, βk
is the number of independent such features. This is analo-
gous to the rank of a matrix describing the number of basis
elements a vector space has. This yields a qualitative des-
cription of the space. For a more complete introduction to
homology, we recommend the book by Munkres [24] or the
more advanced book by Hatcher[18]. An alternative intor-

Figure 3: Simplicies are glued together in a specific way with
each simplex is glued to lower dimensional simplices, called its
boundary. Here we show an edge has 2 verticies as its boundary
and a triangle has three edges as its boundary.

duction which also includes persistent homology (descri-
bed in the following section) can be found in Edlesbrunner
and Harer[13]. Our goal here is to point out the intuition
behind simplicial complexes and one approach to descri-
bing them qualitatively. We do note that the algorithms and
implementations are readily available [2, 19, 25, 23] and
can often be interpreted through linear algebra.

3 Persistent homology

One problem with homology and topological features in
general is that they are unstable. Adding a point to a space
changes the number of components and the correspoding
Betti number. This would make it seems as though this
technique were not suitable for the study of data. A key
insight from [14, 39], is that we need not look at a single
space but rather a sequence of spaces, called a filtration.
This is an increasing sequence of nested spaces, which ap-
pears often when dealing with data.

∅ ⊆ X0 ⊆ X1 ⊆ . . . ⊆ XN

For example a weighted graph can be filtered by the edge
weights. Perhaps the most ubiquitous example is a finite
metric space, where the space is a complete graph and the
weights are distances. This occurs whenever the notion of
a “scale" appears, Persistent homology is the study of how
qualitative features evolve over parameter choices. For ex-
ample, the number of components is monotonically decre-
asing as we connect points which are increasingly far away.
This is in fact precisely single linkage clustering. Higher
dimensional features such as holes can appear and disap-
pear at different scales.

The key insight is that the evolution of features over pa-
rameter choices can be encoded compactly in the form of a
barcode or persistence diagram (Figure 4). We do not go
into the algebraic reasons why this exists, rather we con-
centrate on its implications. An active research area has
been to extend this to higher dimensional parameter spaces
[6, 22, 34], but has remained a challenging area. We refer
the reader to [13] for introductions to persistent homology
and its variants. For the next section, rather than consider a
persistence diagram rather than a barcode. Here each bar is
mapped to a point with the starting point of the bar as the
x-coordinate and the end point as the y-coordinate.
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Consider a function on a simplicial complex, f :
K → R where we define the filtration as the sublevel
set f−1(−∞, α]. That is, we include all simplices with
a lower function value. As we increase α, the set of sim-
plicies with a lower function value only grows, hence we
only add simplices. Therefore, we obtain an increasing
sequence of topological spaces, i.e. a filtration. Define
Xα := f−1(−∞, α], then

Xα1
⊆ Xα2

⊆ · · · ⊆ Xαn
α1 ≤ α2 ≤ · · · ≤ αn

As another example in a metric space, we include all edges
which represent a distance less than α. Consider a pertur-
bed metric space, giving rise to a different function g. The
following theorem establishes stability - that if the input (in
this case, the function) does not change much, the output
should not change much.

Theorem 1 ([11]). LetK be two simplicial complexes with
two continuous functions f, g : X → R. Then the persis-
tence diagrams Dgm(f) and Dgm(g) for their sublevel set
filtrations satisfy

dB(Dgm(f),Dgm(g))) ≤ ||f − g||∞.

where Dgm(·) represents the persistence diagram (i.e. a
topological descriptor which is a set of points in R2) and
dB(·) represents bottleneck distance. This is the solution
to the optimization which constructs a matching between
the points in two diagrams which minimizes the maximum
distance between matched points. While it is difficult to
overstate the importance of this result, it does have some
drawbacks. In particular the bound is in terms of the ∞-
norm which in the presence of outliers can be very large.
Recently this result has been specialized to Wasserstein sta-
bility, which is a much stronger result (albeit in a more li-
mited setting).

Theorem 2 ([36]). Let f, g : K → R be two functions.
Then Wp(Dgm(f),Dgm(g)) ≤ ‖f − g‖p.

Wasserstein distance is common in the machine learning
and statistics literature as it is a natural distance between
probability distributions. This recent result indicates that
the distances between diagrams is indeed more generally
stable and so suitable for applications. Stability has be-
come an area of study in its own right and we now have a
good understanding of the types of stabilty we can expect.
The literature is too vast to list here so we limit ourselves
to a few relevant pointers [3, 8].

4 Topological features
Here we describe some applications of persistence to ma-
chine learning problems. The key idea is to use persistence
diagrams as feature vectors as input further machine lear-
ning algorithms, There are several obstacles to this. The
most important is that the space of persistence diagrams
is quite pathological. The first approach to move around

this are persistence landscapes [4]. This lifts persistence
diagrams into a Hilbert space which allows them to be fed
into most standard machine learning algorithms. This has
been followed up by rank functions [33], as well as several
kernels [30], More recently, there has been work on lear-
ning optimal functions of persistence diagrams using deep
learning [20].

There has also been significant work on the statistical
properties of persistence diagrams and landscapes [16], in-
cluding bootstrapping techniques [9].

These techniques have been applied to a number of ap-
plication areas. Perhaps most extensive is in geometry pro-
cessing. Combined with local features such as curvature or
features based on heat kernels, different geoemtric struc-
ture can be extracted including symmetry [26], segmenta-
tion [35], and shape classification and retrival [7].

Another application area where persistence diagrams
have been found to be informative are for biology, especi-
ally for protein docking [1] and modelling pathways in the
brain [17]. The final application area we mention is ma-
terial science. This is an area where machine learning has
not yet been applied extensively. Partially due to the fact
that the input is of a significantly different flavor than that
which is typical in machine learning. For example, stan-
dard image processing techniques do not work well with
scientific images such as electron microscope images. By
using topological summaries, the relevant structure is well-
captured [32, 21]. This area is still in the early stages with
many more exciting developments expected.

We conclude this section by noting that persistence di-
agrams are not the only topological features which have
been applied. Originally, the Euler curve was applied to
fMRIs [38]1. This feature has been extensively studied in
the statistics literature, but is provably less informative than
persistence diagrams - although it is far more computatio-
nally tractable. In addition to fMRI, it has been applied to
various classification problems [31].

5 Other applications
In additon to providing a useful summary and features for
machine learning algorithms, a second direction of inte-
rest is the map back to data. This inverse probelm is very
difficult and can often be impossible in general. Nonethe-
less, the situation is often not as hopeless as it would seem.
Some of the first work in this direction is re-interpreting
single linkage clustering through the lens of persistence
[10]. While it is well known that single linkage clusters are
unstable, it is possible to use persistence to show that there
exist stable parts of the clusters and a “soft" clustering al-
gorithm can be developed to stabilize clusters, where each
data point is assigned a probability that it is assigned to a
given cluster. A current direction of research is to find simi-
lar stable representations in the data for higher dimensional
structures (such as cycles).

1We note that this is where the term topological inference first used
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Figure 4: Persistence in a nutshell. Given input points (left), we compute a barcode (middle). which shows how long features live.
The red shows the lifetimes of when components merge, while the blue bars show 1-dimensional holes. We can map each bar to a point
by taking the start and end as the x and y coordinates respectively giving us the persistence diagram (right). Here we see that the big
whole in the middle of the data set appears as a prominent feature (the blue dot far from the diagonal on the right).

A related problem is one of parameterization. That is,
find intrinsic coordinates describing the data, extending
successful techniques in dimensionality reduction, This in-
cludes linear methods such as PCA and MDS as well as
non-linear methods such as ISOMAP and LLE. The first
such work coordinizaed the space of textures using a Klein
bottle as the underlying model [28] - a topological model
found a few years prior [5]. This was however built by
hand. The first class of general methods is first to map ci-
crular coordinates to data [12]. This is particularly useful
when dealing with recurrence in time-varying systems. Re-
currence (including periodicity) is naturally modeled by an
angle, Combining persistence with least-squares optimiza-
tion provides an automatic pipeline to finding such coor-
dinates. This was applied to characterizing human moti-
ons such as different walks and other activities [37]. Furt-
her work has shown how to construct coordainte systems
for higher dimensional structures based on the projective
plane [27].

The final direction we consider is to encode topological
constraints in machine learning algorithms. In [29] topo-
logical priors were used to aid in parameter selection. For
example, the reconstruction of a racetrack should have one
component and one hole (the main loop). Computing the
persistence with respect to a reconstruction parameter (e.g.
bandwith of a kernel) can allow us to choose a parameter
value where the reconstruction has the desired topological
“shape." The encoding of topological constraints is still in
the very early stages but has the potential to provide a new
type of regularization to machine learning techniques.

6 Discussion

Topological data analysis and applications of topology are
still in their early stages. Various efforts to bridge the gap
between algebraic topology and statistics (and probability)
has made rapid progress over the last few years which has
culminated in a dedicated R-package [15]. At the same
time, increasingly efficient software exists for computing
persistent homology exists, where now it is feasible to con-

sider billions of points in low dimensions. This is increa-
singly bridging the gap between theory and practice.

The area has undergone rapid development over the last
10 years and is showing no signs of slowing down. In terms
of theory, the primary question drinving the community is
the notion of multi-dimensional or multi-parameter persis-
tence, where the computational obstacles are much more
daunting. Nonetheless, progress is being made. Success
promises to further reduce the need and dependence on pa-
rameter tuning.

The combination of deep learning techniques with to-
pological techniques promises to provide new areas of ap-
plications as well as potentially performance. These met-
hods are primarily complementary allowing them to build
on each other. In conclusion, while obstacles remain, the
inclusion of topological techniques into the machine lear-
ning toolbox is rapidly making progress.
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