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A new measurable and quantifiable world is created by the Internet of Things. However, the variety of
IoT components, i.e., devices, access technologies and applications, which are deployed on the same core
infrastructure with a common network policy have led to an unexpected issue of heterogeneity. Such issue
directly dismisses the interoperability in the IoT, and hence, significantly decreasing the QoS of a given IoT
service. In this paper, we develop a SDN-based framework, called SHIOT to address the above challenge.
SHIOT relies on the ontology for examining the end-user requests and applies a SDN controller to classify
flow scheduling over the task level. We also utilize the Lagrange relaxation theory to optimize the routing
mechanism. Extensive experiments demonstrate that SHIOT is able to support stressed networks and offers
a significant advantage over the traditional framework that is integrated without SDN.

Povzetek: Zasnovana je izboljšava heterogenega interneta stvari na osnovi SDN okvira in ontologij.

1 Introduction

The practical involvement of the Internet of Things (IoT)
in our world is indisputable. The IoT contributes to the
world’s economy and improves the quality of life. There
are 9 billion networking devices and the number is ex-
pected to reach 24 billion by 2020 [11]. The devices can be
sensors, actuators, cameras, smartphones, which are placed
in different access networks using different access tech-
nologies (e.g., bluetooth, wifi, zigbee, cellular, MANET).
There are also a variety of IoT applications, implemented
on top of the access networks. However, all these vari-
ous elements, i.e., devices, access technologies, applica-
tions have to be built on a common network infrastructure
with traditional equipments and communication protocols.
The latter is not designed to support high-level of scala-
bility, high amount of traffic and mobility in different IoT
tasks. For this reason, it is required to develop diverse poli-
cies for the core network to adapt to the heterogeneous IoT.
This challenge can not be accomplished without the help of
a technology solution, namely Software Defined Network-
ing (SDN) [12, 27].

SDN is considered as a network architecture that is able
to enhance the flexibility of traditional core network. The
idea of programmable networks facilitates network evolu-
tion, in which the forwarding devices are decoupled from

the so-called control layer. This structure makes the be-
havior of the core network more adaptive to the quality of
service, required by different access technologies, applica-
tions and devices. In addition, the centralized architecture
in SDN gives the capability of collecting data and uses this
information to improve network policies instead of man-
ually transforming these high-level policies into low-level
configuration commands.

In this paper, we proposed a SDN-based frame-
work, named SHIOT (Sdn-based framework for the
Heterogeneous IoT) to tackle the heterogeneity issue in the
IoT. The goal is to provide a transparent bridge between
user-interface layer and other low-level layers in order to
enhance the user convenience, while reducing the low-level
complexity. To this end, we have developed an open on-
tology to analyze semantics of incoming requests. We also
introduce a global optimization for routing layer of the core
network by using a heuristic algorithm based on Lagrange
relaxation theory. The characteristics of SDN help us to the
above requirements without altering the untouchable core
Internet network.

The paper is structured as follows: Section 2 presents
the background and related works. Section 3 analyzes and
describes in detail the SHIOT framework. Section 4 shows
the experimental results. Finally, section 5 is dedicated to
conclusions and future works.
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Figure 1: A general SDN architecture

2 Background and related works

2.1 Software defined networking
Over the past decade, the need for services that span mul-
tiple IoT application domains is growing in order to real-
ize the efficiency gains, promised by the IoT. End-users,
however, have to face the heterogeneity issue, which arises
when a wide variety of devices, wireless communication
solutions, and access technologies are implemented in the
IoT. SDN is considered as a good solution to handle such
issue because of its centralized and programmable con-
troller that enables simple programmatic control of the net-
work data-path.

The main idea of SDN is to separate the control and data
planes. The control plane creates and modifies the forward-
ing rules, which are subsequently sent to network devices.
The network devices (e.g., switches and routers) in turn,
just forward packages based on the received rules. The con-
troller is therefore considered as control logic precept to
examine the overall network behavior. Using SDN-based
controller, network administrators can easily program, ma-
nipulate and configure network protocols in a centralized
way. Fig. 1 shows a general architecture of SDN, which
consists of three main layers: Application layer, Control
layer and Infrastructure layer.

In order to deploy a SDN architecture, it is essential to
have an interface that ensures the communication between
the data and control plane. Such interface is called South-
bound Interface (SBI) and should be standardized. SBI de-
fines a protocol to facilitate the diversity of network devices

and controller softwares. There are variety of SBI proto-
cols (e.g. ForCES [8]), but the most typical one seems
to be OpenFlow [19]. An OpenFlow-enabled networking
switch needs to maintain a forwarding flow table that has
three types of information: rules, actions associated with
each rule, and the statistics that count the number of pack-
ets and bytes for the flow. The OpenFlow-enabled switch
aslo creates a secure channel to communicate with the SDN
controller. We have chosen OpenFlow in the present work
because it is capable of reducing management complexity,
handling high bandwidth and implementing new policies
when required. A detailed description on the advantages of
OpenFlow can be found in [19].

2.2 SDN-enabled IoT: a review

The section gives a brief overview on the applicability of
SDN in the IoT to improve the system performance and
overcome the heterogeneity issue.

Huang et al. [13] developed an M2M based framework,
which involves M2M nodes, a gateway to handle the nodes
that does not support M2M protocol and a controller to
carry out network management. Once the routing table is
changed, the controller notifies such change and sends it
to the different nodes. Therefore, the durability of the IoT
network is improved. However, the authors only applied
the same routing policy for all types of flows and did not
consider their QoS.

Martinez-Julia and Skarmeta [18] utilized SDN that al-
lows different objects from different networks to commu-
nicate with each other using IPv6. The IoT controller is
also inserted to simplify the control operations of the var-
ious objects. After establising forwarding rules, such con-
troller sends these rules to the SDN controller and other
networking devices. Such mechanism enables the commu-
nication between the herotereous objects. Li et al. [17] and
Omnes et al. [21] exploited SDN to contruct a framework
that meets the requirement of the diversity and dynamics in
the IoT. Vilalta et al. [28] developed an end-to-end orches-
tration for IoT services using an SDN/NFV-enabled edge
node under SDN.

In [15], Jararweh et al. introduced an architecture model,
namely SDIoF based on the combination of SDStore [5]
and SDSec [2]. This architecture consists of three main
components: 1) The physical layer where all the assets
and hardware devices in the system reside. This layer is
classified into several clusters such as sensor network clus-
ter and database pool cluster; 2) The control layer acts as
a middleware. It involves IoT controller, SDN controller,
SDStore controller, and SDSec controller that are entirely
software-based controllers to abstract the management op-
erations from underling physical layer; 3) The application
layer combines many fine-grained user applications, which
simplify the end-user’s accessing to the stored data through
the Northbound APIs (N-APIs). Unfortunately, the authors
in [15, 17, 21, 28] only gave the general and theoretical
ideas. Their proposals have not been proven and assessed
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through experiments.
Wei et al. [25] introduced a hash-based distributed strat-

egy while integrating SDN into IoT in order to solve the
problem of storage limitation of forwarding nodes. In their
work, the multi-dimension selection method was utilized
for finding the suitable storage. The hash space was formed
by using the IoT data flow. However, the authors did not
consider the QoS requirements related to the different IoT
applications/services.

Chakrabarty et al. [3] developed the so-called Black
SDN with the focus on various security issues. Black SDN
was used to secure both the meta-data and payload within
each layer of an IoT communication packet. The authors
considered the SDN centralized controller as a trusted third
party to ensure secure routing and optimize the system per-
formance management. Olivier et al. [20] proposed a SDN-
based architecture for the IoT that consists of multiple do-
mains, where the SDN controllers are installed. The au-
thors agued that such architecture is able to guarantee the
security of the entire network. However,there is no simula-
tion or evaluation to justify their architecture and outcomes.
Sharma et al. [26] introduced DistBlockNet, a distributed
secure SDN for the IoT, where blockchain technology was
exploited to verify a version of the flow-rule table. How-
ever, in their experiments, they did not consider the aver-
age end-to-end delay, the most important QoS parameter
that has a significant impact on the user experience while
running an IoT service.

It is clear that SDN is an emerging architecture, which is
able to facilitate network management in order to improve
network performance and monitoring. However, there is
a lack of evaluation and testing to assess its use in the IoT.
This paper aims to address this question by developing SH-
IOT framework to bridge the gap between end-users and
the underlying layers. SHIOT will be discussed in detail in
the following section.

3 The proposed SHIOT

This section presents SHIOT framework, a layered SDN
controller that acts as a middleware to bring the trans-
parency to users from the top layer to the bottom ones.
The controller (Fig. 2) is developed using an open source
platform called Floodlight [1]. We decided to use the
Floodlight Open SDN Controller due to the fact that it
is an enterprise-class, Apache-licensed, Java-based Open-
Flow Controller. Floodlight is supported by a community
of developers including a number of engineers from Big
Switch Networks. Although the project is discontinued, its
latest version is sufficient for our development.

Since the IoT scenario is very dynamic, we create a
database, called State info DB to store on the fly the state
information of the network such as its topology, the link
state, the joining or leaving nodes, etc. The end-user’s com-
mands that determine what he/she needs are placed at the
highest layer of abstraction. We also construct a web ser-

Figure 2: The proposed SHIOT framework architecture.

vice that provides RESTful APIs, so that the end-user may
use such service with any platform and on any device. The
transparency, considered in this paper is defined as the level
of independence from applications, devices and networks,
which are used to accomplish the required tasks. For exam-
ple, the user’s command is to count the number of people
in Room01. The controller analyzes this command and in-
dentifies the relevant service. Such service can be either to
capture the video in Room01 and count the number of peo-
ple inside or to activate the counting sensor on the door of
the room. The devices can be either the camera or count-
ing sensors. In other words, the role of SDN controller is to
map the devices to a specific application in order to perform
the couting process. Lower layer then selects network and
path to route the data flows. Finally, all these decisions are
sent down to Communication layer, and installed on the se-
lected devices. The operation of Communication layer has
been processed by a network emulator, known as mininet
[6] in our testbed.

3.1 Request analysis layer

As mentioned above, there is always a challenge in the IoT
due to the diversity in access networks and devices. Hence,
the Request Analysis layer is used to provide an abstract
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layer to end-users, so that the IoT may work independently
from the underlying layers. In other words, the Request
Analysis layer bridges the gap between user requests and
underlying networking devices. The present work con-
structs an ontology and utilizes semantic technologies to
describe the IoT context as well as the devices and their
characteristics. We set our focus in the IoT that is deployed
in E-healthcare system. Fig. 3 shows the constructed on-
tology, which involves three main classes as follows.

1. Applications: We considers five different healthcare
applications:

– Monitoring: This is used to capture and record
the various healthcare indicators including the
physiological (i.e., ECG, EMG, EEG), chemical
(sweat, glucose, saliva), and optical (oximetry,
the properties of tissues) metrics.

– Therapeutic: The goal is to monitor the treat-
ment of a given disease. This consists of
medication (drug delivery patches), stimulation
(chronic pain relief) and emergency (defibrilla-
tor).

– Fitness and Wellness: The application aims to
observe the motion and location indicators such
as physical activity, calorie count, GPS informa-
tion and indoor localization.

– Behavioral: This application is used to main-
tain regular surveillance over the patient’s ac-
tivities (fall, sleep, exercise), emotions (anxiety,
stress, depression) and diet (calorie intake, eat-
ing habits).

– Rehabilitation: This application is used to moni-
tor the rehabilitation of patients like speech (lan-
guage development) and camera (technology for
blinds).

2. Devices: There are two main types of devices, i.e., on-
body contact sensors and peripheral non-contact sen-
sors.

3. Positions: The positions where the devices locate in-
clude the laboratory, operating rooms, casualty rooms,
consulting rooms, day rooms, emergency rooms,
pharmacy, high dependency unit, maternity ward.

Based on the above classes in the ontology, the Positions
and Devices are used to determine the sender and receiver
nodes. We also assign a predefined maximum latency to
each requested application in Applications class. This as-
signment is based on [14, 23, 22]. In order to validate the
scalability of SHIOT, the current ontology includes 250 de-
vices, deployed in 60 different rooms. However, such on-
tology can be extended and customized to be suitable for
the use of any other organizations.

The delta delay ∆delay, that was selected as the QoS
metrics in this work, will be one of the three outputs, ex-
tracted from this layer. The two remaining outputs will be

the sender and receiver nodes. Specifically, we construct
two modules in the Request Analysis layer. As illustrated
in Fig. 4, the User expression analysis module simply
scans the expression text, sent from the various applications
and detects keywords that are related to the constructed on-
tology. The Ontology analysis module in turn uses these
keywords as input and relies on the Ontology data to deter-
mine the appropriate applications and the forwarding IoT
devices. Finally, the outputs, i.e., ∆delay, the sender node
and receiver node will be sent to the Routing layer.

3.2 Routing layer
Based on the results, computed in the Request Analysis
layer, the role of the Routing layer is to find an optimal
path to route the data from the selected source to destina-
tion nodes. This is to ensure that the latency time is not
larger than a predefined threshold ∆delay and thus, opti-
mizing the cost function.

To this end, we implemented a routing algorithm that is
based on the concept of aggregate cost. The optimal cost
is found using the Lagrange relaxation theory. Such algo-
rithm offers a significant advantage because it can give a
lower bound on the theoretically optimal solution. The ex-
perimental results showed that the difference between the
obtained cost and the lower bound is naturally quite nar-
row. In addition, the proposed routing algorithm takes into
account the trade-off between the end-to-end (E2E) delay
and quality of the found path. Gary et al. [10] proved that a
routing problem is NP-complete in the case where the num-
ber of QoS metrics that should be minimized is more than
or equal to 2. Therefore, the paper tries to define a simpler
problem instead of tackling the more complex problem.
Particularly, the delay along the path should be acceptable,
and the cost of the path should be as low as possible. The
intuitive motivation of the routing task is to find a path that
is minimal in terms of cost, provided that the delay is under
a given bound. The delay bound is determined in the Re-
quest Analysis layer and the routing problem is formulated
as a Delay Constrained Least Cost path problem (DCLC)
[24].

The DCLC problem can be described as follows: A
communication network is modeled as a directed and con-
nected graph G = (V,E), where E denotes a set of di-
rected links and V represents a set of nodes (e.g., switches,
routers), connected by directed links. Any node is reach-
able from any other node in this graph. Every directed link
e = (u, v) ∈ E has a delay D(e) and a cost C(e) associ-
ated with it. The link delay, i.e., D(e) is measured when a
packet is passing through link e. The link cost, i.e., C(e)
represents some other metrics, required to optimize such as
the loss-rate, bandwidth, jitter, etc. The link cost is com-
puted using Eq. 1 as

C(e) = w1 ∗ le + w2 ∗ be (1)

where w1 and w2 are weights corresponding to the loss-
rate (le) and bandwidth (be) metrics of link e, respectively.
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Figure 3: Ontology of the E-healthcare system

Figure 4: Request analysis module

The constrained minimization problem is represented as
follow:

min
r∈R′(x,y)

∑
e∈r

C(e) (2)

whereR′(x, y) is the set of routing paths r from source x
to destination y for which the end-to-end delay is bounded
by ∆delay. ∆delay is determined by the Resquest Analysis
layer. We also have R′(x, y) ⊆ R(x, y). A r ∈ R(x, y) is
in R′(x, y) if and only if∑

e∈r
D(e) ≤ ∆delay

In order to solve the DCLC problem, we utilize a heuris-
tic algorithm based on the Lagrange relaxation theory. This
is considered as a common technique for determining lower
bounds and finding solutions for this problem. The idea is

based on the minimization of the modified cost function,
where the cost and delay in terms of a parameter γ are com-
bined to form an aggregate weight for each link as follows.

Cγ = Cold + γ.d (3)

where d is the delay, Cold is the cost that is calculated
using Eq. 1. For a given γ, the optimal path, denoted as
rγ , can be found by using Dijkstra’s algorithm w.r.t. the
cost cγ , obtained in Eq. 3. If the total delay of the path
rγ , denoted as D(rγ), is equal or less than ∆delay, it is
the optimal solution. Otherwise, if D(rγ) > ∆delay, the
value of γ is increased in order to increase the influence
of the delay factor in the cost function (see Eq. 3). The
relationship between parameter γ, the cost and the delay of
a given path can be illustrated by the following lemmas.

Lemma 1. If 0 ≤ γ1 ≤ γ2 then D(rγ1) ≤ D(rγ2) and
C(rγ1) ≥ C(rγ2).

Proof. See [9].

Lemma 1 shows that a larger γ will lead to a larger cost
and a smaller delay. This implies that as long as the re-
sulting shortest path does not violate the predefined delta
delay, a smaller γ will definitely result to a better solution.
The next lemma is used to find the smallest γ value (i.e., γ
related to the shortest path that does not violate ∆delay).

Lemma 2. If γ1 < γ2, D(rγ1) 6= D(rγ2), γ′ =
C(rγ1)−C(rγ2)
D(rγ2)−D(rγ1) , then C(rγ1) ≥ C(rγ′) ≥ C(rγ2),
D(rγ1) ≤ D(rγ′) ≤ D(rγ2).
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Proof. See [9].

Lemma 2 shows that with γ′ =
C(rγ1)−C(rγ2)
D(rγ2)−D(rγ1) , the short-

est path rγ′ must have a delay between the delays of rγ1

and rγ2, and the cost is also between the costs of these two
paths. The above two lemmas imply that the least cost path
rc has to be first computed using Dijkstra’s algorithm w.r.t.
the cost. If its delay is not greater than ∆delay, then it must
be the optimal solution. Otherwise, the least delay path rd,
i.e., the path, found by using Dijkstra’s algorithm w.r.t. the
delay should be obtained. If its delay is greater than the
∆delay, no optimal solution can be achieved. If none of the
above conditions are true, the algorithm begins an iterative
procedure. In each iteration, rd is updated with a better so-
lution having a lower delay and rc is updated with a better
solution having lower cost.

Algorithm 1 Lagrange relaxation-based routing algorithm
Require: source, dest, C, D, ∆delay

Ensure: Optimal path
1: rc ← Dijkstra(source, dest, C)
2: if D(rc) ≤ ∆delay then return rc
3: end if
4: rd ← Dijkstra(source, dest,D)
5: if D(rd) > ∆delay then return "No solution"
6: end if
7: while true do
8: γ := C(rc)−C(rd)

D(rd)−D(rc)

9: P ← Dijkstra(source, dest, Cγ)
10: if Cγ(P) = Cγ(rc) then return rd
11: else if D(P) ≤ ∆delay then
12: rd ← P
13: else
14: rc ← P
15: end if
16: end while

The heuristic algorithm (see Algorithm 1) is described in
detail as follows: First, we utilize the original cost function
(Eq. 1) and find the least cost path using Dijkstra’s algo-
rithm. If the delay of this path meets the delay requirement
∆delay, it is the optimal path. Otherwise, we find the least
delay path and examine whether the delay of this path is
greater than ∆delay. We may then decide to start the loop
or to stop the algorithm as there is no optimal solution that
can be found. The γ parameter is computed as

γ :=
C(rc)− C(rd)

D(rd)−D(rc)

Such parameter is updated after each iteration. The Di-
jkstra’s algorithm is used w.r.t the new value of cost Cγ . If
the cost value of the new path is found to be equal to the
cost value of the least cost path, the optimal path should
be the least delay path. If not, if the delay of the new path
is found to be smaller than ∆delay, the least delay path is
updated as the new path. Otherwise, the least cost path is

considered as the new path. The loop is repeated until the
optimal path is found.

4 Experiments

4.1 Experimental setup

In order to conduct the experiments, we implemented a
testbed, which is illustrated in the Fig. 5. The user is able
to send requests to the E-healthcare system using Restful
APIs from any platforms and devices. In the present work,
we developed an Android application that automatically
creates and sends the RESTful requests. A load balanc-
ing mechanism with PC coordinator is also implemented
to support high rate of requests. Concretely, the coordina-
tor applies the Round Robin algorithm to distribute the re-
quests to three Request Analysis PCs (RA1-3). These three
RA PCs analyze the incoming requests and search for the
appropriate outputs in the Ontology DB database. In the
SDN controller, these outputs are then fed to the routing
algorithm that determines the appropriate way to control
the simulated network. In this paper, we utilize mininet [6]
to emulate the network topology, which involves a num-
ber of different nodes representing the Openflow-enabled
switches and IoT devices.

Figure 5: The testbed, implemented with load balancing
mechanism

4.2 Analyzing the request analysis layer

First, we assess the scalability of the Request Analysis
layer by varying the number of sending requests per sec-
ond and evaluating the round trip time (RTT). In Fig. 6,
it is obvious that the load balancing mechanism is able to
support high request rate. It achieves a RTT of 2.2 seconds
when the rate reaches 500 requests per second, while the
RTT without load balancing mechanism is 26.8 seconds.
This in turn, proves the scalability of the Request Analysis
layer.

In order to evaluate the accuracy of the Request Analysis
layer, we execute 10000 requests, and send them to five
applications (2000 requests per application).



A novel SDN-based Framework for the Heterogeneous IoT Informatica 42 (2018) 313–323 319

Figure 6: RTT corresponding to the Request Analysis
layer, which is deployed with and without load balancing
mechanism.

Applications Number of Number of Prop.
user requests well-classified requests

Monitoring 2000 1928 96.4 %
Therapeutic 2000 1987 99.3 %

Fitness and Wellness 2000 1979 98.9 %
Behavioral 2000 1893 94.6 %

Rehabilitation 2000 1912 95.6 %

Table 1: Accuracy related to the classification of user re-
quests in the five applications

Table 1 shows that majority of user requests have been
classified exactly for all five applications. The faults mostly
come from the Behavioral application. This is due to the
fact that the Request Analysis layer is based on the pro-
cessing of text strings. The Behavioral application on the
other hand, includes a variety of activity and emotion de-
scriptions such as fall, sleep, exercise, anxiety, stress, de-
pression, etc. Hence, it is more difficult to classify the user
tasks. However, an accuracy of 94.6% is still acceptable
for this kind of application.

4.3 Analyzing the routing layer
Concerning the performance of the routing layer, we imple-
mented several other methods that also focus on the DCLC
problem. These methods are as follows.

– The Constrained Bellman-Ford (CBF) routing algo-
rithm [29], which is based on a breadth-first search
that is able to update the lowest cost path in each vis-
ited node. CBF runs until either the highest constraint
is exceeded or it cannot improve the paths anymore.

– The Multi-Criteria Routing algorithm (MCR) devel-
oped by Lee et al. in [16]: This routing algorithm is
based on heuristics of ranked metrics in the network.
A loop is repeated to determine the shortest path for
each metric until the best path is found, or it fails for
all metrics.

– The routing algorithm proposed by Cheng et al. [4]
that combines the problems of finding the least cost
and least delay paths by modifying the cost function.

Such algorithm is abbreviated as MCF in the present
work. It aims to compute a simple metric from mul-
tiple requirements using the weighted combination of
the various QoS metrics.

The above mentioned algorithms are compared with the
proposed algorithm (abbreviated as LARE in this paper)
using the following measures:

– Number of fails, which is the average number of un-
reachable nodes, which occurs when the path cannot
be found at a given delta delay ∆delay. This measure
aims at assessing the efficiency of a given algorithm
in finding the destination nodes.

– Delay, which is the average delay time of the path
from a source node to a reachable destination node.

– Cost, which is considered as the average cost of the
paths from a source node to all reachable destination
nodes.

Concerning the network topology, we first validate the
routing algorithms and their functionality with a simple
network including 17 nodes. We then carried out the ex-
periments with NTT, a 37 node network topology [7] that
is modeled using the exact characteristics of a real-world
network. Finally, we construct by hand a huge network
with 150 nodes (abbreviated as 150N topology) to evaluate
the scalability of the proposed framework.

To obtain the performance related to the various rout-
ing algorithms, this work varies the value of delta delay
(∆delay) from 100 ms to 1000 ms in both the NTT and
150N topologies. As it can be seen from Figs. 7 and 8,
when ∆delay is smaller than 200 ms, the number of un-
reachable nodes is considerably high. This number de-
creases as the delay constraint is increased. All the paths
are only found after 400 ms.
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Figure 7: Average number of unreachable nodes in NTT
topology

Figs. 9 and 10 show the average delay curves of the vari-
ous algorithms in NTT and 150N topologies. As illustrated,
with the low values of delta delay (ranging from 100 ms to
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Figure 8: Average number of unreachable nodes in 150N
topology

300 ms), the number of reachable nodes is small. The des-
tination nodes are close to the source nodes, keeping the
delay values at very low level. After 400 ms delta delay,
when all the paths are found, the average delay becomes
stable.
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Figure 9: Average delay of the various routing algorithms
in NTT topology

It is clear that the LARE algorithm provides the best re-
sult in terms of average delay in both the network topolo-
gies. The scalability of LARE has been proven in 150N
(see Fig. 10), a large network having extremely high node
density, where the performance gap between the proposed
algorithm and other methods become more significant. At
1000 ms delta delay, LARE gives an average delay of 456
ms, while those of other methods are more than 660 ms.
The MCF algorithm provides the highest average delay in
both cases due to its difficulty to select an appropriate ag-
gregate weights when combining the QoS metrics.

Figs. 11 and 12 shows the average cost of the paths
found by the various algorithms in two network topologies.
As explained above, at the beginning (∆delay < 300ms) it
is impossible to find paths to all destination nodes. Since
the obtained paths are very short, the costs become rela-
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Figure 10: Average delay of the various routing algorithms
in 150N topology

tively small. The algorithms find more paths as we in-
crease the delta delay. When all destination nodes are
found (∆delay ≥ 300ms), a higher delta delay would re-
sult in a lower cost. It is obvious that LARE algorithm
gives almost similar outcomes to MCF in both the network
topologies. This is exactly what we expected because MCF
focuses on optimizing the cost value. MCR is the worst
performer, since it only finds the best path for one met-
ric, while ignoring the cost value. Especially, in the 150N
topology (Fig. 12), LARE achieves an average cost of 19.5
at the delta delay of 1000 ms, while the MCR produces an
average cost of 30.1.
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Figure 11: Average cost of the various routing algorithms
in NTT topology

4.4 Analyzing the overall SHIOT
framework

This section aims to validate the capability of supporting
stressed network of the proposed framework and compared
it with the traditional system, which relies on the sim-
ple best-effort policy and is implemented without SDN.
Specifically, we try to stress the system by gradually in-



A novel SDN-based Framework for the Heterogeneous IoT Informatica 42 (2018) 313–323 321

100 200 300 400 500 600 700 800 900 1000

Delta delay (Delay contraint in ms)

10

15

20

25

30

35

40

45

50

55

60
A

ve
ra

ge
 C

os
t

LARE
CBF
MCR
MCF

Figure 12: Average cost of the various routing algorithms
in 150N topology

creasing the rate of sending requests from 100 to 2000 re-
quests per second.

Figure 13: Capability of supporting stressed network of
SHIOT and the traditional system in terms of delay.

We set the delta delay to the value of 1000 ms to en-
sure that the paths to all the destination nodes are found.
As shown in Figs. 13 and 14, SHIOT is obviously better
than the traditional couterpart in terms of delay and cost.
Even in the most stressed state (i.e., 2000 requests per sec-
ond), SHIOT is able to provide an average delay of 694 ms
and a cost of 33, while those, achieved by the traditional
system are 935ms and 69, respectively. The performance
difference may be due to the simple policy (the best-effort
policy) that is implemented in the core network of the tra-
ditional system. SHIOT, on the other hand, possess a lay-
ered architecture that is able to deal with the high rate of
requests, sent from the various applications.

Finally, we evaluate the system performance while run-
ning the video application. Specifically, video flows are
generated (video streaming) using an open source software,
named VLC. Such flows are sent from one node to another
in the simulated network. The experiment lasts five min-
utes. The delay and jitter are computed for each chosen
path. In Table 2, we can see that SHIOT outperforms the
conventional system. Its average end-to-end delay is about

Figure 14: Capability of supporting stressed network of
SHIOT and the traditional system in terms of cost.

3.5 s while that of the traditional system is 7.3 s. Simi-
lar observation can be obtained in terms of jitter. This is
exactly what we expected because SHIOT has the ability
to differentiate the different types of data flow (e.g. video,
audio, information data).

5 Conclusions
In this paper, we have proposed a layered SDN framework,
named SHIOT, to address the heterogeneity issue in the
IoT. SHIOT is based on an open ontology to classify the
incoming user requests. This framework also utilizes the
Lagrange relaxation theory to find the optimal path in order
to forward these requests to the destination nodes. In gen-
eral, SHIOT can be considered as a remedy to bridge the
gap between abstract high-level tasks and other low-level
networks/devices. Experimental results showed that SH-
IOT yielded better performance when compared with the
traditional system, that is deployed without SDN. It is also
proved to be efficient and effective in handling tasks re-
quired by the various applications. Concerning the future
works, we are in the process of evaluating SHIOT, which
is implemented in the real devices (e.g. Openflow-enabled
switches).
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